
An Intr oduction to Display Editing with Vi

William Joy†

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

Vi (visual) is a display oriented interactive text editor. When usingvi the screen of
your terminal acts as a window into the file which you are editing. Changes which you
make to the file are reflected in what you see.

Usingvi you can insert new text any place in the file quite easily. Most of the com-
mands to vi move the cursor around in the file. There are commands to move the cursor
forward and backward in units of characters, words, sentences and paragraphs.A small
set of operators, like d for delete andc for change, are combined with the motion com-
mands to form operations such as delete word or delete paragraph, in a simple and natural
way. This regularity and the mnemonic assignment of commands to keys makes the edi-
tor command set easy to remember and to use.

Vi will work on a large number of display terminals, and new terminals are easily
driven after editing a terminal description file. While it is advantageous to have an intelli-
gent terminal which can locally insert and delete lines and characters from the display,
the editor will function quite well on dumb terminals over slow phone lines. The editor
makes allowance for the low bandwidth in these situations and uses smaller window sizes
and different display updating algorithms to make best use of the limited speed available.

It is also possible to use the command set of vi on hardcopy terminals, storage
tubes and ‘‘glass tty’s’’ using a one line editing window; thusvi’s command set is avail-
able on all terminals. On large machines, the full command set of the more traditional,
line oriented editorex is available within vi; it is quite simple to switch between the two
modes of editing.

An Intr oduction to Display Editing with Vi

William Joy†

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

1. Getting started

This manual provides a quick introduction to vi. You should be runningvi on a file you are familiar
with while you are reading this. The first part of this document (sections 1 through 5) describes the basics
of usingvi. Some topics of special interest are presented in section 6, and some nitty-gritty details of how
the editor functions are saved for section 7 to avoid cluttering the presentation here.

There is also a short appendix here, which gives for each character the special meanings which this
character has in vi. Attached to this document should be a quick reference card. This card summarizes the
commands ofvi in a very compact format.You should have the card handy while you are learningvi.

1.1. Specifyingterminal type

Before you can startvi you must tell the system what kind of terminal you are using. Here is a (nec-
essarily incomplete) list of terminal type codes. If your terminal does not appear here, you should consult
with one of the staff members on your system to find out the code for your terminal. If your terminal does
not have a code, one can be assigned and a description for the terminal can be created.

Code / Full name / Type
2621 / Hewlett-Packard 2621A/P / Intelligent
2645 / Hewlett-Packard 264x / Intelligent
act4 / Microterm ACT-IV / Dumb
act5 / Microterm ACT-V / Dumb
adm3a / Lear Siegler ADM-3a / Dumb
adm31 / Lear Siegler ADM-31 / Intelligent
c100 / Human Design Concept 100 / Intelligent
dm1520 / Datamedia 1520 / Dumb
dm2500 / Datamedia 2500 / Intelligent
dm3025 / Datamedia 3025 / Intelligent
fox / Perkin-Elmer / Fox Dumb
h1500 / Hazeltine 1500 / Intelligent
h1510 / Hazeltine 1510 / Intelligent
i100 / Infoton 100 / Intelligent
mime / Imitating a smart act5 / Intelligent
owl / Perkin-Elmer Owl / Intelligent
t1061 / Teleray 1061 / Intelligent
vt52 / Dec VT-52 / Dumb

Assume for the time being that you have a Hewlett-Packard HP2621A terminal. The code used by
the system for this terminal is ‘2621’. In this case you can use one of the following commands to tell the
system the type of your terminal:

† The financial support of an IBM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-A03 and MCS78-07291 is gratefully acknowledged.

-2-

% setenv TERM 2621

This command works with the shellcshon both version 6 and 7 systems.If you are using the standard ver-
sion 7 shell then you should give the command

$ TERM= 2621

The editor command set is independent of the terminal you are using. On some terminals with cursor
positioning keys, these keys will also work within the editor.* This works, for instance, on the dm1520.
On theadm3a,theh j k andl keys work as cursor positioning keys (these are labelled with arrows).

1.2. Editing a file

After telling the system which kind of terminal you have, you should make a copy of a file you are
familiar with, and runvi on this file, giving the command

% vi name

replacingnamewith the name of the copy file you just created.The screen should clear and the text of your
file should appear on the screen.If something else happens refer to the footnote.†

1.3. The editor’ s copy: the buffer

The editor does not directly modify the file which you are editing. Rather, the editor makes a copy of
this file, in a place called thebuffer, and remembers the file’s name. You do not affect the contents of the
file unless and until you write the changes you makeback into the original file.

1.4. Notational conventions

In our examples, input which must be typed as is will be presented in bold face. Text which should
be replaced with appropriate input will be given in italics. We will represent special characters in SMALL

CAPITALS.

1.5. Specialcharacters: ESC and DEL

Several of these special characters are very important, so be sure to find them right now. Look on
your keyboard for a key labelledESCor ALT. It should be near the upper left corner of your terminal. Try
hitting this key a few times. Theeditor will ring the bell to indicate that it is in a quiescent state.‡ Partially
formed commands are cancelled by ESC, and when you insert text in the file you end the text insertion with
ESC. This key is a fairly harmless one to hit, so you can just hit it if you don’t know what is going on until
the editor rings the bell.

Another very useful key is theDEL or RUB key, which generates an interrupt, telling the editor to stop
what it is doing. It is a forceful way of making the editor listen to you, or to return it to the quiescent state
if you don’t know or don’t like what is going on. Try hitting the ‘/’ key on your terminal. This key is used
when you want to specify a string to be searched for. The cursor should now be positioned at the bottom
line of the terminal after a ‘/’ printed as a prompt. You can get the cursor back to the current position by
hitting theDEL or RUB key; try this now. From now on we will simply refer to hitting theDEL or RUB key as

* The current version of the editor does not support the use of cursor keys if these keys send multi-character
codes.

† If you gav e the system an incorrect terminal type code then the editor may have just made a mess out of your
screen. This happens when it sends control codes for one kind of terminal to some other kind of terminal. In
this case hit the keys :q (colon and the q key) and then hit the RETURN key. This should get you back to the
command level interpreter. Figure out what you did wrong (ask someone else if necessary) and try again.

Another thing which can go wrong is that you typed the wrong file name and the editor just printed an error
diagnostic. In this case you should follow the above procedure for getting out of the editor, and try again this
time spelling the file name correctly.

If the editor doesn’t seem to respond to the commands which you type here, try sending an interrupt to it by
hitting the DEL or RUB key on your terminal, and then hitting the :q command again followed by a carriage
return.

‡ On smart terminals where it is possible, the editor will quietly flash the screen rather than ringing the bell.

-3-

‘‘sending an interrupt.’’ *

The editor often echoes your commands on the last line of the terminal. If the cursor is on the first
position of this last line, then the editor is performing a computation, such as computing a new position in
the file after a search or running a command to reformat part of the buffer. When this is happening you can
stop the editor by sending an interrupt.

1.6. Getting out of the editor

After you have worked with this introduction for a while, and you wish to do something else, you can
give the command:wqESC to the editor.† This will write the contents of the editor’s buffer back into the
file you are editing, saving your changes, and then quitting from the editor. You can also end an editor ses-
sion by giving the command:q!ESC; this is a dangerous but occasionally essential command which ends the
editor session and discards all your changes.You need to know about this command in case you change the
editor’s copy of a file you wish only to look at. Be very careful not to give this command when you really
want to save the changes you have made.

2. Moving around in the file

2.1. Scrolling and paging

The editor has a number of commands for moving around in the file. The most useful of these is gen-
erated by hitting the control and D keys at the same time, a control-D or ‘ˆD’. We will use this two charac-
ter notation for referring to these control keys from now on. You may have a key labelled ‘ˆ’ on your termi-
nal. Thiskey will be represented as ‘↑ ’ in this document; ‘ˆ’ is exclusively used as part of the ‘ˆx’ notation
for control characters.‡

As you know now if you tried hitting ˆD, this command scrolls down in the file. The D thus stands
for down. Many editor commands are mnemonic and this makes them much easier to remember. For
instance the command to scroll up is ˆU. Many dumb terminals can’t scroll up at all, in which case hitting
ˆU clears the screen and refreshes it with a line which is farther back in the file at the top.

There are other ways to move around in the file; the keys ˆF and ˆB move forward and backward a
page, keeping a couple of lines of continuity between screens so that it is possible to read through a file
using these rather thanˆD andˆU if you wish.

Notice the difference between scrolling and paging. If you are trying to read the text in a file, hitting
ˆF to move forwarda a page will leave you only a little context to look back at. Scrolling on the other hand
leaves more context, and happens more smoothly. You can continue to read the text as scrolling is taking
place.

2.2. Searching, goto, and previous context

Another way to position yourself in the file is by giving the editor a string to search for. Type the
character/ followed by a string of characters terminated by ESC. The editor will position the cursor at the
first occurrence of this string on a line after the current line. Try hitting n to go to the next line with an
occurrence of this string. The character? will search backwards from where you are, and is otherwise like
/.†

If the search string you give the editor is not present in the file the editor will print a diagnostic on the
last line of the screen, and the cursor will be returned to its initial position.

* On some systems, this interruptibility comes at a price: you cannot type ahead when the editor is computing
with the cursor on the bottom line.

† All commands which read from the last display line can also be terminated with aRETURN as well as anESC.

‡ If you don’t hav e a ‘ ˆ’ key on your terminal then there is probably a key labelled ‘↑ ’; in any case these charac-
ters are one and the same.

† These searches will normally wrap around the end of the file, and thus find the string even if it is not on a line
in the direction you search provided it is anywhere else in the file. You can disable this wraparound in scans by
giving the command:se nowrapscanESC, or more briefly:se nowsESC.

-4-

If you wish the search to match only at the beginning of a line, begin the search string with an↑ . To
match only at the end of a line, end the search string with a $. Thus/↑searchESCwill search for the word
‘search’ at the beginning of a line, and/last$ESCsearches for the word ‘last’ at the end of a line.

The commandG, when preceded by a number will position the cursor at that line in the file. Thus
1G will move the cursor to the first line of the file. If you give G no count, then it moves to the end of the
file.

If you are near the end of the file, and the last line is not at the bottom of the screen, the editor will
place only the character ‘˜’ on each remaining line. This indicates that the last line in the file is on the
screen; that is, the ‘˜’ lines are past the end of the file.

You can find out the state of the file you are editing by typing a ˆG. The editor will show you the
name of the file you are editing, the number of the current line, the number of lines in the buffer, and the
percentage of the way through the buffer which you are. Try doing this now, and remember the number of
the line you are on. Give a G command to get to the end and then anotherG command to get back where
you were.

You can also get back to a previous position by using the command̀ ` (two back quotes). This is
often more convenient thanG because it requires no advance preparation.Try giving aG or a search with /
or ? and then a `` to get back to where you were. If you accidentally hit n or any command which moves
you far away from a context of interest, you can quickly get back by hitting``.

2.3. Moving around on the screen

Now try just moving the cursor around on the screen.Hit the+ key. Each time you do, notice that
the cursor advances to the next line in the file, at the first non-white position on the line. The− key is like +
but goes the other way.

These are very common keys for moving up and down lines in the file. Notice that if you go off the
bottom or top with these keys then the screen will scroll down (and up if possible) to bring a line at a time
into view. TheRETURNkey has the same effect as the+ key.

Vi also has commands to take you to the top, middle and bottom of the screen.H will take you to the
top (home) line on the screen.Try preceding it with a number as in 3H. This will take you to the third line
on the screen.Many vi commands take preceding numbers and do interesting things with them. Try M ,
which takes you to the middle line on the screen, andL , which takes you to the last line on the screen.L
also takes counts, thus5L will takeyou to the fifth line from the bottom.

Vi also has commands which take you to the next or previous line in the same horizontal position
(column) as the one you start in. Try ˆN to move to the next line in the same column,ˆP to move to the pre-
vious line in the same column.

2.4. Moving within a line

Now try picking a word on some line on the screen, not the first word on the line. move the cursor
usingRETURN and− to be on the line where the word is. Try hitting thew key. This will advance the cur-
sor to the next word on the line. Try hitting the b key to back up words in the line. Also try the e key
which advances you to the end of the current word rather than to the beginning of the next word. Also try
SPACE (the space bar) which moves right one character and theBS (backspace or ˆH) key which moves left
one character. The key h works aŝ H does and is useful if you don’t hav ea BS key.

If the line had punctuation in it you may have noticed that that the w and b keys stopped at each
group of punctuation.You can also go back and forwards words without stopping at punctuation by using
W andB rather than the lower case equivalents. Think of these as bigger words. Try these on a few lines
with punctuation to see how they differ from the lower casew andb.

The word keys nev er move off the end of the line, but rather stop at the end. You can get easily to the
beginning of the next line by doing a RETURN at the end of the current line. To get to the end of the previ-
ous line type−$.

-5-

2.5. Summary

SPACEadvance the cursor one position
ˆB backwards to previous page
ˆD scrollsdown in the file
ˆF forward to next page
ˆG tell what is going on
ˆH backspacethe cursor
ˆN next line, same column
ˆP previous line, same column
+ next line, at the beginning
− previous line, at the beginning
/ scan for a following string forwards
? scan backwards
B back a word, ignoring punctuation
G go to specified line, last default
H home screen line
M middle screen line
L last screen line
W forward a word, ignoring punctuation
b back a word
e end of current word
n scan for next instance of/ or ? pattern
w word after this word

3. Making simple changes

3.1. Inserting

One of the most useful commands is the i (insert) command.After you type i, everything you type
until you hit ESC is inserted into the file. Try this now; position yourself to some word in the file and try
inserting text before this word. If you are on an dumb terminal it will seem, for a minute, that some of the
characters in your line have been overwritten, but they will reappear when you hitESC.

Now try finding a word which can, but does not, end in an ‘s’. Position yourself at this word and
type e (move to end of word), then a for append and then ‘sESC’ to terminate the textual insert. This
sequence of commands can be used to easily pluralize a word.

Try inserting and appending a few times to make sure you understand how this works; i placing text
to the left of the cursor, a to the right.

It is often the case that you want to add new lines to the file you are editing, before or after some spe-
cific line in the file. Find a line where this makes sense and then give the commando to create a new line
after the line you are on, or the commandO to create a new line before the line you are on. After you cre-
ate a new line in this way, text you type up to anESCis inserted on the new line.

Many related editor commands are invoked by the same letter key and differ only in that one is given
by a lower case key and the other is given by an upper case key. In these cases, the upper case key often
differs from the lower case key in its sense of direction, with the upper case key working backward and/or
up, while the lower case key moves forward and/or down.

Whenever you are typing in text, you can give many lines of input or just a few characters. To type in
more than one line of text, hit a RETURN at the middle of your input. A new line will be created for text,
and you can continue to type. If you are on a slow and dumb terminal the editor may choose to wait to
redraw the tail of the screen, and will let you type over the existing screen lines. This avoids the lengthy
delay which would occur if the editor attempted to keep the tail of the screen always up to date. The tail of
the screen will be fixed up, and the missing lines will reappear, when you hitESC.

-6-

While you are inserting new text, you can use the characters you normally use at the system com-
mand level (usuallyˆH or #) to backspace over the last character which you typed, and the character which
you use to kill input lines (usually@ or ˆX) to erase the input you have typed on the current line.† The
character̂W will erase a whole word and leave you after the space after the previous word; it is useful for
quickly backing up in an insert.

Notice that when you backspace during an insertion the characters you backspace over are not
erased; the cursor moves backwards, and the characters remain on the display. This is often useful if you
are planning to type in something similar. In any case the characters disappear when when you hit ESC; if
you want to get rid of them immediately, hit anESCand thena again.

Notice also that you can’t erase characters which you didn’t insert, and that you can’t backspace
around the end of a line. If you need to back up to the previous line to make a correction, just hit ESCand
move the cursor back to the previous line. After making the correction you can return to where you were
and use the insert or append command again.

3.2. Making small corrections

You can make small corrections in existing text quite easily. Find a single character which is wrong
or just pick any character. Get near the character with the word motion keys and then either backspace (hit
theBS key or ˆH or even justh) or SPACE (using the space bar) until the cursor is on the character which is
wrong. If the character is not needed then hit thex key; this deletes the character from the file. It is analo-
gous to the way youx out characters when you makemistakes on a typewriter (except it’s not as messy).

If the character is incorrect, you can replace it with the correct character by giving the commandrc,
wherec is replaced by the correct character. Finally if the character which is incorrect should be replaced
by more than one character, giv e the commands which substitutes a string of characters, ending with ESC,
for it. If there are a small number of characters which are wrong you can precedes with a count of the
number of characters to be replaced.Counts are also useful with x to specify the number of characters to
be deleted.

3.3. Morecorr ections: operators

You already know almost enough to make changes at a higher level. All you need to know now is
that thed key acts as a delete operator. Try the commanddw to delete a word. Try hitting . a few times.
Notice that this repeats the effect of the dw. The command. repeats the last command which made a
change. You can remember it by analogy with an ellipsis ‘...’.

Now try db. This deletes a word backwards, namely the preceding word. Try dSPACE. This deletes
asingle character, and is equivalent to thex command.

Another very useful operator is c or change. The commandcw thus changes the text of a single
word. You follow it by the replacement text ending with an ESC. Find a word which you can change to
another, and try this now. Notice that the end of the text to be changed was marked with the character ‘$’
so that you can see this as you are typing in the new material.

3.4. Operating on lines

It is often the case that you want to operate on lines. Find a line which you want to delete, and type
dd, thed operator twice. This will delete the line. If you are on a dumb terminal, the editor may just erase
the line on the screen, replacing it with a line with only an @ on it. This line does not correspond to any
line in your file, but only acts as a place holder. It helps to avoid a lengthy redraw of the rest of the screen
which would be necessary to close up the hole created by the deletion on a terminal without a delete line
capability.

Try repeating the c operator twice; this will change a whole line, erasing its previous contents and
replacing them with text you type up to anESC.†

† In fact, the character̂H (backspace) always works to erase the last input character here, regardless of what
your erase character is.

† The commandS is a convenient synonym for for cc, by analogy with S. Think of S as a substitute on lines,
while s is a substitute on characters.

-7-

You can delete or change more than one line by preceding thedd or cc with a count, i.e. 5dd deletes
5 lines. You can also give a command like dL to delete all the lines upto and including the last line on the
screen, or d3L to delete through the third from the bottom line. Try some commands like this now. Notice
that the editor lets you know when you change a large number of lines so that you can see the extent of the
change. Theeditor will also always tell you when a change you makeaffects text which you cannot see.

3.5. Undoing

Now suppose that the last change which you made was incorrect; you could use the insert, delete and
append commands to put the correct material back. However, since it is often the case that we regret a
change or make a change incorrectly, the editor provides a u (undo) command to reverse the last change
which you made.Try this a few times, and give it twice in a row to notice that anu also undoes au.

The undo command lets you reverse only a single change.After you make a number of changes to a
line, you may decide that you would rather have the original state of the line back. The U command
restores the current line to the state before you started changing it.

You can recover text which you delete, even if undo will not bring it back; see the section on recover-
ing lost text below.

3.6. Summary

SPACEadvance the cursor one position
ˆH backspacethe cursor
ˆW eraseaword during an insert
erase yourerase (usually ˆH or #), erases a character during an insert
kill yourkill (usually @ or ˆX), kills the insert on this line
. repeats the changing command
O opens and inputs new lines, above the current
U undoes the changes you made to the current line
a appends text after the cursor
c changes the object you specify to the following text
d deletes the object you specify
i inserts text before the cursor
o opens and inputs new lines, below the current
u undoes the last change

4. Moving about; rearranging and duplicating text

4.1. Low lev el character motions

Now move the cursor to a line where there is a punctuation or a bracketing character such as a paren-
thesis or a comma or period. Try the commandfx wherex is this character. This command finds the next x
character to the right of the cursor in the current line. Try then hitting a ;, which finds the next instance of
the same character. By using the f command and then a sequence of ;’s you can often get to a particular
place in a line much faster than with a sequence of word motions or SPACEs. Thereis also a F command,
which is like f, but searches backward. The; command repeatsF also.

When you are operating on the text in a line it is often desirable to deal with the characters up to, but
not including, the first instance of a character. Try dfx for somex now and notice that the x character is
deleted. Undothis with u and then try dtx; the t here stands for to, i.e. delete up to the next x, but not the
x. The commandT is the reverse oft.

When working with the text of a single line, an↑ moves the cursor to the first non-white position on
the line, and a$ moves it to the end of the line. Thus$a will append new text at the end of the current line.

Your file may have tab (ˆI) characters in it. These characters are represented as a number of spaces
expanding to a tab stop, where tab stops are every 8 positions.* When the cursor is at a tab, it sits on the

* This is settable by a command of the form :se ts=xESC, wherex is 4 to set tabstops every four columns. This

-8-

last of the several spaces which represent that tab. Try moving the cursor back and forth over tabs so you
understand how this works.

On rare occasions, your file may have nonprinting characters in it. These characters are displayed in
the same way they are represented in this document, that is with a two character code, the first character of
which is ‘ˆ’. On the screen non-printing characters resemble a ‘ˆ’ character adjacent to another, but spacing
or backspacing over the character will reveal that the two characters are, like the spaces representing a tab
character, asingle character.

The editor normally discards control characters if you attempt to insert them in your file. You can get
a control character in the file by beginning an insert and then typing a ˆQ before the control character. The
ˆQ quotes the following character, causing it to be inserted directly into the file.

4.2. Higher level text objects

In working with a document it is often advantageous to work in terms of sentences, paragraphs, and
sections. The operations(and) move to the beginning of the previous and next sentences respectively.
Thus the commandd) will delete the rest of the current sentence; likewised(will delete the previous sen-
tence if you are at the beginning of the current sentence, or the current sentence up to where you are if you
are not at the beginning of the current sentence.

A sentence is defined to end at a ‘.’, ‘!’ or ‘?’ which is followed by either the end of a line, or by two
spaces. Any number of closing ‘)’, ‘]’, ‘"’ and ‘´’ characters may appear after the ‘.’, ‘!’ or ‘?’ before the
spaces or end of line.

The operations{ and} move over paragraphs and the operations[[and]] move over sections.†

A paragraph begins after each empty line, and also at each of a set of paragraph macros, specified by
the pairs of characters in the definition of the string valued optionparagraphs. The default setting for this
option defines the paragraph macros of the −ms macro package, i.e. the ‘.IP’, ‘.LP’, ‘.PP’ and ‘.QP’
macros.‡ Each paragraph boundary is also a sentence boundary. The sentence and paragraph commands
can be given counts to operate over groups of sentences and paragraphs.

Sections in the editor begin after each macro in thesectionsoption, normally ‘.NH’ and ‘.SH’, and
each line with a formfeedˆL in the first column. Section boundaries are always line and paragraph bound-
aries also.

Try experimenting with the sentence and paragraph commands until you are sure how they work. If
you have a large document, try looking through it using the section commands.The section commands
interpret a preceding count as a different window size in which to redraw the screen at the new location,
and this window size is the base size for newly drawn windows until another size is specified.This is very
useful if you are on a slow terminal and are looking for a particular section. You can give the first section
command a small count to then see each successive section heading in a small window.

4.3. Rearranging and duplicating text

The editor has a single unnamed buffer where the last deleted or changed away text is sav ed, and a
set of named buffersa−z which you can use to save copies of text and to move text around in your file and
between files.

The operatory yanks a copy of the object which follows into the unnamed buffer. If preceded by a
buffer name," xy, wherex here is replaced by a lettera−z, it places the text in the named buffer. The text
can then be put back in the file with the commandsp andP; p puts the text after or below the cursor, while
P puts the text before or above the cursor.

has effect on the screen representation within the editor.

† The [[and]] operations require the operation character to be doubled because they can move the cursor far
from where it currently is. While it is easy to get back with the command̀ `. these would be frustrating if it
was easy to hit them accidentally.

‡ You can easily change or extend this set of macros by assigning a different string to theparagraphsoption in
your ‘.exrc’ file. See section 6.2 for details.The ‘.bp’ directive is also considered to start a paragraph.

-9-

If the text which you yank forms a part of a line, or is an object such as a sentence which partially
spans more than one line, then when you put the text back, it will be placed after the cursor (or before if
you useP). If the yanked text forms whole lines, they will be put back as whole lines, without changing the
current line. In this case, the put acts much likeao or O command.

Try the commandYP. This makes a copy of the current line and leaves you on this copy, which is
placed before the current line. The commandY is a convenient abbreviation for yy. The commandYp will
also make a copy of the current line, and place it after the current line. You can give Y a count of lines to
yank, and thus duplicate several lines; try3YP.

To move text within the buffer, you need to delete it in one place, and put it back in another. You can
precede a delete operation by the name of a buffer in which the text is to be stored as in "a5dd deleting 5
lines into the named buffer a. You can then move the cursor to the eventual resting place of the these lines
and do a "ap or "aP to put them back. In fact, you can switch and edit another file before you put the lines
back, by giving a command of the form :e nameESC wherenameis the name of the other file you want to
edit. You will have to write back the contents of the current editor buffer (or discard them) if you have
made changes before the editor will let you switch to the other file.

4.4. Summary.

↑ first non-white on line
$ end of line
) forward sentence
} forward paragraph
]] forward section
(backward sentence
{ backward paragraph
[[backward section
fx find x forward in line
p put text back, after cursor or below current line
y yank operator, for copies and moves
tx uptox forward, for operators
Fx f backward in line
P put text back, before cursor or above current line
Tx t backward in line

5. High level commands

5.1. Writing, quitting, editing new files

So far we have seen how to entervi and to write out our file using either:wqESCor :wESC. The first
writes and quits from the editor, the second writes and stays in the editor.

If you have changed the editor’s copy of the file but do not wish to save your changes, either because
you messed up the file or decided that the changes are not an improvement to the file, then you can give the
command:q!ESC to quit from the editor without writing the changes.You can also reedit the same file
(starting over) by giving the command:e!ESC. These commands should be used only rarely, and with cau-
tion, as it is not possible to recover the changes you have made after you discard them in this manner.

You can edit a different file without leaving the editor by giving the command:e nameESC. If you
have not written out your file before you try to do this, then the editor will tell you this, and delay editing
the other file. You can then give the command:wESCto save your work and then the:e nameESCcommand
again, or carefully give the command:e! nameESC, which edits the other file discarding the changes you
have made to the current file.

-10-

5.2. Escapingto a shell

You can get to a shell to execute a single command by giving a vi command of the form :!cmdESC.
The system will run the single commandcmdand when the command finishes, the editor will ask you to hit
a RETURN to continue.When you have finished looking at the output on the screen, you should hit RETURN

and the editor will clear the screen and redraw it. You can then continue editing. You can also give another
: command when it asks you for aRETURN; in this case the screen will not be redrawn.

If you wish to execute more than one command in the shell, then you can give the command:shESC.
This will give you a new shell, and when you finish with the shell, ending it by typing a ˆD, the editor will
clear the screen and continue.

5.3. Marking and returning

The command̀ ` returned to the previous place after a motion of the cursor by a command such as/,
? or G. You can also mark lines in the file with single letter tags and return to these marks later by naming
the tags. Try marking the current line with the commandmx, where you should pick some letter for x, say
‘a’. Thenmove the cursor to a different line (any way you like) and hit `a. The cursor will return to the
place which you marked. Markslast only until you edit another file.

When using operators such asd and referring to marked lines, it is often desirable to delete whole
lines rather than deleting to the exact position in the line marked by m. In this case you can use the form ´x
rather than`x. Used without an operator, ´x will move to the first non-white character of the marked line;
similarly ´´ moves to the first non-white character of the line containing the previous context mark``.

5.4. Adjusting the screen

If the screen image is messed up because of a transmission error to your terminal, or because some
program other than the editor wrote output to your terminal, you can hit a ˆL , theASCII form-feed character,
to cause the screen to be refreshed.

On a dumb terminal, if there are @ lines in the middle of the screen as a result of line deletion, you
may get rid of these lines by typingˆR to cause the editor to retype the screen, closing up these holes.

Finally, if you wish to place a certain line on the screen at the top middle or bottom of the screen, you
can position the cursor to that line, and then give a z command. You should follow thez command with a
RETURN if you want the line to appear at the top of the window, a . if you want it at the center, or a − if you
want it at the bottom.

6. Specialtopics

6.1. Editing on slow terminals

When you are on a slow terminal, it is important to limit the amount of output which is generated to
your screen so that you will not suffer long delays, waiting for the screen to be refreshed.We hav e already
pointed out how the editor optimizes the updating of the screen during insertions on dumb terminals to limit
the delays, and how the editor erases lines to @ when they are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by theslowopenoption. You can force the
editor to use this mode even on faster terminals by giving the command:se slowESC. If your system is
sluggish this helps lessen the amount of output coming to your terminal. You can disable this option by :se
noslowESC.

The editor can simulate an intelligent terminal on a dumb one. Try giving the command:se
redrawESC. This simulation generates a great deal of output and is generally tolerable only on lightly
loaded systems and fast terminals.You can disable this by giving the command
:se noredrawESC.

The editor also makes editing more pleasant at low speed by starting editing in a small window, and
letting the window expand as you edit. This works particularly well on intelligent terminals. The editor
can expand the window easily when you insert in the middle of the screen on these terminals. If possible,
try the editor on an intelligent terminal to see how this works.

-11-

You can control the size of the window which is redrawn each time the screen is cleared by giving
window sizes as argument to the commands which cause large screen motions:

: / ? [[]] ˆF ˆB ` ´

Thus if you are searching for a particular instance of a common string in a file you can precede the first
search command by a small number, say 3, and the editor will draw three line windows around each
instance of the string which it locates.

You can easily expand or contract the window, placing the current line as you choose, by giving a
number on a z command, after the z and before the following RETURN, . or −. Thus the commandz5.
redraws the screen with the current line in the center of a five line window.†

If the editor is redrawing or otherwise updating large portions of the display, you can interrupt this
updating by hitting aDEL or RUB as usual. If you do this you may partially confuse the editor about what is
displayed on the screen.You can still edit the text on the screen if you wish; clear up the confusion by hit-
ting aˆL ; or move or search again, ignoring the current state of the display.

See section 7.8 onopenmode for another way to use thevi command set on slow terminals.

6.2. Options, set, and editor startup files

The editor has a set of options, some of which have been mentioned above. The most useful options
are given in the following table.

Name / Default / Description
autoindent / noai / Supply indentation automatically
beautify / bf / Discard nonprinting characters in inserts
ignorecase / noic / Ignore case in searching
lisp / nolisp /({) } commands deal with S-expressions
list / nolist / Tabs print as ˆI; end of lines marked with $
magic / nomagic / The characters . [and * are special in scans
number / nonu / Lines are displayed prefixed with line numbers
paragraphs / para=IPLPPPQPbp / Macro names which start paragraphs
redraw / nore / Simulate a smart terminal on a dumb one
sections / sect=NHSH / Macro names which start new sections
shiftwidth / sw=8 / Shift distance for <, > and inputˆD andˆT
showmatch / nosm / Show matching(or { as) or } is typed
slowopen / slow / Postpone display updates during inserts
wrapscan / ws / Search around end of buffer if string not found
wrapmargin / wm=0 / Split lines automatically at space near right margin

The options are of three kinds: numeric options, string options, and toggle options. You can set
numeric and string options by a statement of the form

setopt=val

and toggle options can be set or unset by statements of one of the forms

setopt
set noopt

These statements can be placed in a file ‘.exrc’ in your HOME directory, or giv en while you are runningvi
by preceding them with a: and following them with aESC.

You can get a list of all options which you have changed by the command:setESC, or the value of a
single option by the command:setopt?ESC.

† Note that the command5z.has an entirely different effect, placing line 5 in the center of a new window.

-12-

6.3. Recovering lost lines

You might have a serious problem if you delete a number of lines and then regret that they were
deleted. Despairnot, the editor saves the last 9 deleted blocks of text in a set of numbered registers 1−9.
You can get then’ th previous deleted text back in your file by the command "np. The " here says that a
buffer name is to follow, n is the number of the buffer you wish to try (use the number 1 for now), andp is
the put command, which puts text in the buffer after the cursor. If this doesn’t bring back the text you
wanted, hit u to undo this and then. (period) to repeat the put command.In general the . command will
repeat the last change you made. As a special case, when the last command refers to a numbered text
buffer, the. command increments the number of the buffer before repeating the command.Thus a sequence
of the form

"1pu.u.u.

will, if repeated long enough, show you all the deleted text which has been saved for you. You can omit the
u commands here to gather up all this text in the buffer, or stop after any . command to keep just the then
recovered text. ThecommandP can also be used rather thanp to put the recovered text before rather than
after the cursor.

6.4. Recovering lost files

If the system crashes, you can recover the work you were doing to within a few changes. You will
normally receive mail when you next login giving you the name of the file which has been saved for you.
You should then change to the directory where you were when the system crashed and give a command of
the form:

% vi −r name

replacingnamewith the name of the file which you were editing. This will recover your work to a point
near where you left off.†

You can get a listing of the files which are saved for you by giving the command:

% vi −r

If there is more than one instance of a particular file saved, the editor gives you the newest instance each
time you recover it. You can thus get an older saved copy back by first recovering the newer copies.

6.5. Continuoustext input

When you are typing in large amounts of text it is convenient to have lines broken near the right mar-
gin automatically. You can cause this to happen by giving the command:se wm=12ESC. This establishes
the last 12 columns of your screen as a margin in which a space which you input in text will automatically
force a line break.

If the editor breaks a input line and you wish to put it back together you can tell it to join the lines
with J. You can give J a count of the number of lines to be joined as in 3J to join 3 lines. The editor sup-
plies white space, if appropriate, at the juncture of the joined lines, and leaves the cursor at this white space.
You can kill the white space withx if you don’t want it.

6.6. Features for editing programs

The editor has a number of commands for editing programs.The thing that most distinguishes edit-
ing of programs from editing of text is the desirability of maintaining an indented structure to the body of
the program.The editor has aautoindentfacility for helping you generate correctly indented programs.

To enable this facility you can give the command:se aiESC. Now try opening a new line with o and
type some characters on the line after a few tabs. If you now start another line, notice that the editor

† In rare cases, some of the lines of the file may be lost. The editor will give you the numbers of these lines and
the text of the lines will be replaced by the string ‘LOST’. These lines will almost always be among the last few
which you changed.You can either choose to discard the changes which you made (if they are easy to remake)
or to replace the few lost lines by hand.

-13-

supplies white space at the beginning of the line to line it up with the previous line. You cannot backspace
over this indentation, but you can usêD key to backtab over the supplied indentation.

Each time you typeˆD you back up one position, normally to an 8 column boundary. This amount is
settable; the editor has an option calledshiftwidthwhich you can set to change this value. Try giving the
command:se sw=4ESCand then experimenting with autoindent again.

The character̂T acts as a forward tab, much like the TAB (ˆI) character does, except it aligns to the
next shiftwidthboundary. If you have set sw to 4, try creating a new line and hitting a few ˆT’s to see how
this works. This is useful if your indenting style does not use a full physical tab stop at each level of logical
indentation of the program.

For shifting lines in the program left and right, there are operators< and>. These shift the lines you
specify right or left by oneshiftwidth. Try << and>> which shift one line left or right, and<L and>L
shifting the rest of the display left and right.

If you have a complicated expression and wish to see how the parentheses match, put the cursor at a
left or right parenthesis and hit % . This will show you the matching parenthesis.This works also for
braces { and }.

If you are editing C programs, you can use the [[and]] keys to advance or retreat to a line starting
with a {, i.e. a function declaration at a time. When]] is used with an operator it stops after a line which
starts with}; this is sometimes useful withy]] .

6.7. Filtering portions of the buffer

You can run system commands over portions of the buffer using the operator!. You can use this to
sort lines in the buffer, or to reformat portions of the buffer with a pretty-printer. Try typing in a list of ran-
dom words, one per line and ending them with a blank line. Back up to the beginning of the list, and then
give the command!}sortESC. This says to sort the next paragraph of material, and the blank line ends a
paragraph.

6.8. Commandsfor editing LISP

If you are editing a LISP program you should set the option lisp by doing :se lispESC. This changes
the (and) commands to move backward and forward over s-expressions. The{ and} commands are like (
and) but don’t stop at atoms.These can be used to skip to the next list, or through a comment quickly.

Theautoindentoption works differently for LISP, supplying indent to align at the first argument to the
last open list.If there is no such argument then the indent is two spaces more than the last level.

There is another option which is useful for typing in LISP, theshowmatch option. Try setting it with
:se smESCand then try typing a ‘(’ some words and then a ‘)’. Notice that the cursor shows the position of
the ‘(’ which matches the ‘)’ briefly. This happens only if the matching ‘(’ is on the screen, and the cursor
stays there for at most one second.

The editor also has an operator to realign existing lines as though they had been typed in with lisp
andautoindentset. This is the= operator. Try the command=% at the beginning of a function. This will
realign all the lines of the function declaration.

When you are editingLISP,, the [[and]] advance and retreat to lines beginning with a (, and are use-
ful for dealing with entire function definitions.

6.9. Abbreviations

The editor has a number of short commands which abbreviate longer commands which we have
introduced here. You can find these commands easily on the quick reference card. They often save a bit of
typing and you can learn them as convenient.

7. Nitty-gritty details

-14-

7.1. Line representation in the display

The editor folds long logical lines onto many physical lines in the display. Commands which
advance display lines advance logical lines and will skip over all the segments of a line in one motion. The
command| moves the cursor to a specific column, and may be useful for getting near the middle of a long
line to split it in half. Try 80|on a line which is more than 80 columns long.†

The editor only puts full lines on the display; if there is not enough room on the display to fit a logi-
cal line, the editor leaves the physical lines empty, placing only an @ on the line as a place holder. When
you delete lines on a dumb terminal, the editor will often just clear the lines to @ to save time (rather than
rewriting the rest of the screen.)You can always maximize the information on the screen by giving theˆR
command.

If you wish, you can have the editor place line numbers before each line on the display. Giv e the
command:se nuESCto enable this, and the command:se nonuESCto turn it off. You can have tabs repre-
sented asˆI and the ends of lines indicated with ‘$’ by giving the command:se listESC; :se nolistESCturns
this off.

Finally, lines consisting of only the character ‘˜’ are displayed when the last line in the file is in the
middle of the screen.These represent physical lines which are past the logical end of file.

7.2. Counts

Most vi commands will use a preceding count to affect their behavior in some way. The following ta-
ble gives the common ways in which the counts are used:

new window size : / ? [[]] ˆF ˆB ` ´
scroll amount ˆD ˆU
line/column number z G |
replicate insert a i A I
repeat effect mostof the rest

The editor maintains a notion of the current default window size. On terminals which run at speeds
greater than 1200 baud (faster than 120 characters per second) the editor uses the full terminal screen.On
terminals which are no faster than 1200 baud (dialup lines are in this group) the editor uses half of the
screen as the default window size.

This size is the size used when the editor clears and refills the screen after a search or other motion
moves far from the edge of the current window. The commands which take a new window size as count all
often cause the screen to be redrawn. If you anticipate this, but do not need as large a window as you are
currently using, you may wish to change the screen size by specifying the new size before these commands.
In any case, the number of lines used on the screen will expand if you move off the top with a − or similar
command or off the bottom with a command such asRETURN or ˆD. The window will revert to the last
specified size the next time it is cleared and refilled.†

The scroll commandŝD andˆU likewise remember the amount of scroll last specified, using half the
basic window size initially. The simple insert commands use a count to specify a repetition of the inserted
text. Thus10a+−−−−ESCwill insert a grid-like string of text. A few commands also use a preceding count
as a line or column number.

Except for a few commands which ignore any counts (such asˆR), the rest of the editor commands
use a count to indicate a simple repetition of their effect. Thus5w advances five words on the current line,
while 5RETURN advances five lines. A very useful instance of a count as a repetition is a count given to the
. command, which repeats the last changing command.If you do dw and then3., you will delete first one
and then three words. You can then delete two more words with2..

† You can make long lines very easily by usingJ to join together short lines.

† But not by â L which just redraws the screen as it is.

-15-

7.3. Morefile manipulation commands

The following table lists the file manipulation commands which you can use when you are invi.

:w write back changes
:wq write and quit
:q quit
:q! quit, discarding changes
:ename edit filename
:e! reedit,discarding changes
:e +name edit, starting at end
:e +n edit, starting at linen
:e # edit alternate file
:w name write file name
:w! name overwrite file name
:x,yw namewrite linesx throughy to name
:r name read filenameinto buffer
:r !cmd read output ofcmdinto buffer
:n editnext file in argument list
:n! editnext file, discarding changes to current
:n args specify new argument list
:ta tag edit file containing tagtag, at tag

All of these commands are given followed by anESC or RETURN. The most basic commands are:w, :wq,
:q and:e. A normal editing session on a single file will end with a :wq command. If you are editing for a
long period of time you can give :w commands occasionally after major amounts of editing, and then finish
with a :wq. When you edit more than one file, you can finish with one with a :w and start editing a new
file by giving a:e command.

If you make changes to the editor’s copy of a file, but do not wish to write them back, then you must
give an ! after the command you would otherwise use; this forces the editor to discard any changes you
have made. Usethis carefully.

The :e command can be given a + argument to start at the end of the file, or a+n argument to start at
line n. In forming new names to thee command, you can use the character% which is replaced by the cur-
rent file name, or the character# which is replaced by the alternate file name. The alternate file name is
generally the last name you typed other than the current file. Thus if you try to do a :e and get a diagnostic
that you haven’t written the file, you can give a :w command and then a :e # command to redo the previous
:e.

You can write part of the buffer to a file by finding out the lines that bound the range to be written
usingˆG, and giving these numbers after the : and before thew, separated by ,’s. You can also mark these
lines withm and then use an address of the form´x,´y on thew command here.

You can read another file into the buffer after the current line by using the :r command. To read
before the current line put a − between the : and the r . You can similarly read in the output from a com-
mand, just use!cmdinstead of a file name.

If you wish to edit a set of files in succession, you can give all the names on the command line, and
then edit each one in turn using the command:n. It is also possible to respecify the list of files to be edited
by giving the:n command a list of file names, or a pattern to be expanded as you would have giv en it on the
initial vi command.

If you are editing large programs, you will find the :ta command very useful. It utilizes a data base
of function names and their locations, which can be created by programs such asctags, to quickly find a
function whose name you give. If the :ta command will require the editor to switch files, then you must:w
or abandon any changes before switching. You can repeat the:ta command without any arguments to look
for the same tag again.

-16-

7.4. Moreabout searching for strings

When you are searching for strings in the file with / and?, the editor normally places you at the next
or previous line in the file containing the string. If you are using an operator such asd, c or y, then you
may well wish to affect lines up to the line before the line containing the pattern. You can give a search of
the form /pat/−n to refer to then’ th line before the next line containingpat, or you can use+ instead of − to
refer to the lines after the one containingpat.

You can have the editor ignore the case of words in the searches it does by giving the command:se
icESC. The command:se noicESCturns this off.

Strings given to searches may actually be regular expressions. Whenyou are runningvi, the editor
normally disables the optionmagic, so that only the characterŝ and$ are special here. The character\ is
also special (as it is most everywhere in the system), and may be used to get at the an extended pattern
matching facility. It is also necessary to use a \ before a / in a forward scan or a? in a backward scan.The
following table gives these extended forms.

↑ at beginning of pattern, matches beginning of line
$ at end of pattern, matches end of line
\. matches any character
\< matchesthe beginning of a word
\> matchesthe end of a word
\[str] matches any single character instr
\[↑str] matches any single character not instr
\[x−y] matches any character betweenx andy
* matchesany number of the preceding pattern

If you intend to use these mechanisms a lot, you can give the command:se magicESCwhich allows the . [
and * primitives to be giv en without a preceding \; to include these characters in a pattern while in this
mode, give them preceded by a \. If you wish to use the patterns regularly in vi, you can set the option
magic in your ‘.exrc’ file; see section 6.2 for details.

7.5. Moreabout input mode

There are a number of characters which you can use to make corrections during input mode. These
are summarized in the following table.

ˆH deletesthe last input character
ˆW deletesthe last input word, defined as byb
erase yourerase character, same aŝH
kill yourkill character, deletes the input on this line
\ escapes a following ˆH and your erase and kill
ESC ends an insertion
DEL interrupts an insertion, terminating it abnormally
ˆD backtabsover autoindent
0ˆD kills all theautoindent
↑ ˆD sameas0ˆD, but restores indent next line
ˆQ quotesthe next non-printing character into the file
ˆT is ashiftwidthforward tab

The most usual way of making corrections to input is by typing ˆH to correct a single character, or by
typing one or moreˆW’s to back over incorrect words. If you use# as your erase character in the normal
system, it will work like ˆH.

Your system kill character, normally @ or ˆX will erase all the input you have giv en on the current
line. In general, you can neither erase input back around a line boundary nor can you erase characters
which you did not insert with this insertion command.To make corrections on the previous line after a new
line has been started you can hit ESC to end the insertion, move over and make the correction, and then

-17-

return to where you were to continue. The commandA which appends at the end of the current line is
often useful for continuing.

If you wish to type in your erase or kill character (say # or @) then you must precede it with a \, just
as you would do at the normal system command level. A more general way of typing non-printing charac-
ters into the file is to precede them with a ˆQ. The ˆQ echoes as a ˆ character on which the cursor rests.
This indicates that the editor expects you to type a control character. In fact you may type any character
and it will be inserted into the file at that point.*

If you are usingautoindentyou can backtab over the indent which it supplies by typing a ˆD. This
backs up to a shiftwidthboundary; similarly ˆT will tab over to a shiftwidthboundary. Both of these work
only immediately after the suppliedautoindent.

When you are usingautoindentyou may wish to place a label at the left margin of a line. The way to
do this easily is to type↑ and thenˆD. The editor will move the cursor to the left margin for one line, and
restore the previous indent on the next. You can also type a0 followed immediately by a ˆD if you wish to
kill all the indent and not have it come back on the next line.

7.6. Upper case only terminals

If your terminal has only upper case, you can still usevi by using the normal system convention for
typing on such a terminal. Characters which you normally type are converted to lower case, and you can
type upper case letters by preceding them with a \. The characters { ˜ } | ` are not available on such termi-
nals, but you can escape them as \(\↑ \) \! \´. These characters are represented on the display in the same
way they are typed.‡

7.7. Vi and ex

Vi is actually one mode of editing within the editorex. When you are runningvi you can escape to
the line oriented editor of ex by giving the commandQ. All of the : commands which were introduced
above are available inex. Just give them without the: and follow them with aRETURN.

In rare instances, an internal error may occur in vi. In this case you will get a diagnostic and be left
in the command mode of ex. You can then save your work and quit if you wish by giving a commandwq
after the: whichex prompts you with, or you can reentervi by giving ex avi command.

There are a number of things which you can do more easily in ex than in vi. Systematic changes in
line oriented material are particularly easy. You can read the advanced editing documents for the editored
to find out a lot more about this style of editing. Experienced users often mix their use of ex command
mode andvi command mode to speed the work they are doing.

7.8. Openmode: vi on hardcopy terminals and ‘‘glass tty’s’’

If you are on a hardcopy terminal or a terminal which does not have a cursor which can move off the
bottom line, you can still use the command set of vi, but in adifferent mode. When you give avi command,
the editor will tell you that it is usingopenmode. This name comes from theopencommand in ex, which
is used to get into the same mode.

The only difference betweenvisualmode andopenmode is the way in which the text is displayed.

In openmode the editor uses a single line window into the file, and moving backward and forward in
the file causes new lines to be displayed, always below the current line. Tw o commands of vi work differ-
ently in open:z andˆR. The z command does not take parameters, but rather draws a window of context
around the current line and then returns you to the current line.

* This is not quite true. The implementation of the editor does not allow the NULL (ˆ@) character to appear in
files. Also theLF (linefeed or ˆJ) character is used by the editor to separate lines in the file, so it cannot appear
in the middle of a line. You can insert any other character, howev er, if you wait for the editor to echo the ˆ
before you type the character. In fact, the editor will treat a following letter as a request for the corresponding
control character. This is the only way to type ˆS, since the system normally usesˆS to suspend output and
never giv es theˆS to the editor to process.

‡ The \ character you give will not echo until you type another key.

-18-

If you are on a hardcopy terminal, the ˆR command will retype the current line. On such terminals,
the editor normally uses two lines to represent the current line. The first line is a copy of the line as you
started to edit it, and you work on the line below this line. When you delete characters, the editor types a
number of \’s to show you the characters which are deleted.The editor also reprints the current line soon
after such changes so that you can see what the line looks likeagain.

It is sometimes useful to use this mode on very slow terminals which can supportvi in the full screen
mode. You can do this by enteringex and using anopencommand.

