The UNIX Time-Sharing System

Dennis M. Rithie
Ken Thompson

Bell Labomtories
Murray Hill, N. 1 07974

ABSTRACT

UNIX is a general-purposemulti-user interactve operating system for the Digital Equipment Corporation
PDP-11/40,11/45and 11/70 computers.It offers a numberof featuresseldomfound even in larger operatingsys-
tems, including

1. A hierarchical file system incorporating demountablemes,

2. Compatible file, ddgce, and intejprocess 1/O,

3. The ability to initiate asynchronous processes,

4. System command language selectable on-agerbasis,

5. Ower 100 subsystems including a dozen languages.
This paper discusses the nature and implementation of the file system and of the user comnaaed interf

1. Introduction

Therehave beenthreeversionsof UNIX. The earliestversion(circa1969-70)ranon the Digital EquipmentCorpo-
ration PDR7 and -9 computers. The secondversion ran on the unprotectedpbr-11/20 computer This paper
describesonly thepDP-11/40,/45 and/70* system sinceit is moremodernandmary of the differenceshetweenit
and oldemunix systems result from redesign of features found to be deficient or lacking.

SincePDP-11 UNIX becameoperationain February1971, about100installationshave beenputinto service;they
aregenerallysmallerthanthe systemdescribechere. Most of themareengagedin applicationssuchasthe prepara-
tion andformatting of patentapplicationsand other textual material,the collection and processingof trouble data
from variousswitchingmachineswithin the Bell Systemandrecordingandcheckingtelephoneserviceorders. Our
own installationis usedmainly for researchn operatingsystems|anguagesgcomputemetworks, andothertopicsin
computer science, and also for document preparation.

Copyright © 1974,Associationfor ComputingMachinery Inc. Generapermissiorto republish,but notfor profit, all or partof this materialis
grantedprovided thatACM’s copyright noticeis given and thatreferencas madeto the publication,to its dateof issue,andto thefactthatreprint-
ing privileges were granted by permission of the Association for Computing Machinery

This is arevisedversionof anarticle appearingn the Communication®f the ACM, Volume 17, Number7 (July 1974)pp. 365-375. Thatarti-
cle is arevised versionof a paperpresentedt the Fourth ACM Symposiumon OperatingSystemsPrinciples,|BM ThomasJ. WatsonResearch
Center Yorktown Heights, Nev York, October 15-17, 1973.

UNIX Time-Sharing System - 2

Perhapghe mostimportantachiezement of UNIX is to demonstratéhat a powerful operatingsystemfor interac-
tive use neednot be expensve either in equipmenir in humaneffort: UNIX canrun on hardware costingaslittle as
$40,000,andlessthantwo man-yearsverespenton the main systemsoftware. Yet UNIx containsa numberof fea-
tures seldomoffered even in much larger systems.Hopefully, however, the usersof uNix will find that the most
important characteristics of the system are its simplidiéggance, and ease of use.

Besides the system proptre major programsvailable undetmunix are

assembler

text editor based oQED?,

linking loader

symbolic deligger

compiler for a language resembligpL® with types and structures (C),
interpreter for a dialect &asic,

phototypesetting and equation setting programs
Fortran compiler

Snobol interpreter

top-dovn compilercompiler fMG*4),

bottom-up compilecompiler Acc),

form letter generator

macro processor (M9,

permuted inde program.

Thereis alsoa hostof maintenanceutility, recreationand novelty programs.All of theseprogramswere written
locally. It is worth noting that the systemis totally self-supporting.All UNIX software is maintainedunderunix;
likewise, this paperandall otherunix documentsveregeneratec&ndformattedby the unix editor andtext format-
ting program.

2. Hardware and software environment

The PDP-11/45 on which our UNIX installationis implementeds a 16-bit word (8-bit byte) computerwith 112K
bytes of core memory;uNix occupies53K bytes. This system,however, includesa very large numberof device
drivers andenjoys a generousllotmentof spaceor I/O buffers andsystenmtables;a minimal systemcapableof run-
ning the softwre mentioned alve can require as little as 64K bytes of core altogether

Our pDR-11 hasa 1M byte fixed-headdisk, usedfor file systemstorageand swapping,four moving-headdisk
drives which eachprovide 2.5M byteson remavable disk cartridgesanda singlemoving-headdisk drive which uses
removable 40M bytedisk packs. Therearealsoa high-speegapertapereadespunch,nine-trackmagneticdape,and
DECtape (a variety of magnetictapefacility in which individual recordsmay be addressedndrewritten). Besides
the consoletypenriter, thereare 30 variable-speed@dommunicationsnterfacesattachedo 100-serieslatasetanda
201 datasetnterfaceusedprimarily for spoolingprintoutto a communaline printer Therearealsoseveral one-of-
a-kind devicesincluding a Picturephone®nterface,a voice responseunit, a voice synthesizera phototypesettera
digital switching network, and a satelliterDP-11/20 which generatesectors,curves, and character®n a Tektronix
611 storage-tube display

The greatempartof UNIX softwareis written in the abore-mentionedC languagé. Early versionsof the operating
systemwere written in assemblylanguageput during the summerof 1973,it wasrewritten in C. The size of the
new systemis aboutonethird greaterthanthe old. Sincethe nen systemis not only mucheasierto understanénd
to modify but alsoincludesmary functionalimprovements,including multiprogrammingand the ability to share
reentrant code amongveeal user programs, we considered this increase in size quite acceptable.

UNIX Time-Sharing System - 3

3. The File system

The mostimportantrole of UNIX is to provide afile system. From the point of view of the user therearethree
kinds of files: ordinary disk files, directories, and special files.

3.1 Ordinary files

A file containswhatever informationthe userplacesonit, for examplesymbolicor binary (object) programs.No
particular structuringis expectedby the system. Files of text consistsimply of a string of characterswith lines
demarcatedby the new-line character Binary programsare sequencesf wordsasthey will appeatin corememory
when the programstartsexecuting. A few user programsmanipulatefiles with more structure;for example, the
assemblegeneratesandthe loaderexpects,an objectfile in a particularformat. However, the structureof files is
controlled by the programs which use them, not by the system.

3.2 Directories

Directoriesprovide the mappingbetweenthe namesof files andthe files themseles,andthusinducea structure
on thefile systemasawhole. Eachuserhasa directoryof his own files; he mayalsocreatesubdirectorieso contain
groupsof files corveniently treatedtogether A directory behaes exactly like an ordinary file exceptthatit cannot
be written on by unprivileged programs so that the systemcontrolsthe contentsof directories. However, anyone
with appropriate permission may read a directory justdily other file.

The systemmaintainsseveral directoriesfor its own use. Oneof theses theroot directory All filesin thesystem
canbefoundby tracinga paththrougha chainof directoriesuntil the desiredfile is reached.The startingpoint for
suchsearchess oftentheroot. Anothersystemdirectorycontainsall the programsprovided for generaluse;thatis,
all thecommands Aswill beseenhowever, it is by no meansnecessaryhata programresidein this directoryfor it
to be &ecuted.

Filesarenamedby sequencesf 14 or fewer charactersWhenthe nameof afile is specifiedto the systemjt may
bein theform of apath name which is a sequencef directorynamesseparatedy slashes' /”’ and endingin afile
name. If the sequencédeayins with a slash,the searchbeginsin theroot directory The name/ alpha/beta/ gamma
causeghe systemto searcltheroot for directoryalpha,thento searchalphafor beta,finally to find gammain beta
Gammamay be an ordinaryfile, a directory or a specialfile. As alimiting casethe name"/ " refersto the root
itself.

A path namenot startingwith *“/ ” causeghe systento begin the searchin the users currentdirectory Thus,the
namealpha/ betaspecifiesthe file namedbetain subdirectoryalphaof the currentdirectory The simplestkind of
name for examplealpha, refersto afile which itself is foundin the currentdirectory As anotherlimiting case the
null file name refers to the current directory

The samenon-directoryfile may appearin several directoriesunder possibly different names. This featureis
calledlinking; a directory entryfor afile is sometimesalleda link. unix differs from othersystemsn which link-
ing is permittedin thatall links to afile have equal status. Thatis, a file doesnot exist within a particulardirectory;
the directoryentryfor afile consistamerelyof its nameanda pointerto the informationactuallydescribingthefile.
Thusafile existsindependenthof ary directory entry althoughin practicea file is madeto disappeaalongwith the
last link to it.

Eachdirectoryalways hasat leasttwo entries. Thename* .”’ in eachdirectoryrefersto the directoryitself. Thus
a programmay readthe currentdirectoryunderthe name* .”" without knowing its completepathname. The name
“.."" by convention refersto the parentof the directoryin which it appearsthatis, to the directoryin which it was

created.

The directory structureis constrainedo have the form of a rootedtree. Exceptfor the specialentries .” and
“..”, eachdirectorymustappearmsanentryin exactly oneother which is its parent. The reasorfor this is to sim-
plify thewriting of programswhich visit subtree®f the directorystructure andmoreimportant,to avoid the separa-
tion of portionsof the hierarcly. If arbitrary links to directorieswere permitted,it would be quite difficult to detect
when the last connection from the root to a directong sgered.

UNIX Time-Sharing System - 4

3.3 Special files

Specialfiles constitutethe mostunusualfeatureof the unix file system. Eachl/O device supportedoy UNIX is
associatedvith atleastonesuchfile. Specialfiles arereadandwritten just like ordinary disk files, but requestgo
reador write resultin activation of the associatedlevice. An entry for eachspecialfile residesin directory/dey,
althougha link may be madeto oneof thesefiles just like an ordinary file. Thus,for example,to punchpapertape,
onemaywrite onthefile /dev/ppt. Specialfiles exist for eachcommunicatiorine, eachdisk, eachtapedrive, and
for physical core memory Of course,the active disks andthe core specialfile are protectedfrom indiscriminate
access.

Thereis athreefoldadwantagein treatingl/O devicesthis way: file anddevice I/O areassimilar aspossiblefile
anddevice nameshave the samesyntaxandmeaningsothata programexpectinga file nameasa parametecanbe
passed a déce name; finallyspecial files are subject to the same protection mechanisrgdarréles.

3.4 Remwable file systems

Althoughtheroot of thefile systemis always storedon the samedevice, it is not necessaryhatthe entirefile sys-
tem hierarcly resideon this device. Thereis a mountsystemrequestwhich hastwo arguments:the nameof an
existing ordinaryfile, andthe nameof a specialfile whoseassociatedtoragevolume (e. g. disk pack)shouldhave
the structureof anindependentile systemcontainingits own directoryhierarcly. The effect of mountis to cause
referencego the heretoforeordinaryfile to referinsteadto the root directoryof thefile systemon theremorable vol-
ume. In effect, mountreplacesa leaf of the hierarcly tree (the ordinaryfile) by a whole nev subtree(the hierarcly
storedon the removable volume). After the mount thereis virtually no distinction betweenfiles on the removable
volume andthosein the permanenfile system. In our installation,for example, the root directory resideson the
fixed-headdisk, andthe large disk drive, which containsusers files, is mountedby the systeminitialization pro-
gram;the four smallerdisk drives are available to usersfor mountingtheir own disk packs. A mountablefile system
is generatedy writing on its correspondingpecialfile. A utility programis available to createan emptyfile sys-
tem, or one may simply cgpn existing file system.

Thereis only one exceptionto the rule of identical treatmentof files on different devices: no link may exist
betweernonefile systemhierarcly and another This restrictionis enforcedsoasto avoid the elaboratédookleeping
which would otherwisebe requiredto assuraemoval of the links whentheremaovable volumeis finally dismounted.
In particular in the root directoriesof all file systemsremaovable or not, the name* .." refersto the directoryitself
instead of to its parent.

3.5 Pmotection

Althoughtheaccesgontrolschemeén UNIX is quitesimple,it hassomeunusuafeatures.Eachuserof the system
is assignedh uniqueuseridentificationnumber When a file is created;t is marked with the userid of its owner.
Also given for new filesis a setof seven protectionbits. Six of thesespecifyindependentlyead,write, andexecute
permission for thewsner of the file and for all other users.

If the seventh bit is on, the systemwill temporarilychangethe useridentificationof the currentuserto thatof the
creatorof the file wheneer the file is executedasa program. This changein userid is effective only during the
execution of the programwhich callsfor it. The set-usesD featureprovidesfor privileged programswvhich may use
files inaccessibldo otherusers. For example,a programmay keepan accountingfile which shouldneitherbe read
nor changed=xceptby the programitself. If the set-usefidentificationbit is on for the program,it may accesshe
file althoughthis accessnight be forbiddento otherprogramsnvoked by the given programs user Sincetheactual
useriD of the invoker of any programis always available, set-usefd programsmay take any measuregesiredto
satisfythemselesasto their invoker's credentials. This mechanismis usedto allow usersto execute the carefully-
written commandavhich call privileged systementries. For example,thereis a systementryinvokable only by the
“superuser’ (belon) which createsanemptydirectory Asindicatedaboe, directoriesareexpectedto have entries

L . The commandwhich createsa directoryis owned by the superuserandhasthe set-usetd bit

for*.” and " ..
set. After it checksits invoker’s authorizationto createthe specifieddirectory it createst andmalkesthe entriesfor

[T} ”

Jtand fLLT.

UNIX Time-Sharing System - 5

Sincearnyone may setthe set-usefD bit on oneof his own files, this mechanismis generallyavailable without
administratve intervention. For example,this protectionschemeeasilysolvesthemoo accountingproblemposedn

[71.

The systemrecognizene particularuserid (that of the “superuser’) asexempt from the usualconstraintson
file accessthus(for example)programamay be written to dumpandreloadthefile systemwithout unwantedinter
ference from the protection system.

3.6 1/O calls

The systemcalls to do I/O are designedo eliminatethe differencesbetweenthe various devices and styles of
access.Thereis no distinctionbetween‘random’ and “sequential’ 1/0, nor is ary logical recordsizeimposedby
the system. The size of an ordinaryfile is determinedby the highestbyte written on it; no predeterminatiorof the
size of a file is necessary or possible.

To illustratethe essential®f 1/0 in UNIX, some of the basiccalls are summarizedielon in an anornymouslan-
guagewhich will indicatethe requiredparametersvithout gettinginto the compleities of machinelanguagepro-
gramming. Eachcall to the systemmay potentiallyresultin anerrorreturn,which for simplicity is not represented
in the calling sequence.

To read or write a file assumed tist alreadyit must be opened by the folling call:
filep = open(name, flag

Nameindicatesthe nameof thefile. An arbitrarypathnamemaybegiven. Theflag agumentindicateswhetherthe
file is to be read, written, oupdated, that is read and written simultaneously

The returnedvaluefilep is calledafile descriptor It is a smallinteger usedto identify thefile in subsequentalls
to read, write or otherwise manipulate the file.

To createa new file or completelyrewrite anold one,thereis a createsystemcall which createghe given file if it
doesnot exist, or truncatest to zerolengthif it doesexist. Createalsoopensthenew file for writing and,like open,
returns a file descriptor

Thereare no uservisible locks in the file system,nor is thereary restrictionon the numberof userswho may
have a file openfor readingor writing. Althoughit is possiblefor the contentsof a file to becomescrambledvhen
two userswrite onit simultaneouslyin practicedifficulties do not arise. We take the view thatlocksareneithernec-
essarynor sufiicient, in our ervironment,to prevent interferencebetweenusersof the samefile. They are unneces-
sary becausewe are not facedwith large, single-file databasesmaintainedby independenprocesses.They are
insufiicient becausédocksin the ordinarysensewherebyoneuseris preventedfrom writing on afile which another
useris reading,cannotprevent confusionwhen,for example,bothusersareeditingafile with aneditorwhich malkes
acopy of the file being edited.

It shouldbe saidthat the systemhassuficient internalinterlocksto maintainthe logical consisteng of the file
systemwhentwo usersengage simultaneouslyin suchincorvenient actvities aswriting on the samefile, creating
files in the same directargr deleting each othes'open files.

Exceptasindicatedbelow, readingandwriting aresequential. This meanshatif a particularbytein thefile was
thelastbytewritten (or read),the next 1/0 call implicitly refersto thefirst following byte. For eachopenfile thereis
a pointer, maintainedby the systemwhich indicatesthe next byteto be reador written. If n bytesarereador writ-
ten, the pointer aénces by bytes.

Once a file is open, the follong calls may be used.
n = read(filep, buffer, count)
n = write (filep, buffer, count)

Up to countbytes are transmittedbetweenthe file specifiedby filep and the byte array specifiedby buffer. The
returnedvaluen is the numberof bytesactuallytransmitted.In thewrite case h is the sameascountexceptunder
exceptionalconditionslike 1/0 errorsor endof physical mediumon specialfiles; in aread, however, n may without

UNIX Time-Sharing System - 6

error be lessthancount. If the readpointeris so nearthe endof the file thatreadingcountcharactersvould cause
readingbeyondthe end,only suficient bytesaretransmittedo reachthe endof thefile; also,typenriter-like devices
never return morethanoneline of input. Whenaread call returnswith n equalto zero, it indicatesthe endof the

file. For disk files this occurswhenthe readpointerbecomesqualto the currentsize of thefile. It is possibleto

generate an end-of-file from a typrter by use of an escape sequence which depends orvibe dsed.

Byteswritten on afile affect only thoseimplied by the positionof the write pointerandthe count;no otherpartof
the file is changedlf the last byte lies b@nd the end of the file, the file is gno as needed.

To do random(directaccess)/O it is only necessaryo move the reador write pointerto the appropriatdocation
in the file.

location = seekfilep, ofset, basg

The pointerassociateavith filep is moved to a position offsetbytesfrom the beginning of thefile, from the current
position of the pointer or from the end of the file, dependingon base Offsetmay be negative. For somedevices
(e.g.papertapeandtypenriters) seekcallsareignored. The actualoffset from the beginning of thefile to which the
pointer vas maed isreturned irlocation

3.6.1 Other I/O calls

Thereare several additionalsystementrieshaving to do with I/O andwith thefile systemwhich will not be dis-
cussed.For example:closeafile, getthe statusof afile, changethe protectionmodeor the owner of afile, createa
directory make alink to an isting file, delete a file.

4. Implementation of the file system

As mentionedn §3.2above, adirectory entry containsonly a namefor the associatedile anda pointerto thefile
itself. This pointeris aninteger calledthei-number(for index number)of thefile. Whenthefile is accessedts i-
numberis usedasanindex into a systemtable (thei-list) storedin a known partof the device on which the directory
resides. Theentry thereby found (the fikei-node) contains the description of the file:

. its avner;

. its protection bits;

. the plysical disk or tape addresses for the file contents;

. its size;

. time of last modification;

. the number of links to the file; that is, the number of times it appears in a directory;
. a bit indicating whether the file is a directory;

. a bit indicating whether the file is a special file;

. a bit indicating whether the file itarge” or *‘small.”

O©CoO~NOOTA~WNPE

The purposeof anopenor createsystemcall is to turn the pathnamegiven by the userinto ani-numberby search-
ing the explicitly orimplicitly nameddirectories.Onceafile is openi,its device, i-number and read/writepointerare

storedin a systemtableindexed by the file descriptorreturnedby the openor create Thusthe file descriptorsup-

plied during a subsequentall to reador write the file may be easilyrelatedto the informationnecessaryo access
the file.

Whenannew file is createdani-nodeis allocatedfor it anda directoryentry is madewhich containsthe nameof
the file andthe i-node number Making a link to an existing file involves creatinga directory entry with the new
name,copying thei-numberfrom the originalfile entry and incrementinghelink-countfield of thei-node. Remaor-
ing (deleting)afile is doneby decrementinghe link-count of the i-nodespecifiedby its directoryentry anderasing
the directory entry|f the link-count drops to 0, girisk blocks in the file are freed and the i-node is deallocated.

The spaceon all fixed or removable diskswhich containa file systemis divided into a numberof 512-byteblocks
logically addressedrom 0O up to a limit which dependson the device. Thereis spacein the i-node of eachfile for
eight device addressesA small (non-speciallile fits into eight or fewer blocks;in this casethe addressesf the

UNIX Time-Sharing System - 7

blocksthemselesarestored. For large (non-specialfiles, seven of the eightdevice addressemay point to indirect
blockseachcontaining256 addressefor the datablocksof thefile. If required the eighthword is the addresof a
double-indirectblock containing 256 more addresse®f indirect blocks. Thus files may conceptuallygrown to
(7+256)256512 bytes;actuallythey are restrictedto 16,777,216 2**) bytes. Onceopeneda smallfile (sizel to 8
blocks) canbe accessediirectly. A large file (size9 to 32768blocks)requiresoneadditionalaccesgo readbelov
logical block 1792 (‘256) and tw additional references akie 1792.

The foregoing discussiorappliesto ordinaryfiles. Whenan /O requesis madeto a file whosei-nodeindicates
that it is special,the last seven device addresswords areimmaterial,and the first is interpretedas a pair of bytes
which constitutean internal device name Thesebytesspecify respectiely a device type and subd&ice number
The device type indicateswhich systemroutinewill dealwith I/O on thatdevice; the subd&ice numberselectsfor
example, a disk dvie attached to a particular controller or one ofesal similar typeavriter interfaces.

In this ervironment,the implementationof the mountsystemcall (83.4) is quite straightforvard. Mount main-
tainsa systemtablewhoseargumentis thei-numberanddevice nameof the ordinaryfile specifiedduringthe mount,
and whosecorresponding/alueis the device nameof the indicatedspecialfile. This tableis searchedor each(i-
number device)-pair which turns up while a path nameis being scannedduring an openor create;if a matchis
found, thei-numberis replacedy 1 (whichis thei-numberof theroot directoryon all file systems)andthe device
name is replaced by the tablgwe.

To the user both readingandwriting of files appeato be synchronousndunkuffered. Thatis, immediatelyafter
returnfrom aread call the dataare available, and corversely after a write the users workspacemay be reused.In
fact the systemmaintainsa rathercomplicatedouffering mechanisnwhich reducegreatlythe numberof 1/0 opera-
tions requiredto accessa file. Supposea write call is madespecifyingtransmissiorof a single byte. UNix will
searchits buffers to seewhetherthe affecteddisk block currentlyresidesin corememory;if not, it will bereadin
from the device. Thenthe affectedbyteis replacedn the buffer andan entryis madein alist of blocksto be writ-
ten. Thereturnfrom thewrite call maythentake place, althoughthe actuall/O may not be completeduntil a later
time. Corversely, if a single byteis read,the systemdeterminesvhetherthe secondarystorageblock in which the
byteis locatedis alreadyin oneof the systems buffers;if so,the byte canbereturnedmmediately If not, theblock
is read into a Wffer and the byte piad out.

The systemrecognizesvhena programhasmadeaccesset sequentiablocksof afile, andasynchronouslyre-
readsthe next block. This significantly reducesthe runningtime of mostprogramswhile addinglittle to system
overhead.

A programwhich readsor writesfiles in unitsof 512 byteshasanadwantageover a programwhich readsor writes
asingle byteatatime, but the gain is notimmensejt comesmainly from the avoidanceof systemoverhead. A pro-
gramwhich is usedrarely or which doesno greatvolume of I/O may quite reasonablyreadandwrite in units as
small as it wishes.

The notion of the i-list is an unusualfeatureof uNIX. In practice,this methodof organizing the file systemhas
proved quite reliableandeasyto dealwith. To the systemitself, oneof its strengthds the fact that eachfile hasa
short, unambiguoushamewhich is relatedin a simple way to the protection,addressingand other information
neededio accesghefile. It alsopermitsa quite simpleandrapid algorithmfor checkingthe consisteng of a file
system for exampleverificationthatthe portionsof eachdevice containingusefulinformationandthosefreeto be
allocatedare disjoint andtogetherexhaustthe spaceon the device. This algorithmis independenbf the directory
hierarcly, since it needonly scanthe linearly-oiganizedi-list. At the sametime the notion of thei-list inducescer
tain peculiaritiesnot found in otherfile systemorganizations. For example,thereis the questionof who is to be
chagedfor the spaceafile occupiessinceall directoryentriesfor afile have equal status. Chaging the owner of a
file is unfair in generalsinceoneusermay createa file, anothermaylink to it, andthe first usermay deletethefile.
The first useris still the owner of thefile, but it shouldbe chagedto the seconduser The simplestreasonablyair
algorithm seemdo be to spreadthe chagesequallyamonguserswho have links to a file. The currentversionof
UNIX avoids the issue by not clging ary fees at all.

UNIX Time-Sharing System - 8

4.1 Efficiency of the file system

To provide anindicationof the overall efficiency of uNix and of the file systemin particular timings weremade
of the assemblyof a 8848-lineprogram. The assemblywas run aloneon the machine;the total clock time was 32
secondsfor a rate of 276 lines per second. The time was divided asfollows: 66% assembleexecution time, 21%
systemoverhead,13% disk wait time. We will not attemptary interpretationof thesefiguresnor ary comparison
with other systems,uh merely note that we are generally satisfied with eeadl performance of the system.

5. Processes and images

An image is a computerexecution ervironment. It includesa coreimage,generalregister values,statusof open
files, current directory and the éik An image is the current state of a pseudo-computer

A processds the execution of animage. While the processois executing on behalfof a processthe imagemust
residein core;during the execution of otherprocesse# remainsin coreunlessthe appearancef anactive, higher
priority process forces it to be apped out to the fed-head disk.

The usercore part of animageis divided into threelogical sggments. The programtext sggmentbegins at loca-
tion 0 in thevirtual addresspace.During execution, this sggmentis write-protectedcanda singlecopy of it is shared
amongall processesxecuting the sameprogram. At the first 8K byte boundaryabore the programtext segmentin
thevirtual addresspacebegins a non-sharedwritable datasegment,the sizeof which maybe extendedby a system
call. Startingat the highestaddressn the virtual addressspaceis a stack segment, which automaticallygrows
downward as the hardave’s stack pointer fluctuates.

5.1 Processes
Exceptwhile UNIX is bootstrappingtself into operationa nev processcancomeinto existenceonly by useof the
fork system call:
processid = forklabel)

Whenfork is executedby a processijt splitsinto two independentlyexecuting processesThe two processehave
independentopiesof the original coreimage,andshareary openfiles. The new processesliffer only in thatoneis
consideredhe parentprocessin the parent,control returnsdirectly from the fork, while in the child, control is
passed to locatiolabel. The processideturned by théork call is the identification of the other process.

Becausehe returnpointsin the parentand child processare not the same eachimageexisting after a fork may
determine whether it is the parent or child process.

5.2 Pipes

Processesnay communicatewith relatedprocessesisingthe samesystemread andwrite calls that are usedfor
file system I/0O.The call

filep = pipe()

returnsafile descriptoffilep andcreatesaninterprocesschannelkalledapipe This channellike otheropenfiles, is

passedrom parentto child processn the imageby the fork call. A read using a pipe file descriptorwaits until

anotherprocesswrites usingthefile descriptorfor the samepipe. At this point, dataare passedetweerthe images
of the two processesNeitherprocess need kmothat a pipe, rather than an ordinary file, ®lxed.

Although inter-processcommunicatiorvia pipesis a quite valuabletool (see§6.2),it is not a completelygeneral
mechanism, since the pipe must be set up by a common ancestor of the proeasses in

5.3 Execution of pograms
Another major system primiie isinvoked by

execute(file, amg,, arg,, ..., arg,)

which requestghe systemto readin andexecutethe programnamedby file, passingit stringargumentsarg, , arg, ,

UNIX Time-Sharing System - 9

..., arg . All thecodeanddatain the procesausingexecuteis replacedrom thefile, but openfiles, currentdirec-
tory, and inter-procesgelationshipsareunaltered.Only if the call fails, for examplebecausdile could not be found
or becauséts execute-permissiolit wasnot set,doesa returntake place from the executeprimitive; it resembles
“jump” machine instruction rather than a subroutine call.

5.4 Process synchonization
Another process control system call

processid = it ()

causests callerto suspendxecution until oneof its childrenhascompletedexecution. Thenwait returnsthe pro-
cessidof the terminatedprocess.An errorreturnis takenif the calling processhasno descendantsCertainstatus
from the child process is alsvalable.

5.5 Termination
Lastly,

exit (statug

terminatesa processdestrys its image,closests openfiles, andgenerallyobliteratest. Whenthe parentis notified
throughthewait primitive, the indicatedstatusis available to the parent. Processemay alsoterminateasa resultof
various illegal actions or usegenerated signals (87 belp

6. The Shell

For most users,communicatiorwith UNIX is carriedon with the aid of a programcalledthe Shell. The Shellis a
commandine interpreter:it readslinestypedby the userandinterpretsthemasrequestso execute otherprograms.
In simplestform, acommandine consistsof the commandhamefollowed by agumentsto the commandall sepa-
rated by spaces:

command ay, arg, ... arg

n

The Shell splits up the commandnameandthe agumentsinto separatestrings. Thena file with namecommands
sought;commandnay be a pathnameincludingthe /"’ characterto specifyary file in the system.If commands
found, it is broughtinto core and executed. The agumentscollectedby the Shell are accessibléo the command.
When the commandis finished,the Shell resumesdts own execution, and indicatesits readinesgo acceptanother
command by typing a prompt character

If file commandcannotbe found, the Shell prefixesthe string /bin/ to commandand attemptsagain to find the
file. Directory/bin contains all the commands intended to be generally used.

6.1 Standard I/O

The discussiorof 1/0 in 83 above seemsto imply thatevery file usedby a programmustbe openedor createdby
the programin orderto geta file descriptorfor thefile. Programsxecutedby the Shell, howvever, start off with two
openfiles which have file descriptor®) and1. As sucha programbeagins execution,file 1 is openfor writing, andis
bestunderstoodasthe standardbutputfile. Exceptundercircumstanceindicatedbelaw, this file is the users type-
writer. Thus programswhich wish to write informative or diagnosticinformation ordinarily usefile descriptorl.
Corversely, file O startsoff openfor reading,andprogramswhich wish to readmessages$y/pedby the userusually
read this file.

The Shellis ableto changethe standardassignment®f thesefile descriptorsrom the users typewriter printer
andkeyboard. If one of the agumentsto a commands prefixed by “>"", file descriptorl will, for the durationof
the command, refer to the file named after thé.* For example,

Is

ordinarily lists, on the typeriter, the names of the files in the current directdrjze command

UNIX Time-Sharing System - 10

Is >there

createsa file calledthere andplacesthe listing there. Thusthe agument“>there’ means,“place outputonthere.”
On the other hand,

ed

ordinarily enters the editowhich tales requests from the user via his tygeer. The command
ed <script

interpretsscriptas a file of editor commands; thtssscript” means, ‘take input fromscript”

Although thefile namefollowing “<’’ or *>"" appearsto be anamgumentto the commandjn factit is interpreted
completelyby the Shellandis not passedo thecommandatall. Thusno specialcodingto handlel/O redirectionis
neededwithin eachcommandithe commandneedmerelyusethe standardile descriptord and 1 whereappropri-
ate.

6.2 Filters

An extensionof the standard/O notion is usedto direct outputfrom one commandto the input of another A
sequencef commandseparatedby vertical barscauseghe Shellto execute all the commandssimultaneoushand
to arrangethatthe standardutputof eachcommandbe delivered to the standardnput of the next commandn the
sequenceThusin the command line

Is | pr=2 | opr

Is lists the namesof the files in the currentdirectory;its outputis passedo pr, which paginatests input with dated
headings.Theamgument"-2" meansdoublecolumn. Lik ewise the outputfrom pr is inputto opr. This command
spools its input onto a file forfeline printing.

This procedure could kabeen carried out more clumsily by

Is >templ
pr-2 <templ >temp2
opr <temp2

followed by remaval of the temporaryfiles. In the absencef the ability to redirectoutputandinput, a still clumsier
methodwould have beento requirethels commandto acceptuserrequestdo paginateits output,to print in multi-
column format, and to arrangethat its output be delivered off-line. Actually it would be surprising,andin fact
unwisefor efficiengy reasonsfo expect authorsof commandssuchasls to provide sucha wide variety of output
options.

A programsuchaspr which copiesits standardnput to its standardoutput (with processing)s called a filter.
Somefilters which we have found useful performcharactettransliteration sorting of the input, and encryptionand
decryption.

6.3 Command Separators; Multitasking

Another featureprovided by the Shellis relatively straightforvard. Commandseednot be on differentlines;
instead thg may be separated by semicolons.

Is; ed
will first list the contents of the current directpityen enter the editor

A relatedfeatureis moreinteresting.If acommands followed by “&’’, the Shellwill notwait for the command
to finish before prompting ain; instead, it is ready immediately to accept\a cemmand. For example,

as source >output &

causessource to be assembledwith diagnosticoutputgoing to output; no matterhow long the assemblytakes, the
Shellreturnsimmediately Whenthe Shell doesnot wait for the completionof a commandthe identificationof the

UNIX Time-Sharing System - 11

processrunningthat commandis printed. This identificationmay be usedto wait for the completionof the com-
mand or to terminate itThe ‘&’ may be used seral times in a line:

as source >output & Is >files &

doesboth the assemblyandthe listing in the background.In the examplesabore using “&’’, an outputfile other
thanthe typewriter was provided,; if this hadnot beendone,the outputsof the variouscommandswvould have been
intermingled.

The Shell also alles parentheses in the alemperations. For example
(date; I >x &

prints the currentdate and time followed by a list of the currentdirectory onto the file x. The Shell alsoreturns
immediately for another request.

6.4 The Shell as a Command; Command Files
The Shell is itself a command, and may be called re@ysiSuppose fildryout contains the lines

as source
myv a.out testprog
testprog

Themvcommandcauseghefile a.outto berenamedestpog. A.outis the (binary) outputof the assemblereadyto
be executed. Thusif thethreelinesabore weretypedon the console souice would be assembledthe resultingpro-
gram renametestpog, and testpiog executed. Whenthe lines are itryout, the command

sh <tryout
would cause the Shedhto execute the commands sequentially

The Shell hasfurther capabilities,including the ability to substituteparametersandto constructagumentlists
from a specifiedsubsetof the file namesin a directory It is aso possibleto execute commandsconditionally on
charactestring comparison®r on existenceof given files andto performtransfersof controlwithin filed command
sequences.

6.5 Implementation of the Shell

The outline of the operationof the Shell cannow be understood. Most of the time, the Shell is waiting for the
userto type a command. Whenthe naev-line characterendingthe line is typed,the Shell’s read call returns. The
Shellanalyzeghe commandine, puttingthe agumentsin a form appropriatefor execute Thenfork is called. The
child processwhosecodeof courseis still that of the Shell, attemptsto perform an executewith the appropriate
arguments. If successfulthis will bring in andstartexecution of the programwhosenamewasgiven. Meanwhile,
the otherprocesgesultingfrom the fork, which is the parentprocesswaits for the child procesdo die. Whenthis
happensthe Shellknows the commands finished,soit typesits promptandreadsthe typawriter to obtainanother
command.

Given this framework, the implementatiorof backgroundorocessess trivial; wheneer a commandline contains
“&'"’, the Shell merely refrains fromaiting for the process which it created i@aite the command.

Happily, al of this mechanismmeshesvery nicely with the notion of standardnput and outputfiles. Whena
processs createdby thefork primitive, it inheritsnot only the coreimageof its parentbut alsoall thefiles currently
openin its parent,including thosewith file descriptors0 and1. The Shell, of course, usesthesefiles to readcom-
mand lines and to write its promptsand diagnostics,and in the ordinary caseits children_thecommandpro-
grams_inherithemautomatically Whenanamgumentwith “<’’ or >’ is given however, the offspring processjust
beforeit performsexecute makesthe standard/O file descriptorO or 1 respectiely referto the namedfile. Thisis
easybecausehy agreementhe smallestunusedile descriptoiis assignedvhena new file is opened (or created); it
is only necessaryo closefile 0 (or 1) andopenthe namedfile. Becausehe processn which thecommandprogram
runssimply terminatesvhenit is through the associatiorbetweenra file specifiedafter<’’ or **>"" and file descrip-
tor O or 1 is endedautomaticallywhenthe procesdlies. Thereforethe Shellneednot know the actualnamesof the

UNIX Time-Sharing System - 12

files which are itswn standard input and output, since it neecenesopen them.
Filters are straightforard extensions of standard 1/O redirection with pipes used instead of files.

In ordinary circumstancesthe main loop of the Shell never terminates. (The main loop includesthat branchof
the returnfrom fork belongingto the parentprocessthatis, the branchwhich doesa wait, thenreadsanothercom-
mandline.) The onething which causeghe Shellto terminateis discovering an end-of-file conditionon its input
file. Thus,when the Shell isxecuted as a command with asgi input file, as in

sh <comfile

the commandsn comfilewill be executeduntil the endof comfileis reachedthenthe instanceof the Shellinvoked
by shwill terminate. Sincethis Shell processs the child of anotherinstanceof the Shell, the wait executedin the
latter will return, and another command may be processed.

6.6 Initialization

The instancesof the Shell to which userstype commandsare themseles children of anotherprocess.The last
stepin the initialization of UNIx is the creationof a single processand the invocation (via executg of a program
calledinit. Therole of init is to createone procesdor eachtypenriter channelwhich may be dialedup by a user
The varioussubinstancesf init openthe appropriataypewriters for input andoutput. Sincewheninit was invoked
therewere no files open,in eachprocesghe typewriter keyboardwill receve file descriptor0 andthe printer file
descriptorl. Eachprocesgypesoutamessageequestinghatthe userlog in andwaits, readingthetypewriter, for a
reply. At the outset,no oneis loggedin, so eachprocesssimply hangs. Finally someondypeshis nameor other
identification. The appropriateinstanceof init wakes up, receves the log-in line, andreadsa passwerd file. If the
usernameis found,andif heis ableto supplythe correctpasswerd, init changego the users default currentdirec-
tory, setsthe process useriD to that of the personloggingin, and performsan executeof the Shell. At this point
the Shell is ready to reseicommands and the logging-in protocol is complete.

Meanwhile,the mainstreanpathof init (the parentof all the subinstancesf itself which will laterbecomeShells)
doesawait. If one of the child processeserminatesgitherbecause Shellfound an endof file or because user
typedanincorrectnameor passverd, this pathof init simply recreateshe defunctprocesswhichin turn reopenghe
appropriateinput and outputfiles andtypesanotherogin message Thus a usermay log out simply by typing the
end-of-file sequence in place of a command to the Shell.

6.7 Other programs as Shell

The Shell as describedabove is designedto allow usersfull accesgo the facilities of the system,sinceit will
invoke the execution of ary programwith appropriatgprotectionmode. Sometimeshowever, a differentinterfaceto
the system is desirable, and this feature is easily arranged.

Recallthataftera userhassuccessfulljoggedin by supplyinghis nameandpasswerd, init ordinarily invokes the
Shell to interpretcommandines. The users entry in the passwrd file may containthe nameof a programto be
invoked after login instead of the Shelllhis program is free to interpret the usenessages in gnway it wishes.

For example,the passwerd file entriesfor usersof a secretariakditing systemspecify that the editoredis to be
usedinsteadof the Shell. Thus when editing systemuserslog in, they are inside the editor and can begin work
immediately;also,they can be preventedfrom invoking uNix programsnotintendedfor their use. In practice,it has
proved desirable to alle atemporary escape from the editor i@@ute the formatting program and other utilities.

Several of the games(e.g., chess,blackjack,3D tic-tac-toe)available on uNix illustrate a much more severely
restrictedervironment. For eachof thesean entry exists in the passwrd file specifyingthatthe appropriategame-
playing programis to beinvoked insteadof the Shell. Peoplewho log in asa playerof oneof the gamesfind them-
seles limited to the @me and unable tovestigate the presumably more interestintedhgs ofuNix as a whole.

UNIX Time-Sharing System - 13

7. Traps

The pDP-11 hardvare detectsa numberof programfaults, suchasreferencego non-eistent memory unimple-
mentedinstructions,and odd addressesisedwherean even addressis required. Suchfaults causethe processoto
trap to a systemroutine. Whenanillegal action is caught,unlessotherarrangementsave beenmade,the system
terminateshe processandwrites the users imageon file core in the currentdirectory A deluggercanbe usedto
determine the state of the program at the time ofabl. f

Programswhich arelooping, which produceunwantedoutput,or aboutwhich the userhassecondthoughtsmay
be haltedby the useof the interrupt signal, which is generateddy typing the “delete’ character Unlessspecial
actionhasbeentaken, this signalsimply causeghe programto ceasesxecution without producinga coreimagefile.

Thereis alsoa quit signalwhich is usedto force a coreimageto be produced. Thus programswhich loop une-
pectedly may be halted and the core imageréned without prearrangement.

The hardware-generateéaults andthe interruptand quit signalscan, by requestbe eitherignoredor caughtby
the process.For example,the Shell ignoresquits to prevent a quit from logging the userout. The editor catches
interrupts and returnsto its commandlevel. This is useful for stoppinglong printouts without losing work in
progresgthe editor manipulatesa copy of thefile it is editing). In systemswithout floating point hardware, unim-
plemented instructions are caught and floating point instructions are interpreted.

8. Perspective

Perhapgaradoxicallythe succes®of UNIX is largely dueto the fact thatit was not designedo meetary prede-
fined objectves. Thefirst versionwaswritten whenoneof us (Thompson)dissatisfiedwvith the available computer
facilities, discovered a little-usedPDP-7 and setout to createa more hospitableervironment. This essentiallyper
sonaleffort wassuficiently successfuto gain the interestof the remainingauthorandothers,andlaterto justify the
acquisitionof the PDP-11/20, specificallyto supporta text editing andformatting system. Whenin turn the 11/20
was outgrovn, UNIX had proved useful enoughto persuademanagemento invest in the pDP-11/45. Our goals
throughoutthe effort, whenarticulatedat all, have always concernedhemseles with building a comfortablerela-
tionship with the machineandwith exploring ideasandinventionsin operatingsystems.We have not beenfaced
with the need to satisfy someone edseguirements, and for this freedom we are grateful.

Three considerations which influenced the desigsof are visible in retrospect.

First: sincewe are programmersye naturally designedthe systemto male it easy to write, test,and run pro-
grams. Themostimportantexpressiorof our desirefor programmingcorveniencewasthatthe systemwasarranged
for interactive use, even thoughthe original versiononly supportedoneuser We believe that a properly-designed
interactvve systemis muchmoreproductie and satisfyingto usethana “batch” system. Moreover such a systemis
rather easily adaptable to non-intereetise, while the corerse is not true.

Secondtherehave always beenfairly severe size constraintson the systemandits software. Given the partially
antagonisticdesiresfor reasonablesfiiciency and expressve power, the size constrainthas encouragechot only
economybut a certainelegance of design. This may be a thinly disguisedversionof the “salvation throughsufer-
ing” philosoply, but in our case it wrked.

Third: nearlyfrom the start,the systemwas ableto, anddid, maintainitself. This factis moreimportantthanit
might seem. If designerf a systemareforcedto usethatsystemthey quickly becomeaware of its functionaland
superficialdeficienciesand are strongly motivated to correctthem beforeit is too late. Sinceall sourceprograms
werealways available andeasilymodifiedon-line,we werewilling to revise andrewrite the systemandits software
when nev ideas were wented, discuered, or suggested by others.

The aspectf UNIX discussedn this paperexhibit clearly at leastthe first two of thesedesignconsiderations.
The interfaceto the file system,for example,is extremely corvenient from a programmingstandpoint. The lowest
possibleinterfacelevel is designedo eliminatedistinctionsbetweerthe variousdevicesandfiles andbetweerdirect
andsequentiabccess.No large “accessmethod’ routinesarerequiredto insulatethe programmeirfrom the system
calls; in factall userprogramseithercall the systemdirectly or usea smalllibrary program,only tensof instructions
long, which luffers a number of characters and reads or writes them all at once.

UNIX Time-Sharing System - 14

Anotherimportantaspectof programmingcornvenienceis thatthereareno “control blocks’ with a complicated
structurepartially maintainedoy anddependeabn by the file systemor othersystemcalls. Generallyspeakingthe
contentsof a programs$ addressspaceare the propertyof the program,andwe have tried to avoid placing restric-
tions on the data structures within that address space.

Given therequirementhatall programsshouldbe usablewith ary file or device asinput or output,it is alsodesir
able from a space-diciency standpointto pushdevice-dependentonsiderationsnto the operatingsystemitself.
The only alternatves seemto beto load routinesfor dealingwith eachdevice with all programswhichis expensve
in spaceor to dependon somemeansof dynamicallylinking to the routine appropriateto eachdevice whenit is
actually needed, which ixpensve either in oserhead or in hardare.

Likewise, the processcontrol schemeand commandinterface have proved both convenient and efficient. Since
the Shell operatesasan ordinary swappableuserprogram,it consumeso wired-davn spacein the systemproper
and it may be madeas powerful as desiredat little cost. In particular given the framavork in which the Shell
executesas a processwhich spavns other processes$o perform commandsthe notionsof I/O redirection,back-
ground processes, command files, and-sskctable system intedes all become essentiallyial to implement.

8.1 Influences

The succes®f UNIX lies not so muchin new inventions but ratherin the full exploitation of a carefully selected
setof fertile ideas,andespeciallyin shaving thatthey can be keys to the implementatiorof a small yet powerful
operating system.

The fork operation,essentiallyas we implementedt, was presentin the Berkeley time sharingsysten§. On a
numberof pointswe wereinfluencedby Multics, which suggestedhe particularform of the I/O systemcalls® and
both the nameof the Shellandits generalfunctions. The notionthatthe Shellshouldcreatea procesdor eachcom-
mandwas alsosuggestedo us by the early designof Multics, althoughin that systemit was later droppedfor effi-
cieng/ reasons.A similar scheme is used B¥ENEX,

9. Statistics

The following humbersare presentedo suggesthe scaleof our operation. Thoseof our usersnot involved in
documentpreparationtendto usethe systemfor programdevelopment, especiallylanguagework. Thereare few
important ‘applications’ programs.

Overall, we hae

100 userpopulation

14 maximumsimultaneous users
380 directories

4800 files

66300 512-bytesecondary storage blocks used

Thereis a “background’ processthatrunsat the lowestpossiblepriority; it is usedto soakup ary idle cputime.
It hasbeenusedto producea million-digit approximatiorto the constane-2, andis now solving all rook-and-pan
vs. rook chess endgnes. Not counting this backgroundatk, we aerage daily

2400 commands
55 cPUhours

100 connecthours
32 different users
100 logins

Adknowledgments. We are gratefulto R.H. CanadayL.L. Cherry and L.E. McMahonfor their contritutions to
UNIX. We are particularlyappreciatie of the inventiveness thoughtfulcriticism, andconstansupportof R. Morris,
M.D. Mcllroy, and J.FOssanna.

UNIX Time-Sharing System - 15

References

1. Digital EquipmentCorporation. PDP-11/40 ProcessorHandbook(1972), pbP-11/45 ProcessorHandbook
(1971), ancPDP-11/70 Pocessor HandbooKkl975).

2. DeutschL.P.,, and Lampson, B.WAn online editor Comm. £M 10,12 (Dec. 1967), 793-799, 803.

3. RichardsM. BcPL: A tool for compilerwriting andsystemprogramming.Proc.AFIPS 1969SJCC Vol. 34,
AFIPS Press, Montle, N.J., pp. 557-566.

4, McClure,R.M. TMG—A syntaxdirectedcompiler Proc. ACM 20th Nat. Conf.,ACM, 1965,New York, pp.
262-274.

5. Hall, A.D. TheM6 macroprocessorComputingScienceTech.Rep.#2, Bell Telephond_aboratories;1969.

6. Ritchie,D.M. Creference manual. Unpublished memorandum, Bd#ghone Laboratories (1973).

7. Aleph-null. Computer RecreationsSoftwae Practice and Experience 2,(Apr.-June 1971), 201-204.

8. Deutch, L.P. and Lampson,B.W. sbs 930 time-sharing system preliminary referencemanual. Doc.
30.10.10, ProjeasENIE, Univ. Cal. at Berleley (Apr. 1965).

9. Feiertag,R.J.,and Organick, E.I. The Multics input-outputsystem. Proc. Third Symposiumon Operating
Systems PrinciplesOct. 18-20, 1971, 8M, New York, pp. 35-41.

10. Bobraw, D.G., Burchfiel,J.D.,Murphy, D.L., andTomlinson,R.S. TENEX, a pagedtime sharingsystemfor

thepbr-10. Comm. £M 15.,3 (March 1972) 135-143.

