
19 of 19

What’s Happening Now

Linux 1.3.53:

Extremely fast context switch
(<50 µseconds, independent of number of processes)

Much better TCP performance (50% higher BW)

FreeBSD 2.1R

Ordered asynchronous file metadata writes (unverified)

Solaris 2.5

Faster context switching (unverified)
Faster networking

18 of 19

Conclusion

Performance (generally) doesn’t matter!

Qualitative factors make the difference:

Linux, FreeBSD: Freely distributable kernel source

Linux: Vast user community

Solaris: Support for multiprocessing

17 of 19

Results

Linux: fast: system call, small file performance
slow: networking

FreeBSD: fast: networking
slow: small file performance

Solaris: fast: some other benchmark?
slow: system call, context switching

16 of 19

Modified Andrew Benchmark

Across NFS to a SunOS server:

Linux: Poor networking performance, untuned.

OS
Time

(seconds)
NFS

overhead
Normalized

 to best
FreeBSD 53.24 +12.20% 1.00

Linux 57.73 +33.20% 0.92
Solaris 58.38 +7.49% 0.91

15 of 19

Modified Andrew Benchmark

On the local disk:

Linux: Uses asynchronous file metadata write.

OS
Time

(seconds)
Normalized

 to best
Linux 43.12 1.00

FreeBSD 47.45 0.91
Solaris 54.31 0.80

14 of 19

Networking Performance (TCP)

Linux: Does too many memory copies,
TCP window of 1 packet.

OS
Bandwidth
(megabits/

second)

Normalized
 to best

FreeBSD 65.95 1.00
Solaris 60.11 0.91

Linux 25.03 0.38

13 of 19

Networking Performance (UDP)

Linux: Does too many memory copies

0

10

20

30

40

50

60

0 2000 4000 6000 8000 10000

m
eg

ab
its

/s
ec

.

packet size in bytes

Linux
FreeBSD

Solaris

12 of 19

Small File Performance

Linux: Uses asynchronous writes of file metadata.

FreeBSD: Performance worse than Solaris on similar FS.

0
50

100
150
200
250
300
350

1 10 100 1000

m
s

file size in kilobytes (log scale)

Linux
FreeBSD

Solaris
Disk

• Create file

• Write n bytes

• Read n bytes

• Delete file

11 of 19

Context Switch (mostly)

Linux: Searching long linked list during context switch

Solaris: Multi-threaded kernel has complex scheduler

0
100
200
300
400
500
600
700
800
900

1 10 100

T
im

e
 in

 m
ic

ro
se

c.

Processes (log scale)

Linux
FreeBSD

Solaris

10 of 19

Context Switch Benchmark Design

What is measured:

• Pipe latency

• Scheduling

• Context switching

P0

P1P2

9 of 19

System Call

Linux: Slightly more optimized kernel entry assembly

Solaris: Multi-threaded, fully preemptive kernel

OS
Time

(µseconds)
Normalized

 to best
Linux 2.31 1.00

FreeBSD 2.62 0.88
Solaris 3.52 0.66

Table 1. Results averaged over 1000 iterations of
calling getpid() in a loop

8 of 19

Benchmarks

• Microbenchmarks
System Call
Context Switch
File System
Networking

• Application Benchmark
Modified Andrew Benchmark

7 of 19

Methodology

Benchmarking vs. Other Techniques (e.g. kernel counters)

Advantages:

Portable
Most Important Metric = Wall Clock Time
Comparable results

How we benchmarked:

Black box
No optimizations

6 of 19

Operating Systems Tested

Non-development release version of the OS in June 1995:
(Bug fixes until October 1995)

OS Version
Linux 1.2.8
FreeBSD 2.0.5R
Solaris x86 2.4

5 of 19

1995 Platform

How we went shopping for an OS:

• Runs on our hardware:

100 MHZ Pentium, 32MB, NCR 53c810 SCSI controller,
2GB internal disk, 2GB external disk, 17” monitor
10Mb/sec. Ethernet

• Easily installable

• Easily available

4 of 19

Which Brand?

• Homemade OS

• Commercial UNIX

• Free UNIX

A Toy?

3 of 19

Desirable Research Operating
System Features:

performance ,
reliability,
kernel source code,
technical support,
driver support,
application software,
large user base

2 of 19

Why PC?

Market trend:

Increase in PC hardware performance/price ratio

100 MHZ Pentium, 32MB, 2GB disk, 17” monitor
10Mb/sec. Ethernet

~ 100 SpecInt92/$5000 (June 1995)

Mainframe Minicomputer Workstation PC

1 of 19

A Performance Comparison
of UNIX Operating Systems

on the Pentium

Kevin Lai, Mary Baker
{laik,mgbaker}@plastique.stanford.edu

http://mosquitonet.stanford.edu

Department of Computer Science
Stanford University

ABabcdfghiejkl

