UNIX For Beginners

Brian W Kernighan

ABSTRET
This paper is meant to helpwesers get started on UNIXt covers:

« basicsneededor day-to-dayuseof the system typing commandsgorrectingtyping
mistales,loggingin andout, mail, interconsolecommunicationthefile system printing
files, redirecting 1/0O, pipes, and the shell.

« documentpreparation_ a brief tutorial on the ROFF formatter for beginners,hints on
preparing documents, and capsule descriptions of some supportingreoftw

e UNIX programming_usingthe editor programmingthe shell, programmingn C, other
languages.

There is also an annotated UNIX bibliograph

UNIX For Beginners

Brian W Kernighan

UNIX for Beginners

Brian W Kernighan

Bell Laboratories, Murray Hill, N. J.

In mary ways, UNIX is the stateof the art in
computeroperatingsystems.From the users point
of view, it is easyto learnanduse,andpresentsew

of the usual impediments to getting the job done.

It is hard, however, for the beginner to know
whereto start,andhow to make the bestuseof the
facilities available. The purposeof this introduc-
tion is to pointout high spotsfor new users,sothey
can get usedto the main ideasof UNIX and start
making good use of it quickly

This paperis not an attemptto re-write the
UNIX Programmers Manual; often the discussion
of somethings simply “read sectionx in the man-
ual” (Thisimpliesthatyouwill needacopy of the
UNIX Programmers Manual.) Ratherit suggests$n
what order to read the manual, and it collects
togetherthingsthat are statedonly indirectly in the
manual.

There are fie sections:

Getting Started:How to log in to a UNIX, how
to type, what to do aboutmistales in typing,
how to log out. Someof this is dependenbn
which UNIX you log into (phonenumbers for
example) and what terminal you use, so this
section must necessarilybe supplementecby
local information.

Day-to-dayUse: Thingsyou needevery dayto
use UNIX effectively: generally useful com-
mands; the file system.

DocumentPreparation:Preparingmanuscripts
is one of the most common usesfor UNIX.
This sectioncontainsadvice, but not extensve

instructionson ary of the formattingprograms.

Writing ProgramsUNIX is anexcellentvehicle
for developing programs. This section talks
aboutsomeof thetools, but again is not a tuto-
rial in ary of the programminglanguageghat
UNIX provides.

A UNIX ReadingList. An annotatedibliogra-
phy of documents wrth reading by ne users.

I. GETTING STARTED

Logging In

Most of the detailsaboutloggingin arein the
manualsectioncalled“How to Get Started’ (pages
iv-v in the 5th Edition). Here area coupleof extra
warnings.

You must have a UNIX login name,which you
can get from whoeser administers your system.
You aso needto know the phonenumber UNIX is
capableof dealingwith a variety of terminals:Ter
minet 300's; Execuport, TI and similar portables;
video terminals; GSI's; and even the venerable
Teletypein its variousforms. But note: UNIX will
not handle IBM 2741 terminals and their deri-
atives (e.g., some Anderson-Jacobsond\ovar).
Furthermore,UNIX is strongly oriented towards
deviceswith lower case If yourterminalproduces
only uppercase(e.g.,model 33 Teletype),life will
be so difficult that you shouldlook for anotherter
minal.

Be sure to set the switchesappropriatelyon
your device: speed(if it's variable)to 30 characters
persecond]ower case full duple, even parity, and
ary othersthat local wisdom advises. Establisha
connection using whatever magic is neededfor
your terminal. UNIX shouldtype “login:”" at you.

If it typesgarbage you may be at the wrong speed;
push the ‘break’ or ‘interrupt’ key once. If that
fails to produce a login message, consult a guru.

When you get a “login:’”’ messagetype your
login namein lower case Follow it by a RETURN
if the terminalhasone. If a passwrd is required,
you will be asled for it, and (if possible)printing
will beturnedoff while you typeit, agin followed
by a RETURN. (On M37 Teletypesalways use
NEWLINE or LINEFEED in place ofRETURN).

The culminationof your login efforts is a per
centsign“%’’. The percentsign meansthat UNIX
is ready to acceptcommandsfrom the terminal.
(You may alsogeta messag®f the day just before
the percentsign or a notification that you have
mail.)

Typing Commands

Once you've seen the percentsign, you can
type commandswhich are requeststhat UNIX do
something. Try typing
| date \
followed by RETURN. You should get back some-
thing like
[Sun Sep 22 10:52:29 EDT 1974 \
Don't forget the RETURN after the command,or
nothing will happen. If you think youre being
ignored,typeaRETURN, somethingshouldhappen.
We won't show the carriagereturns,but they have
to be there.

Another commandyou might try is which tells
you everyone who is currently logged in:
| who \
gives something lile
pip ttyf Sep 22 09:40 bwk ttyg Sep 22
09:48 mel ttyh Sep22 09:58
The time is when the user logged in.

If you male a mistake typing the command
name,UNIX will tell you. For example,if youtype
[whom \
you will be told
| whom: not found \

Strange Terminal Behavior

Sometimesyou cangetinto a statewhereyour
terminal acts strangely For example, each letter
may betypedtwice, or the RETURN may not cause
a line feed. You can often fix this by logging out
andlogging backin. Or you canreadthe descrip-
tion of the commandin sectionl of the manual.
This will alsotell you how to get intelligent treat-
ment of tab characters(which are much usedin
UNIX) if your terminaldoesnt have tabs. If it does
have computersettabletabs,the commandwill set
the stops correctly for you.

Mistakes in Typing

If you male a typing mistale, andseeit before
the carriagereturn has beentyped, there are two
ways to recover. The sharp-charactet#'’ erases
the last charactertyped; in fact successie usesof
“#" erasecharacterdackto the beaginning of the
line (but not beyond). Soif you type badly you
can correct as you go:
| dd#attettte \
is the same a&late’.

The at-sign “@"’ erasesall of the characters
typedso far on the currentinput line, soif theline
is irretrievably fouled up, type an “@"’ and start
over (on the same line!).

What if you must entera sharpor at-signas
partof thetext? If you precedeeither“#'’ or “@"
by abackslash\'’, it losesits erasemeaning. This
implies thatto erasea backslashyou have to type
two sharpsor two at-signs. The backslashs used
extensiely in UNIX to indicatethat the following
character is in someay special.

Readahead

UNIX hasfull readaheadyhich meanghatyou
can type asfast as you want, wheneer you want,
even whensomecommands typing at you. If you
type during output, your input characterswill
appearintermixed with the output charactersput
they will bestoredaway by UNIX andinterpretedn
the correctorder So you cantype two commands
oneafteranothemwithout waiting for thefirst to fin-
ish or even begin.

Stopping a Piogram

You can stop most programsby typing the
character “DEL"” (perhaps called “delete’ or
“rubout’ on your terminal). Thereare exceptions,
like the text editor where DEL stopswhatever the
programis doing but leases you in that program.
You can alsojust hangup the phone. The “inter-
rupt” or “break” key found on mostterminalshas
no efect.

Logging Out

The easiestway to log out is to hangup the
phone. You can also type
| login name-of-ne-user \
andlet someoneslseusethe terminalyou wereon.
It is not suficient just to turn off the terminal.
UNIX has no time-out mechanism,so you'll be
there foreer unless you hang up.

Mail
Whenyou log in, you may sometimegget the
message

\ You have mail. \
UNIX providesa postalsystemsoyou cansendand

receve lettersfrom other usersof the system. To
read your mail, issue the command

[mail \
Your mail will be printed, and then you will be
asled

| Sare? \
If you do wantto save the mail, typey, for “yes”;
ary other response meanso’.

How do you sendmail to someoneelse? Sup-
poseit is to go to “joe” (assuming‘joe” is some-
oneslogin name).The easiest ay is this:

mail joe now typein the text of the letter on as
manylinesasyoulike ... afterthelastline of the
letter type the character “control-d”, that is,
hold down ‘control” and type a letterd’.
And thats it. The ‘‘control-d’ sequence,usually
called “EOT", is usedthroughoutUNIX to mark
the end of input from a terminal, so you might as
well get used to it.

There are other ways to sendmail _ you can
senda previously preparedetter, and you canmail
to anumberof peopleall at once. For more details
see

The notationmeansthe commandn section(l)
of theUNIX Programmers Manual.

Writing to other users

At somepoint in your UNIX career out of the
blue will come a message dék
| Message from joe... \
accompaniedy a startlingbeep. It meanshatJoe
wants to talk to you, but unlessyou take explicit
actionyou won't be able to talk back. To respond,
type the command
| write joe \
This establishesa two-way communicationpath.
Now whatever Joe typeson his terminalwill appear
on yours and vice versa. The path is slow, rather
like talking to the moon. (If you arein the middle
of somethingyou have to get to a statewhereyou
cantype a command.Normally, whatever program
you arerunning hasto terminateor be terminated.
If you're editing, you canescapaemporarilyfrom
the editor _ read the manual.)

A protocol is neededto keep what you type
from gettinggarbledup with what Joetypes. Typi-
cally it'slikethis:

Joe types'write smith” and waits.

Smith types‘tvrite joe” and waits.

Joenow typeshis messagdasmary linesashe
likes). Whenhe’s readyfor areply, he signalsit
by typing (0), which stands foo\ver”.

Now Smith typesareply; also terminatedby (0).
This cycle repeatsuntil someonegetstired; he
then signals his intent to quit with (o+o), for
““over and out’.

To terminate the conversation, each side must
type a “control-d” characteralone on a line.
(“Delete” also works.) Whenthe other person
types his “control-d”, you will getthe message
“EOT” onyour terminal.

If you write to someonavhoisn't loggedin, or
who doesnt wantto bedisturbedyou’ll betold. If
the tamget is loggedin but doesnt answer after a
decent interal, simply type ‘tontrol-d”.

On-line Manual

The UNIX Programmes Manual is typically
kept on-line. If you get stuck on something,and
cant find an expert to assistyou, you canprint on
your terminalsomemanualsectionthat might help.
It's also useful for getting the most up-to-date
informationon a command.To print a manualsec-
tion, type“man section-namé&’ Thusto readupon
the command, type
[man who
If the sectionin questionisn't in part | of the man-
ual, you have to give the sectionnumberaswell, as
in
[man 6 chess \
Of courseyou're out of luck if you cant remember
the section name.

II. DAY-TO-DAY USE

Creating Files _ The Editor

If we have to type a paperor a letter or a pro-
gram, how do we get the information storedin the
machine? Most of thesetasksare done with the
UNIX ‘“text editor’ Since is thoroughly docu-
mentedin andexplainedin A Tutorial Introduction
to the UNIX Text Editor, we won't spendary time
here describinghow to useit. All we wantit for
right now is to make somefiles. (A file is just a
collection of information storedin the machine,a
simplistic ut adequate definition.)

To createa file with sometext in it, do the fol-
lowing:
ed (invokesthe tet editor)
a (command to‘ed”, to add tet)
now type in
whatever text you want ...
(signals the end of addingxtg
At this pointwe coulddo variouseditingoperations
on the text we typedin, suchascorrectingspelling

mistales, rearranging paragraphsand the like.
Finally, we write the information we have typed
into a file with the editor commantv’":

[wjunk \
will respondwith the numberof characterst wrote
into the file called‘junk’’.

Supposewe nowv add a few more lines with
“a”, terminatethemwith “.”, and write the whole
thing out as‘temp”, using
[wtemp \
We should now have two files, a smalleronecalled
“junk” and a biggerone (biggerby the extra lines)

called ‘temp”. Type a‘q’’ to quit the editor

What files are out there?

The (for “list’") commandlists the names(not
contents)of ary of thefiles thatUNIX knows about.
If we type
s |
the response will be
[junk temp \
which are indeedour two files. They are sorted
into alphabetical order automatically but other
variations arepossible. For example,if we addthe
optional agument “t’’,

\ Is -t \
lists them in the order in which they were last
changedmostrecentfirst. The “-I'" option gives a
“long” listing:
[Is -l \
will produce something lik
-rw-rw-rw- 1 bwk 41 Sep22 12:56 junk -rw-
rw-rw- 1bwk 78Sep 22 12:57 temp
The dateandtime areof the lastchangeto thefile.
The 41 and 78 are the numberof charactergyou
got the samething from “bwk’’ is the owner of the
file _the personwho createdt. The *“-rw-rw-rw-"’
tells who haspermissionto readandwrite the file,
in this caseeeryone.

Options can be combined:“Is -It”" would give
the samething, but sortedinto time order You can
alsonamethefiles you're interestedn, andwill list
the informationaboutthemonly. More detailscan
be found in

It is generally true of UNIX programs that
“flag” argumentslike “-t'"’ precedefilenameamgu-
ments.

Printing Files

Now that you've got a file of text, howv do you
print it sopeoplecanlook atit? Thereareahostof
programsthat do that, probably more than are
needed.

One simple thing is to use the editor, since
printing is often done just before making changes
aryway. You can say

['ed junk 1,$p \
will reply with the count of the charactersin
“junk” and thenprint all thelinesin thefile. After
you learnhow to use the editor, you canbe selec-
tive about the parts you print.

Therearetimeswhenit’s not feasibleto usethe
editor for printing. For example,thereis a limit on
how big a file canhandle(about65,000characters
or 4000lines). Secondlyit will only print onefile
at atime, and sometimes/ou wantto print several,
one after another So here area coupleof alterna-
tives.

First is the simplestof all the printing pro-
grams. simply copiesall thefiles in alist onto the
terminal. Soyou can say
[cat junk \
or, to print two files,
| cat junk temp \
The two files are simply concatenatedhencethe
name ‘cat”) onto the terminal.

producesformattedprintoutsof files. As with
prints all thefilesin alist. The differenceis thatit
producesheadingswith date, time, page number
and file nameat the top of eachpage,and extra
lines to skip @er the fold in the paperThus,
[pr junk temp \
will list “junk’’ neatly, thenskip to thetop of anew
page and listtemp” neatly.

will also produce multi-column output:
[pr -3 junk \
prints “junk’’ in 3-columnformat. You canuseary
reasonablenumberin placeof 3 and will do its
best.

It shouldbe notedthatis not a formatting pro-
gramin the senseof shufling linesaroundandjus-
tifying magins. Thetrue formattersareandwhich
we will getto in the sectionon documentprepara-
tion.

There are also programsthat print files on a
high-speedrinter Look in your manualunderand
Which to usedependson the hardware configura-
tion of your machine.

Shuffling Files About

Now thatyou have somefiles in thefile system
and someexperiencein printing them,you cantry
bigger things. For example, you can move a file
from oneplaceto anotherfwhich amountgo giving
afile a nev name), lile this:
| mv junk precious \
This meansthat what usedto be “junk’” is now
“precious’. If you do an commandnow, you will
get
[precious temp \
Beware thatif you move a file to anotherone that
alreadyexists, the alreadyexisting contentsarelost
forever.

If youwantto male a copyof afile (thatis, to
have two versionsof something),you can usethe
command:
| cp precious templ \
makesa duplicatecopy of “precious’ in “‘templ”.

Finally, when you get tired of creating and
moving files, thereis a commandto remove files
from the file system, called
[rm temp temp1 \
will remove al of the files named. You will geta
warning messagéf one of the namedfiles wasnt
there.

Filename, What'sin a

So far we have used filenameswithout ever
sayingwhat's alega name,soit’stime for acouple
of rules. First, filenamesare limited to 14 charac-
ters, which is enoughto be descriptve. Second,
althoughyou canusealmostary charactetin afile-
name,commonsensesaysyou shouldstick to ones
thatarevisible, andthatyou shouldprobablyavoid

characterghat might be usedwith othermeanings.

We dready saw, for example,thatin the command,
“Is -t” meantto list in time order So if you hada

file whosenamewas“-t'’, you would hare a tough
time listing it by name. There are a number of

other charactersvhich have special meaningeither
to UNIX asawholeor to numerouscommands.To

avoid pitfalls, you would probablydo well to use
only letters, numbersand the period. (Don't use
the period as the first characterof a filename,for

reasons too complicated to go into.)

On to some more positive suggestions. Sup-
poseyou're typing a large documentlike a book.
Logically this dividesinto mary small pieces,like
chaptersand perhapssections. Physically it must
be divided too, for will not handlebig files. Thus
you shouldtype the documentasa numberof files.
You might have a separatefile for each chapter
called
| chapl chap? etc...
Or, if each chapterwere broken into several files,
you might hae

chapl.1 chapl.2 chapl.3
.. chap2.lchap2.2

You can now tell at a glancewherea particularfile
fits into the whole.

There are adwantagesto a systematicnaming
cornvention which are not obvious to the novice
UNIX user Whatif you wantedto print the whole
book? You could say
| pr chap1.1 chapl.2 chapl.3......
but you would gettired pretty fast,andwould prob-
ably even make mistakes. Fortunately thereis a
shortcut. You can say

[pr chap* |
The"*' ' means“anything atall”, sothis translates
into “print all files whosenamesbegin with ‘chap’
", listedin alphabeticabrder This shorthanchota-
tion is not a propertyof the command by the way.
It is system-wide,a service of the program that
interpretscommandg(the “shell” Using that fact,
you can see hoto list the files of the book:
| Is chap* \
produces

chapl.1 chapl.2 chapl.3

The**’ is not limited to the last positionin afile-
name _ it can be gwhere. Thus

[rm *junk* \
removes dl files thatcontain“junk’ as any part of
their name. As a special case, “*'’ by itself
matches eery filename, so

Lpr* |
prints all the files (alphabetical order), and

[rm * |
removes all files. (You had better be sure that's
what you vanted to say!)

The **’ is not the only pattern-matchingea-
ture avallable. Supposeyou want to print only
chaptersl through4 and9 of the book. Thenyou
can say
| pr chap[12349]* \
The “[...]" meansto matchary of the characters
inside the bradts. You can also do this with
[pr chap[1-49]* \
“[a-z]” matches ary characterin the range a
throughz. Thereis also a “?"" character which
matches ansingle characterso
[pr2 |
will print all files which have single-character
names.

Of theseniceties,"* ’ is probablythe mostuse-
ful, andyou shouldget usedto it. The othersare
frills, but worth knawing.

If you shouldever have to turn off the special
meaningof “*'’, “?", etc.,enclosethe entireamgu-
ment in quotes (single or double), as in
[Is "2" |

What'sin a Filename, Continued

When you first madethat file called “junk’’,
howv did UNIX know that there wasnt another
“junk” somewhereelse,especiallysincethe person
in the next office is alsoreadingthis tutorial? The
reasonis that generallyeachuserof UNIX has his
own “directory”, which containsonly the files that
belongto him. Whenyou createa new file, unless
you take specialaction,the new file is madein your
own directory, and is unrelatedto ary other file of
the samenamethat might exist in someoneelses
directory

The setof all files that UNIX knows aboutare
organized into a (usually big) tree, with your files
locatedseveral brancheaup into the tree. It is pos-
siblefor youto “walk” aroundthistree,andto find
ary file in the system by startingat the root of the
tree and wlking along the right set of branches.

To begin, type
[ls/ \
“I" isthe nameof theroot of thetree(a corvention
usedby UNIX). You will getaresponsesomething
likethis:
[bin dev etc lib tmp usr \
This is a collection of the basicdirectoriesof files
thatUNIX knows about. On mostsystems;‘usr” is
a directory that containsall the normalusersof the
system, like you. Now try
[ls Jusr \
This should list a long seriesof names,among
which is your avn login hame.Finally, try
\ Is /usr/yourname \
You should get what you get from a plain
s |
Now try
| cat /usr/yourname/junk \
(if “‘junk’’ is gtill around). The name
| lusr/yourname/junk \
is calledthe “pathname’ of the file that you nor
mally think of as “junk’’. “Pathnameé’ has an
obvious meaning:it representshe full nameof the
pathyou have to follow throughthetreeof directo-
riesto getto a particularfile. It is a universal rule
in UNIX thatarywhereyou canuseanordinaryfile-
name, you can use a pathname.

Here is a picture which may mathis clearer:
(root)
/ O\
[O\
/[O\
bin etc usr dev tmp
[OV 70V 70V 70V /0N
[O\
/[O\
adam eve mary
/ [\ \
/ '\ junk
junk temp

Notice that Mary’s “junk’” is unrelated to
Eve’s.

This isn't too exciting if all the files of interest
are in your own directory but if you work with
someoneelseor on several projectsconcurrentlyit
becomeshandyindeed. For example,your friends
can print your book by saying
[pr /ustlyourname/chap* \
Similarly, you canfind out whatfiles your neighbor
has by saying
[Is /usr/neighboname \
or male your ovn coypy of one of his files by
\ cp /usrlyourneighbor/his-fileyourfile \

(If your neighbor doesnt want you poking
aroundin his files, or vice versa, privacy can be
arranged. Eachfile and directory can have read-
write-execute permissionsfor the owner, a group,
and everyone else,to control access.Seeand for
details. As a matter of obsered fact, most users
mostof the time find opennes®sf morebenefitthan
privacy.)

As a final gperiment with pathnames, try
[Is /bin /usr/bin \
Do someof the nameslook familiar? When you
run a program,by typing its nameaftera “%’’, the
systemsimply looks for a file of that name. It
looks first in your directory (where it typically
doesnt find it), then in “/bin” and finally in
“/usr/bin’. There is nothing magic about com-
mandslike or exceptthatthey have beencollected
into two places to be easy to find and administer

What if you work regularly with someoneelse
on common information in his directory? You
couldjustlog in asyour friend eachtime you want
to, but you canalsosay*l wantto work on his files
insteadof my own”. Thisis doneby changingthe
directory that you are currently in:

\ chdir /usr/yourfriend \

Now whenyou usea filenamein somethindike or

it refersto the file in “your-friend’s” directory.

Changingdirectoriesdoesnt affectary permissions
associatedvith afile _if you couldnt accessa file

from your own directory changingto anotherdirec-
tory won't alter that fct.

If you forget what directory yoee in, type
[pwd |
(“print working directory’) to find out.

It is often corvenient to arrangeones files so
that all the files relatedto onething arein a direc-
tory separatefrom other projects. For example,
whenyou write your book, you might wantto keep
all thetext in adirectorycalledbook. So make one
with
| mkdir book \
then go to it with
| chdir book \
then starttyping chapters.The book is now found
in (presumably)
| /usr/yourname/book \
To delete a directorysee

You can go up onelevel in the tree of files by
saying
| chdir .. \
. isthe nameof the parentof whatever directory

you are currently in. For completeness..” is an
alternate name for the directory you are in.

Using Files instead of the &rminal

Most of thecommandsve have seensofar pro-
duce outputon the terminal; some,like the editor,
alsotake their input from theterminal. It is univer-
salin UNIX that the terminalcanbe replacedby a
file for eitheror both of input and output. As one
‘@(ample, you could say ‘

Is

to get a list of files.But you can also say

[Is >filelist \
to get a list of your files in the file “filelist’".
(“filelist’” will becreatedf it doesnt already exist,
or overwritten if it does.) The symbol*>"" is used
throughoutUNIX to mean*put the output on the
following file, ratherthanon the terminal’. Noth-
ing is producedon the terminal. As anotherexam-
ple, you could concatenatseveral files into oneby
capturing the output of in a file:

[cat f1 f2 3 >temp \

Similarly, the symbol “<’’ meansto take the
input for a programfrom the following file, instead
of from the terminal. Thus, you could male up a
scriptof commonlyusededitingcommandsndput
theminto afile called“script”. Thenyou canrun
the script on a file by saying
\ ed file <script \

Pipes

One of the novel contributions of UNIX is the
ideaof apipe A pipe is simply a way to connect
the output of one programto the input of another
program,sothe two run asa sequence®f processes
__apipe-line.

For example,
[prfgh |
will print the files “f”, “g" and “h”’, beginning
eachon a nev page. Supposeyou want themrun
together insteadYou could say
[catf g h >temppr temprm temp \
but this is morework thannecessaryClearly what
we want is to take the output of and connectit to
the input of So let us use a pipe:
[catf g h Opr \
The vertical bar meansto take the output from
which would normally have gone to the terminal,
and put it into which formats it neatly

Any programthat readsfrom the terminal can
readfrom a pipe instead;ary programthat writes
on the terminal candrive a pipe. You canhave as
mary elements in a pipeline as you wish.

Many UNIX programsare written so that they
will take their input from one or morefiles if file
amgumentsaregiven; if noagumentsaregiven they
will readfrom theterminal,andthuscanbeusedin
pipelines.

The Shell

We have already mentionedonce or twice the
mysterious‘shell,” whichis in fact The shellis the
programthatinterpretswhatyou typeascommands
and aguments. It alsolooks after translating*’ *,
etc., into lists of filenames.

The shell hasothercapabilitiestoo. For exam-
ple, you canstarttwo programswith onecommand
line by separatinghe commandswith a semicolon;
the shell recognizesthe semicolonand breaksthe
line into two commands.Thus
| date; who \
doesboth commanddeforereturningwith a “%’’.

You can alsohave more thanone programrun-
ning simultaneoushif you wish. For example, if
you are doing somethingtime-consuminglike the
editor script of an earlier section,and you don't
want to wait aroundfor the resultsbefore starting
something else, you can say
\ ed file <script& \
The ampersandt the end of a commandine says
‘“start this command running, then take further
commandsfrom the terminalimmediately’ Thus
the scriptwill begin, but you cando somethingelse
at the sametime. Of course,to keep the output
from interferingwith whatyou're doing on the ter
minal, it would be better to e said
| ed file <script>lines & \
which would save the outputlines in a file called
“lines’.

Whenyou initiate a commandwith “&’’, UNIX
replies with a numbercalled the processnumbey
which identifies the commandin caseyou later
want to stop it. If you do, you can say
| kill process-number
You might also read

You can say
| (command-1; command-2; command-3) & |
to startthesecommandsn the backgroundor you
can start a background pipeline with
| command-1Ocommand-2 & \

Justasyou cantell the editor or somesimilar
programto take its input from afile insteadof from
the terminal,you cantell the shell to reada file to
getcommands.(Why not? Theshellafterall is just
a program, albeit a clever one.) For instance sup-
poseyou wantto settabson your terminal,andfind
out the date and who's on the systemevery time
you log in. Thenyou can put the three necessary
commandg into afile, let'scall it “*xxx”, andthen
run it with either
[sh xxx \
or
[sh <xxx \
This saysto run the shell with the file “xxx’’ as
input. Theeffectis asif you hadtypedthe contents
of “xxx’’ on theterminal. (If thisis to bearegular

thing, you caneliminatethe needto type “sh”; see
and

The shell hasquite a few other capabilitiesas
well, someof which we’'ll getto in the sectionon
programming.

I1Il. DOCUMENT PREP ARATION

UNIX is extensvely usedfor documenprepara-
tion. Thereare three major formatting programs,
thatis, programswhich produceatext with justified
right mamgins, automatic page numbering and
titing, automatichyphenation,and the like. The
simplestof theseformattersis which in factis sim-
ple enoughthat if you type almostary text into a
file and“roff” it, you will getplausibly formatted
output. You cando betterwith a little knowledge,
but basicallyit's easy to learn and use. We'll get
back to shortly

is similar to but doesmuchlessfor you auto-
matically It will do a greatdeal more, onceyou
know how to use it.

Both andaredesignedo produceoutputon ter
minals, line-printers, and the like. The third for-
matter (pronounced‘tee-roff”’), insteaddrives a
Graphic Systemsphototypesetterwhich produces
very high quality output on photographicpaper
This paper was printed on the phototypesetter by

Becauseand arerelatively hardto learnto use
effectively, several “packages’ of cannedformat-
ting requestsare available which let you do things
like paragraphsrunning titles, multi-column out-
put, and so on, with little effort. Regrettably
details \ary from system to system.

ROFF

The basicideaof (andof andfor thatmatter)is
thatthetext to be formattedcontainswithin it “for-
matting commands’that indicatein detail how the
formattedtext is to look. For example,theremight
be commandsthat specify hov long lines are,
whetherto usesingle or double spacing,and what
runningtitles to useon eachpage. In generalyou
don't have to spelloutall of the possibleformatting
details. Mostof themhave ““‘default values’, which
you will getif you saynothingatall. For example,
unlessyou take special precautionsyou’ll getsin-
gle-spaceautput,65-charactelines, justified right
mamins, and58 text lines perpagewhenyou afile.
This is the reasonthat is so simple _ mostof the
decisions hae aready been made for you.

Somethings do have to be done, hovever. If
you want a documentbroken into paragraphsyou
have to tell whereto addthe extra blanklines. This
is done with the'/sp” command:

this is the endof one paragraph.”sp This beagins

the net paragraph ...
In (andin and formatting commandsconsistof a
period followed by two letters, and they must
appearat the beginning of aline, all by themseles.
The *“.sp” commandtells to finish printing ary of
the previous line that might be still unprinted,then
print a blank line beforecontinuing. You can have
more spaceif you wish; “.sp 2" asksfor 2 spaces,
and so on.

If you simply want to ensurethat subsequent
text appearon a freshoutputline, you canusethe
command‘br”’ (for “break”) instead of “.sp”.

Most of the other commonly-usedcommands
are equally simple. For example you can center
one or more lines with théce” command.
| "ce Title of Paper “sp 2 \
causeghetitle to be centeredthenfollowed by two
blanklines. As with “.sp”, “.ce” can be followed
by a number;in thatcase thatmary inputlinesare
centered.

“.ul” underlinedlines,andcanalsobefollowed
by a number:
“ce 2 "ul 2 An Earth-shakingPaper“sp JohnQ.
Scientist
will centerandunderlinethe two text lines. Notice
thatthe “.sp” betweenthemis not partof theline
count.

You can getmultiple-line spacinginsteadof the
default single-spacing with théls” command:
s 2 \
causes double spacing.

If you're typing thingslike tables,you will not
want the automaticfilling-up and justification of
outputlines thatis doneby default. You canturn
this off with the command‘.nf” (no-fill), andthen
back on agin with “.fi"’ (fill). Thus

this sectionis filled by default. “nf here lines
will appearjust as you typed them _ no extra
spacesno moving of words. “fi Now go backto
filling up output lines.

You can changethe line-lengthwith “.II'*, and
the left magin (the indent) by “.in’”’. Theseare
often used together to nak&ffset blocks of tet:

“II-10 %in +10

this text will be moved 10 spacesto
the right and the lines will also be
shortened 10 charactersfrom the
right. The “+” and “-"" mean to
change the previous value by that
much. Now revert:

Il +10

“in -10

Notice that“ll +10" adds ten characters to the line length,

while “.Il 10’" makes the line ten characters
long.

The“.ti"” commandindents(in eitherdirection)
just like *“.in’’, exceptfor only oneline. Thusto
malke a new paragraphwith a 10-characteindent,
you would say
| "sp "ti +10 Nev paragraph ... \

You can put runningtitles on both top andbot-

tom of each page, léthis:

“he "left top"centertop"right top" “fo "left bot-

tom"center bottom"right bottom"
The headeror footer is divided into three parts,
which are marled off by any characteryou like.
(We used a double quote.) If theres nothing
betweenthe marlers, that part of the title will be
blank. If you usea percentsignarywherein *“.he”
or “.fo’’, the currentpagenumberwill beinserted.
So to get centered page numbers with dashes
around them, at the top, use
[“he ™= % - |
You can skip to the top of a nev pageat ary time
with the*.bp” command;if “.bp” isfollowedby a
numberthat will be the n& page number

The foregoing is probably enough about for
you to go off and formatmosteveryday documents.
Read for more details.

Hints for Preparing Documents

Most documentsgo through several versions
(always more than you expected)before they are
finally finished. Accordingly, you shoulddo what-
ever possibleto male the job of changingthem
easy

First, whenyou do the purely mechanicabper
ationsof typing, type so subsequengditing will be
easy Start eachsentenceon a new line. Make
lines short, and breaklines at natural places,such
as after commasand semicolonsratherthan ran-
domly. Since most people changedocumentsby
rewriting phrasesand adding, deleting and rear
ranging sentencestheseprecautionssimplify ary
editing you hae to do later

The secondaspectof making changeeasyis

not to commit yourself to formatting details too
early For example,if you decidethat eachpara-
graphis to have a spaceandanindentof 10 charac-
ters, you might type, before each,
["sp "ti +10 \
But what happenswhen later you decide that it
would have been betterto hare no spaceand an
indent of only 5 characters?t’s tediousindeedto
go back and patch this up.

Fortunately al of the formatterslet you delay
decisionsuntil the actualmomentof running. The
secretis to definea new operation(calledamacio),
for eachformatting operationyou want to do, like
makinga new paragraph.You cansay in al three
formatters,

["de PP “sp “ti +10 ~ \
This defines*.PP’ as a new (or or operation,
whose meaning isxactly
["sp i +10

(The .. marksthe end of the definition.) When-
ever “.PP” is encounteredn thetext, it is asif you
hadtypedthetwo linesof the definitionin placeof
it.

The beautyof this schemeis that now, if you
changeyour mind aboutwhat a paragraphshould
look like, you can changethe formatted output
merely by changingthe definition of “.PP” and re-
running the formatter

As arule of thumb, for all but the mosttrivial
jobs, you shouldtype a documentin termsof a set
of macroslike “.PP”, andthendefinethemappro-
priately As long as you have enteredthe text in
somesystematiovay, it can always be cleanedup
and re-formattedby a judicious combination of
editing andmacrodefinitions. The package®f for-
matting commandsthat we mentionedearlier are
simply collectionsof macrosdesignedfor particu-
lar formatting tasks.

One of the main differencesbetweenand the
otherformattersis thatmacrosin canonly be lines
of text and formatting commands.In and macros
may have arguments, so they can have different
effects dependingon how they are called (in
exactly the sameway thatthe “.sp” commandhas
an agument, the number of spaces yoant).

Miscellany

In addition to the basicformatters,UNIX pro-
vides a host of supportingprograms. and let you
integrate mathematicsnto the text of a document,
in a languagethat closely resembleghe way you
would speakit aloud. and detectpossiblespelling
mistalesin a document.looks for lines containing
aparticulartext pattern(ratherlike the editor’s con-
text searchdoes but onawholeseriesof files). For
example,
| grep "ing$" chap* \
will find all lines endingin the letters*ing’’ in the
seriesof files “chap*”. (It is almostaways a good
practice to put quotesaround the patternyou're
searchingfor, in caseit containscharactersthat
have a special meaning for the shell.)

countsthe words and (optionally) linesin a set
of files. translatescharactersnto othercharacters;
for exampleit will corvert upperto lower caseand
vice ersa. Thistranslates upper intower:
[t "[A-Z)" “az]" |

printsalist of thedifferencesdetweenwo files,
SO you can comparetwo versions of something
automatically (which certainly beatsproofreading
by hand). sortsfiles in a variety of ways; makes
cross-references; makes a permuted index

(keyword-in-contet listing).

Most of these programsare either indepen-
dently documentedlike and or aresuficiently sim-
ple that the descriptionin the UNIX Programmers
Manualis adequatexplanation.

IV. PROGRAMMING

UNIX is a manelously pleasantand productve
systemfor writing programsjproductvity seemso
be anorderof magnitudehigherthanon otherinter
active systems.

Therewill be no attemptmadeto teachary of
the programminganguagesvailable on UNIX, but
a few words of advicearein order First, UNIX is
written in C, asis mostof the applicationscode. If
you are undertakingarything substantial C is the
only reasonablehoice. More on thatin a moment.
But remembetthat thereare quite a few programs
already written, some of which have substantial
power.

The editor canbe madeto do thingsthatwould
normally require special programson other sys-
tems. For example,to list the first andlastlines of
eachof a setof files, saya book, you could labori-
ously type

ed e chapl.1 1p $p e chapl.2 1p $p

etc.
But insteadyou can do the job once and for all.
Type
[Is chap* >temp \
to getthelist of filenamesnto afile. Theneditthis
file to make the necessaryseriesof editing com-
mands(using the global commandsf andwrite it
into “script”. Now the command
| ed <script \
will producethe sameoutputasthe laborioushand
typing.

The pipe mechanismlets you fabricate quite
complicatedoperationsout of spareparts already
built. For example, the first draft of the program
was (roughly)
cat... (collectthefiles) Otr ...(put eachword on
a new line, delete punctuation,etc.) O
sort (into dictionary order) duniqg (strip out
duplicates)dcomm (list words foundin text
but not in dictionary)

Programming the Shell

An option often overlooked by nenvcomersis
thatthe shellis itself a programmindanguageand
since UNIX already has a host of huilding-block
programs,you can sometimesavoid writing a spe-
cial purposeprogrammerely by piecing together
some of the building blocks with shell command
files.

As an unlikely example, supposeyou want to
count the numberof userson the machineevery

hour You could type
\ date whadwc -I \
every hour, and write dovn the numbershut thatis
rather primitve. The net step is probably to say
| (date; whodwe -I) >>users \
which uses*>>"" to appendto the end of the file
“users. (We haven't mentioned‘>>"" before _
it's anotherserviceof the shell.) Now all you have
to do is to put a loop aroundthis, and ensurethat
it's done every hour Thus, place the following
commands into a file, salgbunt”:

. loop (date;who Owc -I) >>userssleep 3600

goto loop
The commandis followed by a spaceand a label,
which you canthen Notice that it's quite legal to
branch backards. Now if you issue the command
[sh count & \
the userswill be countedevery hour, and you can
go on with otherthings. (You will hare to useto
stop counting.)

If youwould like “‘every hour’ to be a parame-

ter, you can arrange for that too:

: loop (date;who Owec - I) >>userssleep $1 goto

loop
“$1” meansthefirst agumentwhenthis procedure
is invoked. If you say
[sh count 60 \
it will countevery minute. A shell programcan
have up to nine aguments,‘$1” through ‘$9”.

The otheraspecbf programmings conditional
testing. The command can test conditions and
executecommandsccordingly Asasimple exam-
ple, supposeyou want to add to your login
sequencesomethingto print your mail if you have
some. Thus, knowing that mail is storedin a file
called ‘mailbox’, you could say
[if -r mailbox mail \
This says"if thefile ‘mailbox’ is readablegxecute
the command.

As anotherexample,you could arrangethatthe
‘“count’ procedurecountevery hourby default, but
allow an optional agumentto specify a different
time. Simplyreplace the'sleep $1" line by
[if $1x = x sleep 3600 if $1x != x sleep $1 \
The construction
[if $1x = x \
testswhether“$1”, thefirst agument,waspresent
or absent.

More complicatedconditionscanbetestedyou
can find out the statusof an executed command,
and you can combine conditionswith ‘and’, ‘or’,
‘not’ and parentheses see You should also read
which describeshow to manipulate agumentsto
shell command files.

Programming in C

As we said,C is thelanguageof choice:every-
thing in UNIX is tunedtoit. It is alsoaremarkably

easylanguageo useonceyou getstarted. Sections
Il andlll of the manualdescribethe systeminter-
faces,thatis, how you do I/O andsimilar functions.

You canwrite quite significantC programswith
the level of I/O and systeminterface describedin
Programmingin C: A Tutorial, if you useexisting
programsand pipesto help. For example, rather
than learninghow to open and closefiles you can
(at least temporarily) write a program that reads
from its standardnput, anduseto concatentatser-
eralfilesinto it. This may not be adequatdor the
long run, tut for the early stagesstust right.

Therearea numberof supportingprogramshat
go with C. The C delugger is maminally useful
for digging throughthe deadbodiesof C programs.
the assemblylanguagedehugger is actually more
usefulmostof thetime, but you have to know more
aboutthe machineand systemto useit well. The
most effective debugging tool is still careful
thought, coupled with judiciously placed print
statements.

You can instrumentC programsand thus find
out wherethey spendtheir time andwhat partsare
worth optimising. Compile the routineswith the
“-p” option; afterthetestrun useto print anexecu-
tion profile. The commandwill give you the gross
run-time statisticsof a program,but it's not super
accurate or reproducible.

C programsthatdont dependtoo muchon spe-
cial featuresof UNIX canbe moved to the Honey-
well 6070andiBM 370 systemswith modesteffort.
ReadTheGCOSC Library by M. E. LeskandB. A.
Barres for details.

Miscellany

If you haveto useFortran, you might consider
which gives you the decentcontrol structuresand
free-form input that characterizeC, yet lets you
write code that is still portableto other environ-
ments. Bearin mind that UNIX Fortran tendsto
produce large and relatively slow-running pro-
grams. Furthermoresupportingsoftware like etc.,
are all virtually useless withdftran programs.

If youwantto useassemblyanguaggall hear-
ensforfend!), try theimplementatiodanguage.|IL,
which gives you mary of the advantagesf a high-
level languagelike decentcontrol flow structures,
but till lets you get closeto the machineif you
really want to.

If your applicationrequiresyou to translatea
languageinto a setof actionsor anotherlanguage,
you arein effect building a compiler thoughproba-
bly a small one. In that case,you shouldbe using
the compilercompiler which helpsyou develop a
compiler quickly

V. UNIX READING LIST

Geneal:

UNIX Programmes Manual(Ken ThompsonDen-
nis Ritchie, and a castof thousands).Lists com-
mands,systemroutinesandinterfaces file formats,
and some of the maintenanceprocedures. You
cant live without this, althoughyou will probably
only read section I.

The UNIX Time-sharingSystem(Ken Thompson,
DennisRitchie). CACM, July 1974. An overview
of the system,for peopleinterestedin operating
systems. Worth readingby aryone who programs.
Contains a remarkable number of one-sentence
obsenations on hw to do things right.

Document Pepaiation:

A Tutorial Introductionto the UNIX Text Editor.
(Brian Kernighan). Bell Laboratories internal
memorandum.Weak on the more esotericusesof
the editor, but still probablythe easiestvay to learn

Typing Documentson UNIX. (Mike Lesk). Bell

Laboratories internal memorandum. A macro
packageto isolatethe novice from the vagaries of

the formatting programs. If this specific package
isn't available on your system,somethingsimilar

probably is. This one verks with both and

Programming:

Programmingin C: A Tutorial (Brian Kernighan).
Bell Laboratoriednternalmemorandum.The easi-
estway to startlearningC, but it's no help at all

with theinterfaceto the systembeyond the simplest
10. Shouldbe read in conjunction with

C ReferenceManual (DennisRitchie). Bell Labo-
ratoriesinternalmemorandum.An excellentrefer
ence,but a bit heary going for the beginner espe-
cially one who has ner used a language BC.

Othels:
D. M. Ritchie, UNIX AssemblerReferenceMan-

ual.

B. W. Kernighanand L. L. Cherry A System for
Typesetting Mathematics, Computing Science
Tech. Rep. 17.

M. E. LeskandB. A. Barres,The GCOSC Library.
Bell Laboratories internal memorandum.

K. ThompsorandD. M. Ritchie, SettingUp UNIX.
M. D. Mcllroy, UNIX Summary

D. M. Ritchie, The UNIX I/O System.

A. D. Hall, The M6 Macro ProcessqQrComputing
Science &ch. Rep. 2.

J. FE. Ossanna,NROFF Users Manual _ Second
Edition, Bell Laboratories internal memorandum.
D. M. RitchieandK. ThompsonRegeneratingSys-
tem Softvare.

B. W. Kernighan,Ratfor_A Rational Fortran, Bell

Laboratories internal memorandum.

M. D. Mcllroy, Synthetic English Speechby Rule,
Computing Scienceeth. Rep. 14.

M. D. Mcllroy, Bell Laboratoriesinternal memo-
randum.

J. F. OssannaT ROFF Users’Manual,Bell Labora-
tories internal memorandum.

B. W. Kernighan, TROFF MadeTrivial, Bell Labo-
ratories internal memorandum.

R. H. Morris andL. L. Cherry ComputerDetection
of TypographicalErrors, ComputingScienceTech.
Rep. 18.

S. C. JohnsonYACC (Yet AnotherCompilerCom-
piler), Bell Laboratories internal memorandum.

P. J. Plauger Programmingin LIL: A Tutorial, Bell
Laboratories internal memorandum.

Index

& (asynchronous process$)
; (multiple processesy

* (pattern match)s

[1 (pattern match)e

? (pattern match)6

<> (redirect 1/0) 7

>> (file append)12
backslash (\)2

cat (concatenate files)
cdb (C debgger) 12

chdir (change directoryy
chmod (change protectiory)
command agguments4
command files8

cp (copy files) 5

cref (cross reference)l
date 2

db (assembly delgyger) 13
delete (DEL) 2

diff (file comparison)11
directories 7

document formattingd

ed (editor)3

editor programmingl1
EOT (end of file) 3

eqgn (mathematics})1
erase character (8

file system structuréd
filenames5

file protection7

goto 12

grep (pattern matching}1
if (condition test)12

index 14

kill a program 8

kill a character (@)2

lil (high-level assembler)13
login 1

logout 2

Is (list file names)4

macro for formatting10
mail 2

multi-columns printing (pr)5
mv (movefiles) 5

nroff 9

on-line manual3

opr (ofline print) 5
pathname6

pattern match in filenames
pipes (0) 8

pr (print files) 4

prof (run-time monitor)13
protection 7

ptx (permuted indg 11
pwd (working directory) 7
guotes 6

ratfor (decent brtran) 13
readahead?

reading list13

redirect 1/0 (<>)7
RETURN ley 1

rm (remavefiles) 5

rmdir (remwe directory) 7
roff (text formatting) 9

root (of file system)é

shell (command interpreted
shell aguments ($)12

shell programmingl2

shift (shell aguments) 12
sleep 12

sort 11

spell (find spelling mistads)
stopping a progran®

stty (set terminal options2
tabs (set tab stops)
terminal typesl

time (time programsy3

tr (translate characterd)1
troff (typesetting)9

typo (find spelling mistads) 11
wc (word count) 11

who (who is looged in@
write (to a user)3

yacc (compilercompiler) 13

