
UNIX For Beginners — Second Edition

Brian W. Kernighan

ABSTRACT

This paper is meant to help new users get started on the UNIX® operating system.
It includes:

• basics needed for day-to-day use of the system — typing commands, correcting
typing mistakes, logging in and out, mail, inter-terminal communication, the file
system, printing files, redirecting I/O, pipes, and the shell.

• document preparation — a brief discussion of the major formatting programs and
macro packages, hints on preparing documents, and capsule descriptions of some
supporting software.

• programming — using the editor, programming the shell, programming in C, other
languages and tools.

• An annotated bibliography.

2 October 1978

UNIX For Beginners — Second Edition

Brian W. Kernighan

-2-

INTRODUCTION

From the user’s point of view, the operating sys-
tem is easy to learn and use, and presents few of the
usual impediments to getting the job done. It is hard,
however, for the beginner to know where to start, and
how to make the best use of the facilities available.
The purpose of this introduction is to help new users
get used to the main ideas of the system and start mak-
ing effective use of it quickly.

You should have a couple of other documents with
you for easy reference as you read this one. The most
important is The it’s often easier to tell you to read
about somethingin the manual than to repeat its con-
tents here. The other useful document is A Tutorial
Introduction to the Text Editor, which will tell you how
to use the editor to get text — programs, data, docu-
ments — into the computer.

A word of warning: the system has become quite
popular, and there are several major variants in wide-
spread use. Of course details also change with time.
So although the basic structure of and how to use it is
common to all versions, there will certainly be a few
things which are different on your system from what is
described here. We hav e tried to minimize the prob-
lem, but be aware of it. In cases of doubt, this paper
describes Version 7

This paper has fivesections:

1. GettingStarted: How to log in, how to type, what
to do about mistakes in typing, how to log out.
Some of this is dependent on which system you
log into (phone numbers, for example) and what
terminal you use, so this section must necessarily
be supplemented by local information.

2. Day-to-dayUse: Things you need every day to use
the system effectively: generally useful com-
mands; the file system.

3. DocumentPreparation: Preparing manuscripts is
one of the most common uses for systems.This
section contains advice, but not extensive instruc-
tions on any of the formatting tools.

4. Writing Programs: is an excellent system for
developing programs. This section talks about
some of the tools, but again is not a tutorial in any
of the programming languages provided by the
system.

5. A Reading List. An annotated bibliography of
documents that new users should be aware of.

I. GETTING STARTED

Logging In

You must have a login name, which you can get
from whoever administers your system.You also need

to know the phone number, unless your system uses
permanently connected terminals. The system is capa-
ble of dealing with a wide variety of terminals: Ter-
minet 300’s; Execuport, TI and similar portables; video
(CRT) terminals like the HP2640, etc.; high-priced
graphics terminals like the Tektronix 4014; plotting ter-
minals like those from GSI and DASI; and even the
venerable Teletype in its various forms. But note: is
strongly oriented towards devices with lower case. If
your terminal produces only upper case (e.g., model 33
Teletype, some video and portable terminals), life will
be so difficult that you should look for another termi-
nal.

Be sure to set the switches appropriately on your
device. Switches that might need to be adjusted
include the speed, upper/lower case mode, full duplex,
ev en parity, and any others that local wisdom advises.
Establish a connection using whatever magic is needed
for your terminal; this may involve dialing a telephone
call or merely flipping a switch. In either case, should
type login:’’ at you. If it types garbage, you may be at
the wrong speed; check the switches.If that fails, push
the ‘‘break’’ or ‘‘interrupt’’ key a few times, slowly. If
that fails to produce a login message, consult a guru.

When you get a login: message, type your login
namein lower case. Follow it by a the system will not
do anything until you type a If a password is required,
you will be asked for it, and (if possible) printing will
be turned off while you type it.Don’t forget

The culmination of your login efforts is a ‘‘prompt
character,’’ a single character that indicates that the sys-
tem is ready to accept commands from you. The
prompt character is usually a dollar sign $ or a percent
sign %. (You may also get a message of the day just
before the prompt character, or a notification that you
have mail.)

Typing Commands

Once you’ve seen the prompt character, you can
type commands, which are requests that the system do
something. Try typing date followed by You should get
back something like Mon Jan 16 14:17:10 EST 1978
Don’t forget the after the command, or nothing will
happen. If you think you’re being ignored, type a
something should happen.won’t be mentioned again,
but don’t forget it — it has to be there at the end of
each line.

Another command you might try is who, which
tells you everyone who is currently logged in: who
gives something like mb tty01 Jan16 09:11
ski tty05 Jan 16 09:33
gam tty11 Jan 16 13:07 The time is when
the user logged in; ‘‘ttyxx’ ’ is the system’s idea of what
terminal the user is on.

If you make a mistake typing the command name,
and refer to a non-existent command, you will be told.

-3-

For example, if you type whom you will be told whom:
not found Of course, if you inadvertently type the name
of some other command, it will run, with more or less
mysterious results.

Strange Terminal Behavior

Sometimes you can get into a state where your ter-
minal acts strangely. For example, each letter may be
typed twice, or the may not cause a line feed or a return
to the left margin. You can often fix this by logging out
and logging back in. Or you can read the description of
the command stty in section I of the manual. To get
intelligent treatment of tab characters (which are much
used in if your terminal doesn’t hav e tabs, type the
command stty −tabs and the system will convert each
tab into the right number of blanks for you. If your ter-
minal does have computer-settable tabs, the command
tabswill set the stops correctly for you.

Mistakes in Typing

If you make a typing mistake, and see it before has
been typed, there are two ways to recover. The sharp-
character # erases the last character typed; in fact suc-
cessive uses of # erase characters back to the beginning
of the line (but not beyond). So if you type badly, you
can correct as you go: dd#atte##e is the same as date.

The at-sign @ erases all of the characters typed so
far on the current input line, so if the line is irretriev-
ably fouled up, type an @and start the line over.

What if you must enter a sharp or at-sign as part of
the text? If you precede either # or @ by a backslash \,
it loses its erase meaning.So to enter a sharp or at-sign
in something, type \# or \@. The system will always
echo a newline at you after your at-sign, even if pre-
ceded by a backslash.Don’t worry — the at-sign has
been recorded.

To erase a backslash, you have to type two sharps
or two at-signs, as in \##. The backslash is used exten-
sively in to indicate that the following character is in
some way special.

Read-ahead

has full read-ahead, which means that you can
type as fast as you want, whenever you want, even
when some command is typing at you. If you type dur-
ing output, your input characters will appear intermixed
with the output characters, but they will be stored away
and interpreted in the correct order. So you can type
several commands one after another without waiting for
the first to finish or even begin.

Stopping a Program

You can stop most programs by typing the charac-
ter (perhaps called ‘‘delete’’ or ‘‘rubout’’ on your termi-
nal). The ‘‘ interrupt’’ or ‘‘break’’ key found on most
terminals can also be used. In a few programs, like the
text editor, stops whatever the program is doing but

leaves you in that program. Hanging up the phone will
stop most programs.

Logging Out

The easiest way to log out is to hang up the phone.
You can also type login and let someone else use the
terminal you were on. It is usually not sufficient just to
turn off the terminal. Most systems do not use a time-
out mechanism, so you’ll be there forever unless you
hang up.

Mail

When you log in, you may sometimes get the mes-
sage You have mail. provides a postal system so you
can communicate with other users of the system. To
read your mail, type the command mail Your mail will
be printed, one message at a time, most recent message
first. After each message, mail waits for you to say
what to do with it. The two basic responses are d,
which deletes the message, and which does not (so it
will still be there the next time you read your mailbox).
Other responses are described in the manual. (Earlier
versions of mail do not process one message at a time,
but are otherwise similar.)

How do you send mail to someone else?Suppose
it is to go to ‘‘joe’’ (assuming ‘‘joe’’ is someone’s login
name). Theeasiest way is this: mail joenow type in the
text of the letter on as many lines as you like ... After
the last line of the letter type the character ‘‘control-d’’,
that is, hold down ‘‘control’’ and type a letter ‘‘d’’. And
that’s it. The ‘‘control-d’’ sequence, often called
‘‘EOF’’ for end-of-file, is used throughout the system to
mark the end of input from a terminal, so you might as
well get used to it.

For practice, send mail to yourself. (This isn’t as
strange as it might sound — mail to oneself is a handy
reminder mechanism.)

There are other ways to send mail — you can send
a previously prepared letter, and you can mail to a num-
ber of people all at once. For more details see mail(1).
(The notation mail(1) means the command mail in sec-
tion 1 of the

Writing to other users

At some point, out of the blue will come a mes-
sage like Message from joe tty07... accompanied by a
startling beep. It means that Joe wants to talk to you,
but unless you take explicit action you won’t be able to
talk back. To respond, type the command write joe
This establishes a two-way communication path. Now
whatever Joe types on his terminal will appear on yours
and vice versa. Thepath is slow, rather like talking to
the moon. (If you are in the middle of something, you
have to get to a state where you can type a command.
Normally, whatever program you are running has to ter-
minate or be terminated. If you’re editing, you can
escape temporarily from the editor — read the editor

-4-

tutorial.)

A protocol is needed to keep what you type from
getting garbled up with what Joe types. Typically it’s
like this:
Joe types writesmithand waits.
Smith types writejoeand waits.
Joe now types his message (as many lines as he likes).
When he’s ready for a reply, he signals it by typing (o),
which stands for ‘‘over’’.
Now Smith types a reply, also terminated by (o).
This cycle repeats until someone gets tired; he then sig-
nals his intent to quit with (oo), for ‘‘over and out’’.
To terminate the conversation, each side must type a
‘‘control-d’’ character alone on a line. (‘‘Delete’’ also
works.) Whenthe other person types his ‘‘control-d’’,
you will get the message EOFon your terminal.

If you write to someone who isn’t logged in, or
who doesn’t want to be disturbed, you’ll be told. If the
target is logged in but doesn’t answer after a decent
interval, simply type ‘‘control-d’’.

On-line Manual

The Programmer’s Manual is typically kept on-
line. If you get stuck on something, and can’t find an
expert to assist you, you can print on your terminal
some manual section that might help. This is also use-
ful for getting the most up-to-date information on a
command. To print a manual section, type ‘‘man com-
mand-name’’. Thusto read up on the who command,
type man who and, of course, man man tells all about
the mancommand.

Computer Aided Instruction

Your system may have available a program called
learn, which provides computer aided instruction on the
file system and basic commands, the editor, document
preparation, and even C programming. Try typing the
command learn If learn exists on your system, it will
tell you what to do from there.

-5-

II. DAY -TO-DAY USE

Creating Files — The Editor

If you have to type a paper or a letter or a pro-
gram, how do you get the information stored in the
machine? Most of these tasks are done with the ‘‘text
editor’’ ed. Since edis thoroughly documented in ed(1)
and explained in A Tutorial Introduction to the UNIX
Te xt Editor, we won’t spend any time here describing
how to use it. All we want it for right now is to make
somefiles. (A file is just a collection of information
stored in the machine, a simplistic but adequate defini-
tion.)

To create a file called junk with some text in it, do
the following: ed junk (invokes the text editor)
a (command to ‘‘ed’’, to add text) now type
in whatever text you want (signals the
end of adding text) The ‘‘. ’’ that signals the end of
adding text must be at the beginning of a line by itself.
Don’t forget it, for until it is typed, no other ed com-
mands will be recognized — everything you type will
be treated as text to be added.

At this point you can do various editing operations
on the text you typed in, such as correcting spelling
mistakes, rearranging paragraphs and the like. Finally,
you must write the information you have typed into a
file with the editor command w: w ed will respond with
the number of characters it wrote into the file junk.

Until the w command, nothing is stored perma-
nently, so if you hang up and go home the information
is lost.† But after w the information is there perma-
nently; you can re-access it any time by typing ed junk
Type a q command to quit the editor. (If you try to quit
without writing, edwill print a ? to remind you. A sec-
ond qgets you out regardless.)

Now create a second file called tempin the same
manner. You should now hav e two files, junk and
temp.

What files areout there?

The ls (for ‘‘list’ ’) command lists the names (not
contents) of any of the files that knows about. If you
type ls the response will be junk temp which are indeed
the two files just created. The names are sorted into
alphabetical order automatically, but other variations
are possible. For example, the command ls -t causes
the files to be listed in the order in which they were last
changed, most recent first. The −l option gives a
‘‘ long’’ listing: ls -l will produce something like -rw-
rw-rw- 1 bwk 41 Jul 22 2:56 junk -rw-rw-rw- 1 bwk
78 Jul 22 2:57 temp The date and time are of the last

† This is not strictly true — if you hang up while
editing, the data you were working on is saved in a
file called ed.hup, which you can continue with at
your next session.

change to the file. The 41 and 78 are the number of
characters (which should agree with the numbers you
got from ed). bwk is the owner of the file, that is, the
person who created it. The −rw−rw−rw− tells who has
permission to read and write the file, in this case every-
one.

Options can be combined: ls −lt gives the same
thing as ls −l, but sorted into time order. You can also
name the files you’re interested in, and ls will list the
information about them only. More details can be
found in ls(1).

The use of optional arguments that begin with a
minus sign, like −t and −lt, is a common convention for
programs. In general, if a program accepts such
optional arguments, they precede any filename argu-
ments. It is also vital that you separate the various
arguments with spaces: ls−lis not the same as ls−l.

Printing Files

Now that you’ve got a file of text, how do you
print it so people can look at it? There are a host of
programs that do that, probably more than are needed.

One simple thing is to use the editor, since print-
ing is often done just before making changes anyway.
You can say ed junk 1,$p ed will reply with the count
of the characters in junk and then print all the lines in
the file. After you learn how to use the editor, you can
be selective about the parts you print.

There are times when it’s not feasible to use the
editor for printing. For example, there is a limit on how
big a file ed can handle (several thousand lines). Sec-
ondly, it will only print one file at a time, and some-
times you want to print several, one after another. So
here are a couple of alternatives.

First is cat, the simplest of all the printing pro-
grams. catsimply prints on the terminal the contents of
all the files named in a list. Thus cat junk prints one
file, and cat junk temp prints two. Thefiles are simply
concatenated (hence the name cat’’) onto the terminal.

pr produces formatted printouts of files. As with
cat, pr prints all the files named in a list. The difference
is that it produces headings with date, time, page num-
ber and file name at the top of each page, and extra
lines to skip over the fold in the paper. Thus, pr junk
temp will print junk neatly, then skip to the top of a
new page and print tempneatly.

pr can also produce multi-column output: pr -3
junk prints junk in 3-column format. You can use any
reasonable number in place of ‘‘3’ ’ and pr will do its
best. pr has other capabilities as well; see pr(1).

It should be noted that pr is not a formatting pro-
gram in the sense of shuffling lines around and justify-
ing margins. The true formatters are nroff and troff,
which we will get to in the section on document prepa-
ration.

-6-

There are also programs that print files on a high-
speed printer. Look in your manual under opr and lpr.
Which to use depends on what equipment is attached to
your machine.

Shuffling Files About

Now that you have some files in the file system
and some experience in printing them, you can try big-
ger things. For example, you can move a file from one
place to another (which amounts to giving it a new
name), like this: mv junk precious This means that
what used to be ‘‘junk’ ’ is now ‘‘precious’’. If you do
an ls command now, you will get precious temp Beware
that if you move a file to another one that already
exists, the already existing contents are lost forever.

If you want to make a copy of a file (that is, to
have two versions of something), you can use the cp
command: cp precious temp1 makes a duplicate copy
of preciousin temp1.

Finally, when you get tired of creating and moving
files, there is a command to remove files from the file
system, called rm. rm temp temp1 will remove both of
the files named.

You will get a warning message if one of the
named files wasn’t there, but otherwise rm, like most
commands, does its work silently. There is no prompt-
ing or chatter, and error messages are occasionally curt.
This terseness is sometimes disconcerting to new-
comers, but experienced users find it desirable.

What’ s in a Filename

So far we have used filenames without ever saying
what’s a leg al name, so it’s time for a couple of rules.
First, filenames are limited to 14 characters, which is
enough to be descriptive. Second, although you can
use almost any character in a filename, common sense
says you should stick to ones that are visible, and that
you should probably avoid characters that might be
used with other meanings.We hav e already seen, for
example, that in the ls command, ls −t means to list in
time order. So if you had a file whose name was −t,
you would have a tough time listing it by name.
Besides the minus sign, there are other characters
which have special meaning. To avoid pitfalls, you
would do well to use only letters, numbers and the
period until you’re familiar with the situation.

On to some more positive suggestions. Suppose
you’re typing a large document like a book. Logically
this divides into many small pieces, like chapters and
perhaps sections.Physically it must be divided too, for
ed will not handle really big files. Thus you should
type the document as a number of files. You might
have a separate file for each chapter, called chap1
chap2 etc... Or, if each chapter were broken into sev-
eral files, you might have chap1.1 chap1.2 chap1.3 ...
chap2.1 chap2.2 ... You can now tell at a glance where
aparticular file fits into the whole.

There are advantages to a systematic naming con-
vention which are not obvious to the novice user. What
if you wanted to print the whole book? You could say
pr chap1.1 chap1.2 chap1.3 but you would get
tired pretty fast, and would probably even make mis-
takes. Fortunately, there is a shortcut. You can say pr
chap* The * means ‘‘anything at all,’’ so this translates
into ‘‘print all files whose names begin with chap’’ ,
listed in alphabetical order.

This shorthand notation is not a property of the pr
command, by the way. It is system-wide, a service of
the program that interprets commands (the ‘‘shell,’’
sh(1)). Using that fact, you can see how to list the
names of the files in the book: ls chap* produces
chap1.1 chap1.2 chap1.3 ... The * is not limited to the
last position in a filename — it can be anywhere and
can occur several times. Thus rm *junk* *temp*
removes all files that contain junk or tempas any part
of their name. As a special case, * by itself matches
ev ery filename, so pr * prints all your files (alphabetical
order), and rm * removes all files. (You had better be
sure that’s what you wanted to say!)

The * is not the only pattern-matching feature
available. Supposeyou want to print only chapters 1
through 4 and 9. Then you can say pr chap[12349]*
The [...] means to match any of the characters inside the
brackets. A range of consecutive letters or digits can be
abbreviated, so you can also do this with pr
chap[1-49]* Letters can also be used within brackets:
[a−z] matches any character in the range athrough z.

The ? pattern matches any single character, so ls ?
lists all files which have single-character names, and ls
-l chap?.1 lists information about the first file of each
chapter chap1.1, chap2.1, etc.).

Of these niceties, * is certainly the most useful,
and you should get used to it. The others are frills, but
worth knowing.

If you should ever hav e to turn off the special
meaning of *, ?, etc., enclose the entire argument in
single quotes, as in ls ′?′ We’ll see some more examples
of this shortly.

What’ s in a Filename, Continued

When you first made that file called junk, how did
the system know that there wasn’t another junk some-
where else, especially since the person in the next office
is also reading this tutorial? The answer is that gener-
ally each user has a private which contains only the
files that belong to him. When you log in, you are ‘‘in’ ’
your directory. Unless you take special action, when
you create a new file, it is made in the directory that
you are currently in; this is most often your own direc-
tory, and thus the file is unrelated to any other file of the
same name that might exist in someone else’s directory.

The set of all files is organized into a (usually big)
tree, with your files located several branches into the
tree. It is possible for you to ‘‘walk’’ around this tree,

-7-

and to find any file in the system, by starting at the root
of the tree and walking along the proper set of
branches. Conversely, you can start where you are and
walk toward the root.

Let’s try the latter first. The basic tools is the
command pwd (‘‘print working directory’’), which
prints the name of the directory you are currently in.

Although the details will vary according to the
system you are on, if you give the command pwd, it
will print something like /usr/your-name This says that
you are currently in the directory your-name, which is
in turn in the directory /usr, which is in turn in the root
directory called by convention just /. (Even if it’s not
called /usr on your system, you will get something
analogous. Make the corresponding changes and read
on.)

If you now type ls /usr/your-name you should get
exactly the same list of file names as you get from a
plain ls: with no arguments, ls lists the contents of the
current directory; given the name of a directory, it lists
the contents of that directory.

Next, try ls /usr This should print a long series of
names, among which is your own login name
your-name. On many systems, usr is a directory that
contains the directories of all the normal users of the
system, likeyou.

The next step is to try ls / You should get a
response something like this (although again the details
may be different): bin dev etc lib tmp usr This is a col-
lection of the basic directories of files that the system
knows about; we are at the root of the tree.

Now try cat /usr/your-name/junk (if junk is still
around in your directory). The name
/usr/your-name/junk is called the pathnameof the file
that you normally think of as ‘‘junk’ ’. ‘‘Pathname’’ has
an obvious meaning: it represents the full name of the
path you have to follow from the root through the tree
of directories to get to a particular file. It is a universal
rule in the system that anywhere you can use an ordi-
nary filename, you can use a pathname.

Here is a picture which may make this clearer:
(root)
/ | \
/ | \
/ | \

bin etc usr dev tmp
/ | \ / | \ / | \ / | \ / | \

/ | \
/ | \

adam eve mary
/ / \ \

/ \ junk
junk temp

Notice that Mary’s junk is unrelated to Eve’s.

This isn’t too exciting if all the files of interest are
in your own directory, but if you work with someone
else or on several projects concurrently, it becomes
handy indeed.For example, your friends can print your
book by saying pr /usr/your-name/chap* Similarly, you

can find out what files your neighbor has by saying ls
/usr/neighbor-name or make your own copy of one of
his files by cp /usr/your-neighbor/his-file yourfile

If your neighbor doesn’t want you poking around
in his files, or vice versa, privacy can be arranged.
Each file and directory has read-write-execute permis-
sions for the owner, a group, and everyone else, which
can be set to control access.See ls(1) and chmod(1) for
details. As a matter of observed fact, most users most
of the time find openness of more benefit than privacy.

As a final experiment with pathnames, try ls /bin
/usr/bin Do some of the names look familiar? When
you run a program, by typing its name after the prompt
character, the system simply looks for a file of that
name. It normally looks first in your directory (where
it typically doesn’t find it), then in /bin and finally in
/usr/bin. There is nothing magic about commands like
cat or ls, except that they hav e been collected into a
couple of places to be easy to find and administer.

What if you work regularly with someone else on
common information in his directory? You could just
log in as your friend each time you want to, but you can
also say ‘‘I want to work on his files instead of my
own’’. This is done by changing the directory that you
are currently in: cd /usr/your-friend (On some systems,
cd is spelled chdir.) Now when you use a filename in
something like cat or pr, it refers to the file in your
friend’s directory. Changing directories doesn’t affect
any permissions associated with a file — if you
couldn’t access a file from your own directory, chang-
ing to another directory won’t alter that fact. Of
course, if you forget what directory you’re in, type pwd
to find out.

It is usually convenient to arrange your own files
so that all the files related to one thing are in a directory
separate from other projects. For example, when you
write your book, you might want to keep all the text in
a directory called book. So make one with mkdir book
then go to it with cd book then start typing chapters.
The book is now found in (presumably)
/usr/your-name/book To remove the directory book,
type rm book/* rmdir book The first command removes
all files from the directory; the second removes the
empty directory.

You can go up one level in the tree of files by say-
ing cd’’ is the name of the parent of whatever
directory you are currently in. For completeness, .’’ is
an alternate name for the directory you are in.

Using Files instead of the Terminal

Most of the commands we have seen so far pro-
duce output on the terminal; some, like the editor, also
take their input from the terminal. It is universal in sys-
tems that the terminal can be replaced by a file for
either or both of input and output. As one example, ls
makes a list of files on your terminal. But if you say ls
>filelist a list of your files will be placed in the file

-8-

filelist (which will be created if it doesn’t already exist,
or overwritten if it does). The symbol > means ‘‘put
the output on the following file, rather than on the ter-
minal.’’ Nothing is produced on the terminal. As
another example, you could combine several files into
one by capturing the output of cat in a file: cat f1 f2 f3
>temp

The symbol >> operates very much like > does,
except that it means ‘‘add to the end of.’’ That is, cat f1
f2 f3 >>temp means to concatenate f1, f2 and f3 to the
end of whatever is already in temp, instead of overwrit-
ing the existing contents. As with >, if temp doesn’t
exist, it will be created for you.

In a similar way, the symbol < means to take the
input for a program from the following file, instead of
from the terminal. Thus, you could make up a script of
commonly used editing commands and put them into a
file called script. Then you can run the script on a file
by saying ed file <script As another example, you can
use edto prepare a letter in file let, then send it to sev-
eral people with mail adam eve mary joe <let

Pipes

One of the novel contributions of the system is the
idea of a pipe. A pipe is simply a way to connect the
output of one program to the input of another program,
so the two run as a sequence of processes — a pipeline.

For example, pr f g h will print the files f, g, and h,
beginning each on a new page. Supposeyou want them
run together instead.You could say cat f g h >temp pr
<temp rm temp but this is more work than necessary.
Clearly what we want is to take the output of cat and
connect it to the input of pr. So let us use a pipe: cat f g
h | pr The vertical bar | means to take the output from
cat, which would normally have gone to the terminal,
and put it into prto be neatly formatted.

There are many other examples of pipes. For
example, ls | pr -3 prints a list of your files in three col-
umns. The program wc counts the number of lines,
words and characters in its input, and as we saw earlier,
who prints a list of currently-logged on people, one per
line. Thuswho | wc tells how many people are logged
on. And of course ls | wc counts your files.

Any program that reads from the terminal can read
from a pipe instead; any program that writes on the ter-
minal can drive a pipe. You can have as many elements
in a pipeline as you wish.

Many programs are written so that they will take
their input from one or more files if file arguments are
given; if no arguments are given they will read from the
terminal, and thus can be used in pipelines. pr is one
example: pr -3 a b c prints files a, b and c in order in
three columns. But in cat a b c | pr -3 pr prints the
information coming down the pipeline, still in three
columns.

The Shell

We hav e already mentioned once or twice the
mysterious ‘‘shell,’’ which is in fact sh(1). Theshell is
the program that interprets what you type as commands
and arguments. It also looks after translating *, etc.,
into lists of filenames, and <, >, and | into changes of
input and output streams.

The shell has other capabilities too. For example,
you can run two programs with one command line by
separating the commands with a semicolon; the shell
recognizes the semicolon and breaks the line into two
commands. Thus date; who does both commands
before returning with a prompt character.

You can also have more than one program running
simultaneouslyif you wish. For example, if you are
doing something time-consuming, like the editor script
of an earlier section, and you don’t want to wait around
for the results before starting something else, you can
say ed file <script & The ampersand at the end of a
command line says ‘‘start this command running, then
take further commands from the terminal immedi-
ately,’’ that is, don’t wait for it to complete. Thus the
script will begin, but you can do something else at the
same time. Of course, to keep the output from interfer-
ing with what you’re doing on the terminal, it would be
better to say ed file <script >script.out & which saves
the output lines in a file called script.out.

When you initiate a command with &, the system
replies with a number called the process number, which
identifies the command in case you later want to stop it.
If you do, you can say kill process-number If you forget
the process number, the command pswill tell you about
ev erything you have running. (If you are desperate,
kill 0 will kill all your processes.)And if you’re curi-
ous about other people, psa will tell you aboutall pro-
grams that are currently running.

You can say (command-1; command-2; com-
mand-3) & to start three commands in the background,
or you can start a background pipeline with command-1
| command-2 &

Just as you can tell the editor or some similar pro-
gram to take its input from a file instead of from the ter-
minal, you can tell the shell to read a file to get com-
mands. (Why not? The shell, after all, is just a pro-
gram, albeit a clever one.) For instance, suppose you
want to set tabs on your terminal, and find out the date
and who’s on the system every time you log in. Then
you can put the three necessary commands tabs, date,
who) into a file, let’s call it startup, and then run it with
sh startup This says to run the shell with the file startup
as input. The effect is as if you had typed the contents
of startupon the terminal.

If this is to be a regular thing, you can eliminate
the need to type sh: simply type, once only, the com-
mand chmod +x startup and thereafter you need only
say startup to run the sequence of commands. The
chmod(1) command marks the file executable; the shell

-9-

recognizes this and runs it as a sequence of commands.

If you want startupto run automatically every time
you log in, create a file in your login directory called
.profile, and place in it the line startup. When the shell
first gains control when you log in, it looks for the
.profile file and does whatever commands it finds in it.
We’ ll get back to the shell in the section on program-
ming.

-10-

III. DOCUMENT PREP ARATION

systems are used extensively for document prepa-
ration. Thereare two major formatting programs, that
is, programs that produce a text with justified right mar-
gins, automatic page numbering and titling, automatic
hyphenation, and the like. nroff is designed to produce
output on terminals and line-printers. troff (pro-
nounced ‘‘tee-roff ’’) instead drives a phototypesetter,
which produces very high quality output on photo-
graphic paper. This paper was formatted with troff.

Formatting Packages

The basic idea of nroff and troff is that the text to
be formatted contains within it ‘‘formatting com-
mands’’ that indicate in detail how the formatted text is
to look. For example, there might be commands that
specify how long lines are, whether to use single or
double spacing, and what running titles to use on each
page.

Because nroff and troff are relatively hard to learn
to use effectively, sev eral ‘‘packages’’ of canned for-
matting requests are available to let you specify para-
graphs, running titles, footnotes, multi-column output,
and so on, with little effort and without having to learn
nroff and troff. These packages take a modest effort to
learn, but the rewards for using them are so great that it
is time well spent.

In this section, we will provide a hasty look at the
‘‘manuscript’’ package known as −ms. Formatting
requests typically consist of a period and two upper-
case letters, such as .TL, which is used to introduce a
title, or .PPto begin a new paragraph.

A document is typed so it looks something like
this: .TL title of document .AU author name .SH sec-
tion heading .PP paragraphPP another paragraph ...
.SH another section heading .PP etc. The lines that
begin with a period are the formatting requests.For
example, .PPcalls for starting a new paragraph. The
precise meaning of .PPdepends on what output device
is being used (typesetter or terminal, for instance), and
on what publication the document will appear in. For
example, −ms normally assumes that a paragraph is
preceded by a space (one line in nroff, ½ line in troff),
and the first word is indented. These rules can be
changed if you like, but they are changed by changing
the interpretation of .PP, not by re-typing the docu-
ment.

To actually produce a document in standard format
using −ms, use the command troff -ms files ... for the
typesetter, and nroff -ms files ... for a terminal. The
−msargument tells troff and nroff to use the manuscript
package of formatting requests.

There are several similar packages; check with a
local expert to determine which ones are in common

use on your machine.

Supporting Tools

In addition to the basic formatters, there is a host
of supporting programs that help with document prepa-
ration. The list in the next few paragraphs is far from
complete, so browse through the manual and check
with people around you for other possibilities.

eqn and neqn let you integrate mathematics into
the text of a document, in an easy-to-learn language
that closely resembles the way you would speak it
aloud. For example, the eqninput sum from i=0 to n x
sub i ˜=˜ pi over 2 produces the output

sum from i=0 to n x sub i ˜=˜ pi over 2

The program tbl provides an analogous service for
preparing tabular material; it does all the computations
necessary to align complicated columns with elements
of varying widths.

refer prepares bibliographic citations from a data
base, in whatever style is defined by the formatting
package. It looks after all the details of numbering ref-
erences in sequence, filling in page and volume num-
bers, getting the author’s initials and the journal name
right, and so on.

spell and typo detect possible spelling mistakes in
a document. spell works by comparing the words in
your document to a dictionary, printing those that are
not in the dictionary. It knows enough about English
spelling to detect plurals and the like, so it does a very
good job. typo looks for words which are ‘‘unusual’’,
and prints those. Spelling mistakes tend to be more
unusual, and thus show up early when the most unusual
words are printed first.

greplooks through a set of files for lines that con-
tain a particular text pattern (rather like the editor’s
context search does, but on a bunch of files). For exam-
ple, grep ′ing$′ chap* will find all lines that end with
the letters ing in the files chap*. (It is almost always a
good practice to put single quotes around the pattern
you’re searching for, in case it contains characters like
* or $ that have a special meaning to the shell.) grepis
often useful for finding out in which of a set of files the
misspelled words detected by spellare actually located.

diff prints a list of the differences between two
files, so you can compare two versions of something
automatically (which certainly beats proofreading by
hand).

wc counts the words, lines and characters in a set
of files. tr translates characters into other characters;
for example it will convert upper to lower case and vice
versa. This translates upper into lower: tr A-Z a-z
<input >output

sort sorts files in a variety of ways; cref makes
cross-references; ptx makes a permuted index
(keyword-in-context listing). sedprovides many of the

-11-

editing facilities of ed, but can apply them to arbitrarily
long inputs. awk provides the ability to do both pattern
matching and numeric computations, and to con-
veniently process fields within lines. These programs
are for more advanced users, and they are not limited to
document preparation.Put them on your list of things
to learn about.

Most of these programs are either independently
documented (like eqn and tbl), or are sufficiently sim-
ple that the description in theProgrammer’s Manual is
adequate explanation.

Hints for Preparing Documents

Most documents go through several versions
(always more than you expected) before they are finally
finished. Accordingly, you should do whatever possi-
ble to make the job of changing them easy.

First, when you do the purely mechanical opera-
tions of typing, type so that subsequent editing will be
easy. Start each sentence on a new line. Make lines
short, and break lines at natural places, such as after
commas and semicolons, rather than randomly. Since
most people change documents by rewriting phrases
and adding, deleting and rearranging sentences, these
precautions simplify any editing you have to do later.

Keep the individual files of a document down to
modest size, perhaps ten to fifteen thousand characters.
Larger files edit more slowly, and of course if you make
a dumb mistake it’s better to have clobbered a small file
than a big one. Split into files at natural boundaries in
the document, for the same reasons that you start each
sentence on a new line.

The second aspect of making change easy is to not
commit yourself to formatting details too early. One of
the advantages of formatting packages like −ms is that
they permit you to delay decisions to the last possible
moment. Indeed,until a document is printed, it is not
ev en decided whether it will be typeset or put on a line
printer.

As a rule of thumb, for all but the most trivial jobs,
you should type a document in terms of a set of
requests like .PP, and then define them appropriately,
either by using one of the canned packages (the better
way) or by defining your own nroff and troff com-
mands. As long as you have entered the text in some
systematic way, it can always be cleaned up and re-for-
matted by a judicious combination of editing com-
mands and request definitions.

-12-

IV. PROGRAMMING

There will be no attempt made to teach any of the
programming languages available but a few words of
advice are in order. One of the reasons why the system
is a productive programming environment is that there
is already a rich set of tools available, and facilities like
pipes, I/O redirection, and the capabilities of the shell
often make it possible to do a job by pasting together
programs that already exist instead of writing from
scratch.

The Shell

The pipe mechanism lets you fabricate quite com-
plicated operations out of spare parts that already exist.
For example, the first draft of the spell program was
(roughly) cat ... collect the files | tr ... put
each word on a new line | tr ... delete punctua-
tion, etc. | sort into dictionary order |
uniq discard duplicates| comm print words in
text but not in dictionary Mor e pieces
have been added subsequently, but this goes a long
way for such a small effort.

The editor can be made to do things that would
normally require special programs on other systems.
For example, to list the first and last lines of each of a
set of files, such as a book, you could laboriously type
ed e chap1.1 1p $p e chap1.2 1p $p etc. But you can do
the job much more easily. One way is to type ls chap*
>temp to get the list of filenames into a file. Then edit
this file to make the necessary series of editing com-
mands (using the global commands of ed), and write it
into script. Now the command ed <script will produce
the same output as the laborious hand typing. Alter-
nately (and more easily), you can use the fact that the
shell will perform loops, repeating a set of commands
over and over again for a set of arguments: for i in
chap* do ed $i <script done This sets the shell
variable i to each file name in turn, then does the com-
mand. You can type this command at the terminal, or
put it in a file for later execution.

Programming the Shell

An option often overlooked by newcomers is that
the shell is itself a programming language, with vari-
ables, control flow if-else, while, for, case), subrou-
tines, and interrupt handling. Since there are many
building-block programs, you can sometimes avoid
writing a new program merely by piecing together
some of the building blocks with shell command files.

We will not go into any details here; examples and
rules can be found in An Introduction to the by S. R.
Bourne.

Programming in C

If you are undertaking anything substantial, C is
the only reasonable choice of programming language:
ev erything in the system is tuned to it. The system
itself is written in C, as are most of the programs that
run on it. It is also a easy language to use once you get
started. C is introduced and fully described in The C
Programming Language by B. W. Kernighan and D. M.
Ritchie (Prentice-Hall, 1978). Several sections of the
manual describe the system interfaces, that is, how you
do I/O and similar functions. Read UNIX Program-
mingfor more complicated things.

Most input and output in C is best handled with
the standard I/O library, which provides a set of I/O
functions that exist in compatible form on most
machines that have C compilers. In general, it’s wisest
to confine the system interactions in a program to the
facilities provided by this library.

C programs that don’t depend too much on special
features of (such as pipes) can be moved to other com-
puters that have C compilers. Thelist of such machines
grows daily; in addition to the original it currently
includes at least Honeywell 6000, IBM 370, Interdata
8/32, Data General Nova and Eclipse, HP 2100, Harris
/7, VAX 11/780, SEL 86, and Zilog Z80. Calls to the
standard I/O library will work on all of these machines.

There are a number of supporting programs that
go with C. lint checks C programs for potential porta-
bility problems, and detects errors such as mismatched
argument types and uninitialized variables.

For larger programs (anything whose source is on
more than one file) make allows you to specify the
dependencies among the source files and the processing
steps needed to make a new version; it then checks the
times that the pieces were last changed and does the
minimal amount of recompiling to create a consistent
updated version.

The debugger adbis useful for digging through the
dead bodies of C programs, but is rather hard to learn to
use effectively. The most effective debugging tool is
still careful thought, coupled with judiciously placed
print statements.

The C compiler provides a limited instrumentation
service, so you can find out where programs spend their
time and what parts are worth optimizing. Compile the
routines with the −p option; after the test run, use prof
to print an execution profile. The command time will
give you the gross run-time statistics of a program, but
they are not super accurate or reproducible.

Other Languages

If you haveto use Fortran, there are two possibili-
ties. You might consider Ratfor, which gives you the
decent control structures and free-form input that char-
acterize C, yet lets you write code that is still portable
to other environments. Bearin mind that Fortran tends
to produce large and relatively slow-running programs.

-13-

Furthermore, supporting software like adb, prof, etc.,
are all virtually useless with Fortran programs.There
may also be a Fortran 77 compiler on your system. If
so, this is a viable alternative to Ratfor, and has the
non-trivial advantage that it is compatible with C and
related programs. (The Ratfor processor and C tools
can be used with Fortran 77 too.)

If your application requires you to translate a lan-
guage into a set of actions or another language, you are
in effect building a compiler, though probably a small
one. In that case, you should be using the yacccom-
piler-compiler, which helps you develop a compiler
quickly. The lex lexical analyzer generator does the
same job for the simpler languages that can be
expressed as regular expressions. It can be used by
itself, or as a front end to recognize inputs for a
yacc-based program. Both yaccand lex require some
sophistication to use, but the initial effort of learning
them can be repaid many times over in programs that
are easy to change later on.

Most systems also make available other languages,
such as Algol 68, APL, Basic, Lisp, Pascal, and
Snobol. Whetherthese are useful depends largely on
the local environment: if someone cares about the lan-
guage and has worked on it, it may be in good shape.If
not, the odds are strong that it will be more trouble than
it’s worth.

-14-

V. UNIX READING LIST

General:

K. L. Thompson and D. M. Ritchie, Programmer’s
Manual, Bell Laboratories, 1978. Lists commands,
system routines and interfaces, file formats, and some
of the maintenance procedures. You can’t live without
this, although you will probably only need to read sec-
tion 1.

Documents for Use with the Time-sharing System.Vol-
ume 2 of the Programmer’s Manual. This contains
more extensive descriptions of major commands, and
tutorials and reference manuals. All of the papers
listed below are in it, as are descriptions of most of the
programs mentioned above.

D. M. Ritchie and K. L. Thompson, ‘‘The Time-sharing
System,’’ CACM, July 1974. An overview of the sys-
tem, for people interested in operating systems.Worth
reading by anyone who programs.Contains a remark-
able number of one-sentence observations on how to do
things right.

The Bell System Technical Journal (BSTJ) Special
Issue on July/August, 1978, contains many papers
describing recent developments, and some retrospective
material.

The 2nd International Conference on Software Engi-
neering (October, 1976) contains several papers
describing the use of the Programmer’s Workbench ver-
sion of

Document Preparation:

B. W. Kernighan, ‘‘A Tutorial Introduction to the Text
Editor’’ and ‘‘Advanced Editing on Bell Laboratories,
1978. Beginners need the introduction; the advanced
material will help you get the most out of the editor.

M. E. Lesk, ‘‘Typing Documents on Bell Laboratories,
1978. Describesthe −ms macro package, which iso-
lates the novice from the vagaries of nroff and troff, and
takes care of most formatting situations.If this specific
package isn’t available on your system, something sim-
ilar probably is. The most likely alternative is the
macro package −mm; see your local guru if you use

B. W. Kernighan and L. L. Cherry, ‘‘A System for
Typesetting Mathematics,’’ Bell Laboratories Comput-
ing Science Tech. Rep. 17.

M. E. Lesk, ‘‘Tbl — A Program to Format Tables,’’
Bell Laboratories CSTR 49, 1976.

J. F. Ossanna, Jr., ‘‘NROFF/TROFF User’s Manual,’’
Bell Laboratories CSTR 54, 1976. troff is the basic for-
matter used by −ms, eqn and tbl. The reference manual
is indispensable if you are going to write or maintain
these or similar programs.But start with:

B. W. Kernighan, ‘‘A TROFF Tutorial,’’ Bell Laborato-
ries, 1976. An attempt to unravel the intricacies of

troff.

Programming:

B. W. Kernighan and D. M. Ritchie, The C Program-
ming Language, Prentice-Hall, 1978. Contains a tuto-
rial introduction, complete discussions of all language
features, and the reference manual.

B. W. Kernighan and D. M. Ritchie, Programming,’’
Bell Laboratories, 1978. Describes how to interface
with the system from C programs: I/O calls, signals,
processes.

S. R. Bourne, ‘‘An Introduction to the Shell,’’ Bell Lab-
oratories, 1978. An introduction and reference manual
for the Version 7 shell. Mandatory reading if you
intend to make effective use of the programming power
of this shell.

S. C. Johnson, ‘‘Yacc — Yet Another Compiler-Com-
piler,’’ Bell Laboratories CSTR 32, 1978.

M. E. Lesk, ‘‘Lex — A Lexical Analyzer Generator,’’
Bell Laboratories CSTR 39, 1975.

S. C. Johnson, ‘‘Lint, a C Program Checker,’’ Bell Lab-
oratories CSTR 65, 1977.

S. I. Feldman, ‘‘MAKE — A Program for Maintaining
Computer Programs,’’ Bell Laboratories CSTR 57,
1977.

J. F. Maranzano and S. R. Bourne, ‘‘A Tutorial Intro-
duction to ADB,’’ Bell Laboratories CSTR 62, 1977.
An introduction to a powerful but complex debugging
tool.

S. I. Feldman and P. J. Weinberger, ‘‘A Portable Fortran
77 Compiler,’’ Bell Laboratories, 1978. A full Fortran
77 for systems.

