


MINIX: A CHEAP UNIX CLONE WITH SOURCE CODE

Andrew S. Tanenbaum

Dept. of Mathematics and Computer Science
Vrije Universiteit
Amsterdam, The Netherlands

1. OVERVIEW OF THE MINIX SYSTEM ARCHITECTURE

UNIX® is organized as a singlexecutable program that is loaded into memory at system boot time
and then runMINIX is structured in a much more modulaayyas a ollection of processes that communi-
cate with each other and with user processes by sending and receiving mefbagesre separate pro-
cesses for the memory managhe file system, for each devicewdr, and for certain other system func-
tions. Thisstructure enforces a better interface between the pieces. The file system cannainfie,e
accidentally change the memory manag@bles because the file system and memory manager each ha
their own prvate address spaces.

These system processes are each full-fledged processes, with their own memory allocation, process
table entry and statéThey can be run, blocked, and send messages, just as the user probetsets.the
memory manager and file system each run in user space as ordinary protbesd#svice driers are all
linked together with the kernel into the same binary program, bytcdremunicate with each other and
with the other processes by message passing.

When the system is compiled, four binary programs are independently createstnitlgikcluding
the driver processes), the memory manadke file system, anahit (which readdgetc/ttys and forks dfthe
login processes). In other words, compiling the system results in four dastuacfiles. Whenthe system
is booted, all four of these are read into memory from the boot diskette.

It is possible, and in fact, normal, to modifgcompile, and relink, sathe file system, without ka
ing to relink the other three pieces. This desigrvigles a high degree of modularity by dividing the sys-
tem up into independent pieces, each with a well-defined function anddeteéd the other piecedhe
pieces communicate by sending and receiving messages.

The various processes are structured in four layers:

4. The user processes (top layer).

3. The server processes (memory manager and file system).
2. The device dviers, one process per device.

1. Process and message handling (bottom layer).

Let us nev briefly summarize the function of each layer.

Layer 1 is concerned with doing process management including CPU scheduling and interprocess
communication. Whem process does a SEND or RECEIVE, it traps to thmé&l, which then tries to
execute the command. If the command cannotXeewed (e.g., a process does a RECEIVE and there are
no messages waiting for it), the caller is blocked until the command caxehdesl, at which time the
process is reasted. Whenan interrupt occurs, layer 1 ognts it into a message to the appropriate
device driver, which will normally be blockd waiting for it. The decision about which process to run when
is also made in layer 1A priority algorithm is used, ging device dners higher priority @er ordinary
user processes, for example.

Layer 2 contains the device s, one process per majorvite. Theseprocesses are part of the
kernel's address space becauseytinaust run in lernel mode to access I/O device registers amduge 1/0
instructions. Althougtihe IBM PC does not kra uiser mode/kernel mode, most other machines do, so this
decision has been made with am eéavard the future.To dstinguish the processes within the kernel from



-2-

those in user space, the kernel processes are tagled

Layer 3 contains only tavprocesses, the memory manager and the file systémy. are both struc-
tured asservers, with the user processes dsents. When a user process (i.e., a client) wantxtue a
system call, it calls, forample, the library proceduread with the file descriptgibuffer, and count. The
library procedure hilds a message containing the system call number and the parameters and sends it to the
file system. The client then blocksaiting for a reply When the file system reses the message, it car
ries it out and sends back a reply containing the number of bytes read or the error code. The library proce-
dure gets the reply and returns the result to the caller in the uayallhe user is completely uware of
what is going on here, making it easy to replace the local file system with a remote one.

Layer 4 contains the user programs. When the system comigst fiprks of login processes, which
then wait for input.On a successful login, the shell iseeuted. Processeamn fork, resulting in a tree of
processes, witinit at the root. When CTRL-D is typed to a shellit® andinit replaces the shell with
another login process.

2. LAYER 1- PROCESSES AND MESSAGES

The two basic concepts on whidlINIX is built are processes and messagegrocess is an inde-
pendently schedulable entity with its own process table .el{rynessage is a structure containing the
senders process numberl message type field, and arnable part (a union) containing the parameters or
reply codes of the messagklessage size is fixed, depending omvhig the union happens to be on the
machine in question. On the IBM PC it is 24 bytes.

Three kernel calls are provided:

- RECEIVE(source, &message)
- SEND(destination, &message)
- SENDREC(process, &message)

These are the only true system calls (i.e., traps toaheeR. RECEIVEannounces the willingness of the
caller to accept a message from a specified process, oy iAtte RECEIVER will accept anmessage.

(From here on,‘process’ also includes the tasks.) If no message\alable, the receiving process is
blocked. SENDattempts to transmit a message to the destination process. If the destination process is cur
rently blocked trying to rece¢ from the sendethe kernel copies the message from the sestheffer to

the receier's kuffer, and then marks them both as runnable. If the wecé$ not waiting for a message

from the sendethe sender is blocked.

The SENDREC primitie mombines the functions of the otherawlt sends a message to the indi-
cated process, and then blocks until a reply has beewnegcédihereply overwrites the original message.
User processes use SENDREC xecate system calls by sending messages to the servers and then block-
ing until the reply arxies.

There are tw ways to enter thedtnel. Oneway is by the trap resulting from a process’ attempt to
send or recge a nessage. Thether way is by an interrupt. When an interrupt occurs, the registers and
machine state of the currently running process aredsa its process table entryfhen a general interrupt
handler is called with the interrupt number as paramdteis procedure ilds a message of type INTER-
RUPT, copies it to the bffer of the waiting task, marks that task as runnable (unbtcland then calls the
scheduler to see who to run next.

The scheduler maintains three queues, corresponding to layers 2, 3, and 4yvebspé&be driver
gueue has the highest prioritiie server queue has middle prigréigd the user queue hasMest priority
The scheduling algorithm is simple: find the highest priority queue that has at least one process on it, and
run the first process on that queue. In thig,va dock interrupt will cause a process switch if the file sys-
tem was running, but not if the disk i was running. If the disk drér was running, the clock task will
be put at the end of the highest priority queue, and run when its turn comes.

In addition to this rule, oncevery 100 msec, the clock task checks to see if the current process is a
user process that has been running for at least 100 msec. If so, that usewés feono the front of the
user queue and put on the batk.effect, compute bound user processes are run using a round robin sched-
uler. Once started, a user process runs until either it blocks trying to send eeraamssage, or it has
had 100 msec of CPU time. This algorithm is simple, &aid easy to implement.



3. LAYER 2- DEVICE DRIVERS

Like dl versions ofunix for the IBM PC,MINIX does not use the ROM BIOS for input or output
because the BIOS does not support interrupts. Suppose a user fakmowipilation in the background
and then calls the editotf the editor tried to read from the terminal using the BIOS, the compilation (and
ary other background jobs such as printing)uld be stopped dead in their tracks waiting for the tix¢ ne
character to be typed. Such behavior may be acceptable in the MS-DOS woitiateltainly is not in the
UNIX world. Asa result,MINIX contains a complete set ofhis that duplicate the functions of the BIOS.
Like the rest oMINIX , these dwers are written in C, not assembly language.

This design has important implications for runniigNiX on PC clonesA clone whose hardware is
not compatible with the PC dm to the chip leel, but which tries to hide the differences by making the
BIOS calls functionally identical to IBM'will not run an unmodifiedINIX becauseMINIX does not use
the BIOS.

Each device dvier is a ®parate process MINIX . At present, the dviers include the clock drer,
terminal drver, various disk dwers (e.g., RAM disk, flopp disk), and printer dvier. Each drver has a
main loop consisting of three actions:

1. Wait for an incoming message.
2. Perform the request contained in the message.
3. Send a reply message.

Request messagesvieaa sandard format, containing the opcode (e.g., READ, WRITE, or IOCTL), the
minor device numbethe position (e.g., disk block number), theffer address, the byte count, and the
number of the process on whose behalf the work is being done.

As an example of where device\dis fit in, consider what happens when a usanta/to read from
afile. Theuser sends a message to the file systéihe file system has the needed data inuffeb cache,
they are copied back to the usebtherwise, the file system sends a message to the disk task requesting that
the block be read into auffer within the file systens’ address space (in its cachd)sers may not send
messages to the tasks directnly the servers may do this.

MINIX supports a RAM disk. In fact, the RAM disk isvalys used to hold the root viee. When
the system is booted, after the operating system has been loaded, the user is instructed to insert the root file
system disktte. Thefile system then seesudig it is, allocates the necessary memaend copies the
diskette to the RAM disk. Other file systems can then be mounted on the root device.

This oganization puts important directories such/bBs and /tmp on the fastest device, and also
males it easy to wrk with either flopg disks or hard disks or a mixture of theatwy mounting them on
Jusr or /user or elsavhere. Inary event, the root device iswabys in the same place.

In the standard distriltion, the RAM disk is about 240K, most of which is full of parts of the C com-
piler. In the 256K system, a much smaller RAM disk has to be used, which explairthis/kersion has
no C compiler: there is no place to put (The/usr diskette is completely full with the other utility pro-
grams and one of the design goals was toentad system run on a 256K PC with 1 flgpghsk.) Users
with an unusual configuration such as 256K and three hard disks are free to juggle things aroyrseas the
fit.

The terminal drer is compatible with the standard V7 terminahri It supports cooked mode,wa
mode, and cbreak moddt also supports seral escape sequences, such as cursor positioning \aandere
scrolling because the screen editor needs them.

The printer dnrer copies its input to the printer character for character without modification. It does
not even corvert line feed to carriage return + line feethis makes it possible to send escape sequences to
graphics printers without the der messing things upMINIX does not spool output because fipplsk
systems rarely va@ enough spare disk space for the spooling directtngtead one normally would print a
file f by saying

lpr <f &

to do the printing in the backgroun@helpr program insert carriage returns, expands tabs, and so on, so it
should only be used for straight ASCII file@n hard disk systems, a spooler would not be difficult to



write.

4. LAYER 3- SERVERS

Layer 3 contains tes server processes: the memory manager and the file systéwey. are both
structured in the same way as the deviceetsj that is a main loop that accepts requests, performs them,
and then repliesWe will now look at each of these in turn.

The memory managerjob is to handle those system calls that affect memory allocation, as well as a
few others. Thesénclude FORK, EXEC, WIT, KILL, and BRK. The memory model used BYNIX is
exceptionally simple in order to accommodate computers withoytn@mory management hardve.
When the shell forks 6& process, a copof the shell is made in memoryWhen the child does an EXEC,
the nev core image is placed in memoryhereafter it is neer moved. MINIX does not swap or page.

The amount of memory allocated to the process is determined by a field in the header of the
executable file. A program,chmem, has been provided to manipulate this field. When a process is started,
the text segment is set at thery bottom of the allocated memory area, followed by the data and’bes.
stack starts at the top of the allocated memory andsgdmvnward. Thespace between the bottom of the
stack and the top of the data segmenviilable for both segments to gvanto as needed. If the tnseg
ments meet, the process is killed.

In the past, before paging wasénted, all memory allocation schemesrked like this. Inthe
future, when een small microcomputers will use 32-bit CPUs and 1M x 1 bit memory chips, the minimum
feasible memory will be 4 ngebytes and this allocation scheme will probably become poputém dge to
its inherent simplicity Thus theMINIX scheme can begerded as either hopelessly outdated or amazingly
futuristic, as you prefer.

The memory manager keeps track of memory using a list of hdlbden nev memory is needed,
either for FORK or for EXEC, it searches the hole list and takes the first hole that is big enough (first fit).
When a process terminates, if it is adjacent to a hole on either side, the process’ memory and the hole are
merged into a bigger hole.

The file system is really a remote file sarthat happens to be running on the gsedchine. Hov-
eve it is straightforward to comert it into a true network file seev All that needs to be done is change the
message inteate and provide some way of authenticating requdstsMINIX, the source field in the
incoming message is trustvihy because it is filled in by thesknel.) Wherrunning remote, th®INIX file
server maintains state information diRFS and unlik NFS.

TheMINIX file system is similar to that of VUnIX. The i-node is slightly di€rent, containing only
9 disk addresses instead of 13, and only 1 time instead Dfi@se changes reduce the i-node from 64 bytes
to 32 bytes, to store more i-nodes per disk block and reduce the size of the in-core i-node table.

Free disk blocks and free inodes are kept track of using bit maps rather than frééhbiskst maps
for the root device and all mounted file systems are kept in meriddngn a file grows, the system neak
a definite effort to allocate the neblock as close as possible to the old ones, to minimize arm motion.
Disk storage is not necessarily allocated one block at a #wmainor device can be configured to allocate
2, 4 (or more) contiguous blocks wheaea Hock is allocated. Although this astes disk space, these
multiblock zones improve dsk performance by keeping file blocks close togetfitie standard parameters
for MINIX as distributed are 1K blocks and 1K zones (i.e., just 1 block per zone).

MINIX maintains a bffer cache of recently used blocké. hashing algorithm is used to look up
blocks in the cacheWhen an i-node block, directory block, or other critical block is modified, it is written
back to disk immediatelyData blocks are only written back at the next SYNC or whenufierbs needed
for something else.

The MINIX directory system and format is identical to that of WWx. File names are strings of up
to 14 characters, and directories can be arbitrarily long.

5. LAYER 4 - USER PROCESSES

This layer containsnit, the shell, the editpthe compiler the utilities, and all the user processes.
These processes may only send messages to the memory manager and the file system, anérthese serv
only accept valid system call requests. Thus the user processes do neepaitied to be a general-pur
pose message passing systetiowever, removing the one line of code that checks if the message destina-
tion is valid would cowert it into a much more general system (but lass-like).



