
Edit: A Tutorial

Ricki Blau

James Joyce

Computing Services
University of California

Berkeley, California 94720

ABSTRACT

This narrative introduction to the use of the text editoredit assumes no prior famil-
iarity with computers or with text editing. Its aim is to lead the beginning UNIX† user
through the fundamental steps of writing and revising a file of text. Edit, a version of the
text editor ex, was designed to provide an informative environment for new and casual
users.

This edition documents Version 2.0 ofeditandex.

We welcome comments and suggestions about this tutorial and theUNIX documen-
tation in general.Contact theUNIX consultant in 217 Evans, 642-4072.

Draft: April 5, 1979

†UNIX is a trademark of Bell Laboratories.

Edit: A Tutorial

Ricki Blau

James Joyce

Computing Services
University of California

Berkeley, California 94720

Te xt editing using a terminal connected to a computer allows a user to create, modify, and print text
easily. Creating text is as easy as typing it much as one would on an electric typewriter. Modifying text
involves telling the text editor what to add, change, or delete.Te xt is printed by giving the proper command
to print the file contents, with or without special instructions as to the format of the desired output.

These lessons assume no prior familiarity with computers or with text editing. They consist of a
series of text editing sessions which will lead you through the fundamental steps of creating and revising a
file of text. After scanning each lesson and before beginning the next, you should follow the examples at a
terminal to get a feeling for the actual process of text editing. Set aside some time for experimentation, and
you will soon become familiar with using the computer to write and modify text. In addition to the actual
use of the text editor, other features of UNIX will be very important to your work. You can begin to learn
about these other features by reading ‘‘Communicating with UNIX’’ or one of the other tutorials which pro-
vide a general introduction to the system.You will be ready to proceed with this lesson as soon as you are
familiar with your terminal and its special keys, the login procedure, and the ways of correcting typing
errors. Let’s first define some terms:

program A set of instructions given to the computer, describing the sequence of steps which the com-
puter performs in order to accomplish a specific task. As an example, a series of steps to
balance your checkbook is a program.

UNIX UNIX is a special type of program, called an operating system, that supervises the machinery
and all other programs comprising the total computer system.

edit edit is the name of the UNIX text editor which you will be learning to use, a program that
aids you in writing or revising text. Edit was designed for beginning users, and is a simpli-
fied version of an editor calledex.

file EachUNIX account is allotted space for the permanent storage of information, such as pro-
grams, data or text. A file is a logical unit of data, for example, an essay, a program, or a
chapter from a book, which is stored on a computer system.Once you create a file, it is kept
until you instruct the system to remove it. You may create a file during oneUNIX session,
log out, and return to use it at a later time. Files contain anything you choose to write and
store in them. The sizes of files vary to suit your needs; one file might hold only a single
number while another might contain a very long document or program. The only way to
save information from one session to the next is to store it in a file.

filename Filenamesare used to distinguish one file from another, serving the same purpose as the
labels of manila folders in a file cabinet. In order to write or access information in a file, you
use the name of that file in a UNIX command, and the system will automatically locate the
file.

†UNIX is a trademark of Bell Laboratories.

-2-

disk Filesare stored on an input/output device called a disk, which looks something like a stack
of phonograph records. Each surface is coated with a material similar to the coating on
magnetic recording tape, on which information is recorded.

buffer A temporary work space, made available to the user for the duration of a session of text edit-
ing and used for building and modifying the text file. We can imagine the buffer as a black-
board that is erased after each class, where each session with the editor is a class.

Session 1:Creating a File of Text

To use the editor you must first make contact with the computer by logging in to UNIX. We’ll quickly
review the standardUNIX login procedure.

If the terminal you are using is directly linked to the computer, turn it on and press carriage return,
usually labelled ‘‘RETURN’’ . If your terminal connects with the computer over a telephone line, turn on the
terminal, dial the system access number, and, when you hear a high-pitched tone, place the receiver of the
telephone in the acoustic coupler. Press carriage return once and await the login message:

:login:

Type your login name, which identifies you to UNIX, on the same line as the login message, and press
carriage return. If the terminal you are using has both upper and lower case, be sure you enter your login
name in lower case; otherwiseUNIX assumes your terminal has only upper case and will not recognize
lower case letters you may type. UNIX types ‘‘:login:’ ’ and you reply with your login name, for example
‘‘susan’’:

:login: susan(and press carriage return)

(In the examples, input typed by the user appears in bold face to distinguish it from the responses from
UNIX.)

UNIX will next respond with a request for a password as an additional precaution to prevent unautho-
rized people from using your account. The password will not appear when you type it, to prevent others
from seeing it.The message is:

Password: (type your password and press carriage return)

If any of the information you gav e during the login sequence was mistyped or incorrect,UNIX will respond
with

Login incorrect.

:login:

in which case you should start the login process anew. Assuming that you have successfully logged in,
UNIX will print the message of the day and eventually will present you with a % at the beginning of a fresh
line. The% is theUNIX prompt symbol which tells you thatUNIX is ready to accept a command.

Asking for eeddiitt

You are ready to tell UNIX that you want to work with edit, the text editor. Now is a convenient time
to choose a name for the file of text which you are about to create.To begin your editing session typeedit
followed by a space and then the filename which you have selected, for example ‘‘text’’. Whenyou have
completed the command, press carriage return and wait for edit’s response:

% edit text (followed by a carriage return)
"text" No such file or directory
:

-3-

If you typed the command correctly, you will now be in communication with edit. Edit has set aside a
buffer for use as a temporary working space during your current editing session.It also checked to see if
the file you named, ‘‘text’’, already existed. As we expected, it was unable to find such a file since ‘‘text’’
is the name of the new file that we will create.Edit confirms this with the line:

"text" No such file or directory

On the next line appears edit’s prompt ‘‘:’ ’, announcing that edit expects a command from you. You may
now begin to create the new file.

The ‘‘not found’’ message

If you misspelled edit by typing, say, ‘‘editor’’, your request would be handled as follows:

% editor
editor: not found
%

Your mistake in calling edit ‘‘editor’’ was treated by UNIX as a request for a program named ‘‘editor’’.
Since there is no program named ‘‘editor’’, UNIX reported that the program was ‘‘not found’’. A new %
indicates thatUNIX is ready for another command, so you may enter the correct command.

A summary

Your exchange with UNIX as you logged in and made contact with edit should look something like
this:

:login: susan
Password:
Computer CenterUNIX System
... A Message of General Interest ...
% edit text
"text" No such file or directory
:

Entering text

You may now begin to enter text into the buffer. This is done by appendingtext to whatever is cur-
rently in the buffer. Since there is nothing in the buffer at the moment, you are appending text to nothing;
in effect, you are creating text. Most edit commands have two forms: a word which describes what the
command does and a shorter abbreviation of that word. Eitherform may be used.Many beginners find the
full command names easier to remember, but once you are familiar with editing you may prefer to type the
shorter abbreviations. The command to input text is ‘‘append’’ which may be abbreviated ‘‘a’’. Type
appendand press carriage return.

% edit text
: append

Messages from eeddiitt

If you make a mistake in entering a command and type something that edit does not recognize, edit
will respond with a message intended to help you diagnose your error. For example, if you misspell the
command to input text by typing, perhaps, ‘‘add’’ instead of ‘‘append’’ or ‘‘a’’, you will receive this mes-
sage:

: add
add: Not an editor command
:

When you receive a diagnostic message, check what you typed in order to determine what part of your

-4-

command confused edit. The message above means that edit was unable to recognize your mistyped com-
mand and, therefore, did not execute it. Instead, a new ‘‘:’ ’ appeared to let you know that edit is again
ready to execute a command.

Text input mode

By giving the command ‘‘append’’ (or using the abbreviation ‘‘a’’), you enteredtext input mode, also
known asappend mode. When you enter text input mode, edit responds by doing nothing. You will not
receive any prompts while in text input mode. This is your signal that you are to begin entering lines of
text. You can enter pretty much anything you want on the lines. The lines are transmitted one by one to the
buffer and held there during the editing session.You may append as much text as you want, andwhen you
wish to stop entering text lines you should type a period as the only character on the line and press car-
riage return. When you give this signal that you want to stop appending text, you will exit from text input
mode and reenter command mode.Edit will again prompt you for a command by printing ‘‘:’ ’.

Leaving append mode does not destroy the text in the buffer. You have to leave append mode to do
any of the other kinds of editing, such as changing, adding, or printing text. If you type a period as the first
character and type any other character on the same line, edit will believe you want to remain in append
mode and will not let you out. As this can be very frustrating, be sure to typeonly the period and carriage
return.

This is as good a place as any to learn an important lesson about computers and text: ablank space is
a character as far as a computer is concerned.If you so much as type a period followed by a blank (that is,
type a period and then the space bar on the keyboard), you will remain in append mode with the last line of
text being:

.

Let’s say that the lines of text you enter are (try to typeexactlywhat you see, including ‘‘thiss’’):

This is some sample text.
And thiss is some more text.
Text editing is strange, but nice.
.

The last line is the period followed by a carriage return that gets you out of append mode. If while typing
the line you hit an incorrect key, recall that you may delete the incorrect character or cancel the entire line
of input by erasing in the usual way. Refer to ‘‘Communicating with UNIX’’ if you need to review the pro-
cedures for making a correction. Erasing a character or cancelling a line must be done before the line has
been completed by a carriage return.We will discuss changes in lines already typed in session 2.

Writing text to disk

You are now ready to edit the text. Thesimplest kind of editing is to write it to disk as a file for safe-
keeping after the session is over. This is the only way to save information from one session to the next,
since the editor’s buffer is temporary and will last only until the end of the editing session.Thus, learning
how to write a file to disk is second in importance only to entering the text. To write the contents of the
buffer to a disk file, use the command ‘‘write’ ’ (or its abbreviation ‘‘w’ ’):

: write

Edit will copy the buffer to a disk file. If the file does not yet exist, a new file will be created automatically
and the presence of a ‘‘[New file]’’ will be noted. The newly-created file will be given the name specified
when you entered the editor, in this case ‘‘text’’. To confirm that the disk file has been successfully written,
edit will repeat the filename and give the number of lines and the total number of characters in the file. The
buffer remains unchanged by the ‘‘write’ ’ command. All of the lines which were written to disk will still be
in the buffer, should you want to modify or add to them.

Edit must have a filename to use before it can write a file. If you forgot to indicate the name of the
file when you began the editing session, edit will print

-5-

No current filename

in response to your write command.If this happens, you can specify the filename in a new write command:

: write text

After the ‘‘write’ ’ (or ‘‘w’ ’) type a space and then the name of the file.

Signing off

We hav e done enough for this first lesson on using theUNIX text editor, and are ready to quit the ses-
sion with edit.To do this we type ‘‘quit’ ’ (or ‘‘q’ ’) and press carriage return:

: write
"text" [New file] 3 lines, 90 characters
: quit
%

The % is from UNIX to tell you that your session with edit is over and you may commandUNIX further.
Since we want to end the entire session at the terminal we also need to exit from UNIX. In response to the
UNIX prompt of ‘‘ %’’ type a ‘‘control d’’. This is done by holding down the control key (usually labelled
‘‘CTRL’’) and simultaneously pressing the d key. This will end your session with UNIX and will ready the
terminal for the next user. It is always important to type a ‘‘control-d’’ at the end of a session to make abso-
lutely sure no one could accidentally stumble into your abandoned session and thus gain access to your
files, tempting even the most honest of souls.

This is the end of the first session onUNIX text editing.

-6-

Session 2

Login with UNIX as in the first session:

:login: susan (carriage return)
Password: (give password and carriage return)

Computer CenterUNIX System
%

This time when you say that you want to edit, you can specify the name of the file you worked on last time.
This will start edit working and it will fetch the contents of the file into the buffer, so that you can resume
editing the same file. When edit has copied the file into the buffer, it will repeat its name and tell you the
number of lines and characters it contains.Thus,

% edit text
"text" 3 lines, 90 characters
:

means you asked edit to fetch the file named ‘‘text’’ for editing, causing it to copy the 90 characters of text
into the buffer. Edit awaits your further instructions. In this session, we will append more text to our file,
print the contents of the buffer, and learn to change the text of a line.

Adding more text to the file

If you want to add more to the end of your text you may do so by using the append command to enter
text input mode.Here we’ll use the abbreviation for the append command, ‘‘a’’:

: a
This is text added in Session 2.
It doesn’t mean much here, but
it does illustrate the editor.
.

Interrupt

Should you press theRUBOUT key (sometimes labelledDELETE) while working with edit, it will send
this message to you:

Interrupt
:

Any command that edit might be executing is terminated by rubout or delete, causing edit to prompt you
for a new command. If you are appending text at the time, you will exit from append mode and be
expected to give another command.The line of text that you were typing when the append command was
interrupted will not be entered into the buffer.

Making corr ections

If you have read a general introduction to UNIX, such as ‘‘Communicating with UNIX’’ , you will recall
that it is possible to erase individual letters that you have typed. This is done by typing the designated erase
character, usually the number sign (#), as many times as there are characters you want to erase. If you
make a bad start in a line and would like to begin again, this technique is cumbersome − what if you had 15
characters in your line and wanted to get rid of them?To do so either requires:

This is yukky tex###############

with no room for the great text you’d like to type, or,

This is yukky tex@This is great text.

When you type the at-sign (@), you erase the entire line typed so far. You may immediately begin to retype

-7-

the line. This, unfortunately, does not help after you type the line and press carriage return. To make cor-
rections in lines which have been completed, it is necessary to use the editing commands covered in this
session and those that follow.

Listing what’ s in the buffer

Having appended text to what you wrote in Lesson 1, you might be curious to see what is in the
buffer. To print the contents of the buffer, type the command:

: 1,$p

The ‘‘1’ ’ stands for line 1 of the buffer, the ‘‘$’ ’ is a special symbol designating the last line of the buffer,
and ‘‘p’ ’ (or print) is the command to print from line 1 to the end of the buffer. Thus, ‘‘1,$p’’ giv es you:

This is some sample text.
And thiss is some more text.
Te xt editing is strange, but nice.
This is text added in Session 2.
It doesn’t mean much here, but
it does illustrate the editor.

Occasionally, you may enter into the buffer a character which can’t be printed, which is done by striking a
key while theCTRL key is depressed. In printing lines, edit uses a special notation to show the existence of
non-printing characters.Suppose you had introduced the non-printing character ‘‘control-a’’ into the word
‘‘ illustrate’’ by accidently holding down theCTRL key while typing ‘‘a’’. Edit would display

it does illustrˆAte the editor.

if you asked to have the line printed. To represent the control-a, edit shows ‘‘ˆA’’ . The sequence ‘‘ˆ’ ’ fol-
lowed by a capital letter stands for the one character entered by holding down theCTRL key and typing the
letter which appears after the ‘‘ˆ’ ’. We’ll soon discuss the commands which can be used to correct this typ-
ing error.

In looking over the text we see that ‘‘this’’ is typed as ‘‘thiss’’ in the second line, as suggested.Let’s
correct the spelling.

Finding things in the buffer

In order to change something in the buffer we first need to find it. We can find ‘‘thiss’’ in the text we
have entered by looking at a listing of the lines. Physically speaking, we search the lines of text looking for
‘‘ thiss’’ and stop searching when we have found it. The way to tell edit to search for something is to type it
inside slash marks:

: /thiss/

By typing /thiss/ and pressing carriage return edit is instructed to search for ‘‘thiss’’. If we asked edit to
look for a pattern of characters which it could not find in the buffer, it would respond ‘‘Pattern not found’’.
When edit finds the characters ‘‘thiss’’, it will print the line of text for your inspection:

And thiss is some more text.

Edit is now positioned in the buffer at the line which it just printed, ready to makeachange in the line.

The current line

At all times during an editing session, edit keeps track of the line in the buffer where it is positioned.
In general, the line which has been most recently printed, entered, or changed is considered to be the cur-
rent position in the buffer. You can refer to your current position in the buffer by the symbol period (.) usu-
ally known by the name ‘‘dot’’. If you type ‘‘.’’ and carriage return you will be instructing edit to print the
current line:

-8-

: .
And thiss is some more text.

If you want to know the number of the current line, you can type.= and carriage return, and edit will
respond with the line number:

: .=
2

If you type the number of any line and a carriage return, edit will position you at that line and print its con-
tents:

: 2
And thiss is some more text.

You should experiment with these commands to assure yourself that you understand what they do.

Numbering lines (nu)

The number (nu) command is similar to print, giving both the number and the text of each printed
line. To see the number and the text of the current line type

: nu
2 And thiss is some more text.

Notice that the shortest abbreviation for the number command is ‘‘nu’’ (and not ‘‘n’ ’ which is used for a dif-
ferent command).You may specify a range of lines to be listed by the number command in the same way
that lines are specified for print. For example, ‘‘1,$nu’’ lists all lines in the buffer with the corresponding
line numbers.

Substitute command (s)

Now that we have found our misspelled word it is time to change it from ‘‘thiss’’ to ‘‘this’’. As far as
edit is concerned, changing things is a matter of substituting one thing for another. As a stood for append,
sos stands for substitute. We will use the abbreviation ‘‘s’’ to reduce the chance of mistyping the substitute
command. Thiscommand will instruct edit to make the change:

2s/thiss/this/

We first indicate the line to be changed, line 2, and then type an ‘‘s’’ to indicate we want substitution.
Inside the first set of slashes are the characters that we want to change, followed by the characters to replace
them and then a closing slash mark.To summarize:

2s/what is to be changed/ what to change to /

If edit finds an exact match of the characters to be changed it will make the changeonly in the first occur-
rence of the characters.If it does not find the characters to be changed it will respond:

Substitute pattern match failed

indicating your instructions could not be carried out. When edit does find the characters which you want to
change, it will make the substitution and automatically print the changed line, so that you can check that the
correct substitution was made.In the example,

: 2s/thiss/this/
And this is some more text.
:

line 2 (and line 2 only) will be searched for the characters ‘‘thiss’’, and when the first exact match is found,
‘‘ thiss’’ will be changed to ‘‘this’’. Strictly speaking, it was not necessary above to specify thenumber of
the line to be changed.In

: s/thiss/this/

-9-

edit will assume that we mean to change the line where we are currently positioned (‘‘.’’). In this case, the
command without a line number would have produced the same result because we were already positioned
at the line we wished to change.

For another illustration of substitution we may choose the line:

Te xt editing is strange, but nice.

We might like to be a bit more positive. Thus, we could take out the characters ‘‘strange, but ’’ so the line
would read:

Te xt editing is nice.

A command which will first position edit at that line and then make the substitution is:

: /strange/s/strange, but //

What we have done here is combine our search with our substitution. Such combinations are per-
fectly legal. This illustrates that we do not necessarily have to use line numbers to identify a line to edit.
Instead, we may identify the line we want to change by asking edit to search for a specified pattern of let-
ters which occurs in that line.The parts of the above command are:

/strange/ tells edit to find the characters ‘‘strange’’ in the text
s tells edit we want to makeasubstitution
/strange, but // substitutes nothing at all for the characters ‘‘strange, but ’’

You should note the space after ‘‘but’’ in ‘‘/strange, but /’’. If you do not indicate the space is to be
taken out, your line will be:

Te xt editing is nice.

which looks a little funny because of the extra space between ‘‘is’ ’ and ‘‘nice’’. Again, we realize from this
that a blank space is a real character to a computer, and in editing text we need to be aware of spaces within
a line just as we would be aware of an ‘‘a’’ or a ‘‘4’ ’.

Another way to list what’s in the buffer (z)

Although the print command is useful for looking at specific lines in the buffer, other commands can
be more convenient for viewing large sections of text. You can ask to see a screen full of text at a time by
using the commandz. If you type

: 1z

edit will start with line 1 and continue printing lines, stopping either when the screen of your terminal is
full or when the last line in the buffer has been printed. If you want to read the next segment of text, give
the command

: z

If no starting line number is given for the z command, printing will start at the ‘‘current’’ line, in this case
the last line printed. Viewing lines in the buffer one screen full at a time is known as paging. Paging can
also be used to print a section of text on a hard-copy terminal.

Saving the modified text

This seems to be a good place to pause in our work, and so we should end the second session.If you
(in haste) type ‘‘q’ ’ to quit the session your dialogue with edit will be:

: q
No write since last change (q! quits)
:

This is edit’s warning that you have not written the modified contents of the buffer to disk. You run the risk
of losing the work you have done during the editing session since the latest write command.Since in this

-10-

lesson we have not written to disk at all, everything we have done would be lost. If we did not want to save
the work done during this editing session, we would have to type ‘‘q!’ ’ to confirm that we indeed wanted to
end the session immediately, losing the contents of the buffer. Howev er, since we want to preserve what we
have edited, we need to say:

: w
"text" 6 lines, 171 characters

and then,

: q
% {control d}

and hang up the phone or turn off the terminal whenUNIX asks for a name. This is the end of the second
session onUNIX text editing.

-11-

Session 3

Bringing text into the buffer (e)

Login to UNIX and makecontact with edit. You should try to login without looking at the notes, but if
you must then by all means do.

Did you remember to give the name of the file you wanted to edit?That is, did you say

% edit text

or simply

% edit

Both ways get you in contact with edit, but the first way will bring a copy of the file named ‘‘text’’ into the
buffer. If you did forget to tell edit the name of your file, you can get it into the buffer by saying:

: e text
"text" 6 lines, 171 characters

The commandedit, which may be abbreviated ‘‘e’’ , tells edit that you want to erase anything that might
already be in the buffer and bring a copy of the file ‘‘text’’ into the buffer for editing. You may also use the
edit (e) command to change files in the middle of an editing session or to give edit the name of a new file
that you want to create.Because the edit command clears the buffer, you will receive a warning if you try
to edit a new file without having saved a copy of the old file. This gives you a chance to write the contents
of the buffer to disk before editing the next file.

Moving text in the buffer (m)

Edit allows you to move lines of text from one location in the buffer to another by means of themove
(m) command:

: 2,4m$

This command directs edit to move lines 2, 3, and 4 to the end of the buffer ($). The format for the move
command is that you specify the first line to be moved, the last line to be moved, the move command ‘‘m’ ’,
and the line after which the moved text is to beplaced. Thus,

: 1,6m20

would instruct edit to move lines 1 through 6 (inclusive) to a position after line 20 in the buffer. To move
only one line, say, line 4, to a position in the buffer after line 6, the command would be ‘‘4m6’’.

Let’s move some text using the command:

: 5,$m1
2 lines moved
it does illustrate the editor.

After executing a command which changes more than one line of the buffer, edit tells how many lines were
affected by the change.The last moved line is printed for your inspection. If you want to see more than
just the last line, use the print (p), z, or number (nu) command to view more text. Thebuffer should now
contain:

This is some sample text.
It doesn’t mean much here, but
it does illustrate the editor.
And this is some more text.
Te xt editing is nice.
This is text added in Session 2.

We can restore the original order by typing:

-12-

: 4,$m1

or, combining context searching and the move command:

: /And this is some/,/This is text/m/This is some sample/

The problem with combining context searching with the move command is that the chance of making a typ-
ing error in such a long command is greater than if one types line numbers.

Copying lines (copy)

Thecopy command is used to make a second copy of specified lines, leaving the original lines where
they were. Copy has the same format as the move command, for example:

: 12,15copy $

makes a copy of lines 12 through 15, placing the added lines after the buffer’s end ($). Experiment with the
copy command so that you can become familiar with how it works. Notethat the shortest abbreviation for
copy is ‘‘co’’ (andnot the letter ‘‘c’ ’ which has another meaning).

Deleting lines (d)

Suppose you want to delete the line

This is text added in Session 2.

from the buffer. If you know the number of the line to be deleted, you can type that number followed by
‘‘delete’’ or ‘‘d’’ . This example deletes line 4:

: 4d
It doesn’t mean much here, but

Here ‘‘4’ ’ is the number of the line to be deleted and ‘‘delete’’ or ‘‘d’ ’ is the command to delete the line.
After executing the delete command, edit prints the line which has become the current line (‘‘.’’).

If you do not happen to know the line number you can search for the line and then delete it using this
sequence of commands:

: /added in Session 2./
This is text added in Session 2.
: d
It doesn’t mean much here, but

The ‘‘/added in Session 2./’’ asks edit to locate and print the next line which contains the indicated text.
Once you are sure that you have correctly specified the line that you want to delete, you can enter the delete
(d) command.In this case it is not necessary to specify a line number before the ‘‘d’ ’. If no line number is
given, edit deletes the current line (‘‘.’’), that is, the line found by our search.After the deletion, your buffer
should contain:

This is some sample text.
And this is some more text.
Te xt editing is nice.
It doesn’t mean much here, but
it does illustrate the editor.

To delete both lines 2 and 3:

And this is some more text.
Te xt editing is nice.

you type

: 2,3d

which specifies the range of lines from 2 to 3, and the operation on those lines − ‘‘d’ ’ for delete.

-13-

Again, this presumes that you know the line numbers for the lines to be deleted. If you do not you
might combine the search command with the delete command as so:

: /And this is some/,/Text editing is nice./d

A word or two of caution:

In using the search function to locate lines to be deleted you should beabsolutely sure the characters
you give as the basis for the search will take edit to the line you want deleted.Edit will search for the first
occurrence of the characters starting from where you last edited − that is, from the line you see printed if
you type dot (.).

A search based on too few characters may result in the wrong lines being deleted, which edit will do
as easily as if you had meant it. For this reason, it is usually safer to specify the search and then delete in
two separate steps, at least until you become familiar enough with using the editor that you understand how
best to specify searches.For a beginner it is not a bad idea to double-check each command before pressing
carriage return to send the command on its way.

Undo (u) to the rescue

Theundo (u) command has the ability to reverse the effects of the last command.To undo the previ-
ous command, type ‘‘u’ ’ or ‘‘undo’’. Undocan rescue the contents of the buffer from many an unfortunate
mistake. However, its powers are not unlimited, so it is still wise to be reasonably careful about the com-
mands you give. It is possible to undo only commands which have the power to change the buffer, for
example delete, append, move, copy, substitute, and even undo itself. The commands write (w) and edit (e)
which interact with disk files cannot be undone, nor can commands such as print which do not change the
buffer. Most importantly, theonly command which can be reversed by undo is the last ‘‘undo-able’’ com-
mand which you gav e.

To illustrate, let’s issue an undo command.Recall that the last buffer-changing command we gav e
deleted the lines which were formerly numbered 2 and 3. Executing undo at this moment will reverse the
effects of the deletion, causing those two lines to be replaced in the buffer.

: u
2 more lines in file after undo
And this is some more text.

Here again, edit informs you if the command affects more than one line, and prints the text of the line
which is now ‘‘dot’’ (the current line).

Mor eabout the dot (.) and buffer end ($)

The function assumed by the symbol dot depends on its context. It can be used:

1. to exit from append mode we type dot (and only a dot) on a line and press carriage return;

2. to refer to the line we are at in the buffer.

Dot can also be combined with the equal sign to get the number of the line currently being edited:

: .=

Thus if we type ‘‘ .=’’ we are asking for the number of the line and if we type ‘‘ .’’ we are asking for the text
of the line.

In this editing session and the last, we used the dollar sign to indicate the end of the buffer in com-
mands such as print, copy, and move. The dollar sign as a command asks edit to print the last line in the
buffer. If the dollar sign is combined with the equal sign ($=) edit will print the line number corresponding
to the last line in the buffer.

‘‘ .’’ and ‘‘$’ ’ therefore represent line numbers.Whenever appropriate, these symbols can be used in
place of line numbers in commands.For example

-14-

: .,$d

instructs edit to delete all lines from the current line (.) to the end of the buffer.

Moving around in the buffer (+ and −)

It is frequently convenient during an editing session to go back and re-read a previous line. We could
specify a context search for a line we want to read if we remember some of its text, but if we simply want to
see what was written a few, say 3, lines ago, we can type

−3p

This tells edit to move back to a position 3 lines before the current line (.) and print that line. We can move
forward in the buffer similarly:

+2p

instructs edit to print the line which is 2 ahead of our current position.

You may use ‘‘+’ ’ and ‘‘−’ ’ in any command where edit accepts line numbers.Line numbers speci-
fied with ‘‘+’ ’ or ‘‘−’ ’ can be combined to print a range of lines.The command

: −1,+2copy$

makes a copy of 4 lines: thecurrent line, the line before it, and the two after it. The copied lines will be
placed after the last line in the buffer ($).

Try typing only ‘‘−’ ’; you will move back one line just as if you had typed ‘‘−1p’’. Typing the com-
mand ‘‘+’ ’ works similarly. You might also try typing a few plus or minus signs in a row (such as ‘‘+++’’)
to see edit’s response. Typing a carriage return alone on a line is the equivalent of typing ‘‘+1p’’; it will
move you one line ahead in the buffer and print that line.

If you are at the last line of the buffer and try to move further ahead, perhaps by typing a ‘‘+’ ’ or a
carriage return alone on the line, edit will remind you that you are at the end of the buffer:

At end-of-file

Similarly, if you try to move to aposition before the first line, edit will print one of these messages:

Nonzero address required on this command
Negative address − first buffer line is 1

The number associated with a buffer line is the line’s ‘‘address’’, in that it can be used to locate the line.

Changing lines (c)

There may be occasions when you want to delete certain lines and insert new text in their place. This
can be accomplished easily with the change (c) command. The change command instructs edit to delete
specified lines and then switch to text input mode in order to accept the text which will replace them. Let’s
say we want to change the first two lines in the buffer:

This is some sample text.
And this is some more text.

to read

This text was created with theUNIX text editor.

To do so, you can type:

: 1,2c
2 lines changed
This text was created with theUNIX text editor.
.
:

-15-

In the command1,2c we specify that we want to change the range of lines beginning with 1 and ending
with 2 by giving line numbers as with the print command.These lines will be deleted. After a carriage
return enters the change command, edit notifies you if more than one line will be changed and places you in
text input mode. Any text typed on the following lines will be inserted into the position where lines were
deleted by the change command.You will remain in text input mode until you exit in the usual way, by
typing a period alone on a line. Note that the number of lines added to the buffer need not be the same as
the number of lines deleted.

This is the end of the third session on text editing withUNIX.

-16-

Session 4

This lesson covers several topics, starting with commands which apply throughout the buffer, charac-
ters with special meanings, and how to issueUNIX commands while in the editor. The next topics deal with
files: more on reading and writing, and methods of recovering files lost in a crash. The final section sug-
gests sources of further information.

Making commands global (g)

One disadvantage to the commands we have used for searching or substituting is that if you have a
number of instances of a word to change it appears that you have to type the command repeatedly, once for
each time the change needs to be made. Edit, however, provides a way to make commands apply to the
entire contents of the buffer − theglobal (g)command.

To print all lines containing a certain sequence of characters (say, ‘‘text’’) the command is:

: g/text/p

The ‘‘g’ ’ instructs edit to make a global search for all lines in the buffer containing the characters‘‘ text’’.
The ‘‘p’ ’ prints the lines found.

To issue a global command, start by typing a ‘‘g’ ’ and then a search pattern identifying the lines to be
affected. Then,on the same line, type the command to be executed on the identified lines. Global substitu-
tions are frequently useful. For example, to change all instances of the word ‘‘text’’ to the word ‘‘material’’
the command would be a combination of the global search and the substitute command:

: g/text/s/text/material/g

Note the ‘‘g’ ’ at the end of the global command which instructs edit to change each and every instance of
‘‘ text’’ to ‘‘material’’. If you do not type the ‘‘g’ ’ at the end of the command only the first instance of
‘‘ text’’ in each line will be changed (the normal result of the substitute command).The ‘‘g’ ’ at the end of
the command is independent of the ‘‘g’ ’ at the beginning. You may give a command such as:

: 14s/text/material/g

to change every instance of ‘‘text’’ in line 14 alone. Further, neither command will change ‘‘Text’’ to
‘‘material’’ because ‘‘Text’’ begins with a capital rather than a lower-caset.

Edit does not automatically print the lines modified by a global command.If you want the lines to be
printed, type a ‘‘p’ ’ at the end of the global command:

: g/text/s/text/material/gp

The usual qualification should be made about using the global command in combination with any other − in
essence, be sure of what you are telling edit to do to the entire buffer. For example,

: g/ /d
72 less lines in file after global

will delete every line containing a blank anywhere in it. This could adversely affect your document, since
most lines have spaces between words and thus would be deleted. After executing the global command,
edit will print a warning if the command added or deleted more than one line. Fortunately, the undo com-
mand can reverse the effects of a global command.You should experiment with the global command on a
small buffer of text to see what it can do for you.

Mor eabout searching and substituting

In using slashes to identify a character string that we want to search for or change, we have always
specified the exact characters.There is a less tedious way to repeat the same string of characters.To
change ‘‘noun’’ to ‘‘nouns’’ wemay type either

: /noun/s/noun/nouns/

-17-

as we have done in the past, or a somewhat abbreviated command:

: /noun/s//nouns/

In this example, the characters to be changed are not specified − there are no characters, not even a space,
between the two slash marks which indicate what is to be changed.This lack of characters between the
slashes is taken by the editor to mean ‘‘use the characters we last searched for as the characters to be
changed.’’

Similarly, the last context search may be repeated by typing a pair of slashes with nothing between
them:

: /does/
It doesn’t mean much here, but
: //
it does illustrate the editor.

Because no characters are specified for the second search, the editor scans the buffer for the next occur-
rence of the characters ‘‘does’’.

Edit normally searches forward through the buffer, wrapping around from the end of the buffer to the
beginning, until the specified character string is found. If you want to search in the reverse direction, use
question marks (?) instead of slashes to surround the character string.

Special characters

Tw o characters have special meanings when used in specifying searches:‘‘$’’ and ‘‘ˆ’ ’. ‘‘$’ ’ is taken
by the editor to mean ‘‘end of the line’’ and is used to identify strings which occur at the end of a line.

: g/ing$/s//ed/p

tells the editor to search for all lines ending in ‘‘ing’ ’ (and nothing else, not even a blank space), to change
each final ‘‘ing’ ’ to ‘‘ed’’ and print the changed lines.

The symbol ‘‘ˆ’ ’ indicates the beginning of a line.Thus,

: s/ˆ/1. /

instructs the editor to insert ‘‘1.’’ and a space at the beginning of the current line.

The characters ‘‘$’ ’ and ‘‘ˆ’ ’ hav e special meanings only in the context of searching.At other times,
they are ordinary characters.If you ever need to search for a character that has a special meaning, you must
indicate that the character is to temporarily lose its special significance by typing another special character,
the backslash (\), before it.

: s/\\$/dollar/

looks for the character ‘‘$’ ’ in the current line and replaces it by the word ‘‘dollar’’. Were it not for the
backslash, the ‘‘$’ ’ would have represented ‘‘the end of the line’’ in your search, not necessarily the charac-
ter ‘‘$’ ’. Thebackslash retains its special significance at all times.

Issuing UNIX commands from the editor

After creating several files with the editor, you may want to delete files no longer useful to you or ask
for a list of your files. Removing and listing files are not functions of the editor, and so they require the use
of UNIX system commands (also referred to as ‘‘shell’’ commands, as ‘‘shell’’ is the name of the program
that processesUNIX commands). You do not need to quit the editor to execute a UNIX command as long as
you indicate that it is to be sent to the shell for execution. To use theUNIX commandrm to remove the file
named ‘‘junk’ ’ type:

: !rm junk
!
:

The exclamation mark (!) indicates that the rest of the line is to be processed as a UNIX command. If the

-18-

buffer contents have not been written since the last change, a warning will be printed before the command
is executed. Theeditor prints a ‘‘!’ ’ when the command is completed.The tutorial ‘‘Communicating with
UNIX’’ describes useful features of the system, of which the editor is only one part.

Filenames and file manipulation

Throughout each editing session, edit keeps track of the name of the file being edited as thecurrent
filename. Edit remembers as the current filename the name given when you entered the editor. The current
filename changes whenever the edit (e) command is used to specify a new file. Onceedit has recorded a
current filename, it inserts that name into any command where a filename has been omitted. If a write com-
mand does not specify a file, edit, as we have seen, supplies the current filename. You can have the editor
write onto a different file by including its name in the write command:

: w chapter3
"chapter3" 283 lines, 8698 characters

The current filename remembered by the editorwill not be changed as a result of the write command unless
it is the first filename given in the editing session.Thus, in the next write command which does not specify
aname, edit will write onto the current file and not onto the file ‘‘chapter3’’.

The file (f) command

To ask for the current filename, typefile (or f). In response, the editor provides current information
about the buffer, including the filename, your current position, and the number of lines in the buffer:

: f
"text" [Modified] line 3 of 4 --75%--

If the contents of the buffer have changed since the last time the file was written, the editor will tell you that
the file has been ‘‘[Modified]’ ’. After you save the changes by writing onto a disk file, the buffer will no
longer be considered modified:

: w
"text" 4 lines, 88 characters
: f
"text" line 3 of 4 --75%--

Reading additional files (r)

The read (r) command allows you to add the contents of a file to the buffer without destroying the
text already there. To use it, specify the line after which the new text will be placed, the commandr, and
then the name of the file.

: $r bibliography
"bibliography" 18 lines, 473 characters

This command reads in the file bibliographyand adds it to the buffer after the last line. The current file-
name is not changed by the read command unless it is the first filename given in the editing session.

Writing parts of the buffer

Thewrite (w) command can write all or part of the buffer to a file you specify. We are already famil-
iar with writing the entire contents of the buffer to a disk file. To write only part of the buffer onto a file,
indicate the beginning and ending lines before the write command, for example

: 45,$w ending

Here all lines from 45 through the end of the buffer are written onto the file namedending. The lines
remain in the buffer as part of the document you are editing, and you may continue to edit the entire buffer.

-19-

Recovering files

Under most circumstances, edit’s crash recovery mechanism is able to save work to within a few lines
of changes after a crash or if the phone is hung up accidently. If you lose the contents of an editing buffer
in a system crash, you will normally receive mail when you login which gives the name of the recovered
file. To recover the file, enter the editor and type the commandrecover (rec), followed by the name of the
lost file.

: recover chap6

Recover is sometimes unable to save the entire buffer successfully, so always check the contents of the
saved buffer carefully before writing it back onto the original file.

Other recovery techniques

If something goes wrong when you are using the editor, it may be possible to save your work by
using the commandpreserve (pre), which saves the buffer as if the system had crashed.If you are writing
a file and you get the message ‘‘Quota exceeded’’, you have tried to use more disk storage than is allotted to
your account.Proceed with cautionbecause it is likely that only a part of the editor’s buffer is now present
in the file you tried to write. In this case you should use the shell escape from the editor (!) to remove
some files you don’t need and try to write the file again. If this is not possible and you cannot find someone
to help you, enter the command

: preserve

and then seek help. Do not simply leave the editor. If you do, the buffer will be lost, and you may not be
able to save your file. After a preserve, you can use the recover command once the problem has been cor-
rected.

If you make an undesirable change to the buffer and issue a write command before discovering your
mistake, the modified version will replace any previous version of the file. Should you ever lose a good
version of a document in this way, do not panic and leave the editor. As long as you stay in the editor, the
contents of the buffer remain accessible.Depending on the nature of the problem, it may be possible to
restore the buffer to a more complete state with the undo command.After fixing the damaged buffer, you
can again write the file to disk.

Further r eading and other information

Edit is an editor designed for beginning and casual users.It is actually a version of a more powerful
editor calledex. These lessons are intended to introduce you to the editor and its more commonly-used
commands. We hav e not covered all of the editor’s commands, just a selection of commands which should
be sufficient to accomplish most of your editing tasks. You can find out more about the editor in the Ex
Reference Manual, which is applicable to both ex and edit. The manual is available from the Computer
Center Library, 218 Evans Hall. One way to become familiar with the manual is to begin by reading the
description of commands that you already know.

Usingee xx

As you become more experienced with using the editor, you may still find that edit continues to meet
your needs.However, should you become interested in using ex, it is easy to switch. To begin an editing
session with ex, use the nameex in your command instead ofedit.

Edit commands work the same way in ex, but the editing environment is somewhat different. You
should be aware of a few differences that exist between the two versions of the editor. In edit, only the
characters ‘‘ˆ’ ’, ‘‘$’ ’, and ‘‘\’ ’ hav e special meanings in searching the buffer or indicating characters to be
changed by a substitute command. Several additional characters have ‘‘magic’’ meanings in ex, as
described in theEx Reference Manual. Another feature of the edit environment prevents users from acci-
dently entering two alternative modes of editing,openandvisual, in which the editor behaves quite differ-
ently than in normal command mode. If you are using ex and the editor behaves strangely, you may have
accidently entered open mode by typing ‘‘o’ ’. Type theESCkey and then a ‘‘q’ ’ to get out of open or visual
mode and back into the regular editor command mode. The documentAn Introduction to Display Editing

-20-

with Vi provides a full discussion of visual mode.

TThhiiss ttuuttoorriiaall wwaass pprroodduucceedd aatt tthhee CCoommppuutteerr CCeenntteerr ooff tthhee UUnniivveerrssiittyy ooff CCaalliiffoorrnniiaa,, BBeerrkkeelleeyy..
WW ee wweellccoommee ccoommmmeennttss aanndd ssuuggggeessttiioonnss ccoonncceerrnniinngg tthhiiss iitteemm aanndd tthhee UUNNIIXX ddooccuummeennttaattiioonn iinn
gg eenneerraall.. CCoonnttaacctt tthhee UUNNIIXX ccoonnssuullttaanntt iinn 221177 EEvvaannss,, 664422--44007722..

Index

addressing,seeline numbers
append mode, 4
backslash (\), 17
buffer, 1
command mode, 4
context search, 7, 9, 13, 17
control characters (‘‘ˆ’ ’ notation), 7
control-d, 5
current filename, 18, 19
current line (.), 8, 14
diagnostic messages, 3
disk, 1
documentation, 20
edit (to begin editing session), 2, 6
editing commands:

append (a), 3, 4, 6
change (c), 15
copy (co), 12
delete (d), 12-13
edit (e), 11
file (f), 18
global (g), 16-17
move (m), 11-12
number (nu), 8
preserve (pre), 19
print (p), 7
quit (q), 5, 10
quit! (q!), 10
read (r), 18-19
recover (rec), 19
substitute (s), 8-9, 16, 17
undo (u), 13, 17
write (w), 4-5, 10, 19
z, 9

! (shell escape), 18
$= , 14
+, 14
−, 14
//, 7, 17
??, 17
., 8, 14
.=, 8, 14

erasing
characters (#), 6
lines (@), 7

ex (text editor), 20
Ex Reference Manual, 20
file, 1
file recovery, 19
filename, 1
Interrupt (message), 6
line numbers,see alsocurrent line

dollar sign ($), 7, 14
dot (.), 8, 14
relative (+ and −), 14

logging out, 5
login procedure, 2
‘‘magic’’ characters, 20
non-printing characters, 7
‘‘not found’’ (message), 3
program, 1
recovery seefile recovery
shell, 18
shell escape (!), 18
special characters (ˆ, $, \), 17
text input mode, 4
UNIX, 1

