On the Security of UNIX

Dennis M. Ritchie
June 10, 1977

Recently there has been much interest in the security aspects of operating systems ared kiftw
issue is the ability to prent undesired disclosure of information, destruction of information, and harm to
the functioning of the system. This paper discusses the degree of security which casnideel prader the
UNIX® system and offers a number of hints omito improve scurity.

The first fact to face is thaiNix was ot developed with securityin any realistic sense, in mind; this
fact alone guarantees a vast number of holes. (Actually the same statement can be made with respect to
most systems.) The area of security in whiehx is theoretically weakest is in protecting against crashing
or at least crippling the operation of the system. The problem here is not mainly in uncritical acceptance of
bad parameters to system calls— there may be bugs in this atreanke are known— but rather in lack of
checks for rcessve mnsumption of resources. Most notalihere is no limit on the amount of disk stor
age used, either in total space allocated or in the number of files or directories. Here is a particularly
ghastly shell sequence guaranteed to stop the system:

while : ; do
mkdir x
cd x
done

Either a panic will occur because all the i-nodes on the device are used up, or all the disk blocks will be
consumed, thus prenting anyone from writing files on the device.

In this version of the system, users arevgmged from creating more than a set number of processes
simultaneouslyso wnless users are in collusion it is unlikely thay ane can stop the system altogether
However, creation of 20 or so CPU or disk-bound jobsvésafew resources\ailable for others. Also, if
mary large jobs are run simultaneoyslyap gpace may run out, causing a panic.

It should be evident thakeessie mnsumption of disk space, files, awspace, and processes can
easily occur accidentally in malfunctioning programs as well as at commaehd lie fact UNIX is essen-
tially defenseless against this kind of abuse, nor is thereamy fix. The best that can be said is that it is
generally fairly easy to detect what has happened when disaster strikes, to identify the user responsible, and
take gppropriate action. In practice, wevgafound that difficulties in this area are rather rate vie hae
not been faced with malicious users, and e@jdairly generous supply of resources whiclkénaerned to
cushion us against accidentabaconsumption.

The picture is considerably brighter in the area of protection of information from unauthorized
perusal and destruction. Here the degree of security seems (almost) adequate theamtichlyprob-
lems lie more in the necessity for care in the actual use of the system.

Eachunix file has associated with it @k bits of protection information together with a user identi-
fication number and a usgroup identification number (UID and GID). Nine of the protection bits are
used to specify independently permission to read, to write, arnxetate the file to the user himself, to
members of the usargoup, and to all other user&ach process generated by or for a user has associated
with it an efective UID and a real UID, and anfettive and real GID. When an attempt is made to access
the file for reading, writing, orxecution, the user processéfectve UID is compared against the fie’
UID; if a match is obtained, access is granted provided the read, writeooite=bit respectely for the
user himself is presentf the UID for the file and for the process fail to match, but the &9’ natch, the
group bits are used; if the Gido rot match, the bits for other users are testHae last tvo bits of each



SMM:17-2 Onthe Security ofuNIX

file's protection information, called the set-UID and set-GID bits, are used only when the fitetited as

a program. If,in this case, the set-UID bit is on for the file, thieetive UID for the process is changed to

the UID associated with the file; the change persists until the process terminates or until the UID changed
again by anotherxecution of a set-UID file. Similarly the fefctive group ID of a process is changed to the

GID associated with a file when that file ieeuted and has the set-GID bit s&he real UID and GID of

a process do not change wherydife is executed, but only as the result of a privileged system call.

The basic notion of the set-UID and set-GID bits is that one may write a program whietvuiskle
by others and which maintains files accessible to others only by that program. The clasBipéé & the
game-playing program which maintains records of the scores of its players. The program itself has to read
and write the score file, but no one but thengs ponsor can be allowed unrestricted access to the file lest
they manipulate the game to theiwn adwantage. Thesolution is to turn on the set-UID bit of tharge
program. Whenand only when, it is woked by gayers of the game, it may update the score file but ordi-
nary programs)ecuted by others cannot access the score.

There are a number of special caseslired in determining access permissions. Sin@ewding a
directory as a program is a meaningless operation, Xemute-permission bit, for directories, is ¢k
instead to mean permission to search the directory farea fijie during the scanning of a path name; thus
if a directory has»ecute permission but no read permission for\aemiuser he nay access files with
known names in the directgriput may not read (list) the entire contents of the direct@vyite permission
on a directory is interpreted to mean that the user may create and delete files in that directory; it is impossi-
ble for ary user to write directly into gndirectory.

Another and from the point of vie of security much more serious special case is that there is a
“super userwho is able to read grfile and write ayp non-directory The super-user is also able to change
the protection mode and thevieer UID and GID of apfile and to inoke privileged system calls. It must
be recognized that the mere notion of a swser is a theoretical, and usually practical, blemish gn an
protection scheme.

The first necessity for a secure system is of course arranging that all files and directeribe ha
proper protection modesTraditionally, UNIX software has been exceedingly permissin this regad,;
essentially all commands create files readable and writableebyoae. Inthe current version, this pojic
may be easily adjusted to suit the needs of the installation or the individualAsserciated with each
process and its descendants is a mask, which ideict ahd-ed with the mode ofwvery file and directory
created by that process. In thiayusers can arrange that, by alel, all their files are no more accessible
than thg wish. Thestandard mask, set Bggin, allows all permissions to the user himself and to his
group, but disallows writing by others.

To maintain both data pracy and data intgrity, it is necessaryand largely sufficient, to makane’s
files inaccessible to otherdhe lack of sufciency could follow from the existence of set-UID programs
created by the user and the possibility of total breach of system security in one of the ways discwgsed belo
(or one of the ways not discussed b&lp. For greater protection, an encryption schemevéable. Since
the editor is able to create encrypted documents, andypecommand can be used to pipe such docu-
ments into the other text-processing programs, the length of time during which cleartext versions need be
awailable is strictly limited.The encryption scheme used is not one of the strongest known, but it is judged
adequate, in the sense that cryptanalysis is likely to require considerably more effort than more direct meth-
ods of reading the encrypted fileBor example, a user who stores data that lgerds as truly secret
should be ware that he is implicitly trusting the system administrator not to instadirsion of the crypt
command that storesery typed password in a file.

Needless to sathe system administrators must be at least as careful as their most demanding user to
place the correct protection mode on the files under their control. In partitidarecessary that special
files be protected from writing, and probably reading, by ordinary users whersttine sensitie files
belonging to other users. It is easy to write programs #aahime and change files by accessing thécde
on which the files Vie.

On the issue of passnd securityunix is probably better than most systenfssswords are stored
in an encrypted form which, in the absence of serious attention from specialists in the field, appears reason-
ably secure, provided its limitations are understotd.the current version, it is based on a slightly



On the Security ofiNIX SMM:17-3

defective vasion of the Federal DES; it is purposely defexto that easily-gailable hardware is useless

for attempts atxéhaustve key-search. Sincboth the encryption algorithm and the encrypted passwords are
awailable, haustve enumeration of potential passwords is still feasible up to a p¥ifet.rave observed

that users choose passwords that are easy to gugsatettshort, or from a limited alphabet, or in a dictio-

nary Passvords should be at least six characters long and randomly chosen from an alphabet which
includes digits and special characters.

Of course there alsaxist feasible non-cryptanalytic ways of finding out passis. r example:
write a program which types oudlogin: '’ on the typewriter and copies whaée is typed to a file of your
own. Theninvoke the command and gavay until the victim arrves.

The set-UID (set-GID) notion must be used carefully if aecurity is to be maintained. The first
thing to keep in mind is that a writable set-UID file caivéaanother program copied onto iEor example,
if the supetuser(su) command is writable, anyone can gdpe shell onto it and get a password-free-v
sion ofsu. A more subtle problem can come from set-UID programs which are not sufficiently careful of
what is fed into themTo take an dosolete example, the previous version ofrtlad command was set-UID
and owned by the supaser This version sent mail to the recipientivn directory The notion was that
one should be able to send mail ty@me @en if they want to protect their directories from writing.he
trouble was thamail was rather dumb: anyone could mail someone slgavate file to himself. Much
more serious is the follang scenario: maka fie with a line like ane in the password file which alig
one to log in as the supaser Then mak a ink named “mail’’ to the password file in some writable
directory on the same device as the password file (say /tmp). Finally mail the bogus login line to
/tmp/.mail; You can then login as the super-udean up the incriminating evidence, anddgour will.

The fact that users can mount theimodisks and tapes as file systems can be another waynaig
superuser status. Once a disk pack is mounted, the systenveselibat is on it. Thus one can &la
blank disk pack, put on it anything desired, and mouriliere are obvious and unfortunate consequences.
For example: a mounted disk withagoage on it will crash the system; one of the files on the mounted disk
can easily be a password-free versiosupfother files can be unprotected entries for special files. The only
easy fix for this problem is to forbid the usemdunt to unprvileged users.A partial solution, not so
restrictive, would be to hee the mount command examine the special file for bad data, set-UID programs
owned by others, and accessible special files, and balk at unprivilegkdrin



