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What’s Happening Now

Linux 1.3.53:

Extremely fast context switch
(<50 µseconds, independent of number of processes)

Much better TCP performance (50% higher BW)

FreeBSD 2.1R

Ordered asynchronous file metadata writes (unverified)

Solaris 2.5

Faster context switching (unverified)
Faster networking
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Conclusion

Performance (generally) doesn’t matter!

Qualitative factors make the difference:

Linux, FreeBSD: Freely distributable kernel source

Linux: Vast user community

Solaris: Support for multiprocessing
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Results

Linux: fast: system call, small file performance
slow: networking

FreeBSD: fast: networking
slow: small file performance

Solaris: fast: some other benchmark?
slow: system call, context switching
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Modified Andrew Benchmark

Across NFS to a SunOS server:

Linux: Poor networking performance, untuned.

OS
Time

(seconds)
NFS

overhead
Normalized

 to best
FreeBSD 53.24 +12.20% 1.00

Linux 57.73 +33.20% 0.92
Solaris 58.38 +7.49% 0.91
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Modified Andrew Benchmark

On the local disk:

Linux: Uses asynchronous file metadata write.

OS
Time

(seconds)
Normalized

 to best
Linux 43.12 1.00

FreeBSD 47.45 0.91
Solaris 54.31 0.80
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Networking Performance (TCP)

Linux: Does too many memory copies,
TCP window of 1 packet.

OS
Bandwidth
(megabits/

second)

Normalized
 to best

FreeBSD 65.95 1.00
Solaris 60.11 0.91

Linux 25.03 0.38
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Networking Performance (UDP)

Linux: Does too many memory copies
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Small File Performance

Linux: Uses asynchronous writes of file metadata.

FreeBSD: Performance worse than Solaris on similar FS.
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Context Switch (mostly)

Linux: Searching long linked list during context switch

Solaris: Multi-threaded kernel has complex scheduler
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Context Switch Benchmark Design

What is measured:

• Pipe latency

• Scheduling

• Context switching

P0

P1P2
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System Call

Linux: Slightly more optimized kernel entry assembly

Solaris: Multi-threaded, fully preemptive kernel

OS
Time

(µseconds)
Normalized

 to best
Linux 2.31 1.00

FreeBSD 2.62 0.88
Solaris 3.52 0.66

Table 1. Results averaged over 1000 iterations of
calling getpid() in a loop
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Benchmarks

• Microbenchmarks
System Call
Context Switch
File System
Networking

• Application Benchmark
Modified Andrew Benchmark
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Methodology

Benchmarking vs. Other Techniques (e.g. kernel counters)

Advantages:

Portable
Most Important Metric = Wall Clock Time
Comparable results

How we benchmarked:

Black box
No optimizations
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Operating Systems Tested

Non-development release version of the OS in June 1995:
(Bug fixes until October 1995)

OS Version
Linux 1.2.8
FreeBSD 2.0.5R
Solaris x86 2.4
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1995 Platform

How we went shopping for an OS:

• Runs on our hardware:

100 MHZ Pentium, 32MB, NCR 53c810 SCSI controller,
2GB internal disk, 2GB external disk, 17” monitor
10Mb/sec. Ethernet

• Easily installable

• Easily available
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Which Brand?

• Homemade OS

• Commercial UNIX

• Free UNIX

A Toy?
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Desirable Research Operating
System Features:

performance ,
reliability,
kernel source code,
technical support,
driver support,
application software,
large user base
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Why PC?

Market trend:

Increase in PC hardware performance/price ratio

100 MHZ Pentium, 32MB, 2GB disk, 17” monitor
10Mb/sec. Ethernet

~ 100 SpecInt92/$5000 (June 1995)

Mainframe Minicomputer Workstation PC
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