Abstract: This is a brief sketch of the \LaTeX3 Project: background, history, principles, aims and functionality. The new version of \LaTeX3 is, like the current version, a freely available system for automated processing of structured documents, formatting them to the highest typographic standards by use of the \TeX typesetting software.

Although its uses include a very large range of published documents, the importance of its unsurpassed ability to format mathematical formulas will not be forgotten in producing the new version.

It is being produced by an international group of volunteers under the technical direction of Frank Mittelbach.

To subscribe to the \LaTeX3 discussion list: Send mail to

\texttt{listserv@vm.urz.uni-heidelberg.de}

with the following line as the body of the message (substituting your own name):

\texttt{subscribe \LaTeX-L First-name Surname}

To get project publications electronically:

Project publications are available for anonymous ftp retrieval from ctan hosts (\texttt{ftp.shsu.edu}, \texttt{ftp.dante.de}, \texttt{ftp.tex.ac.uk}) in the directory \texttt{/tex-archive/info/ltx3pub}.

The file \texttt{ltx3pub.bib} in that directory gives full bibliographical information including abstracts in BibTeX format.

A brief history of the project and a description of its aims is contained in \texttt{l3d001.tex}.

You may use the \texttt{ftpmail} service to access these files by mail rather than ftp. Send a message just containing the word \texttt{help} in a mail message to:

\texttt{ftpmail@ftp.shsu.edu}

for more information about this service.

- For offers of financial contributions or contributions of computing equipment or software, contact the project at one of the above addresses, or the TeX Users Group.
- For offers of technical assistance, contact the project at one of the above addresses.
- For technical enquiries and suggestions, send e-mail to the \LaTeX-L list (see above) or contact the project by letter or FAX at the address above.
The \LaTeX3 Project

Frank Mittelbach
Eichenweg 29
W-6500 Mainz 1
Federal Redpublic of Germany
E-mail: mittelbach@mzdmza.zdv.uni-mainz.de

Chris Rowley
Open University
Walton Hall
Milton Keynes MK7 6AA
United Kingdom
E-mail: c.a.rowley@open.ac.uk

21 December 1994
1.03

©1993 Frank Mittelbach and Chris Rowley

Abstract

This is a brief sketch of the \LaTeX3 Project: background, history, principles, aims and functionality.

The new version of \LaTeX{} is, like the current version, a freely available system for automated processing of structured documents, formatting them to the highest typographic standards by use of the \TeX{} typesetting software.

Although its uses include a very large range of published documents, the importance of its unsurpassed ability to format mathematical formulas will not be forgotten in producing the new version.

It is being produced by an international group of volunteers under the technical direction of Frank Mittelbach.

1 Why a new version?

With \TeX, Knuth designed a formatting system [7] that is able to produce a large range of documents typeset to extremely high quality standards. For various reasons, including its quality, portability, stability and availability, \TeX{} spread very rapidly and can nowadays be best described as a world-wide de facto standard for high quality typesetting. Although it is most famous for its ability to typeset mathematics, it is being used for many other types of document, particularly those with multi-lingual requirements.

The \TeX{} system is fully programmable. This allows the development of high-level user interfaces whose input is processed by \TeX{}’s interpreter to produce low-level typesetting instructions; these are input to \TeX{}’s typesetting engine which outputs the format of each page in a device-independent page-description language.
Many people have made use of this powerful feature of \TeX{} and developed their own front-ends; the most commonly used such packages are A\La ST\TeX{} by Michael Spivak [30, 29] and L\La ST\TeX{} by Leslie Lamport [8]. The development of A\La ST\TeX{} was sponsored by the American Mathematical Society, a publishing house which now processes and typesets the majority of its output using \TeX{}.

The principal aim of A\La ST\TeX{} was to simplify the user interface to the sophisticated built-in math-typesetting capabilities of \TeX{}. It therefore does not provide support for certain more general document processing requirements (such as symbolic cross-references, automatic numbering, etc.); it is therefore most appropriate for short articles which contain lots of formulas.

The L\La\TeX{} system, on the other hand, supports the needs of long documents such as textbooks and manuals. It was designed to separate content and form as much as possible by providing the user with a generic (i.e. logical rather than visual) markup interface; this is combined with style files in which the formatting is specified. Nevertheless, L\La\TeX{} also provides a complete set of direct formatting instructions; these allow the user to access the full power of \TeX{}’s typesetting expertise when preparing the final version of the document.

Recent years have shown that the concepts and approach of L\La\TeX{} have become widely accepted. Indeed, L\La\TeX{} has become the standard method of communicating and publishing documents in many academic disciplines. This has led to many publishers accepting L\La\TeX{} source for articles and books. The American Mathematical Society, for example, now provides a L\La\TeX{} style option [1] which makes the math-typesetting features of A\La ST\TeX{} available to users of L\La\TeX{}. But the use of L\La\TeX{} in the publishing industry goes further: Elsevier Science Publishers, for example, are developing a system [24] which links SGML (for electronic storage of documents in databases) and L\La\TeX{} (for formatting these documents).

The use of L\La\TeX{}, together with SGML, is now also spreading into industrial environments, where the technical qualities of \TeX{} together with the concepts of L\La\TeX{} are considered a powerful combination of great potential importance to such areas as corporate documentation [33] and database publishing.

With the spreading use of SGML-compliant systems, such as the Grif editor, L\La\TeX{} again is a common choice as the formatter for high quality typeset output [9]. A typical SGML Document Type Definition (DTD) uses concepts similar to those of L\La\TeX{}. Therefore, as in the Euromath system, the formatting is often implemented by simply mapping document elements to L\La\TeX{} constructs rather than directly to ‘raw \TeX{}’ [31]. This enables the sophisticated analytical and processing techniques built in to much of the L\La\TeX{} software to be exploited; and it avoids the need to program in \TeX{}.

Such developments ensured that the uses of L\La\TeX{} have become widespread, both geographically and typographically. However, they have also pushed the system way beyond its original intended purpose. Moreover, as most people who have been involved in the production of style files will agree, they have demonstrated that the current version, whilst making the author’s job easier, provides little assistance to developers of new applications. Thus there can be no doubts about the need for the continued development of L\La\TeX{} into a new, improved, front-end to \TeX{}—one that will serve the typesetting needs of the nineties and beyond—so that is what we intend the L\La\TeX{}3 project to provide.
2 History

The original goals for the development of a new version of \LaTeX{} are described in a paper \cite{21} presented in 1989 at the 10th annual meeting of the \TeX{} Users Group at Stanford—it was also at this time that Leslie Lamport expressed his full support for such a project. However, we have since discovered that those original goals did not touch many of the deficiencies of the current system.

New applications of \LaTeX{} have highlighted many limitations of its interface (both for authors of documents and for designers of styles); and further research on such problems led us to the conclusion that one gains very little by just providing more and more specialized style files to solve this or that special problem. This is because many of these deficiencies and limitations have their source in \LaTeX{}'s internal concepts and design \cite{21, 22, 23}.

The most important of those original goals, and one that is still a core part of the \LaTeX{}3 system and a central concern of the project team, is the provision of a good style design interface—one that allows easy implementation of various layouts. (Easy, of course, is relative: we mean ‘as easy as possible, given the complexity of the task’.) In order to make \LaTeX{}3 a fully flexible and extensible system, a major effort is needed in the near future in order to get this interface ‘right’.

3 Aims

The principle aims guiding our work on the project’s development are as follows.

- The \LaTeX{}3 system will provide high quality typesetting for a wide variety of document types and typographic requirements.

- For authors, it will be easy to use since it will be highly automated, but controllable.

- For editors and designers, it will support the direct formatting commands which are essential to the fine-tuning of document layout.

- It will process complex structured documents and support a document syntax that allows automatic translation of documents conforming to commonly used SGML document type definitions into \LaTeX{} documents—this syntax will therefore, for example, support the SGML concepts of ‘attribute’ (or ‘named argument’) and ‘short reference’, in such a way that these can be easily linked to the corresponding SGML features.

- \LaTeX{}3 will be designed as an open system and, like the present version, it will be usable with any standard \TeX{} system and will thus be available on a very wide range of platforms.

- Its highly modular design will provide a system that is flexible and extensible, with well-defined and fully documented interfaces.

- The code itself will also be thoroughly documented and the modular design will help to make the system easy to maintain and enhance.

- We shall also provide extensive catalogues containing many examples that are carefully designed to make the learning time for new users (including designers, editors and programmers) as short as possible.
4 Available now!

In some important areas, the extra facilities of \LaTeXe{} are already available to current \LaTeXe{} users.

- The New Font Selection Scheme (NFSS) is now in widespread use, providing very general and powerful tools for setting up and accessing all available fonts. A new version (NFSS2) has recently been released, which extends the flexibility of the system in the following areas of font management.
 - Scalable fonts, e.g., support for PostScript fonts.
 - Encodings, i.e., support for multilingual documents allowing change of font encoding (code page) within a document.
 - Math symbols, facilitating access to a wide range of symbols.
 - Math typesetting using any suitable family of fonts, eg Lucida or Adobe Times.

- With \AMS\LaTeX{} [1] the capabilities of \LaTeXe{} for mathematical typesetting have reached at least the standard of \AMS\TeX{}.

- Work by Frank Mittelbach and David Carlisle, together with valuable suggestions by several others, has made available more sophisticated tabular processing [15].

- Various forms of multiple-column formatting are also now available [14].

- Johannes Braams [2] has produced a new version of the ‘Babel system’ to support a wide range of languages.

5 New features

\LaTeXe{} will provide much new and enhanced functionality in addition to the above facilities; and its ‘\LaTeXe{} programming language’ will enable it to be further extended in a controlled way.

Here are further details of some of the many planned improvements.

- A robust author interface: providing interactive error recovery linked to an online help system.

- Languages: the typesetting will be customisable for use with different languages (as will the whole system, e.g. the error/help components). In particular, there will be support for mixed language documents and for multiple languages within one paragraph to be correctly hyphenated.

- Table formatting: a large number of extensions in this area will be available, including:
 - multi-page tables;
 - automated column width calculation;
 - a variety of designs for ruled tables;

- Float handling: the major problem in processing floats (e.g. tables and figures) is the precise specification of the designer’s rules concerning how to position them. The new system will make it possible to implement a large range of such positioning algorithms, including the requirements of multi-column formatting, whilst also supporting explicit positioning commands.
• Many of the non-typesetting aspects of document processing will be automated, providing a flexible interface to cover a wide range of requirements and styles in the following areas:

 – citations and bibliographies;
 – cross-references;
 – indexing, etc.;
 – tables of contents, etc.;
 – multiple marks.

• The enhanced functionality in the area of mathematical typesetting will include:

 – alignments in displayed formulas;
 – alphabets, symbols, embellishments;
 – commutative (arrow) diagrams.

These will extend many of the features which are already available in the current version of \(\LaTeX \) [1].

The system will also support the elements defined in the ‘standard SGML DTD for mathematical expressions’ which is currently under development [32].

• The typesetting requirements of many other areas will also be addressed—some examples:

 – technical documentation (e.g. offset layout, change bars);
 – academic publishing in the humanities (e.g. critical text editions);
 – structural formulas in chemistry;
 – integration of graphical structures, including shading and colour;

6 Interfaces

As we said earlier, the design specification interface is probably the most significant single new feature of \(\LaTeX \). It will have two clearly separated parts:

 – the creation of the generic mark-up (e.g. environments) used by the author in creating the \(\LaTeX \) form of the document;

 – the specification of how (in SGML language) the document elements will be formatted.

This will simplify the production of different layouts for the same document type. It will also enable \(\LaTeX \) documents to be created and modified by structured document editors, such as Arbortext Publisher and Grif. Indeed, these two parts are direct analogues of the following components of the Grif system: the ‘generic structure definition (or S) language’ and the ‘presentation description (or P) language’ [4].

However, in order to support the requirements of high quality typesetting, the \(\LaTeX \) equivalent of the P language will need to be even richer than the Grif language. Despite the complexity of the task, this part of the ‘designer interface’ will help to make the following straightforward:

• specification of a wide variety of typographic design rules;
• linking of the elements in a document type to the desired formatting;
• specifying and modifying all of the parameters that influence the layout.

Another important interface will be the \LaTeXe project programming language, used for producing enhancements and extensions: it will be an entirely new language based on data structures and operations suited to the kind of programming required by document processing applications and to the expression of visual components of the layout process. Built on this language there will be high-level generic functions that allow the straightforward expression of common layout components.

7 Resources

The majority of the work, including conceptualisation, modelling, prototyping, implementation and testing, is being undertaken by a dozen individuals under the technical direction of Frank Mittelbach. This work is, in most cases including that of the technical director, done entirely in their spare time and so involves, as you can imagine, a lot of enthusiasm to keep the project alive. A large number of other individuals and organisations have contributed in one way or another to the effort, and we are confident that this number will continue to rise.

There are, nevertheless, many other tasks still to be done in support of the \LaTeXe project. These can be worked on concurrently with the development of the \LaTeXe kernel system. Furthermore, some of these tasks require special expertise not found among the core programming team. Initial research, analysis, and other work on these tasks by volunteers will, we are sure, greatly speed up the process of integrating a number of desirable features into \LaTeXe.

For this reason a ‘volunteer task list’ has been set up: this describes briefly the individual tasks, which require a wide variety of expertise and time involvement. It will be updated at regular intervals and a copy is available, via anonymous ftp from ‘ctan’ sites: ftp.shsu.edu, ftp.dante.de, ftp.tex.ac.uk, in the directory tex-archive/info/ltx3pub.

For access via mail server, send mail to fileserv@shsu.bitnet, with no subject line and in the body write: sendme vol-task, or to mail-server@rus.uni-stuttgart.de, with no subject line and in the body write: send soft/tex/vol-task/vol-task.tex. If you are unable to retrieve a copy via electronic networks, please contact Chris Rowley.

To provide a means of communication with a large number of \LaTeX users an electronic mailing list has been installed at Heidelberg. To subscribe to this list send a mail message to listserv@vm.urz.uni-heidelberg.de, with one line as the body of the message (substituting your own names):

subscribe LaTeX-L Your-first-name Your-surname

One of the major, and growing, problems is how to bring people from all over the world together to discuss the open questions and find new solutions. It is important that these meetings involve people from outside the project since we very much need the views and experience of typesetters, designers, publishers, etc. to help eliminate the flaws in the system and to find new and better solutions.

We have so far held two ‘open workshops’, in London, UK and Boston, USA; these were hugely successful and showed that further workshops of this kind are essential if we are to provide \LaTeXe with a good designer interface.

It is now clear that our ability to maintain the current progress will depend on adequate financial support being available for the following purposes:

Title: The \LaTeXe Project
Author: Frank Mittelbach and Chris Rowley

Version: 1.03
• enhancement of computer equipment and software for the core development team;
• purchase of books on typography and other related subjects;
• essential expenses (travel, accommodation, etc.) for meetings of the project’s core development team; and also for meetings with others, for example: testers of early versions; publishers; typographic designers; suppliers of related software, etc.

References and Bibliography

This bibliography contains some items which are not specifically referenced in this article: these contain further information about the \LaTeX3 project. It also contains entries concerning \BibTeX, which will be reimplemented and enhanced by Oren Patashnik for use with \LaTeX3.

[23] Frank Mittelbach and Rainer Schöpf. Towards \textsc{\LaTeX} 3.0. In Guenther [5], pages 74–79. Published as TUGboat 12#1.

[34] Reinhard Wonneberger and Frank Mittelbach. \textsc{\BibTeX} reconsidered. In Guenther [5], pages 111–124. Published as TUGboat 12#1.