An Intr oduction to the UNIX Shell

S. R. Bourne

ABSTRET

The shellis a commandprogramminglanguagethat provides an interfaceto the UNIX®
operatingsystem. Its featuresinclude control-flov primitives, parametempassing,vari-
ablesandstring substitution. Constructsuchaswhile, if thenelse caseandfor areavail-
able. Two-way communicatioris possiblebetweerthe shelland commands.String-\al-
ued parameterstypically file namesor flags, may be passedo a command. A return
codeis setby commandshat may be usedto determinecontrol-flon, and the standard
output from a command may be used as shell input.

The shell canmodify the environmentin which commandsun. Input andoutputcanbe
redirectedto files, and processeshat communicatethrough ‘pipes’ can be invoked.
Commandsarefoundby searchingdirectoriesin thefile systemin a sequencé¢hatcanbe
definedby theuser Commandscanbereadeitherfrom theterminalor from afile, which
allows command procedures to be stored for later use.

An Intr oduction to the UNIX Shell

S. R. Bourne

1.0 Introduction

The shellis botha commandanguageanda programmindanguagehatprovidesaninterfaceto the UNIX
operatingsystem. This memorandundescribeswith examples,the UNIX shell. The first sectioncovers
most of the everyday requirementf terminalusers. Somefamiliarity with UNIX is an advantagewhen
readingthis section;see for example,"UNIX for beginners". Section2 describeghosefeaturesof the shell
primarily intendedfor usewithin shell procedures.Theseinclude the control-flov primitives and string-
valued variablesprovided by the shell. A knowledge of a programminglanguagewould be a help when
readingthis section. The last sectiondescribeshe more advancedfeaturesof the shell. Reference®f the
form "seepipe(2)" are to a section of the UNIX manual.

1.1 Simple commands

Simple commandsconsistof one or more words separatedy blanks. The first word is the nameof the
command to bexecuted; ay remaining vords are passed agaments to the commandor example,

who
is a command that prints the names of users loggetiha.command

Is -l
printsalist of filesin the currentdirectory The amgument- tellsIs to print statusinformation,sizeandthe
creation date for each file.

1.2 Backgiound commands

To executeacommandhe shellnormally createsa nev processandwaits for it to finish. A commandmay
be run without waiting for it to finish. For example,

cc pgm.c &

calls the C compilerto compilethe file pgm.c. Thetrailing & is an operatorthatinstructsthe shellnot to
wait for the commandto finish. To help keeptrack of sucha procesghe shell reportsits processnumber
following its creation.A list of currently actie processes may be obtained usinggheommand.

1.3 Input output redirection

Most commandsproduceoutputon the standardbutputthatis initially connectedo theterminal. This out-
put may be sent to a file by writing, forample,

Is =1 >file

The notation>file is interpretedby the shellandis not passedasan agumentto Is. If file doesnot exist
thenthe shell createst; otherwisethe original contentsof file arereplacedwith the outputfromIs. Output
may be appended to a file using the notation

Is - file
In this casdile is also created if it does not alreadyse
The standard input of a command may bemalkom a file instead of the terminal by writing, feample,

wc <file

The commandvc readsits standardnput (in this caseredirectedrom file) and printsthe numberof charac-
ters, words and lines foundif only the number of lines is required then

wc —| <file

could be used.

1.4 Pipelines and filters

The standardoutput of one commandmay be connectedo the standardinput of anotherby writing the
‘pipe’ operatorindicated by , as in,

Is-I wc
Two commands connected in thisyconstitute @ipelineand the werall effect is the same as
Is -1 >file; wc <file

exceptthatnofile is used. Insteadthe two processesre connectedy a pipe (seepipe (2)) andarerunin
parallel. Pipesare unidirectionaland synchronizatioris achiezed by halting wc when thereis nothingto
read and haltings when the pipe is full.

A filter is a commandhatreadsits standardnput, transformsit in someway, and prints the resultasout-
put. Onesuchfilter, grep,selectdrom its input thoselinesthatcontainsomespecifiedstring. For example,

Is grepold

printsthoselines, if ary, of the outputfrom Is that containthe stringold. Anotherusefulfilter is sort For
example,

who sort

will print an alphabetically sorted list of logged in users.
A pipeline may consist of more thandwommands, forxample,

Is grepold wc-I

prints the number of file names in the current directory containing the shting

1.5 File name generation
Many commands acceptguments which are file nameBor example,

Is -1 main.c

prints information relating to the fil@ain.c.
The shell preides a mechanism for generating a list of file names that match a p&tesxample,

Is—l x.c

generatesasargumentdo Is, all file namesn the currentdirectorythatendin .c. The character is a pat-
tern that will match anstring including the null stringln generapatternsare specified as fols.

* Matches aw string of characters including the null string.
? Matches ap single character
1 Matchesary one of the charactergnclosed.A pair of characterseparatedyy a minuswill

match agy character Igically between the pair
For example,

[a-z]*

matches all names in the current directorgitweing with one of the letteesthroughz.

lusr/fred/test/?

matchesall namesn the directory/usr/fr ed/testthat consistof a singlecharacter If no file nameis found
that matches the pattern then the pattern is passed, unchanged gasram@ar

This mechanisms usefulbothto save typing andto selectnamesaccordingto somepattern. It mayalsobe
used to find filesFor example,

echo /usr/fredd/core

finds and prints the namesof all core files in sub-directorie®f /usr/fred. (edhois a standardJNIX com-
mandthat printsits amuments separatedby blanks.) This lastfeaturecanbe expensve, requiringa scanof
all sub-directories aofusr/fred.

Thereis oneexceptionto the generalrulesgiven for patterns. The character.” at the startof a file name
must be eplicitly matched.

echox
will therefore echo all file names in the current directory ngirtséng with *." .
echo.x

will echoall thosefile nameghatbegin with *." . This avoids inadwertentmatchingof thenames.’ and ‘.’
which mean‘the currentdirectory’ and‘the parentdirectory’ respectrely. (Notice thatls suppressemfor-
mation for the files." and *.." .)

1.6 Quoting

Characterghathave a specialmeaningto the shell,suchas< > * ? & , arecalledmetacharactersA com-
plete list of metacharacters given in appendixB. Any charactemprecededy a\ is quotedand losesits
special meaning, if 3n The\is elided so that

echo \\?
will echo a single?, and
echo \\\

will echoasingle\. To alow longstringsto be continuedover more thanoneline the sequencénewlineis
ignored.

\ is convenientfor quotingsinglecharactersWhenmorethanonecharacteneedsjuotingthe abose mech-
anismis clumsyanderrorprone. A string of charactersnay be quotedby enclosingthe stringbetweersin-
gle quotes.For example,

echo xx¥xx* “XX
will echo
XX*HHH XX

The quotedstring may not containa single quote but may contain newlines, which are presered. This
guoting mechanism is the most simple and is recommended for casual use.

A third quotingmechanisrnusing doublequotesis also available that prevents interpretationof somebut
not all metacharacter®iscussion of the details is deferred to section 3.4

1.7 Prompting

Whenthe shellis usedfrom a terminalit will issuea promptbeforereadinga command.By default this
promptis $'. It may be changed by saying, foraenple,

PStyesdear

thatsetsthe promptto bethestringyesdear If anewline is typedandfurtherinputis neededhentheshell
will issuethe prompt‘>". Sometimesthis canbe causeddy mistypinga quotemark. If it is unexpected

thenaninterrupt (DEL) will returnthe shellto readanothercommand. This promptmay be changedby
saying, for @ample,

PS2=more

1.8 The shell and login

Following login (1) the shellis calledto readand execute commandgayped at the terminal. If the users
login directory containsthe file .profile thenit is assumedo containcommandsandis readby the shell
before reading gncommands from the terminal.

1.9 Summary
. Is
Print the names of files in the current directory
. Is >file
Put the output fronts into file.
. Is wc-l

Print the number of files in the current directory
. Is grep old
Print those file names containing the strirhd,
. Is grep old wc I
Print the number of files whose name contains the sbtohg

. cc pgm.c &
Runccin the background.

2.0 Shell pocedures
The shell may be used to read arecate commands contained in a filor example,

sh file [ags]

calls the shellto readcommanddrom file. Sucha file is calleda commandprocedue or shell procedue.
Argumentsmay be suppliedwith the call andarereferredto in file usingthe positionalparameter$1, $2, .
For example, if the filavg contains

who grep$l
then

sh wg fred
is equialent to

who grepfred

UNIX files have threeindependenattributes,read, write andexecute The UNIX commancchmod(1) may
be used to makafile executable. For example,

chmod +x wg

will ensure that the filevg has e&ecute statusFollowing this, the command
wyg fred

is equialent to
sh wg fred

This allows shell proceduresandprogramgo be usedinterchangeablylin either casea new processs cre-
ated to run the command.

As well asproviding namedor the positionalparametersghe numberof positionalparameterin thecall is
available asp#. The name of the file beingeeuted is gailable as$0.

A specialshell parametef* is usedto substitutefor all positionalparametergxcept$0. A typical useof
this is to preide some defult aguments, as in,

nroff -T450-ms %

which simply prepends somegaments to those alreadyen.

2.1 Control flow - for

A frequentuseof shellproceduress to loop throughtheagumentg$1, $2,) executingcommand®ncefor
eachamgument. An example of sucha procedureis tel that searcheghe file /usr/lib/telnos that contains
lines of the form

fred mh0123
bert mh0789

The text of tel is

fori
do grep $i /ust/lib/telnos; done

The command
tel fred

prints those lines ifusr/lib/telnos that contain the strinfyed.

tel fred bert

prints those lines containirfgedfollowed by those fobert.
Thefor loop notation is recognized by the shell and has the general form

for namein w1l w2
do command-list
done

A command-lisis a sequencef one or more simple commandsseparatear terminatedby a newvline or
semicolon. Furthermoreresened words like do and done are only recognizedfollowing a newline or
semicolon. nameis a shellvariablethatis setto the wordsw1 w2 in turn eachtime the command-listol-
lowing do is executed. If in w1l w2 is omittedthentheloop is executedoncefor eachpositionalparameter;
that is,in $* is assumed.

Another kample of the use of tHer loop is thecreatecommand whose xéis
for i do >$i; done

The command
create alpha beta

ensureghattwo empty filesalphaandbetaexist andareempty The notation>file may be usedon its own
to create or clear the contents of a fikotice also that a semicolon (orwime) is required befordone.

2.2 Control flow - case
A multiple way branch is pndded for by thecasenotation. For example,

case $#in

1) cat$l;;

2) cat$2 <$1;;

*x) echo\'usage: append [from] to\’ ;;
esac

is anappendcommand.Whencalled with one gyjument as
append file

$#is the strindl and the standard input is copied onto the erfidenfising thecat command.
append filel file2

appendsghe contentsof filel ontofile2. If the numberof agumentssuppliedto appendis otherthanl or 2
then a message is printed indicating proper usage.

The general form of theasecommand is

caseword in
pattern) command-list;

esac

The shellattemptgo matchword with eachpattern,in the orderin which the patternsappear If a matchis
found the associatedommand-lists executedandexecution of the caseis complete.Sincex is the pattern
that matches arstring it can be used for the @efit case.

A word of caution:no checkis madeto ensurethatonly one patternmatcheghe caseargument. Thefirst
matchfound definesthe setof commanddo be executed. In the examplebelov the commanddollowing
the seconé will never be executed.

case $#in
*) 5
*) 5
esac

Another example of the useof the caseconstructionis to distinguishbetweendifferentforms of an amgu-
ment. Thefollowing example is a fragment of@ command.

fori

do case $iin

—[ocs]) N

—x) echo \'unknavn flag $iV’ ;;

%.c) /lib/cOS$i ;;

%) echo V'unpected eggument $i\’ ;;
esac

done

To allow the samecommandgo be associatedvith morethanone patternthe casecommandprovidesfor
alternatve patterns separated by.aFor example,

case $iin

is equialent to

case $iin

—[xyl)
esac

The usual quoting ceentions apply so that
case $iin
\\?)

will match the charactet.

2.3 Here documents
The shellprocedureel in section2.1 usesthefile /usr/lib/telnos to supplythe datafor grep. An alternatve
is to include this data within the shell procedure hemdocument, as in,

fori
do grep $i !

fred mh0123
bert mh0789

!

done
In this examplethe shelltakesthelinesbetween and! asthe standardnputfor grep. Thestring! is arbi-
trary, the document being terminated by a line that consists of the stringifailo

Parametersaresubstitutedn thedocumenbeforeit is madeavailable to grepasillustratedby thefollowing
procedure calleddg.

ed $3 %
o/$1/s//$2/g
w

%

The call
edg string1l string2 file
is then equialent to the command

ed file %
g/stringl/s//string2/g
w

%

andchangesll occurrence®f stringlin file to string2. Substitutioncanbe preventedusing\ to quotethe
special characteé§ as in

ed $3 +
1\$s/$1/$2/g
w

+

(This versionof edgis equiaent to thefirst exceptthatedwill printa? if thereareno occurrencesf the
string $1.) Substitution within a here documentmay be prevented entirely by quoting the terminating
string, for kample,

grep $i \\#

#
The documenis presentedvithout modificationto grep. If parametesubstitutionis not requiredin ahere
document this latter form is mordfiefent.

2.4 Shell ariables

The shell provides string-\aluedvariables. Variablenamesbegin with a letter and consistof letters,digits
and underscoresVariables may be gén values by writing, for @ample,

user=fred box=m000 acct=mh0000

which assigns/aluesto the variablesuser, box andacct. A variablemaybe setto the null stringby saying,
for example,

null=
The alue of a ariable is substituted by preceding its name Witfior example,
echo $user

will echofred.
Variables may be used interaelly to provide abbrgiations for frequently used string§or example,

b=/usr/fred/bin
mv pgm $b

will move thefile pgmfrom the currentdirectoryto thedirectory/usr/fred/bin. A more generahotationis
available for parameter (omviable) substitution, as in,

echo ${user}

which is equialent to

echo $user
and is used when the parameter name isvieltbby a letter or digitFor example,
tmp=/tmp/ps
ps a >${tmp}a
will direct the output opsto the file/tmp/psa, whereas,
ps a >$tmpa
would cause thealue of the griabletmpa to be substituted.
Except for$? the followving are set initially by the shelb?is set after xecuting each command.

$? The exit status(returncode)of the lastcommandaxecutedasa decimalstring. Most com-
mandsreturna zeroexit statusif they completesuccessfullyotherwisea non-zeroexit sta-
tusis returned. Testing the value of returncodesds dealtwith laterunderif andwhile com-

mands.

$# The numberof positionalparametergin decimal). Used,for example,in theappendcom-
mand to check the number of parameters.

$$ The processnumberof this shell (in decimal). Since processnumbersare uniqueamong

all existing processesthis string is frequently usedto generateunique temporaryfile
names.For example,

ps a >/tmp/ps$$

rm /tmp/ps$$
$! The process number of the last process run in the background (in decimal).
$- The current shell flags, such-asand-v .

Some wariables hae a special meaning to the shell and should baided for general use.

$MAIL Whenusedinteractvely the shelllooks at thefile specifiedby this variablebeforeit issues
aprompt. If the specifiedfile hasbeenmodifiedsinceit waslastlooked at the shell prints
the messaggou havemail beforepromptingfor the next command. This variableis typi-
cally set in the fileprofile, in the useslogin directory For example,

MAIL =/usr/mail/fred

$HOME The default agumentfor the cd command. The currentdirectory is usedto resole file
namereferencegshat do not bggin with a/, andis changedusing the cd command. For
example,

cd /usr/fred/bin
malkes the current directovusr/fred/bin.
cat wn

will print on the terminalthe file wn in this directory The commandcd with no argument
is equialent to

cd HOME

This variable is also typically set in the the uséogin profile.
$PATH A list of directoriesthat containcommandgthe seach path). Eachtime a commandis

executedby the shellalist of directoriesis searchedor anexecutablefile. If $PATH is not
setthenthecurrentdirectory /bin, and /usr/bin aresearchedby default. OtherwisebPATH
consists of directory names separated bifor example,

PATH=:/usr/fred/bin/bin:/usr/bin

specifieghatthe currentdirectory(the null stringbeforethefirst :), /usr/fred/bin, /bin and
{usr/bin areto be searchedn thatorder In this way individual userscan have their own
‘private’ commandshat are accessibléendependentlyof the currentdirectory If the com-
mandnamecontainsa/ thenthis directory searchis not used;a single attemptis madeto
execute the command.

$PS1 The primary shell prompt string, by aedt, ‘$'.
$PS2 The shell prompt when further input is needed, byualef> .
$IFS The set of characters usedhignk interpetation(see section 3.4).

2.5 The test command
Thetestcommand, although not part of the shell, is intended for use by shell progranegsample,

test—f file

returnszeroexit statusif file exists andnon-zeroexit statusotherwise.In generatestevaluatesa predicate
andreturnstheresultasits exit status. Someof the morefrequentlyusedtestalgumentsaregiven here,see
test(1) for a complete specification.

tests true if the agumentsis not the null string
test—f file trueif file exists

test-r file trueif file is readable

test-w file trueif file is writable

test-dfile trueif fileis a directory

2.6 Control flow - while

The actionsof thefor loop andthe casebrancharedeterminedby dataavailable to the shell. A while or
until loop andanif then elsebranchare also provided whoseactionsare determinedby the exit status
returned by commands while loop has the general form

while command-list
do command-list
done

The value testedby the while commandis the exit statusof the last simple commandfollowing while.
Eachtime roundthe loop command-lisis executed;if a zeroexit statusis returnedthencommand-lisis
executed; otherwise, the loop terminatdé@r example,

while test $1
do

shift

done

is equialent to

fori
do
done
shiftis a shell command that renames the positional paranes, as$1, $2,and lose$1.

Anotherkind of usefor thewhile/until loop is to wait until someexternal event occursandthenrun some
commands.In anuntil loop the termination condition iswvarsed. For example,

until test—f file
do sleep 300; done
commands

will loop until file exists. Eachtime roundtheloop it waits for 5 minutesbeforetrying again. (Presumably
another process wiliventually create the file.)

2.7 Control flow - if
Also available is a general conditional branch of the form,

if command-list
then command-list
else command-list
fi

that tests thealue returned by the last simple command feitg if.
Theif command may be used in conjunction with tdstcommand to test for thexistence of a file as in

if test—f file

then process file

else do something else
fi

An example of the use df, caseandfor constructions is gen in section 2.10

A multiple testif command of the form
if
then
else if
then
else if

fi
fi
fi
may be written using arxeension of thef notation as,

if

then

elif

then

elif

fi

The following exampleis thetoudh commandwhich changedhe ‘last modified’ time for alist of files. The
command may be used in conjunction withle (1) to force recompilation of a list of files.

flag=

fori

do case $iin
—-c) flag=N;;
%) if test—f $i

then In $i junk$$; rm junk$$
elif test $flag
then echofile W' $i\\" does notxist
else >$i
fi
esac
done

The —c flag is usedin this commandto force subsequentiles to be createdif they do not alreadyexist.
Otherwise|if thefile doesnot exist, an errormessagés printed. The shellvariableflag is setto somenon-
null string if the—c argument is encountered:he commands

In;rm
malke alink to the file and then remaeit thus causing the last modified date to be updated.
The sequence

if commandl
then command?2
fi

may be written
commandl && command2
Corversely,
commandlcommand2
executescommandadnly if commandZXails. In eachcasethe valuereturnedis thatof the lastsimplecom-

mand &ecuted.

2.8 Command gpouping
Commands may be grouped inotways,

{ command-list }
and

(command-lis)

In thefirst command-lists simply executed. Thesecondiorm executescommand-lisasa separatgrocess.
For example,

(cd x; rm junk)
executesrm junkin the directoryx without changing the current directory of theaking shell.
The commands

cd x; rm junk

have the same ééct hut lease the invoking shell in the directory.

2.9 Dehugging shell procedures

The shell providestwo tracing mechanismso helpwhendehugging shell procedures.The first is invoked
within the procedure as

set—-v

(v for verbose)and causedines of the procedureto be printedasthey are read. It is usefulto helpisolate
syntax errors.It may be iwoked without modifying the procedure by saying

sh-v proc

whereprocis the nameof the shellprocedure.This flag may be usedin conjunctionwith the—n flag which
prevents execution of subsequentommands.(Note thatsayingset—n ataterminalwill rendertheterminal
useless until an end-of-file is typed.)

The command
set-x

will producean execution trace. Following parametersubstitutioneach commandis printed as it is
executed. (Try these at the terminal to see whdeetff they have.) Bothflags may be turned by saying

set-

and the current setting of the shell flagsvalable as$-.

2.10 The man command

The following is the mancommandwhich is usedto print sectionsof the UNIX manual. It is called,for
example, as

man sh
man-t ed
man 2 fork

In thefirst the manualsectionfor shis printed. Sinceno sectionis specified sectionl is used. The second
examplewill typeset(-t option) the manualsectionfor ed. The last prints the fork manualpagefrom sec-
tion 2.

found=yes

fi
esac
done

fi
done
case $found in

no) echo \'$i: manual page not found\'
esac

Figure 1. A version of the man command

3.0 Keyword parameters

Shellvariablesmay be given valuesby assignmenor whena shell procedurés invoked. An argumentto a
shell procedureof the form name=valuethat precedegshe commandnamecauses/alueto be assignedo
namebefore execution of the procedurebegins. The value of namein the invoking shellis not affected.
For example,

user=fred command

will executecommandwith user setto fred The —k flag causesargumentsof the form name=valueto be
interpretedin this way arywherein the agumentlist. Suchnamesare sometimesalledkeyword parame-
ters. If any arguments remain thyeare available as positional paramete$s, $2,.

Thesetcommand may also be used to set positional parameters from within a prodesi@eample,
set—

will set$1 to thefirst file namein the currentdirectory $2 to the next, andsoon. Note thatthefirst agu-
ment,—, ensures correct treatment when the first file nanginkewith a—.

3.1 Parameter transmission

Whena shell procedurds invoked both positionalandkeyword parametersnay be suppliedwith the call.
Keyword parametersre alsomadeavailable implicitly to a shell procedureby specifyingin adwancethat
such parameters are to beerted. For example,

export user box

marksthe variablesuser and box for export. Whena shell procedureis invoked copiesare madeof all
exportablevariablesfor usewithin theinvoked procedure. Modificationof suchvariableswithin the proce-
duredoesnot affect the valuesin theinvoking shell. It is generallytrue of a shellprocedurghatit may not
modify the stateof its callerwithout explicit requesbnthe partof thecaller (Sharedile descriptorsaarean
exception to this rule.)

Nameswhosevalueis intendedto remainconstantmay be declaredeadonly. The form of this command
is the same as that of thgport command,

readonly name

Subsequent attempts to set readolyables are illgal.

3.2 Parameter substitution

If ashellparameters not setthenthe null stringis substitutedor it. For example,if the variabled is not
set

echo $d

or
echo ${d}

will echo nothing. A default string may be genasin
echo ${d-.}

which will echothe value of the variabled if it is setand’.’ otherwise. The default string is evaluated
using the usual quoting cemntions so that

echo ${d-"+"}
will echo* if the variabled is not set.Similarly
echo ${d-$1}

will echothe value of d if it is setandthe value (if ary) of $1 otherwise. A variable may be assigneda
default value using the notation

echo ${d=}
which substitutes the same string as
echo ${d-}

andif d werenot previously setthenit will be setto thestring‘.”. (The notation${=} is not available for
positional parameters.)

If there is no sensible dailt then the notation
echo ${d?message}

will echothevalueof thevariabled if it hasone,otherwisemessge is printedby the shellandexecution of
the shell procedurds abandonedlIf messge is absenthena standardnessageés printed. A shell proce-
dure that requires some parameters to be set might start assfollo

: ${user?} ${acct?} ${bin?}

Colon (:) is a commandthatis built in to the shelland doesnothingonceits agumentshave beenevalu-
ated. If any of the variablesuser, acct or bin arenot setthenthe shellwill abandorexecution of the proce-
dure.

3.3 Command substitution

The standardoutputfrom a commandcan be substitutedn a similar way to parameters.The command
pwd prints on its standarcdutputthe nameof the currentdirectory For example,if the currentdirectoryis
{usr/fred/bin then the command

d="pwd"
is equialent to
d=/usr/fred/bin

The entire string betweengrave accents(™) is taken asthe commandto be executedandis replacedwith
the outputfrom the command. The commands written usingthe usualquotingcornventions exceptthata "
must be escaped usind.aFor example,

Is "echo "$1"
is equialent to
Is $1

Commandsubstitutionoccursin all contets where parametersubstitutionoccurs(including here docu-
ments)andthe treatmenbf theresultingtext is the samein both cases.This mechanisnallows string pro-
cessingcommandgo be usedwithin shellprocedures An exampleof sucha commands basenamavhich
removes a specified suiix from a string. For example,

basename maiai.c
will print the stringmain. Its use is illustrated by the folleng fragment from &c command.

case $Ain
%.c) B="basenaméA .c’

esac

that setd3 to the part oftA with the sufix .c stripped.
Here are some compositeaenples.

. foriin’ls—t; do
The ariablei is set to the names of files in time ordeost recent first.

. set "date”; echo $6 $2 $3, $4
will print, e.g.,1977 No 1, 23:59:59

3.4 Ewaluation and quoting

The shellis a macroprocessothat provides parametessubstitution,commandsubstitutionand file name
generationfor the agumentsto commands.This sectiondiscusseshe orderin which theseevaluations
occur and the &cts of the arious quoting mechanisms.

Commandsare parsedinitially accordingto the grammargiven in appendix A. Before a commandis
executed the follving substitutions occur

. parameter substitution, e $user
. command substitution, e.gowd’
Only oneevaluation occursso thatif, for example,the value of the variableX is the string $y
then
echo $X

will echo$y.
. blank interpretation

Following the above substitutionsthe resulting charactersare broken into non-blankwords
(blank interpretatior). For this purpose‘blanks’ are the charactersof the string $IFS. By
default, this string consistof blank,tabandnenline. Thenull stringis not regardedasa word
unless it is quotedFor example,

echo”
will pass on the null string as the firsgament toecho, whereas
echo $null
will call echowith no aguments if the ariablenull is not set or set to the null string.

. file name generation

Eachword is thenscannedor the file patterncharacters, ? and[] andanalphabeticalist of
file names is generated to replace tloedy Eachsuch file name is a separatguanent.

The evaluationsjust describedalsooccurin thelist of wordsassociatedvith afor loop. Only substitution
occurs in thevord used for acasebranch.

As well asthe quotingmechanismslescribecearlierusing\ and”” a third quotingmechanismis provided
usingdoublequotes. Within doublequotesparameteandcommandsubstitutionoccurshut file namegen-
erationandthe interpretationof blanksdoesnot. The following characterdhave a special meaningwithin
double quotes and may be quoted u$ing

$ parameter substitution
: command substitution
" ends the quoted string
\ guotes the special charact&rs" \

For example,
echo "$x"

will pass the alue of the griablex as a single gument toecho. Similarly,
echo "$"

will pass the positional parameters as a singlaraent and is equalent to

echo "$1 %2 "

The notatior$@ is the same &b+ except when it is quoted.
echo "$@"

will pass the positional parameters, weigated, toecho and is equialent to
echo "$1" "$2"

The following table gies, for each quoting mechanism, the shell metacharacters thatlages.

metadaracter
\ $ * : " ’
n n n n n t
y n n t n n
" y y n y t n
t terminator
y interpreted

not interpreted

Figure 2. Quoting mechanisms

In casesvheremorethanoneevaluation of a stringis requiredthe built-in commandval maybe used. For
example, if the ariableX has the alue$y, and if y has the &luepqr then

eval echo $X

will echo the stringpgr .

In generalthe eval commandevaluatesits aguments(asdo all commandspandtreatsthe resultasinput to
the shell. The input is read and the resulting command{egued. For example,

wg=\"eval whogrep\'
$wyg fred

is equialent to
whogrep fred

In this example,eval is requiredsincethereis no interpretationof metacharactersuchas, following sub-
stitution.

3.5 Error handling

The treatmenbf errorsdetecteddy the shelldependn the type of errorandon whetherthe shellis being
usedinteractively. An interactve shell is onewhoseinput andoutputareconnectedo aterminal(asdeter
mined bygtty (2)). A shell invoked with the—i flag is also interacte.

Execution of a command (see also 3.7) nmalyfér ary of the folloving reasons.
. Input output redirection mawil. For example, if a file does nokist or cannot be created.
. The command itself does notigt or cannot bexecuted.

. The commanderminatesabnormallyfor example,with a "bus error" or "'memoryfault". SeeFigure
2 below for a complete list of UNIX signals.

. The command terminates normallytlveturns a non-zerxie status.

In all of thesecaseshe shellwill go on to execute the next command. Exceptfor the last casean error
messagevill be printedby the shell. All remainingerrorscausethe shellto exit from a commandproce-
dure. An interacte shell will returnto readanothercommandrom the terminal. Sucherrorsincludethe
following.

. Syntax errors.e.g., if then done

. A signalsuchasinterrupt. The shellwaits for the currentcommandjf ary, to finish execution and
then either xits or returns to the terminal.

. Failure of ary of the huilt-in commands such asl.
The shell flag-e causes the shell to terminate if/aaror is detected.

1 hangup
2 interrupt
3* quit

4* illegd instruction

5* tracetrap

6* IOT instruction

7* EMT instruction

8* floatingpoint exception

9 kill (cannot be caught or ignored)
10* bus error

11* segmentation violation

12* badargument to system call

13 write on a pipe with no one to read it
14 alarmclock

15 software termination (fronkill (1))

Figure 3. UNIX signals

Thosesignalsmarked with anasteriskproducea coredumpif notcaught. However, the shellitself ignores
quit which is the only externalsignalthatcancausea dump. The signalsin this list of potentialinterestto
shell programs are 1, 2, 3, 14 and 15.

3.6 Fault handling

Shell proceduresiormally terminatewhenaninterruptis receved from theterminal. Thetrap commands
used if some cleaning up is required, such as vergdaemporary filesFor example,

trap ‘rm /tmp/ps$$;at” 2
sets a trap for signal 2 (terminal interrupt), and if this signal isvegtwiill execute the commands
rm /tmp/psS; it

exit is anotherbuilt-in commandhatterminatesxecution of a shell procedure.The exit is required;other
wise, afterthe trap hasbeentaken, the shellwill resumeexecuting the procedureat the placewhereit was
interrupted.

UNIX signalscanbe handledin oneof threeways. They can beignored,in which casethe signalis never
sentto the process.They can be caught,in which casethe procesamustdecidewhat actionto take when
the signalis receved. Lastly, they can beleft to causeterminationof the processwithout it having to take
ary furtheraction. If a signalis beingignoredon entryto the shell procedurefor example,by invoking it
in the background (see 3.7) theap commands (and the signal) are ignored.

Theuseof trapis illustratedby this modifiedversionof thetouch commandFigure4). The cleanupaction
is to remee the filejunk$$.

flag=
trap ‘rm-f junk$$; eit” 123 15

fori

do case $iin
-c) flag=N;;
%) if test—f $i

then In $i junk$$; rm junk$$
elif test $flag
then echofile W' $i\\" does notxist
else >$i
fi
esac
done

Figure 4. The touch command

Thetrap commandappeardeforethe creationof the temporaryfile; otherwiseit would be possiblefor the
process to die without remimg the file.

Sincethereis no signal0 in UNIX it is usedby the shellto indicatethe commanddo be executedon exit
from the shell procedure.

A proceduremay, itself, electto ignore signalsby specifyingthe null string asthe agumentto trap. The
following fragment is taén from thenohupcommand.

trap”” 12315

which causeshangup,interrupt, quit andkill to be ignoredboth by the procedureand by invoked com-
mands.

Traps may be reset by saying
trap 2 3

which resetghetrapsfor signals2 and3 to their default values. A list of the currentvaluesof trapsmay be
obtained by writing

trap

The procedurescan(Figure5) is an exampleof the useof trap wherethereis no exit in the trapcommand.
scantakes eachdirectoryin the currentdirectory promptswith its name,and then executescommands
typedat the terminaluntil anendof file or aninterruptis receved. Interruptsareignoredwhile executing
the requested commandstltause termination whestanis waiting for input.
while echo "$i:"
.ie "tbl*headerdiv’'. nrT.0
trap it 2
.ie "tbl*headerdiv’'. nrT.0
read x
.ie "tbl*headerdiv’'. nrT.0
do trap : 2; ea $x; done
fi
done

Figure5. The scan command

read x is a built-in commandhatreadsoneline from the standardnput andplacestheresultin the variable
X. It returns a non-zeroxé status if either an end-of-file is read or an interrupt is vedei

3.7 Command execution

To run a command(otherthan a built-in) the shell first createsa nev processusingthe systemcall fork.

The execution ervironmentfor the commandncludesinput, outputandthe statesof signals,andis estab-
lishedin the child procesdeforethe commands executed. Thebuilt-in commandaxecis usedin therare
casesvhenno fork is requiredandsimply replaceghe shellwith a nev command. For example,a simple
version of thenohupcommand looks li&

trap\\'12315

exec $*
Thetrapturnsoff the signalsspecifiedsothatthey are ignoredby subsequentlgreatedccommandsndexec
replaces the shell by the command specified.

Most forms of input outputredirectionhave aready beendescribed.In the following word is only subject
to parameterand commandsubstitution. No file namegenerationor blank interpretationtakes place so
that, for «ample,

echo>x.c

will write its outputinto a file whosenameis x.c. Input outputspecificationsare evaluatedleft to right as
they appear in the command.

> word The standardbutput(file descriptorl) is sentto thefile word which is createdf it doesnot
already &ist.

word The standardutputis sentto file word. If thefile existsthenoutputis appendedby seeking
to the end); otherwise the file is created.

<word The standard input (file descriptor 0) is¢akfrom the filavord.

word The standardnputis taken from the lines of shellinput thatfollow up to but notincludinga

line consistingonly of word. If word is quotedthen no interpretationof the document
occurs. If word is not quotedthenparameteand commandsubstitutionoccurand\ is used
to quotethe characterd $ ° andthe first characterof word. In the latter case\newline is
ignored (c.f. quoted strings).

>& digit The file descriptodigit is duplicatedusingthe systemcall dup (2) andthe resultis usedas
the standard output.

<& digit The standard input is duplicated from file descripligit.
<&- The standard input is closed.
>&— The standard output is closed.

Any of the abore may be precededy adigit in which casethefile descriptorcreateds thatspecifiedby the
digit instead of the dafilt O or 1. For example,

2>file
runs a command with message output (file descriptor 2) directibel to
2>&1

runsa commandwith its standarcdutputandmessageutputmeiged. (Strictly speakingfile descriptor2 is
created by duplicating file descriptor dthbhe efect is usually to mee the tvo streams.)

The ernironment for a command run in the background such as
listx.c Ipr&

is modifiedin two ways. Firstly, the default standardnput for sucha commands the emptyfile /dev/null .
This prevents two processegthe shellandthe command)which arerunningin parallel,from trying to read
the same inputChaos wuld ensue if this were not the cas@r example,

ed file &

would allow both the editor and the shell to read from the same input at the same time.

The othermodificationto the ervironmentof a backgrounccommands to turn off the QUIT andINTER-

RUPT signalssothatthey are ignoredby the command.This allows thesesignalsto be usedat theterminal
without causingbackgroundcommanddo terminate. For this reasonthe UNIX corvention for a signalis

thatif it is setto 1 (ignored)thenit is never changedeven for a shorttime. Note thatthe shellcommand
trap has no dect for an ignored signal.

3.8 Invoking the shell

Thefollowing flagsareinterpretedoy the shellwhenit is invoked. If thefirst characteof agumentzerois
aminus, then commands are read from the.fitefile .

—c string
If the —c flag is present then commands are read Bting.

-s If the—sflagis presentor if no agumentsremainthencommandsarereadfrom the standardnput.
Shell output is written to file descriptor 2.

-i If the—i flagis presenor if the shellinputandoutputareattachedo aterminal(astold by gtty) then
this shellis interactive In this caseTERMINATE is ignored(sothatkill 0 doesnotkill aninterac-
tive shell) andINTERRUPT is caughtandignored(sothatwait is interruptable).In all caseQUIT
is ignored by the shell.

Acknowledgements

The designof the shellis basedn partontheoriginal UNIX shellandthe PWB/UNIX shell, somefeatures
having beentaken from both. Similaritiesalsoexist with the commandnterpretersof the CambridgeMul-
tiple Access System and of CTSS.

I would like to thank DennisRitchie andJohnMashe for mary discussiongluring the designof the shell.
| am aso gratefulto the membersof the ComputingScienceResearciCenterandto Joe Maranzandor
their comments on drafts of this document.

Appendix A - Grammar

item: word
input-output
name = value

simple-command: item
simple-command item

command: simple-command
(command-lis)
{ command-lis}
for namedo command-listione
for namein word do command-listione
while command-listo command-listione
until command-lisdto command-lisHone
caseword in case-partesac
if command-listhen command-list else-paft

pipeline: command
pipeline command

andor: pipeline
andor&& pipeline
andor pipeline

command-list: andor
command-list
command-lis&
command-list andor
command-lis& andor

input-output: > file
<file
word
word

file: word
& digit
& _
case-part: pattern) command-list;

pattern: word
pattern word

else-part: elif command-listhen command-list else-part
elsecommand-list

empty
empty:
word: asequence of non-blank characters
name: asequence of letters, digits or underscores starting with a letter

digit: 0123456789

Appendix B - Meta-characters and Resered Words
a) syntactic
pipe symbol
&& ‘andf symbol
‘orf” symbol
; command separator
" case delimiter

& background commands
@] command grouping
< input redirection
input from a here document
> output creation
output append

b) patterns
* match ag character(s) including none
? match agy single character
[...] match aw of the enclosed characters

¢) substitution
${...} substitute shellariable
substitute command output

d) quoting

\ guote the ne character
guote the enclosed charactexsept for
guote the enclosed charactexsept for$ ~\ "

e) resered words

if then else elif fi
case in esac
for while until do done

{}

