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Abstract

The 2.6 Linux™ kernel has a number of fea-
tures that improve performance on high-end
SMP and NUMA systems. Finer-grain lock-
ing is used in the scheduler, the block I/O
layer, hardware and software interrupts, mem-
ory management, and the VFS layer. In ad-
dition, 2.6 brings new primitives such as RCU
and per-cpu data, lock-free algorithms for route
cache and directory entry cache as well as scal-
able user-level APIs likesys_epoll() and
futexes. With the widespread testing of these
features of the 2.6 kernel, a number of new is-
sues have come to light that needs careful anal-
ysis. Some of these issues encountered thus
far are: overhead of multilple lock acquisitions
and atomic operations in critical paths, possi-
bility of denial-of-service attack on subsystems
that use RCU-based deferred free algorithms
and degradation of realtime response due to in-
creased softirq load.

In this paper, we analyse a select set of these
issues, present the results, workaround patches
and future courses of action. We also discuss
applicability of some these issues in new fea-

tures being planned for 2.7 kernel.

1 Introduction

Support for symmetric multi-processing
(SMP) in the Linux kernel was first introduced
in 2.0 kernel. The 2.0 kernel had a single
kernel_flag lock AKA Big Kernel Lock
(BKL) which essentially single threaded
almost all of the kernel [Love04a]. The 2.2
kernel saw the introduction of finer-grain lock-
ing in several areas including signal handling,
interrupts and part of I/O subsystem. This
trend continued in 2.4 kernel.

A number of significant changes were in-
troduced in during the development of the
2.6 kernel that helped boost performance of
many workloads. Some of the key com-
ponents of the kernel were changed to have
finer-grain locking. For example, the global
runqueue_lock lock was replaced by the
locks on the new per-cpu runqueues. Gone
was io_request_lock with the introduc-
tion of the new scalablebio -based block I/O
subsystem. BKL was peeled off from ad-
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ditional commonly used paths. Use of data
locking instead of code locking became more
widespread. In addition, Read-Copy Up-
date(RCU) [McK98a, McK01a] allowed fur-
ther optimization of critical sections by avoid-
ing locking while reading data structures which
are updated less often. RCU enabled lock-
free lookup of the directory-entry cache and
route cache, which provided considerable per-
formance benefits [Linder02a, Blanchard02a,
McK02a]. While these improvements targeted
high-end SMP and NUMA systems, the vast
majority of the Linux-based systems in the
computing world are small uniprocessor or
low-end SMP systems that remain the main
focus of the Linux kernel. Therefore, scala-
bility enhancements must not cause any per-
formance regressions in these smaller sys-
tems, and appropriate regression testing is re-
quired [Sarma02a]. This effort continues and
has since thrown light on interesting issues
which we discuss here.

Also, since the release of the 2.6 kernel, its
adoption in many different types of systems
has called attention to some interesting issues.
Section 2 describes the 2.6 kernel’s use of fine-
grained locking and identifies opportunities in
this area for the 2.7 kernel development ef-
fort. Section 3 discusses one such important is-
sue that surfaced during Robert Olsson’s router
DoS testing. Section 4 discusses another is-
sue important for real-time systems or systems
that run interactive applications. Section 5
explores the impact of such issues and their
workarounds on new experiments planned dur-
ing the development of 2.7 kernel.

2 Use of Fine-Grain Locking

Since the support for SMP was introduced in
the 2.0 Linux kernel, granularity of locking
has gradually changed toward finer critical sec-
tions. In 2.4 and subsequently 2.6 kernel, many

of the global locks were broken up to improve
scalability of the kernel. Another scalability
improvement was the use of reference count-
ing in protecting kernel objects. This allowed
us to avoid long critical sections. While these
features benefit large SMP and NUMA sys-
tems, on smaller systems, benefit due to re-
duction of lock contention is minimal. There,
the cost of locking due to atomic operations in-
volved needs to be carefully evaluated. Table 1
shows cost of atomic operations on a 700MHz
Pentium™ III Xeon™ processor. The cost of
atomic increment is more than 4 times the cost
of an L2 hit. In this section, we discuss some
side effects of such finer-grain locking and pos-
sible remedies.

Operation Cost (ns)

Instruction 0.7
Clock Cycle 1.4
L2 Cache Hit 12.9
Atomic Increment 58.2
cmpxchg Atomic Increment 107.3
Atomic Incr. Cache Transfer 113.2
Main Memory 162.4
CPU-Local Lock 163.7
cmpxchg Blind Cache Transfer 170.4
cmpxchg Cache Transfer and Invalidate 360.9

Table 1: 700 MHz P-III Operation Costs

2.1 Multiple Lock Acquisitions in Hot Path

Since many layers in the kernel use their own
locks to protect their data structures, we did a
simple instrumentation (Figure 1) to see how
many locks we acquire on common paths. This
counted locks in all variations of spinlock and
rwlock. We used a running counter which we
can read using a system callget_lcount() .
This counts only locks acquired by the task in
non-interrupt context.

With this instrumented kernel, we measured
writing 4096 byte buffers to a file on ext3
filesystem. Figure 2 shows the test code
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+ s t a t i c i n l i n e void _ c o u n t _ l o c k ( void )
+{
+ i f ( ( p r e e m p t _ c o u n t ( ) & 0 x 0 0 f f f f 0 0 ) == 0) {
+ c u r r e n t _ t h r e a d _ i n f o () � > l c o u n t ++;
+ }
+}

. . . .

# d e f i n e s p i n _ l o c k ( l o c k ) \
do { \

+ _ c o u n t _ l o c k ( ) ; \
p r e e m p t _ d i s a b l e ( ) ; \
_ r a w _ s p i n _ l o c k ( l o c k ) ; \

} whi le ( 0 )

Figure 1: Lock Counting Code

i f ( g e t _ l c o u n t (& l c o u n t 1 ) != 0) {
p e r r o r ( " g e t _ l c o u n t 1 f a i l e d \ n " ) ;
e x i t ( � 1) ;

}
w r i t e ( fd , buf , 4 0 9 6 ) ;
i f ( g e t _ l c o u n t (& l c o u n t 2 ) != 0) {

p e r r o r ( " g e t _ l c o u n t 2 f a i l e d \ n " ) ;
e x i t ( � 1) ;

}

Figure 2: Lock Counting Test Code

that reads the lock count before and after the
write() system call.

4K Buffer Locks Acquired
0 19
1 11
2 10
3 11
4 10
5 10
6 10
7 10
8 16
9 10

Average 11.7

Table 2: Locks acquired during 4K writes

Table 2 shows the number of locks acquired
during each 4K write measured on a 2-way
Pentinum IV HT system running 2.6.0 kernel.
The first write has a lock acquisition count of
19 and an average of 11.7 lock round-trips per
4K write. This does not count locks associ-
ated with I/O completion handling which is
done from interrupt context. While this indi-
cates scalability of the code, we still need to

1 s t r u c t f i l e * f g e t ( unsigned i n t fd )
2 {
3 s t r u c t f i l e * f i l e ;
4 s t r u c t f i l e s _ s t r u c t * f i l e s =
5 c u r r e n t � > f i l e s ;
6
7 r e a d _ l o c k (& f i l e s � > f i l e _ l o c k ) ;
8 f i l e = f c h e c k ( fd ) ;
9 i f ( f i l e )
10 g e t _ f i l e ( f i l e ) ;
11 r e a d _ u n l o c k (& f i l e s � > f i l e _ l o c k ) ;
12 re turn f i l e ;
13 }

Figure 3: fget() Implementation

analyze this to see which locks are acquired in
such hot path and check if very small adjacent
critical sections can be collapsed into one. The
modular nature of some the kernel layers may
however make that impossible without affect-
ing readability of code.

2.2 Refcounting in Hot Path

As described in Section 2.1, atomic opera-
tions can be costly. In this section, we dis-
cuss such an issue that was addressed dur-
ing the development of the 2.6 kernel. An-
drew Morton [Morton03a] pointed out that in
2.5.65-mm4 kernel, CPU cost of writing a
large amount of small chunks of data to an ext2
file is quite high on uniprocessor systems and
takes nearly twice again as long on SMP. It also
showed that a large amount of overheads there
were coming fromfget() andfput() rou-
tines. A further look at Figure 3 shows how
fget() was implemented in 2.5.65 kernel.

Both read_lock() andread_unlock()
involve expensive atomic operations. So,
even if there is no contention for->file_
lock , the atomic operations hurt perfor-
mance [McKenney03a]. Since most programs
do not share their file-descriptor tables, the
reader-writer lock is usually not really neces-
sary. The lock need only be acquired when the
reference count of thefile structure indicates
sharing. We optimized this as shown in Fig-
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1 s t r u c t f i l e * f g e t _ l i g h t ( unsigned i n t fd ,
2 i n t * f p u t _ n e e d e d )
3 {
4 s t r u c t f i l e * f i l e ;
5 s t r u c t f i l e s _ s t r u c t * f i l e s = c u r r e n t � > f i l e s ;
6
7 * f p u t _ n e e d e d = 0 ;
8 i f ( l i k e l y ( ( a t o m i c _ r e a d (& f i l e s � >c o u n t )
9 == 1 ) ) ) {

10 f i l e = f c h e c k ( fd ) ;
11 } e l s e {
12 r e a d _ l o c k (& f i l e s � > f i l e _ l o c k ) ;
13 f i l e = f c h e c k ( fd ) ;
14 i f ( f i l e ) {
15 g e t _ f i l e ( f i l e ) ;
16 * f p u t _ n e e d e d = 1 ;
17 }
18 r e a d _ u n l o c k (& f i l e s � > f i l e _ l o c k ) ;
19 }
20 re turn f i l e ;
21 }

Figure 4: fget_light() Implementation

ure 4.

By optimizing the fast path to avoid atomic
operation, we reduced the system time use
by 11.2% in a UP kernel while running
Andrew Morton’s micro-benchmark with the
commanddd if=/dev/zero of=foo bs=

1 count=1M . The complete results measured
in a 4-CPU 700MHz Pentium III Xeon sys-
tem with 1MB L2 cache and 512MB RAM is
shown in Table 3

Kernel sys time Std Dev

2.5.66 UP 2.104 0.028
2.5.66-file UP 1.867 0.023
2.5.66 SMP 2.976 0.019
2.5.66-file SMP 2.719 0.026

Table 3: fget_light() results

However, the reader-writer lock must still be
acquired infget_light() fast path when
the file descriptor table is shared. This is now
being further optimized using RCU to make
the file descriptor lookup fast path completely
lock-free. Optimizing file descriptor look-up in
shared file descriptor table will improve perfor-
mance of multi-threaded applications that do
a lot of I/Os. Techniques such as this are ex-
tremely useful for improving performance in

1 s t a t i c _ _ i n l i n e _ _ void r t _ f r e e (
2 s t r u c t r t a b l e * r t )
3 {
4 c a l l _ r c u (& r t � >u . d s t . rcu_head ,
5 ( void ( * ) ( void * ) ) d s t _ f r e e ,
6 &r t � >u . d s t ) ;
7 }
8
9 s t a t i c _ _ i n l i n e _ _ void r t _ d r o p (

10 s t r u c t r t a b l e * r t )
11 {
12 i p _ r t _ p u t ( r t ) ;
13 c a l l _ r c u (& r t � >u . d s t . rcu_head ,
14 ( void ( * ) ( void * ) ) d s t _ f r e e ,
15 &r t � >u . d s t ) ;
16 }

Figure 5:dst_free() Modifications

both low-end and high-end SMP systems.

3 Denial-of-Service Attacks on De-
ferred Freeing

[McK02a] describes how RCU is used in
the IPV4 route cache to void acquiring the
per-bucket reader-writer lock during lookup
and the corresponding speed-up of route cache
lookup. This was included in the 2.5.53 ker-
nel. Later, Robert Olsson subjected a 2.5
kernel based router to DoS stress tests using
pktgen and discovered problems including
starvation of user-space execution and out-of-
memory conditions. In this section, we de-
scribe our analysis of those problems and po-
tential remedies that were experimented with.

3.1 Potential Out-of-Memory Situation

Starting with the 2.5.53 kernel, the IPv4 route
cache uses RCU to enable lock-free lookup of
the route hash table.

The code in Figure 5 shows how route cache
entries are freed. Because each route cache en-
try’s freeing is deferred bycall_rcu() , it is
not returned to its slab immediately. However
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CLONE_SKB=" c l o n e _ s k b 1 "
PKT_SIZE=" p k t _ s i z e 60 "
COUNT=" c o u n t 10000000 "
IPG=" i p g 0 "
PGDEV=/ proc / n e t / pk tgen / e t h 0
echo " C o n f i g u r i n g $PGDEV"
p g s e t "$COUNT"
p g s e t "$CLONE_SKB"
p g s e t " $PKT_SIZE "
p g s e t " $IPG "
p g s e t " f l a g IPDST_RND"
p g s e t " ds t_min 5 . 0 . 0 . 0 "
p g s e t " dst_max 5 . 2 5 5 . 2 5 5 . 2 5 5 "
p g s e t " f l o w s 32768 "
p g s e t " f l o w l e n 10 "

Figure 6: pktgen parameters

the route cache imposes a limit of total number
of in-flight entries atip_rt_max_size . If
this limit is exceeded, subsequent allocation of
route cache entries are failed. We reproduced
Robert’s experiment in a setup where we send
100,000 packets/sec to a 2.4GHz Pentium IV
Xeon 2-CPU HT system with 256MB RAM
running 2.6.0 kernel set up as a router. Fig-
ure 6 shows the parameters used inpktgen
testing. This script sends 10000000 packets to
the router with random destination addresses in
the range 5.0.0.0 to 5.255.255.255. The router
has an outgoing route set up to sink these pack-
ets. This results in a very large number of route
cache entries along with pruning of the cache
due to aging and garbage collection.

We then instrumented RCU infrastructure to
collect lengths of RCU callback batches in-
voked after grace periods and corresponding
grace period lengths. As indicated by the
graph plotted based on this instrumentation
(Figure 7), it is evident that every spike in RCU
batch length as an associated spike in RCU
grace period. This indicates that prolonged
grace periods are resulting in very large num-
bers of pending callbacks.
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Figure 7: Effect of pktgen testing on RCU

Next we used the same instrumentation to un-
derstand what causes long grace periods. We
measured total number of softirqs received
by each cpu during consecutive periods of 4
jiffies (approximately 4 milliseconds) and
plotted it along with the corresponding max-
imum RCU grace period length seen during
that period. Figure 8 shows this relationship.
It clearly shows that all peaks in RCU grace
period had corresponding peaks in number of
softirqs received during that period. This con-
clusively proves that large floods of softirqs
holds up progress in RCU. An RCU grace
period of 300 milliseconds during a 100,000
packets/sec DoS flood means that we may have
up to 30,000 route cache entries pending in
RCU subsystem waiting to be freed. This
causes us to quickly reach the route cache size
limits and overflow.

In order to avoid reaching the route cache en-
try limits, we needed to reduce the length of
RCU grace periods. We then introduced a
new mechanism namedrcu-softirq[Sarma04a]
that considers completion of a softirq handler
a quiescentstate. It introduces a new inter-
face call_rcu_bh() , which is to be used
when the RCU protected data is mostly used
from softirq handlers. The update function
will be invoked as soon as all CPUs have per-
formed a context switch or been seen in the
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Figure 8: Softirqs during pktgen testing

idle loop or in a user process or or has ex-
ited a softirq handler that it may have been
executing. The reader side of critical sec-
tion that use call_rcu_bh() for updating must
be protected byrcu_read_lock_bh() and
rcu_read_unlock_bh() . The IPv4 route
cache code was then modified to use these in-
terfaces instead. With this in place, we were
able to avoid route cache overflows at the rate
of 100,000 packets/second. At higher packet
rates, route cache overflows have been re-
ported. Further analysis is being done to de-
termine if at higher packet rates, current softirq
implementation doesn’t allow route cache up-
dates to keep up with new route entries getting
created. If this is the case, it may be neces-
sary to limit softirq execution in order to permit
user-mode execution to continue even in face
of DoS attacks.

3.2 CPU Starvation Due to softirq Load

During thepktgen testing, there was another
issue that came to light. At high softirq load,
user-space programs get starved of CPU. Fig-
ure 9 is a simple piece of code that can be used
to test this under severepktgen stress. In our
test router, it indicated user-space starvation for
periods longer that 5 seconds. Application of
the rcu-softirq patch reduced it by a few sec-
onds. In other words, introduction of quicker

g e t t i m e o f d a y (& p r e v _ t v , NULL ) ;

f o r ( ; ; ) {
g e t t i m e o f d a y (& tv , NULL ) ;
d i f f = ( t v . t v _ s e c � p r e v _ t v . t v _ s e c ) *

1000000 +
( t v . t v _ u s e c � p r e v _ t v . t v _ u s e c ) ;
i f ( d i f f > 1000000)

p r i n t f ( "%d \ n " , d i f f ) ;
p r e v _ t v = t v ;

}

Figure 9: user-space starvation test

RCU grace periods helped by reducing size of
pending RCU batches. But the overall softirq
rate remained high enough to starve user-space
programs.

4 Realtime Response

Linux has been use in realtime and embed-
ded applications for many years. These ap-
plications have either directly used Linux for
soft realtime use, or have used special envi-
ronments to provide hard realtime, while run-
ning the soft-realtime or non-realtime portions
of the application under Linux.

4.1 Hard and Soft Realtime

Realtime applications require latency guaran-
tees. For example, such an application might
require that a realtime task start running within
one millisecond of its becoming runnable. An-
drew Morton’samlat program may be used to
measure an operating system’s ability to meet
this requirement. Other applications might re-
quire that a realtime task start running within
500 microseconds of an interrupt being as-
serted.

Soft realtime applications require that these
guarantees be metalmostall the time. For ex-
ample, a building control application might re-
quire that lights be turned on within 250 mil-
liseconds of motion being detected within a
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given room. However, if this application oc-
casionally responds only within 500 millisec-
onds, no harm is likely to be done. Such an
application might require that the 250 millisec-
ond deadline be met 99.9% of the time.

In contrast, hard realtime applications require
that guaranteesalwaysbe met. Such applica-
tions may be found in avionics and other sit-
uations where lives are at stake. For example,
Stealth aircraft are aerodynamically unstable in
all three axes, and require frequent computer-
controlled attitude adjustments. If the aircraft
fails to receive such adjustments over a period
of two seconds, it will spin out of control and
crash [Rich94]. These sorts of applications
have traditionally run on “bare metal” or on a
specialized realtime OS (RTOS).

Therefore, while one can validate a soft-
realtime OS by testing it, a hard-realtime OS
must be validated by inspection and testing
of all non-preemptible code paths. Any non-
preemptible code path, no matter how obscure,
can destroy an OS’s hard-realtime capabilities.

4.2 Realtime Design Principles

This section will discuss how preemption,
locking, RCU, and system size affect realtime
response.

4.2.1 Preemption

In theory, neither hard nor soft realtime re-
quire preemption. In fact, the realtime systems
that one of the authors (McKenney) worked on
in the 1980s were all non-preemptible. How-
ever, in practice, preemption can greatly re-
duce the amount of work required to design
and validate a hard realtime system, because
while one must validateall code paths in a non-
preemptible system, one need only validate all
non-preemptiblecode paths in a preemptible

system.

4.2.2 Locking

The benefits of preemption are diluted by
locking, since preemption must be suppressed
across any code path that holds a spinlock, even
in UP kernels. Since most long-running oper-
ations are carried out under the protection of
at least one spinlock, the ability of preemption
to reduce the Linux kernel’s hard realtime re-
sponse is limited.

That said, the fact that spinlock critical sec-
tions degrade realtime response means that the
needs of the hard realtime Linux community
are aligned with those of the SMP-scalability
Linux community.

Traditionally, hard-realtime systems have run
on uniprocessor hardware. The advent of hy-
perthreading and multicore dies have provided
cheap SMP, which is likely to start finding its
way into realtime and embedded systems. It is
therefore reasonable to look at SMP locking’s
effects on realtime response.

Obviously, a system suffering from heavy lock
contention need not apply for the job of a re-
altime OS. However, if lock contention is suf-
ficiently low, SMP locking need not preclude
hard-realtime response. This is shown in Fig-
ure 10, where the maximum “train wreck” lock
spin time is limited to:

Smax = (NCPU − 1)Cmax (1)

whereNCPU is the number of CPUs on the
system andCmax is the maximum critical sec-
tion length for the lock in question. This maxi-
mum lock spin time holds as long as each CPU
spends at leastSmax time outside of the critical
section.

It is not yet clear whether Linux’s lock con-
tention can be reduced sufficiently to make this
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Max CritSect
Duration

Maximum "Train Wreck" Duration

Figure 10: SMP Locking and Realtime Re-
sponse

level of hard realtime guarantee, however, this
is another example of a case where improved
realtime response benefits SMP scalability and
vice versa.

4.2.3 RCU

Towards the end of 2003, Robert Love and
Andrew Morton noted that the Linux 2.6 ker-
nel’s RCU implementation could degrade re-
altime response. This degradation is due to the
fact that, when under heavy load, literally thou-
sands of RCU callbacks will be invoked at the
end of a grace period, as shown in Figure 11.

The following three approaches can each elim-
inate this RCU-induced degradation:

1. If the batch of RCU callbacks is too
large, hand the excess callbacks to a pre-
emptible per-CPU kernel daemon for in-
vocation. The fact that these daemons are
preemptible eliminates the degradation.

2. On uniprocessors, in cases where pointers
to RCU-protected elements are not held
across calls to functions that remove those
elements, directly invoke the RCU call-
back from within thecall_rcu_rt()
primitive, which is identical to thecall_
rcu() primtive in SMP kernels. The
separatecall_rcu_rt() primitive is
necessary because direct invocation is not
safe in all cases.

3. Throttling RCU callback invocation so
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Figure 11: RCU and Realtime Response

that only a limited number are invoked at
a given time, with the remainder being in-
voked later, after there has been an oppor-
tunity for realtime tasks to run.

The throttling approach seems most attrac-
tive currently, but additional testing will be
needed after other realtime degradations are re-
solved. The implementation of each approach
and performance results are presented else-
where [Sarma04b].

4.2.4 System Size

The realtime response of the Linux 2.6 ker-
nel depends on the hardware and software con-
figuration. For example, the current VGA
driver degrades realtime response, with multi-
millisecond scheduling delays due to screen
blanking.

In addition, if there are any non-O(1) oper-
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ations in the kernel, then increased configu-
ration sizes will result in increased realtime
scheduling degradations. For example, in SMP
systems, the duration of the worst-case lock-
ing “train wreck” increases with the number of
CPUs. Once this train-wreck duration exceeds
the minimum time between release and later
acquisition of the lock in question, the worst-
case scheduling delay becomes unbounded.
Other examples include the number of tasks
and the duration of the tasklist walk result-
ing from ls /proc , the number of processes
mapping a given file and the time required to
truncate that file, and so on.

In the near term, it seems likely that realtime-
scheduling guarantees would only apply to a
restricted configuration of the Linux kernel,
running a restricted workload.

4.3 Linux Realtime Options

The Linux community can choose from the
following options when charting its course
through the world of realtime computing:

1. “Just say no” to realtime. It may well
be advisable for Linux to limit how much
realtime support will be provided, but
given recent measurements showing soft-
realtime scheduling latencies of a few
hundredmicroseconds, it seems clear that
Linux has a bright future in the world of
realtime computing.

2. Realtime applications run only on UP
kernels. In the past, realtime systems
have overwhelmingly been single-CPU
systems, it is much easier to provide re-
altime scheduling guarantees on UP sys-
tems. However, the advent of cheap SMP
hardware in the form of hyperthreading
and multi-CPU cores makes it quite likely
that the realtime community will choose
to support SMP sooner rather than later.

One possibility would be to provide
tighter guarantees on UP systems, and,
should Linux provide hard realtime sup-
port, to provide this support only on UP
systems. Another possibility would be to
dedicate a single CPU of an SMP system
to hard realtime.

3. Realtime applications run only on small
hardware configurations with small num-
bers of tasks, mappings, open files, and so
on. This seems to be an eminently reason-
able position, especially given that dirt-
cheap communications hardware is avail-
able, allowing a small system (perhaps on
a PCI card) to handle the realtime pro-
cessing, with a large system doing non-
realtime tasks requiring larger configura-
tions.

4. Realtime applications use only those de-
vices whose drivers are set up to provide
realtime response. This also seems to
be an eminently reasonable restriction, as
open-source drivers can be rewritten to of-
fer realtime response, if desired.

5. Realtime applications use only those ser-
vices able to provide the needed response-
time guarantees. For example, an appli-
cation that needs to respond in 500 mi-
croseconds is not going to be doing any
disk I/O, since disks cannot respond this
quickly. Any data needed by such an
application must be obtained from much
faster devices or must be preloaded into
main memory.

It is not clear that Linux will be able to address
each and every realtime requirement, nor is it
clear that this would even be desirable. How-
ever, it was not all that long ago that common
wisdom held that it was not feasible to address
both desktop and high-end server requirements
with a single kernel source base. Linux is well



490 • Linux Symposium 2004 • Volume Two

on its way to proving this common wisdom to
be quite wrong.

It will therefore be quite interesting to see what
realtime common wisdom can be overturned in
the next few years.

5 Future Plans

With the 2.6 kernel behind us, a number of new
scalability issues are currently being investi-
gated. In this section, we outline a few of them
and the implications they might have.

5.1 Parallel Directory Entry Cache Updates

In the 2.4 kernel, the directory entry cache was
protected by a single global lockdcache_
lock . In the 2.6 kernel, the look-ups
into the cache were made lock-free by us-
ing RCU [Linder02a]. We also showed in
[Linder02a] that for several benchmarks, only
25% of acquisitions ofdcache_lock is for
updating the cache. This allowed us to achieve
significant performance improve by avoiding
the lock during look-up while keeping the up-
dates serialized usingdcache_lock . How-
ever recent benchmarking on large SMP sys-
tems have shown thatdcache_lock acqui-
sitions are proving to be costly. Profile for a
mutli-user benchmark on a 16-CPU Pentium
IV Xeon with HT indicates this:

Function Profile Counts
.text.lock.dec_and_lock 34375.8333
atomic_dec_and_lock 1543.3333
.text.lock.libfs 800.7429
.text.lock.dcache 611.7809
__down 138.4956
__d_lookup 93.2842
dcache_readdir 70.0990
do_page_fault 45.0411
link_path_walk 9.4866

On further investigation, it is clear that.text.

lock.dec_and_lock cost is due to frequent

dput() which uses atomic_dec_and_

test() to acquiredcache_lock . With the
multi-user benchmark creating and destroying
large number of files in/proc filesystem, the
cost of corresponding updates to the directory
entry cache is hurting us. During the 2.7 kernel
development, we need to look at allowing par-
allel updates to the directory entry cache. We
attempted this [Linder02a], but it was far too
complex and too late in the 2.5 kernel develop-
ment effort to permit such a high-risk change.

5.2 Lock-free TCP/UDP Hash Tables

In the Linux kernel, INET family sockets
use hash tables to maintain the corresponding
struct sock s. When an incoming packet
arrives, this allows efficient lookup of these
per-bucket locks. On a large SMP system with
tens of thousands on tcp and ip header in-
formation. TCP usestcp_ehash for con-
nected sockets,tcp_listening_hash for
listening sockets andtcp_bhash for bound
sockets. On a webserver serving large num-
ber of simultaneous connections, lookups into
tcp_ehash table are very frequent. Cur-
rently we use a per-bucket reader-writer lock
to protect the hash tables andtcp_ehash
lookups are protected by acquiring the reader
side of these per-bucket locks. The hash table
makes CPU-CPU collisions on hash chains un-
likely and prevents the reader-writer lock from
providing any possible performance benefit.
Also, on a large SMP system with tens of thou-
sands of simultaneous connection, the cost of
atomic operation duringread_lock() and
read_unlock() as well as the bouncing of
cache line containing the lock becomes a fac-
tor. By using RCU to protect the hash tables,
the lookups can be done without acquiring the
per-bucket lock. This will benefit bot low-end
and high-end SMP systems. That said, issues
similar to the ones discussed in Section 3 will
need to be addressed. RCU can be stressed us-
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ing a DoS flood that opens and closes a lot of
connections. If the DoS flood prevents user-
mode execution, it can also prevent RCU grace
periods from happening frequently, in which
case, a large number ofsock structures can
be pending in RCU waiting to be free lead-
ing to potential out-of-memory situations. The
rcu-softirqpatch discussed in Section 3 will be
helpful in this case too.

5.3 Balancing Interrupt and Non-Interrupt
Loads

In Section 3.2, we discussed user programs
getting starved of CPU time under very high
network load. In 2001, Ingo Molnar attempted
limiting hardware interrupts based on num-
ber of such interrupts serviced during one
jiffy [Molnar01a]. Around the same time, Ja-
mal Hadi et al. demonstrated the usefulness
of limiting interrupts throughNAPI infrastruc-
ture [Jamal01a]. NAPI is now a part of 2.6
kernel and it is supported by a number of net-
work drivers. WhileNAPI limits hardware in-
terrupts, it continues to raise softirqs for pro-
cessing of incoming packets while polling. So,
under high network load, we see user processes
starved of CPU. This has been seen withNAPI
(Robert Olsson’s lab) as well as withoutNAPI
(in our lab). With extremely high network load
like DoS stress, softirqs completely starve user
processes. Under such situation, a system ad-
ministrator may find it difficult to take log into
a router and take necessary steps to counter
the DoS attack. Another potential problem
is that network I/O intensive benchmarks like
SPECWeb99™ can have user processes stalled
due to high softirq load. We need to look for a
new framework that allows us to balance CPU
usage between softirqs and process context too.
One potential idea being considered is to mea-
sure softirq processing time and mitigate it for
later if it exceeds its tunable quota. Variations
of this need to be evaluated during the devel-
opment of 2.7 kernel.

5.4 Miscellaneous

1. Lock-free dcache Path Walk: Given a file
name, the Linux kernel uses a path walk-
ing algorithm to look-up thedentry
corresponding to each component of the
file name and traverse down thedentry
tree to eventually arrive at thedentry
of the specified file name. In 2.6 ker-
nel, we implemented a mechanism to
look-up each path component in dcache
without holding the globaldcache_
lock [Linder02a]. However this requires
acquiring a per-dentry lock when we
have a successful look-up in dcache. The
common case of paths starting at the root
directory results in contention on the root
dentry on large SMP systems. Also,
the per-dentry lock acquisition happens
in the fast path (__d_lookup() ) and
avoiding this will likely provide nice per-
formance benefits.

2. Lock-free Tasklist Walk: The system-
wide list of tasks in the Linux ker-
nel is protected by a reader-writer lock
tasklist_lock . There are a number
of occasions when the list of tasks need
to be traversed while holding the reader
side of tasklist_lock . In systems
with very large number of tasks, the read-
ers traversing the task list can starve out
writers. One approach to solving this is
to use RCU to allow lock-free walking of
the task list under limited circumstances.
[McKenney03a] describes one such ex-
periment.

3. Cache Thrashing Measurements and Min-
imization: As we run Linux on larger
SMP and NUMA systems, the effect of
cache thrashing becomes more prominent.
It would prudent to analyze cache behav-
ior of performance critical code in the
Linux kernel using various performance
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monitoring tools. Once we identify code
showing non-optimal cache behavior, re-
designing some of it would help improve
performance.

4. Real-time Work—Fix Excessively Long
Code Paths: With Linux increasingly
becoming preferred OS for many soft-
realtime systems, we can further improve
its usefulness by identifying excessively
long code paths and fixing them.

6 Conclusions

In 2.6 kernel, we have solved a number of scal-
ability problems without significantly sacrific-
ing performance in small systems. A single
code base supporting so many different work-
loads and architectures is an important advan-
tages of the Linux kernel has over many other
operating systems. Through this analysis, we
have continued the process of evaluating scal-
ability enhancements from many possible an-
gles. This will allow us to run Linux better on
many different types of system—large SMP to
small TCP/IP routers.

We are continuing to work on some of the core
issues discussed in the paper including lock-
ing overheads, RCU DoS attack prevention and
softirq balancing. We expect to do some of this
work in the 2.7 kernel timeframe.
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