
Version ManagementwithCVSfor cvs 1.8.1Per Cederqvist et al

Copyright c
 1992, 1993 Signum Support ABPermission is granted to make and distribute verbatim copies of this manual provided the copyrightnotice and this permission notice are preserved on all copies.Permission is granted to copy and distribute modi�ed versions of this manual under the conditionsfor verbatim copying, provided also that the section entitled \GNU General Public License" isincluded exactly as in the original, and provided that the entire resulting derived work is distributedunder the terms of a permission notice identical to this one.Permission is granted to copy and distribute translations of this manual into another language,under the above conditions for modi�ed versions, except that the section entitled \GNU GeneralPublic License" and this permission notice may be included in translations approved by the FreeSoftware Foundation instead of in the original English.

About this manual 1About thismanualUp to this point, one of the weakest parts of cvs has been the documentation. cvs is a complexprogram. Previous versions of the manual were written in the manual page format, which is notreally well suited for such a complex program.When writing this manual, I had several goals in mind:� No knowledge of rcs should be necessary.� No previous knowledge of revision control software should be necessary. All terms, such asrevision numbers, revision trees and merging are explained as they are introduced.� The manual should concentrate on the things cvs users want to do, instead of what the cvscommands can do. The �rst part of this manual leads you through things you might want todo while doing development, and introduces the relevant cvs commands as they are needed.� Information should be easy to �nd. In the reference manual in the appendices almost allinformation about every cvs command is gathered together. There is also an extensive index,and a lot of cross references.This manual was contributed by Signum Support AB in Sweden. Signum is yet another in thegrowing list of companies that support free software. You are free to copy both this manual andthe cvs program. See Appendix E [Copying], page 109, for the details. Signum Support o�erssupport contracts and binary distribution for many programs, such as cvs, gnu Emacs, the gnuC compiler and others. Write to us for more information.Signum Support ABBox 2044S-580 02 LinkopingSwedenEmail: info@signum.sePhone: +46 (0)13 - 21 46 00Fax: +46 (0)13 - 21 47 00Another company selling support for cvs is Cyclic Software, web: http://www.cyclic.com/,email: info@cyclic.com.Checklist for the impatient readercvs is a complex system. You will need to read the manual to be able to use all of its capabilities.There are dangers that can easily be avoided if you know about them, and this manual tries towarn you about them. This checklist is intended to help you avoid the dangers without readingthe entire manual. If you intend to read the entire manual you can skip this table.Binary �les cvs can handle binary �les, but you must have rcs release 5.5 or later and a releaseof gnu di� that supports the `-a'
ag (release 1.15 and later are OK). You must alsocon�gure both rcs and cvs to handle binary �les when you install them.

2 CVS|Concurrent Versions SystemKeword substitution can be a source of trouble with binary �les. See Chapter 16[Keyword substitution], page 57, for solutions.The admin commandUncareful use of the admin command can cause cvs to cease working. See Section A.6[admin], page 71, before trying to use it.CreditsRoland Pesch, Cygnus Support <pesch@cygnus.com> wrote the manual pages which were dis-tributed with cvs 1.3. Appendix A and B contain much text that was extracted from them. Healso read an early draft of this manual and contributed many ideas and corrections.The mailing-list info-cvs is sometimes informative. I have included information from postingsmade by the following persons: David G. Grubbs <dgg@think.com>.Some text has been extracted from the man pages for rcs.The cvs faq (see Chapter 1 [What is CVS?], page 3) by David G. Grubbs has been used as acheck-list to make sure that this manual is as complete as possible. (This manual does however notinclude all of the material in the faq). The faq contains a lot of useful information.In addition, the following persons have helped by telling me about mistakes I've made:Roxanne Brunskill <rbrunski@datap.ca>, Kathy Dyer <dyer@phoenix.ocf.llnl.gov>, KarlPingle <pingle@acuson.com>, Thomas A Peterson <tap@src.honeywell.com>, Inge Wallin<ingwa@signum.se>, Dirk Koschuetzki <koschuet@fmi.uni-passau.de> and Michael Brown<brown@wi.extrel.com>.BUGSThis manual is known to have room for improvement. Here is a list of known de�ciencies:� In the examples, the output from cvs is sometimes displayed, sometimes not.� The input that you are supposed to type in the examples should have a di�erent font than theoutput from the computer.� This manual should be clearer about what �le permissions you should set up in the repository,and about setuid/setgid.� Some of the chapters are not yet complete. They are noted by comments in the `cvs.texinfo'�le.� This list is not complete. If you notice any error, omission, or something that is unclear, pleasesend mail to bug-cvs@prep.ai.mit.edu.I hope that you will �nd this manual useful, despite the above-mentioned shortcomings.Linkoping, October 1993Per Cederqvist

Chapter 1: What is CVS? 31 What is CVS?cvs is a version control system. Using it, you can record the history of your source �les.For example, bugs sometimes creep in when software is modi�ed, and you might not detectthe bug until a long time after you make the modi�cation. With cvs, you can easily retrieve oldversions to see exactly which change caused the bug. This can sometimes be a big help.You could of course save every version of every �le you have ever created. This would howeverwaste an enormous amount of disk space. cvs stores all the versions of a �le in a single �le in aclever way that only stores the di�erences between versions.cvs also helps you if you are part of a group of people working on the same project. It is alltoo easy to overwrite each others' changes unless you are extremely careful. Some editors, likegnu Emacs, try to make sure that the same �le is never modi�ed by two people at the same time.Unfortunately, if someone is using another editor, that safeguard will not work. cvs solves thisproblem by insulating the di�erent developers from each other. Every developer works in his owndirectory, and cvs merges the work when each developer is done.cvs started out as a bunch of shell scripts written by Dick Grune, posted to comp.sources.unixin the volume 6 release of December, 1986. While no actual code from these shell scripts is presentin the current version of cvs much of the cvs con
ict resolution algorithms come from them.In April, 1989, Brian Berliner designed and coded cvs. Je� Polk later helped Brian with thedesign of the cvs module and vendor branch support.You can get cvs via anonymous ftp from a number of sites, for instance prep.ai.mit.edu in`pub/gnu'.There is a mailing list for cvs where bug reports can be sent, questions can be asked, anFAQ is posted, and discussion about future enhancements to cvs take place. To submit a mes-sage to the list, write to <info-cvs@prep.ai.mit.edu>. To subscribe or unsubscribe, write to<info-cvs-request@prep.ai.mit.edu>. Please be speci�c about your email address.CVS is not: : :cvs can do a lot of things for you, but it does not try to be everything for everyone.cvs is not a build system.Though the structure of your repository and modules �le interact with your buildsystem (e.g. `Makefile's), they are essentially independent.cvs does not dictate how you build anything. It merely stores �les for retrieval in atree structure you devise.cvs does not dictate how to use disk space in the checked out working directories.If you write your `Makefile's or scripts in every directory so they have to know therelative positions of everything else, you wind up requiring the entire repository to bechecked out. That's simply bad planning.

4 CVS|Concurrent Versions SystemIf you modularize your work, and construct a build system that will share �les (vialinks, mounts, VPATH in `Makefile's, etc.), you can arrange your disk usage howeveryou like.But you have to remember that any such system is a lot of work to construct andmaintain. cvs does not address the issues involved. You must use your brain and acollection of other tools to provide a build scheme to match your plans.Of course, you should place the tools created to support such a build system (scripts,`Makefile's, etc) under cvs.cvs is not a substitute for management.Your managers and project leaders are expected to talk to you frequently enough tomake certain you are aware of schedules, merge points, branch names and release dates.If they don't, cvs can't help.cvs is an instrument for making sources dance to your tune. But you are the piperand the composer. No instrument plays itself or writes its own music.cvs is not a substitute for developer communication.When faced with con
icts within a single �le, most developers manage to resolve themwithout too much e�ort. But a more general de�nition of \con
ict" includes problemstoo di�cult to solve without communication between developers.cvs cannot determine when simultaneous changes within a single �le, or across a wholecollection of �les, will logically con
ict with one another. Its concept of a con
ict ispurely textual, arising when two changes to the same base �le are near enough to spookthe merge (i.e. diff3) command.cvs does not claim to help at all in �guring out non-textual or distributed con
icts inprogram logic.For example: Say you change the arguments to function X de�ned in �le `A'. At the sametime, someone edits �le `B', adding new calls to function X using the old arguments.You are outside the realm of cvs's competence.Acquire the habit of reading specs and talking to your peers.cvs is not a con�guration management system.cvs is a source control system. The phrase \con�guration management" is a marketingterm, not an industry-recognized set of functions.A true \con�guration management system" would contain elements of the following:� Source control.� Dependency tracking.� Build systems (i.e. What to build and how to �nd things during a build. What isshared? What is local?)� Bug tracking.� Automated Testing procedures.� Release Engineering documentation and procedures.� Tape Construction.� Customer Installation.� A way for users to run di�erent versions of the same software on the same host atthe same time.cvs provides only the �rst.This section is taken from release 2.3 of the cvs faq.

Chapter 2: Basic concepts 52 Basic conceptscvs stores all �les in a centralized repository : a directory (such as `/usr/local/cvsroot' or`user@remotehost:/usr/local/cvsroot') which is populated with a hierarchy of �les and direc-tories. (see Section 4.5 [Remote repositories], page 15 for information about keeping the repositoryon a remote machine.)Normally, you never access any of the �les in the repository directly. Instead, you use cvscommands to get your own copy of the �les, and then work on that copy. When you've �nished aset of changes, you check (or commit) them back into the repository.The �les in the repository are organized in modules. Each module is made up of one or more�les, and can include �les from several directories. A typical usage is to de�ne one module perproject.2.1 Revision numbersEach version of a �le has a unique revision number. Revision numbers look like `1.1', `1.2',`1.3.2.2' or even `1.3.2.2.4.5'. A revision number always has an even number of period-separateddecimal integers. By default revision 1.1 is the �rst revision of a �le. Each successive revision isgiven a new number by increasing the rightmost number by one. The following �gure displays afew revisions, with newer revisions to the right.+-----+ +-----+ +-----+ +-----+ +-----+! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 !+-----+ +-----+ +-----+ +-----+ +-----+cvs is not limited to linear development. The revision tree can be split into branches, whereeach branch is a self-maintained line of development. Changes made on one branch can easily bemoved back to the main trunk.Each branch has a branch number, consisting of an odd number of period-separated decimalintegers. The branch number is created by appending an integer to the revision number where thecorresponding branch forked o�. Having branch numbers allows more than one branch to be forkedo� from a certain revision.

6 CVS|Concurrent Versions SystemAll revisions on a branch have revision numbers formed by appending an ordinal number to thebranch number. The following �gure illustrates branching with an example.+-------------+Branch 1.2.2.3.2 -> ! 1.2.2.3.2.1 !/ +-------------+//+---------+ +---------+ +---------+ +---------+Branch 1.2.2 -> _! 1.2.2.1 !----! 1.2.2.2 !----! 1.2.2.3 !----! 1.2.2.4 !/ +---------+ +---------+ +---------+ +---------+//+-----+ +-----+ +-----+ +-----+ +-----+! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk+-----+ +-----+ +-----+ +-----+ +-----+!!! +---------+ +---------+ +---------+Branch 1.2.4 -> +---! 1.2.4.1 !----! 1.2.4.2 !----! 1.2.4.3 !+---------+ +---------+ +---------+The exact details of how the branch number is constructed is not something you normally needto be concerned about, but here is how it works: When cvs creates a branch number it picks the�rst unused even integer, starting with 2. So when you want to create a branch from revision 6.4 itwill be numbered 6.4.2. All branch numbers ending in a zero (such as 6.4.0) are used internally bycvs (see Section D.1 [Magic branch numbers], page 107). The branch 1.1.1 has a special meaning.See Chapter 12 [Tracking sources], page 49.2.2 Versions, revisions and releasesA �le can have several versions, as described above. Likewise, a software product can haveseveral versions. A software product is often given a version number such as `4.1.1'.Versions in the �rst sense are called revisions in this document, and versions in the second senseare called releases. To avoid confusion, the word version is almost never used in this document.

Chapter 3: A sample session 73 A sample sessionThis section describes a typical work-session using cvs. It assumes that a repository is set up(see Chapter 4 [Repository], page 11).Suppose you are working on a simple compiler. The source consists of a handful of C �les anda `Makefile'. The compiler is called `tc' (Trivial Compiler), and the repository is set up so thatthere is a module called `tc'.3.1 Getting the sourceThe �rst thing you must do is to get your own working copy of the source for `tc'. For this, youuse the checkout command:$ cvs checkout tcThis will create a new directory called `tc' and populate it with the source �les.$ cd tc$ ls tcCVS Makefile backend.c driver.c frontend.c parser.cThe `CVS' directory is used internally by cvs. Normally, you should not modify or remove anyof the �les in it.You start your favorite editor, hack away at `backend.c', and a couple of hours later you haveadded an optimization pass to the compiler. A note to rcs and sccs users: There is no need to lockthe �les that you want to edit. See Chapter 6 [Multiple developers], page 23 for an explanation.3.2 Committing your changesWhen you have checked that the compiler is still compilable you decide to make a new versionof `backend.c'.$ cvs commit backend.ccvs starts an editor, to allow you to enter a log message. You type in \Added an optimizationpass.", save the temporary �le, and exit the editor.The environment variable $CVSEDITOR determines which editor is started. If $CVSEDITOR isnot set, then if the environment variable $EDITOR is set, it will be used. If both $CVSEDITOR and$EDITOR are not set then the editor defaults to vi. If you want to avoid the overhead of starting aneditor you can specify the log message on the command line using the `-m'
ag instead, like this:$ cvs commit -m "Added an optimization pass" backend.c

8 CVS|Concurrent Versions System3.3 Cleaning upBefore you turn to other tasks you decide to remove your working copy of tc. One acceptableway to do that is of course$ cd ..$ rm -r tcbut a better way is to use the release command (see Section A.15 [release], page 88):$ cd ..$ cvs release -d tcM driver.c? tcYou have [1] altered files in this repository.Are you sure you want to release (and delete) module `tc': n** `release' aborted by user choice.The release command checks that all your modi�cations have been committed. If historylogging is enabled it also makes a note in the history �le. See Section B.9 [history �le], page 102.When you use the `-d'
ag with release, it also removes your working copy.In the example above, the release command wrote a couple of lines of output. `? tc' meansthat the �le `tc' is unknown to cvs. That is nothing to worry about: `tc' is the executablecompiler, and it should not be stored in the repository. See Section B.8 [cvsignore], page 101, forinformation about how to make that warning go away. See Section A.15.2 [release output], page 89,for a complete explanation of all possible output from release.`M driver.c' is more serious. It means that the �le `driver.c' has been modi�ed since it waschecked out.The release command always �nishes by telling you how many modi�ed �les you have in yourworking copy of the sources, and then asks you for con�rmation before deleting any �les or makingany note in the history �le.You decide to play it safe and answer n RET when release asks for con�rmation.3.4 Viewing di�erencesYou do not remember modifying `driver.c', so you want to see what has happened to that �le.$ cd tc$ cvs diff driver.cThis command runs diff to compare the version of `driver.c' that you checked out with yourworking copy. When you see the output you remember that you added a command line option thatenabled the optimization pass. You check it in, and release the module.

Chapter 3: A sample session 9$ cvs commit -m "Added an optimization pass" driver.cChecking in driver.c;/usr/local/cvsroot/tc/driver.c,v <-- driver.cnew revision: 1.2; previous revision: 1.1done$ cd ..$ cvs release -d tc? tcYou have [0] altered files in this repository.Are you sure you want to release (and delete) module `tc': y

10 CVS|Concurrent Versions System

Chapter 4: The Repository 114 TheRepositoryFigure 3 below shows a typical setup of a repository. Only directories are shown below./usr|+--local| || +--cvsroot| | || | +--CVSROOT| (administrative files)|+--gnu| || +--diff| | (source code to gnu diff)| || +--rcs| | (source code to rcs)| || +--cvs| (source code to cvs)|+--yoyodyne|+--tc

12 CVS|Concurrent Versions System| || +--man| || +--testing|+--(other Yoyodyne software)There are a couple of di�erent ways to tell cvs where to �nd the repository. You can name therepository on the command line explicitly, with the -d (for "directory") option:cvs -d /usr/local/cvsroot checkout yoyodyne/tcOr you can set the $CVSROOT environment variable to an absolute path to the root of therepository, `/usr/local/cvsroot' in this example. To set $CVSROOT, all csh and tcsh users shouldhave this line in their `.cshrc' or `.tcshrc' �les:setenv CVSROOT /usr/local/cvsrootsh and bash users should instead have these lines in their `.profile' or `.bashrc':CVSROOT=/usr/local/cvsrootexport CVSROOTA repository speci�ed with -d will override the $CVSROOT environment variable. Once you'vechecked a working copy out from the repository, it will remember where its repository is (theinformation is recorded in the `CVS/Root' �le in the working copy).The -d option and the `CVS/Root' �le both override the $CVSROOT environment variable; however,CVS will complain if the `-d' argument and the `CVS/Root' �le disagree.There is nothing magical about the name `/usr/local/cvsroot'. You can choose to place therepository anywhere you like. See Section 4.5 [Remote repositories], page 15 to learn how therepository can be on a di�erent machine than your working copy of the sources.The repository is split in two parts. `$CVSROOT/CVSROOT' contains administrative �les for cvs.The other directories contain the actual user-de�ned modules.4.1 User modules$CVSROOT

Chapter 4: The Repository 13|+--yoyodyne| || +--tc| | |+--Makefile,v+--backend.c,v+--driver.c,v+--frontend.c,v+--parser.c,v+--man| || +--tc.1,v|+--testing|+--testpgm.t,v+--test2.t,vThe �gure above shows the contents of the `tc' module inside the repository. As you can seeall �le names end in `,v'. The �les are history �les. They contain, among other things, enoughinformation to recreate any revision of the �le, a log of all commit messages and the user-name ofthe person who committed the revision. cvs uses the facilities of rcs, a simpler version controlsystem, to maintain these �les. For a full description of the �le format, see the man page rcs�le(5).4.1.1 File permissionsAll `,v' �les are created read-only, and you should not change the permission of those �les. Thedirectories inside the repository should be writable by the persons that have permission to modifythe �les in each directory. This normally means that you must create a UNIX group (see group(5))consisting of the persons that are to edit the �les in a project, and set up the repository so that itis that group that owns the directory.

14 CVS|Concurrent Versions SystemThis means that you can only control access to �les on a per-directory basis.cvs tries to set up reasonable �le permissions for new directories that are added inside the tree,but you must �x the permissions manually when a new directory should have di�erent permissionsthan its parent directory.Since cvs was not written to be run setuid, it is unsafe to try to run it setuid. You cannot usethe setuid features of rcs together with cvs.4.2 The administrative �lesThe directory `$CVSROOT/CVSROOT' contains some administrative �les. See Appendix B [Admin-istrative �les], page 95, for a complete description. You can use cvs without any of these �les, butsome commands work better when at least the `modules' �le is properly set up.The most important of these �les is the `modules' �le. It de�nes all modules in the repository.This is a sample `modules' �le.CVSROOT CVSROOTmodules CVSROOT modulescvs gnu/cvsrcs gnu/rcsdiff gnu/difftc yoyodyne/tcThe `modules' �le is line oriented. In its simplest form each line contains the name of themodule, whitespace, and the directory where the module resides. The directory is a path relativeto $CVSROOT. The last for lines in the example above are examples of such lines.The line that de�nes the module called `modules' uses features that are not explained here. SeeSection B.1 [modules], page 95, for a full explanation of all the available features.4.2.1 Editing administrative �lesYou edit the administrative �les in the same way that you would edit any other module. Use`cvs checkout CVSROOT' to get a working copy, edit it, and commit your changes in the normalway.It is possible to commit an erroneous administrative �le. You can often �x the error and check ina new revision, but sometimes a particularly bad error in the administrative �le makes it impossibleto commit new revisions.4.3 Multiple repositoriesIn some situations it is a good idea to have more than one repository, for instance if you have twodevelopment groups that work on separate projects without sharing any code. All you have to do

Chapter 4: The Repository 15to have several repositories is to specify the appropriate repository, using the CVSROOT environmentvariable, the `-d' option to cvs, or (once you have checked out a working directories) by simplyallowing cvs to use the repository that was used to check out the working directory (see Chapter 4[Repository], page 11).Notwithstanding, it can be confusing to have two or more repositories.None of the examples in this manual show multiple repositories.4.4 Creating a repositorySee the instructions in the `INSTALL' �le in the cvs distribution.4.5 Remote repositoriesYour working copy of the sources can be on a di�erent machine than the repository. Generally,using a remote repository is just like using a local one, except that the format of the repositoryname is: user@hostname:/path/to/repositoryThe details of exactly what needs to be set up depend on how you are connecting to the server.4.5.1 Connecting with rshCVS uses the `rsh' protocol to perform these operations, so the remote user host needs to havea `.rhosts' �le which grants access to the local user.For example, suppose you are the user `mozart' on the local machine `anklet.grunge.com', andthe server machine is `chainsaw.brickyard.com'. On chainsaw, put the following line into the �le`.rhosts' in `bach''s home directory:anklet.grunge.com mozartThen test that rsh is working withrsh -l bach chainsaw.brickyard.com echo $PATHNext you have to make sure that rsh will be able to �nd the server. Make sure that thepath which rsh printed in the above example includes the directory containing a program namedcvs which is the server. You need to set the path in `.bashrc', `.cshrc', etc., not `.login' or`.profile'. Alternately, you can set the environment variable CVS_SERVER on the client machineto the �lename of the server you want to use, for example `/usr/local/bin/cvs-1.6'.

16 CVS|Concurrent Versions SystemThere is no need to edit inetd.conf or start a cvs server daemon.Continuing our example, supposing you want to access the module `foo' in the repository`/usr/local/cvsroot/', on machine `chainsaw.brickyard.com', you are ready to go:cvs -d bach@chainsaw.brickyard.com:/user/local/cvsroot checkout foo(The `bach@' can be omitted if the username is the same on both the local and remote hosts.)4.5.2 Direct connection with password authenticationThe cvs client can also connect to the server using a password protocol. This is particularlyuseful if using rsh is not feasible (for example, the server is behind a �rewall), and Kerberos alsois not available.To use this method, it is necessary to make some adjustments on both the server and clientsides.4.5.2.1 Setting up the server for password authenticationOn the server side, the �le `/etc/inetd.conf' needs to be edited so inetd knows to run thecommand cvs pserver when it receives a connection on the right port. By default, the port numberis 2401; it would be di�erent if your client were compiled with CVS_AUTH_PORT de�ned to somethingelse, though.If your inetd allows raw port numbers in `/etc/inetd.conf', then the following (all on a singleline in `inetd.conf') should be su�cient:2401 stream tcp nowait root /usr/local/bin/cvscvs -b /usr/local/bin pserverThe `-b' option speci�es the directory which contains the rcs binaries on the server.If your inetd wants a symbolic service name instead of a raw port number, then put this in`/etc/services':cvspserver 2401/tcpand put cvspserver instead of 2401 in `inetd.conf'.Once the above is taken care of, restart your inetd, or do whatever is necessary to force it toreread its initialization �les.Because the client stores and transmits passwords in cleartext (almost|see Section 4.5.2.3[Password authentication security], page 18 for details), a separate cvs password �le may be used,so people don't compromise their regular passwords when they access the repository. This �le is

Chapter 4: The Repository 17`$CVSROOT/CVSROOT/passwd' (see Section 4.2 [Intro administrative �les], page 14). Its format issimilar to `/etc/passwd', except that it only has two �elds, username and password. For example:bach:ULtgRLXo7NRxscwang:1sOp854gDF3DYThe password is encrypted according to the standard Unix crypt() function, so it is possibleto paste in passwords directly from regular Unix `passwd' �les.When authenticating a password, the server �rst checks for the user in the cvs `passwd' �le.If it �nds the user, it compares against that password. If it does not �nd the user, or if the cvs`passwd' �le does not exist, then the server tries to match the password using the system's user-lookup routine. When using the cvs `passwd' �le, the server runs under as the username speci�edin the the third argument in the entry, or as the �rst argument if there is no third argument (inthis way cvs allows imaginary usernames provided the cvs `passwd' �le indicates correspondingvalid system usernames). In any case, cvs will have no privileges which the (valid) user would nothave.Right now, the only way to put a password in the cvs `passwd' �le is to paste it there fromsomewhere else. Someday, there may be a cvs passwd command.4.5.2.2 Using the client with password authenticationBefore connecting to the server, the client must log in with the command cvs login. Loggingin veri�es a password with the server, and also records the password for later transactions with theserver. The cvs login command needs to know the username, server hostname, and full reposi-tory path, and it gets this information from the repository argument or the CVSROOT environmentvariable.cvs login is interactive | it prompts for a password:cvs -d bach@chainsaw.brickyard.com:/usr/local/cvsroot loginCVS password:The password is checked with the server; if it is correct, the login succeeds, else it fails, com-plaining that the password was incorrect.Once you have logged in, you can force cvs to connect directly to the server and authenticatewith the stored password by pre�xing the repository with `:pserver:':cvs -d :pserver:bach@chainsaw.brickyard.com:/usr/local/cvsroot checkout fooThe `:pserver:' is necessary because without it, cvs will assume it should use rsh to connectwith the server (see Section 4.5.1 [Connecting via rsh], page 15). (Once you have a working copychecked out and are running cvs commands from within it, there is no longer any need to specifythe repository explicitly, because cvs records it in the working copy's `CVS' subdirectory.)Passwords are stored by default in the �le `$HOME/.cvspass'. Its format is human-readable, butdon't edit it unless you know what you are doing. The passwords are not stored in cleartext, but

18 CVS|Concurrent Versions Systemare trivially encoded to protect them from "innocent" compromise (i.e., inadvertently being seenby a system administrator who happens to look at that �le).The CVS_PASSFILE environment variable overrides this default. If you use this variable, makesure you set it before cvs login is run. If you were to set it after running cvs login, then latercvs commands would be unable to look up the password for transmission to the server.The CVS_PASSWORD environment variable overrides all stored passwords. If it is set, cvs will useit for all password-authenticated connections.4.5.2.3 Security considerations with password authenticationThe passwords are stored on the client side in a trivial encoding of the cleartext, and transmittedin the same encoding. The encoding is done only to prevent inadvertent password compromises(i.e., a system administrator accidentally looking at the �le), and will not prevent even a naiveattacker from gaining the password.The separate cvs password �le (see Section 4.5.2.1 [Password authentication server], page 16)allows people to use a di�erent password for repository access than for login access. On the otherhand, once a user has access to the repository, she can execute programs on the server systemthrough a variety of means. Thus, repository access implies fairly broad system access as well.It might be possible to modify cvs to prevent that, but no one has done so as of this writing.Furthermore, there may be other ways in which having access to cvs allows people to gain moregeneral access to the system; noone has done a careful audit.In summary, anyone who gets the password gets repository access, and some measure of generalsystem access as well. The password is available to anyone who can sni� network packets or reada protected (i.e., user read-only) �le. If you want real security, get Kerberos.4.5.3 Direct connection with kerberosThe main disadvantage of using rsh is that all the data needs to pass through additional pro-grams, so it may be slower. So if you have kerberos installed you can connect via a direct tcpconnection, authenticating with kerberos (note that the data transmitted is not encrypted).To do this, cvs needs to be compiled with kerberos support; when con�guring cvs it tries todetect whether kerberos is present or you can use the `--with-krb4'
ag to con�gure.You need to edit inetd.conf on the server machine to run cvs kserver. The client uses port1999 by default; if you want to use another port specify it in the CVS_CLIENT_PORT environmentvariable on the client. Set CVS_CLIENT_PORT to `-1' to force an rsh connection.When you want to use cvs, get a ticket in the usual way (generally kinit); it must be a ticketwhich allows you to log into the server machine. Then you are ready to go:cvs -d chainsaw.brickyard.com:/user/local/cvsroot checkout fooIf cvs fails to connect, it will fall back to trying rsh.

Chapter 5: Starting a project with CVS 195 Starting a project with CVSSince cvs 1.x is bad at renaming �les and moving them between directories, the �rst thingyou do when you start a new project should be to think through your �le organization. It is notimpossible|just awkward|to rename or move �les. See Chapter 13 [Moving �les], page 51.What to do next depends on the situation at hand.5.1 Setting up the �lesThe �rst step is to create the �les inside the repository. This can be done in a couple of di�erentways.5.1.1 Creating a module from a number of �lesWhen you begin using cvs, you will probably already have several projects that can be putunder cvs control. In these cases the easiest way is to use the import command. An example isprobably the easiest way to explain how to use it. If the �les you want to install in cvs reside in`dir', and you want them to appear in the repository as `$CVSROOT/yoyodyne/dir', you can do this:$ cd dir$ cvs import -m "Imported sources" yoyodyne/dir yoyo startUnless you supply a log message with the `-m'
ag, cvs starts an editor and prompts for amessage. The string `yoyo' is a vendor tag, and `start' is a release tag. They may �ll no purposein this context, but since cvs requires them they must be present. See Chapter 12 [Trackingsources], page 49, for more information about them.You can now verify that it worked, and remove your original source directory.$ cd ..$ mv dir dir.orig$ cvs checkout yoyodyne/dir # Explanation below$ ls -R yoyodyne$ rm -r dir.origErasing the original sources is a good idea, to make sure that you do not accidentally edit them indir, bypassing cvs. Of course, it would be wise to make sure that you have a backup of the sourcesbefore you remove them.The checkout command can either take a module name as argument (as it has done in allprevious examples) or a path name relative to $CVSROOT, as it did in the example above.It is a good idea to check that the permissions cvs sets on the directories inside `$CVSROOT'are reasonable, and that they belong to the proper groups. See Section 4.1.1 [File permissions],page 13.

20 CVS|Concurrent Versions System5.1.2 Creating Files From Other Version Control SystemsIf you have a project which you are maintaining with another version control system, such asrcs, you may wish to put the �les from that project into cvs, and preserve the revision history ofthe �les.From RCS If you have been using rcs, �nd the rcs �les|usually a �le named `foo.c' will have itsrcs �le in `RCS/foo.c,v' (but it could be other places; consult the rcs documentationfor details). Then create the appropriate directories in cvs if they do not already exist.Then copy the �les into the appropriate directories in the cvs repository (the name inthe repository must be the name of the source �le with `,v' added; the �les go directlyin the appopriate directory of the repository, not in an `RCS' subdirectory). This is oneof the few times when it is a good idea to access the cvs repository directly, ratherthan using cvs commands. Then you are ready to check out a new working directory.From another version control systemMany version control systems have the ability to export rcs �les in the standard format.If yours does, export the rcs �les and then follow the above instructions.From SCCSThere is a script in the `contrib' directory of the cvs source distribution called`sccs2rcs' which converts sccs �les to rcs �les. Note: you must run it on a ma-chine which has both sccs and rcs installed, and like everything else in contrib it isunsupported (your mileage may vary).5.1.3 Creating a module from scratchFor a new project, the easiest thing to do is probably to create an empty directory structure,like this:$ mkdir tc$ mkdir tc/man$ mkdir tc/testingAfter that, you use the import command to create the corresponding (empty) directory structureinside the repository:$ cd tc$ cvs import -m "Created directory structure" yoyodyne/dir yoyo startThen, use add to add �les (and new directories) as they appear.Check that the permissions cvs sets on the directories inside `$CVSROOT' are reasonable.5.2 De�ning the moduleThe next step is to de�ne the module in the `modules' �le. This is not strictly necessary, butmodules can be convenient in grouping together related �les and directories.

Chapter 5: Starting a project with CVS 21In simple cases these steps are su�cient to de�ne a module.1. Get a working copy of the modules �le.$ cvs checkout modules$ cd modules2. Edit the �le and insert a line that de�nes the module. See Section 4.2 [Intro administrative�les], page 14, for an introduction. See Section B.1 [modules], page 95, for a full descriptionof the modules �le. You can use the following line to de�ne the module `tc':tc yoyodyne/tc3. Commit your changes to the modules �le.$ cvs commit -m "Added the tc module." modules4. Release the modules module.$ cd ..$ cvs release -d modules

22 CVS|Concurrent Versions System

Chapter 6: Multiple developers 236 Multiple developersWhen more than one person works on a software project things often get complicated. Often,two people try to edit the same �le simultaneously. Some other version control systems (includingrcs and sccs) try to solve that particular problem by introducing �le locking, so that only oneperson can edit each �le at a time. Unfortunately, �le locking can be very counter-productive. Iftwo persons want to edit di�erent parts of a �le, there may be no reason to prevent either of themfrom doing so.cvs does not use �le locking. Instead, it allows many people to edit their own working copy ofa �le simultaneously. The �rst person that commits his changes has no automatic way of knowingthat another has started to edit it. Others will get an error message when they try to commit the�le. They must then use cvs commands to bring their working copy up to date with the repositoryrevision. This process is almost automatic, and explained in this chapter.There are many ways to organize a team of developers. cvs does not try to enforce a certainorganization. It is a tool that can be used in several ways. It is often useful to inform the groupof commits you have done. cvs has several ways of automating that process. See Section 6.4[Informing others], page 27. See Chapter 18 [Revision management], page 63, for more tips on howto use cvs.6.1 File statusAfter you have checked out a �le out from cvs, it is in one of these four states:Up-to-date The �le is identical with the latest revision in the repository.Locally modi�edYou have edited the �le, and not yet committed your changes.Needing updateSomeone else has committed a newer revision to the repository.Needing mergeSomeone else have committed a newer revision to the repository, and you have alsomade modi�cations to the �le.You can use the status command to �nd out the status of a given �le. See Section A.17 [status],page 90.6.2 Bringing a �le up to dateWhen you want to update or merge a �le, use the update command. For �les that are not up todate this is roughly equivalent to a checkout command: the newest revision of the �le is extractedfrom the repository and put in your working copy of the module.

24 CVS|Concurrent Versions SystemYour modi�cations to a �le are never lost when you use update. If no newer revision exists,running update has no e�ect. If you have edited the �le, and a newer revision is available, cvs willmerge all changes into your working copy.For instance, imagine that you checked out revision 1.4 and started editing it. In the meantimesomeone else committed revision 1.5, and shortly after that revision 1.6. If you run update on the�le now, cvs will incorporate all changes between revision 1.4 and 1.6 into your �le.If any of the changes between 1.4 and 1.6 were made too close to any of the changes you havemade, an overlap occurs. In such cases a warning is printed, and the resulting �le includes bothversions of the lines that overlap, delimited by special markers. See Section A.19 [update], page 92,for a complete description of the update command.6.3 Con
icts exampleSuppose revision 1.4 of `driver.c' contains this:#include <stdio.h>void main(){ parse();if (nerr == 0)gencode();elsefprintf(stderr, "No code generated.\n");exit(nerr == 0 ? 0 : 1);}Revision 1.6 of `driver.c' contains this:#include <stdio.h>int main(int argc,char **argv){ parse();if (argc != 1){

Chapter 6: Multiple developers 25fprintf(stderr, "tc: No args expected.\n");exit(1);}if (nerr == 0)gencode();elsefprintf(stderr, "No code generated.\n");exit(!!nerr);}Your working copy of `driver.c', based on revision 1.4, contains this before you run `cvs update':#include <stdlib.h>#include <stdio.h>void main(){ init_scanner();parse();if (nerr == 0)gencode();elsefprintf(stderr, "No code generated.\n");exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);}You run `cvs update':$ cvs update driver.cRCS file: /usr/local/cvsroot/yoyodyne/tc/driver.c,vretrieving revision 1.4retrieving revision 1.6Merging differences between 1.4 and 1.6 into driver.crcsmerge warning: overlaps during mergecvs update: conflicts found in driver.cC driver.c

26 CVS|Concurrent Versions Systemcvs tells you that there were some con
icts. Your original working �le is saved unmodi�ed in`.#driver.c.1.4'. The new version of `driver.c' contains this:#include <stdlib.h>#include <stdio.h>int main(int argc,char **argv){ init_scanner();parse();if (argc != 1){ fprintf(stderr, "tc: No args expected.\n");exit(1);}if (nerr == 0)gencode();elsefprintf(stderr, "No code generated.\n");<<<<<<< driver.cexit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);=======exit(!!nerr);>>>>>>> 1.6}Note how all non-overlapping modi�cations are incorporated in your working copy, and that theoverlapping section is clearly marked with `<<<<<<<', `=======' and `>>>>>>>'.You resolve the con
ict by editing the �le, removing the markers and the erroneous line. Supposeyou end up with this �le:#include <stdlib.h>#include <stdio.h>

Chapter 6: Multiple developers 27int main(int argc,char **argv){ init_scanner();parse();if (argc != 1){ fprintf(stderr, "tc: No args expected.\n");exit(1);}if (nerr == 0)gencode();elsefprintf(stderr, "No code generated.\n");exit(nerr == 0 ? EXIT_SUCCESS : EXIT_FAILURE);}You can now go ahead and commit this as revision 1.7.$ cvs commit -m "Initialize scanner. Use symbolic exit values." driver.cChecking in driver.c;/usr/local/cvsroot/yoyodyne/tc/driver.c,v <-- driver.cnew revision: 1.7; previous revision: 1.6doneIf you use release 1.04 or later of pcl-cvs (a gnu Emacs front-end for cvs) you can use an Emacspackage called emerge to help you resolve con
icts. See the documentation for pcl-cvs.6.4 Informing others about commitsIt is often useful to inform others when you commit a new revision of a �le. The `-i' optionof the `modules' �le, or the `loginfo' �le, can be used to automate this process. See Section B.1[modules], page 95. See Section B.6 [loginfo], page 100. You can use these features of cvs to, forinstance, instruct cvs to mail a message to all developers, or post a message to a local newsgroup.

28 CVS|Concurrent Versions System6.5 Several developers simultaneously attempting to run CVSIf several developers try to run cvs at the same time, one may get the following message:[11:43:23] waiting for bach's lock in /usr/local/cvsroot/foocvs will try again every 30 seconds, and either continue with the operation or print the messageagain, if it still needs to wait. If a lock seems to stick around for an undue amount of time,�nd the person holding the lock and ask them about the cvs command they are running. If theyaren't running a cvs command, look for and remove �les starting with `#cvs.tfl', `#cvs.rfl', or`#cvs.wfl' from the repository.Note that these locks are to protect cvs's internal data structures and have no relationshipto the word lock in the sense used by rcs{a way to prevent other developers from working on aparticular �le.Any number of people can be reading from a given repository at a time; only when someone iswriting do the locks prevent other people from reading or writing.One might hope for the following propertyIf someone commits some changes in one cvs command,then an update by someone else will either get all thechanges, or none of them.but cvs does not have this property. For example, given the �lesa/one.ca/two.cb/three.cb/four.cif someone runscvs ci a/two.c b/three.cand someone else runs cvs update at the same time, the person running update might get onlythe change to `b/three.c' and not the change to `a/two.c'.6.6 Mechanisms to track who is editing �lesFor many groups, use of cvs in its default mode is perfectly satisfactory. Users may sometimesgo to check in a modi�cation only to �nd that another modi�cation has intervened, but they dealwith it and proceed with their check in. Other groups prefer to be able to know who is editingwhat �les, so that if two people try to edit the same �le they can choose to talk about who isdoing what when rather than be surprised at check in time. The features in this section allow suchcoordination, while retaining the ability of two developers to edit the same �le at the same time.

Chapter 6: Multiple developers 29For maximum bene�t developers should use cvs edit (not chmod) to make �les read-write toedit them, and cvs release (not rm) to discard a working directory which is no longer in use, butcvs is not able to enforce this behavior.6.6.1 Telling CVS to watch certain �lesTo enable the watch features, you �rst specify that certain �les are to be watched.Commandcvs watch on [-l] �les : : :Specify that developers should run cvs edit before editing �les. CVS will createworking copies of �les read-only, to remind developers to run the cvs edit commandbefore working on them.If �les includes the name of a directory, CVS arranges to watch all �les added to thecorresponding repository directory, and sets a default for �les added in the future; thisallows the user to set noti�cation policies on a per-directory basis. The contents of thedirectory are processed recursively, unless the -l option is given.If �les is omitted, it defaults to the current directory. Commandcvs watch o� [-l] �les : : :Do not provide noti�cation about work on �les. CVS will create working copies of �lesread-write.The �les and -l arguments are processed as for cvs watch on.6.6.2 Telling CVS to notify youYou can tell cvs that you want to receive noti�cations about various actions taken on a �le.You can do this without using cvs watch on for the �le, but generally you will want to use cvswatch on, so that developers use the cvs edit command. Commandcvs watch add [-a action] [-l] �les : : :Add the current user to the list of people to receive noti�cation of work done on �les.The -a option speci�es what kinds of events CVS should notify the user about. actionis one of the following:edit Another user has applied the cvs edit command (described below) to a�le.unedit Another user has applied the cvs unedit command (described below) orthe cvs release command to a �le, or has deleted the �le and allowed cvsupdate to recreate it.commit Another user has committed changes to a �le.all All of the above.

30 CVS|Concurrent Versions Systemnone None of the above. (This is useful with cvs edit, described below.)The -a option may appear more than once, or not at all. If omitted, the action defaultsto all.The �les and -l option are processed as for the cvs watch commands. Commandcvs watch remove [-a action] [-l] �les : : :Remove a noti�cation request established using cvs watch add; the arguments are thesame. If the -a option is present, only watches for the speci�ed actions are removed.When the conditions exist for noti�cation, cvs calls the `notify' administrative �le, passing itthe user to receive the noti�cation and the user who is taking the action which results in noti�cation.Normally `notify' will just send an email message.Note that if you set this up in the straightforward way, users receive noti�cations on the servermachine. One could of course write a `notify' script which directed noti�cations elsewhere, but tomake this easy, cvs allows you to associate a noti�cation address for each user. To do so create a�le `users' in `CVSROOT' with a line for each user in the format user:value. Then instead of passingthe name of the user to be noti�ed to `notify', cvs will pass the value (normally an email addresson some other machine).6.6.3 How to edit a �le which is being watchedSince a �le which is being watched is checked out read-only, you cannot simply edit it. To makeit read-write, and inform others that you are planning to edit it, use the cvs edit command.Commandcvs edit [options] �les : : :Prepare to edit the working �les �les. CVS makes the �les read-write, and noti�esusers who have requested edit noti�cation for any of �les.The cvs edit command accepts the same options as the cvs watch add command, andestablishes a temporary watch for the user on �les; CVS will remove the watch when�les are unedited or committed. If the user does not wish to receive noti�cations, sheshould specify -a none.The �les and -l option are processed as for the cvs watch commands.Normally when you are done with a set of changes, you use the cvs commit command, whichchecks in your changes and returns the watched �les to their usual read-only state. But if youinstead decide to abandon your changes, or not to make any changes, you can use the cvs uneditcommand. Commandcvs unedit [-l] �les : : :Abandon work on the working �les �les, and revert them to the repository versions onwhich they are based. CVS makes those �les read-only for which users have requested

Chapter 6: Multiple developers 31noti�cation using cvs watch on. CVS noti�es users who have requested unedit noti-�cation for any of �les.The �les and -l option are processed as for the cvs watch commands.When using client/server cvs, you can use the cvs edit and cvs unedit commands even if cvsis unable to succesfully communicate with the server; the noti�cations will be sent upon the nextsuccessful cvs command.6.6.4 Information about who is watching and editing Commandcvs watchers [-l] �les : : :List the users currently watching changes to �les. The report includes the �les beingwatched, and the mail address of each watcher.The �les and -l arguments are processed as for the cvs watch commands. Commandcvs editors [-l] �les : : :List the users currently working on �les. The report includes the mail address of eachuser, the time when the user began working with the �le, and the host and path of theworking directory containing the �le.The �les and -l arguments are processed as for the cvs watch commands.6.6.5 Using watches with old versions of CVSIf you use the watch features on a repository, it creates `CVS' directories in the repository andstores the information about watches in that directory. If you attempt to use cvs 1.6 or earlierwith the repository, you get an error message such ascvs update: cannot open CVS/Entries for reading: No such file or directoryand your operation will likely be aborted. To use the watch features, you must upgrade allcopies of cvs which use that repository in local or server mode. If you cannot upgrade, use thewatch off and watch remove commands to remove all watches, and that will restore the repositoryto a state which cvs 1.6 can cope with.

32 CVS|Concurrent Versions System

Chapter 7: Branches 337 BranchesSo far, all revisions shown in this manual have been on the main trunk of the revision tree, i.e.,all revision numbers have been of the form x.y. One useful feature, especially when maintainingseveral releases of a software product at once, is the ability to make branches on the revision tree.Tags, symbolic names for revisions, will also be introduced in this chapter.7.1 Tags{Symbolic revisionsThe revision numbers live a life of their own. They need not have anything at all to do with therelease numbers of your software product. Depending on how you use cvs the revision numbersmight change several times between two releases. As an example, some of the source �les that makeup rcs 5.6 have the following revision numbers:ci.c 5.21co.c 5.9ident.c 5.3rcs.c 5.12rcsbase.h 5.11rcsdiff.c 5.10rcsedit.c 5.11rcsfcmp.c 5.9rcsgen.c 5.10rcslex.c 5.11rcsmap.c 5.2rcsutil.c 5.10You can use the tag command to give a symbolic name to a certain revision of a �le. You canuse the `-v'
ag to the status command to see all tags that a �le has, and which revision numbersthey represent. Tag names can contain uppercase and lowercase letters, digits, `-', and `_'. Thetwo tag names BASE and HEAD are reserved for use by cvs. It is expected that future names whichare special to cvs will contain characters such as `%' or `=', rather than being named analogouslyto BASE and HEAD, to avoid con
icts with actual tag names.The following example shows how you can add a tag to a �le. The commands must be issuedinside your working copy of the module. That is, you should issue the command in the directorywhere `backend.c' resides.$ cvs tag release-0-4 backend.cT backend.c$ cvs status -v backend.c===File: backend.c Status: Up-to-dateVersion: 1.4 Tue Dec 1 14:39:01 1992RCS Version: 1.4 /usr/local/cvsroot/yoyodyne/tc/backend.c,v

34 CVS|Concurrent Versions SystemSticky Tag: (none)Sticky Date: (none)Sticky Options: (none)Existing Tags:release-0-4 (revision: 1.4)There is seldom reason to tag a �le in isolation. A more common use is to tag all the �les thatconstitute a module with the same tag at strategic points in the development life-cycle, such aswhen a release is made.$ cvs tag release-1-0 .cvs tag: Tagging .T MakefileT backend.cT driver.cT frontend.cT parser.c(When you give cvs a directory as argument, it generally applies the operation to all the �lesin that directory, and (recursively), to any subdirectories that it may contain. See Chapter 9[Recursive behavior], page 43.)The checkout command has a
ag, `-r', that lets you check out a certain revision of a module.This
ag makes it easy to retrieve the sources that make up release 1.0 of the module `tc' at anytime in the future:$ cvs checkout -r release-1-0 tcThis is useful, for instance, if someone claims that there is a bug in that release, but you cannot�nd the bug in the current working copy.You can also check out a module as it was at any given date. See Section A.7.1 [checkoutoptions], page 75.When you tag more than one �le with the same tag you can think about the tag as "a curvedrawn through a matrix of �lename vs. revision number." Say we have 5 �les with the followingrevisions:

Chapter 7: Branches 35file1 file2 file3 file4 file51.1 1.1 1.1 1.1 /--1.1* <-*- TAG1.2*- 1.2 1.2 -1.2*-1.3 \- 1.3*- 1.3 / 1.31.4 \ 1.4 / 1.4\-1.5*- 1.51.6At some time in the past, the * versions were tagged. You can think of the tag as a handleattached to the curve drawn through the tagged revisions. When you pull on the handle, you getall the tagged revisions. Another way to look at it is that you "sight" through a set of revisionsthat is "
at" along the tagged revisions, like this:file1 file2 file3 file4 file51.11.21.1 1.3 _1.1 1.2 1.4 1.1 /1.2*----1.3*----1.5*----1.2*----1.1 (--- <--- Look here1.3 1.6 1.3 _1.4 1.41.57.2 What branches are good forSuppose that release 1.0 of tc has been made. You are continuing to develop tc, planning tocreate release 1.1 in a couple of months. After a while your customers start to complain about afatal bug. You check out release 1.0 (see Section 7.1 [Tags], page 33) and �nd the bug (which turnsout to have a trivial �x). However, the current revision of the sources are in a state of
ux andare not expected to be stable for at least another month. There is no way to make a bug�x releasebased on the newest sources.The thing to do in a situation like this is to create a branch on the revision trees for all the �lesthat make up release 1.0 of tc. You can then make modi�cations to the branch without disturbingthe main trunk. When the modi�cations are �nished you can select to either incorporate them onthe main trunk, or leave them on the branch.7.3 Creating a branchThe rtag command can be used to create a branch. The rtag command is much like tag, butit does not require that you have a working copy of the module. See Section A.16 [rtag], page 89.(You can also use the tag command; see Section A.18 [tag], page 91).$ cvs rtag -b -r release-1-0 release-1-0-patches tc

36 CVS|Concurrent Versions SystemThe `-b'
ag makes rtag create a branch (rather than just a symbolic revision name). `-rrelease-1-0' says that this branch should be rooted at the node (in the revision tree) thatcorresponds to the tag `release-1-0'. Note that the numeric revision number that matches`release-1-0' will probably be di�erent from �le to �le. The name of the new branch is`release-1-0-patches', and the module a�ected is `tc'.To �x the problem in release 1.0, you need a working copy of the branch you just created.$ cvs checkout -r release-1-0-patches tc$ cvs status -v driver.c backend.c===File: driver.c Status: Up-to-dateVersion: 1.7 Sat Dec 5 18:25:54 1992RCS Version: 1.7 /usr/local/cvsroot/yoyodyne/tc/driver.c,vSticky Tag: release-1-0-patches (branch: 1.7.2)Sticky Date: (none)Sticky Options: (none)Existing Tags:release-1-0-patches (branch: 1.7.2)release-1-0 (revision: 1.7)===File: backend.c Status: Up-to-dateVersion: 1.4 Tue Dec 1 14:39:01 1992RCS Version: 1.4 /usr/local/cvsroot/yoyodyne/tc/backend.c,vSticky Tag: release-1-0-patches (branch: 1.4.2)Sticky Date: (none)Sticky Options: (none)Existing Tags:release-1-0-patches (branch: 1.4.2)release-1-0 (revision: 1.4)

Chapter 7: Branches 37release-0-4 (revision: 1.4)As the output from the status command shows the branch number is created by adding a digitat the tail of the revision number it is based on. (If `release-1-0' corresponds to revision 1.4,the branch's revision number will be 1.4.2. For obscure reasons cvs always gives branches evennumbers, starting at 2. See Section 2.1 [Revision numbers], page 5).7.4 Sticky tagsThe `-r release-1-0-patches'
ag that was given to checkout in the previous example issticky, that is, it will apply to subsequent commands in this directory. If you commit any modi�-cations, they are committed on the branch. You can later merge the modi�cations into the maintrunk. See Chapter 8 [Merging], page 39.You can use the status command to see what sticky tags or dates are set:$ vi driver.c # Fix the bugs$ cvs commit -m "Fixed initialization bug" driver.cChecking in driver.c;/usr/local/cvsroot/yoyodyne/tc/driver.c,v <-- driver.cnew revision: 1.7.2.1; previous revision: 1.7done$ cvs status -v driver.c===File: driver.c Status: Up-to-dateVersion: 1.7.2.1 Sat Dec 5 19:35:03 1992RCS Version: 1.7.2.1 /usr/local/cvsroot/yoyodyne/tc/driver.c,vSticky Tag: release-1-0-patches (branch: 1.7.2)Sticky Date: (none)Sticky Options: (none)Existing Tags:release-1-0-patches (branch: 1.7.2)release-1-0 (revision: 1.7)

38 CVS|Concurrent Versions SystemThe sticky tags will remain on your working �les until you delete them with `cvs update -A'.The `-A' option retrieves the version of the �le from the head of the trunk, and forgets any stickytags, dates, or options.Sticky tags are not just for branches. If you check out a certain revision (such as 1.4) it will alsobecome sticky. Subsequent `cvs update' will not retrieve the latest revision until you reset the tagwith `cvs update -A'. Likewise, use of the `-D' option to update or checkout sets a sticky date,which, similarly, causes that date to be used for future retrievals.Many times you will want to retrieve an old version of a �le without setting a sticky tag. Theway to do that is with the `-p' option to checkout or update, which sends the contents of the �leto standard output. For example, suppose you have a �le named `file1' which existed as revision1.1, and you then removed it (thus adding a dead revision 1.2). Now suppose you want to add itagain, with the same contents it had previously. Here is how to do it:$ cvs update -p -r 1.1 file1 >file1===Checking out file1RCS: /tmp/cvs-sanity/cvsroot/first-dir/Attic/file1,vVERS: 1.1***************$ cvs add file1cvs add: version 1.2 of `file1' will be resurrectedcvs add: use 'cvs commit' to add this file permanently$ cvs commit -m testChecking in file1;/tmp/cvs-sanity/cvsroot/first-dir/file1,v <-- file1new revision: 1.3; previous revision: 1.2done$

Chapter 8: Merging 398 MergingYou can include the changes made between any two revisions into your working copy, bymerging.You can then commit that revision, and thus e�ectively copy the changes onto another branch.8.1 Merging an entire branchYou can merge changes made on a branch into your working copy by giving the `-j branch'
agto the update command. With one `-j branch' option it merges the changes made between thepoint where the branch forked and newest revision on that branch (into your working copy).The `-j' stands for \join".Consider this revision tree:+-----+ +-----+ +-----+ +-----+! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 ! <- The main trunk+-----+ +-----+ +-----+ +-----+!!! +---------+ +---------+Branch R1fix -> +---! 1.2.2.1 !----! 1.2.2.2 !+---------+ +---------+The branch 1.2.2 has been given the tag (symbolic name) `R1fix'. The following example assumesthat the module `mod' contains only one �le, `m.c'.$ cvs checkout mod # Retrieve the latest revision, 1.4$ cvs update -j R1fix m.c # Merge all changes made on the branch,# i.e. the changes between revision 1.2# and 1.2.2.2, into your working copy# of the �le.$ cvs commit -m "Included R1fix" # Create revision 1.5.A con
ict can result from a merge operation. If that happens, you should resolve it beforecommitting the new revision. See Section 6.3 [Con
icts example], page 24.The checkout command also supports the `-j branch'
ag. The same e�ect as above could beachieved with this:

40 CVS|Concurrent Versions System$ cvs checkout -j R1fix mod$ cvs commit -m "Included R1fix"8.2 Merging from a branch several timesContinuing our example, the revision tree now looks like this:+-----+ +-----+ +-----+ +-----+ +-----+! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk+-----+ +-----+ +-----+ +-----+ +-----+! *! *! +---------+ +---------+Branch R1fix -> +---! 1.2.2.1 !----! 1.2.2.2 !+---------+ +---------+where the starred line represents the merge from the `R1fix' branch to the main trunk, as justdiscussed.Now suppose that development continues on the `R1fix' branch:+-----+ +-----+ +-----+ +-----+ +-----+! 1.1 !----! 1.2 !----! 1.3 !----! 1.4 !----! 1.5 ! <- The main trunk+-----+ +-----+ +-----+ +-----+ +-----+! *! *! +---------+ +---------+ +---------+Branch R1fix -> +---! 1.2.2.1 !----! 1.2.2.2 !----! 1.2.2.3 !+---------+ +---------+ +---------+and then you want to merge those new changes onto the main trunk. If you just use the cvsupdate -j R1fix m.c command again, cvs will attempt to merge again the changes which youhave already merged, which can have undesirable side e�ects.So instead you need to specify that you only want to merge the changes on the branch whichhave not yet been merged into the trunk. To do that you specify two `-j' options, and cvs mergesthe changes from the �rst revision to the second revision. For example, in this case the simplestway would becvs update -j 1.2.2.2 -j R1fix m.c # Merge changes from 1.2.2.2 to the

Chapter 8: Merging 41# head of the R1�x branchThe problem with this is that you need to specify the 1.2.2.2 revision manually. A slightly betterapproach might be to use the date the last merge was done:cvs update -j R1fix:yesterday -j R1fix m.cBetter yet, tag the R1�x branch after every merge into the trunk, and then use that tag forsubsequent merges:cvs update -j merged_from_R1fix_to_trunk -j R1fix m.c8.3 Merging di�erences between any two revisionsWith two `-j revision'
ags, the update (and checkout) command can merge the di�erencesbetween any two revisions into your working �le.$ cvs update -j 1.5 -j 1.3 backend.cwill remove all changes made between revision 1.3 and 1.5. Note the order of the revisions!If you try to use this option when operating on multiple �les, remember that the numericrevisions will probably be very di�erent between the various �les that make up a module. Youalmost always use symbolic tags rather than revision numbers when operating on multiple �les.

42 CVS|Concurrent Versions System

Chapter 9: Recursive behavior 439 Recursive behaviorAlmost all of the subcommands of cvs work recursively when you specify a directory as anargument. For instance, consider this directory structure:$HOME|+--tc| |+--CVS| (internal cvs files)+--Makefile+--backend.c+--driver.c+--frontend.c+--parser.c+--man| || +--CVS| | (internal cvs files)| +--tc.1|+--testing|+--CVS| (internal cvs files)+--testpgm.t

44 CVS|Concurrent Versions System+--test2.tIf `tc' is the current working directory, the following is true:� `cvs update testing' is equivalent to `cvs update testing/testpgm.t testing/test2.t'� `cvs update testing man' updates all �les in the subdirectories� `cvs update .' or just `cvs update' updates all �les in the tc moduleIf no arguments are given to update it will update all �les in the current working directory andall its subdirectories. In other words, `.' is a default argument to update. This is also true formost of the cvs subcommands, not only the update command.The recursive behavior of the cvs subcommands can be turned o� with the `-l' option.$ cvs update -l # Don't update �les in subdirectories

Chapter 10: Adding �les to a module 4510 Adding �les to a moduleTo add a new �le to a module, follow these steps.� You must have a working copy of the module. See Section 3.1 [Getting the source], page 7.� Create the new �le inside your working copy of the module.� Use `cvs add �lename' to tell cvs that you want to version control the �le.� Use `cvs commit �lename' to actually check in the �le into the repository. Other developerscannot see the �le until you perform this step.� If the �le contains binary data it might be necessary to change the default keyword substitution.See Chapter 16 [Keyword substitution], page 57. See Section A.6.2 [admin examples], page 73.You can also use the add command to add a new directory inside a module.Unlike most other commands, the add command is not recursive. You cannot even type `cvsadd foo/bar'! Instead, you have to$ cd foo$ cvs add barSee Section A.5 [add], page 69, for a more complete description of the add command.

46 CVS|Concurrent Versions System

Chapter 11: Removing �les from a module 4711 Removing �les from amoduleModules change. New �les are added, and old �les disappear. Still, you want to be able toretrieve an exact copy of old releases of the module.Here is what you can do to remove a �le from a module, but remain able to retrieve old revisions:� Make sure that you have not made any uncommitted modi�cations to the �le. See Section 3.4[Viewing di�erences], page 8, for one way to do that. You can also use the status or updatecommand. If you remove the �le without committing your changes, you will of course not beable to retrieve the �le as it was immediately before you deleted it.� Remove the �le from your working copy of the module. You can for instance use rm.� Use `cvs remove �lename' to tell cvs that you really want to delete the �le.� Use `cvs commit �lename' to actually perform the removal of the �le from the repository.When you commit the removal of the �le, cvs records the fact that the �le no longer exists.It is possible for a �le to exist on only some branches and not on others, or to re-add another �lewith the same name later. CVS will correctly create or not create the �le, based on the `-r' and`-D' options speci�ed to checkout or update. Commandcvs remove [-lR] �les : : :Schedule �le(s) to be removed from the repository (�les which have not already beenremoved from the working directory are not processed). This command does not actu-ally remove the �le from the repository until you commit the removal. The `-R' option(the default) speci�es that it will recurse into subdirectories; `-l' speci�es that it willnot.Here is an example of removing several �les:$ cd test$ rm ?.c$ cvs removecvs remove: Removing .cvs remove: scheduling a.c for removalcvs remove: scheduling b.c for removalcvs remove: use 'cvs commit' to remove these files permanently$ cvs ci -m "Removed unneeded files"cvs commit: Examining .cvs commit: Committing .If you change your mind you can easily resurrect the �le before you commit it, using the addcommand.$ lsCVS ja.h oj.c$ rm oj.c$ cvs remove oj.ccvs remove: scheduling oj.c for removal

48 CVS|Concurrent Versions Systemcvs remove: use 'cvs commit' to remove this file permanently$ cvs add oj.cU oj.ccvs add: oj.c, version 1.1.1.1, resurrectedIf you realize your mistake before you run the remove command you can use update to resurrectthe �le:$ rm oj.c$ cvs update oj.ccvs update: warning: oj.c was lostU oj.c

Chapter 12: Tracking third-party sources 4912 Tracking third-party sourcesIf you modify a program to better �t your site, you probably want to include your modi�cationswhen the next release of the program arrives. cvs can help you with this task.In the terminology used in cvs, the supplier of the program is called a vendor. The unmodi�eddistribution from the vendor is checked in on its own branch, the vendor branch. cvs reservesbranch 1.1.1 for this use.When you modify the source and commit it, your revision will end up on the main trunk. Whena new release is made by the vendor, you commit it on the vendor branch and copy the modi�cationsonto the main trunk.Use the import command to create and update the vendor branch. After a successful importthe vendor branch is made the `head' revision, so anyone that checks out a copy of the �le getsthat revision. When a local modi�cation is committed it is placed on the main trunk, and madethe `head' revision.12.1 Importing a module for the �rst timeUse the import command to check in the sources for the �rst time. When you use the importcommand to track third-party sources, the vendor tag and release tags are useful. The vendor tagis a symbolic name for the branch (which is always 1.1.1, unless you use the `-b branch'
ag|SeeSection A.12.1 [import options], page 84). The release tags are symbolic names for a particularrelease, such as `FSF_0_04'.Suppose you use wdiff (a variant of diff that ignores changes that only involve whitespace),and are going to make private modi�cations that you want to be able to use even when new releasesare made in the future. You start by importing the source to your repository:$ tar xfz wdiff-0.04.tar.gz$ cd wdiff-0.04$ cvs import -m "Import of FSF v. 0.04" fsf/wdiff FSF_DIST WDIFF_0_04The vendor tag is named `FSF_DIST' in the above example, and the only release tag assigned is`WDIFF_0_04'.12.2 Updating a module with the import commandWhen a new release of the source arrives, you import it into the repository with the same importcommand that you used to set up the repository in the �rst place. The only di�erence is that youspecify a di�erent release tag this time.$ tar xfz wdiff-0.05.tar.gz$ cd wdiff-0.05$ cvs import -m "Import of FSF v. 0.05" fsf/wdiff FSF_DIST WDIFF_0_05

50 CVS|Concurrent Versions SystemFor �les that have not been modi�ed locally, the newly created revision becomes the headrevision. If you have made local changes, import will warn you that you must merge the changesinto the main trunk, and tell you to use `checkout -j' to do so.$ cvs checkout -jFSF_DIST:yesterday -jFSF_DIST wdiffThe above command will check out the latest revision of `wdiff', merging the changes made on thevendor branch `FSF_DIST' since yesterday into the working copy. If any con
icts arise during themerge they should be resolved in the normal way (see Section 6.3 [Con
icts example], page 24).Then, the modi�ed �les may be committed.Using a date, as suggested above, assumes that you do not import more than one release of aproduct per day. If you do, you can always use something like this instead:$ cvs checkout -jWDIFF_0_04 -jWDIFF_0_05 wdiffIn this case, the two above commands are equivalent.

Chapter 13: Moving and renaming �les 5113 Moving and renaming �lesMoving �les to a di�erent directory or renaming them is not di�cult, but some of the waysin which this works may be non-obvious. (Moving or renaming a directory is even harder. SeeChapter 14 [Moving directories], page 53).The examples below assume that the �le old is renamed to new.13.1 The Normal way to RenameThe normal way to move a �le is to copy old to new, and then issue the normal cvs commandsto remove old from the repository, and add new to it. (Both old and new could contain relativepaths, for example `foo/bar.c').$ mv old new$ cvs remove old$ cvs add new$ cvs commit -m "Renamed old to new" old newThis is the simplest way to move a �le, it is not error-prone, and it preserves the history of whatwas done. Note that to access the history of the �le you must specify the old or the new name,depending on what portion of the history you are accessing. For example, cvs log old will givethe log up until the time of the rename.When new is committed its revision numbers will start at 1.0 again, so if that bothers you, usethe `-r rev' option to commit (see Section A.8.1 [commit options], page 77)13.2 Moving the history �leThis method is more dangerous, since it involves moving �les inside the repository. Read thisentire section before trying it out!$ cd $CVSROOT/module$ mv old,v new,vAdvantages:� The log of changes is maintained intact.� The revision numbers are not a�ected.Disadvantages:� Old releases of the module cannot easily be fetched from the repository. (The �le will show upas new even in revisions from the time before it was renamed).� There is no log information of when the �le was renamed.

52 CVS|Concurrent Versions System� Nasty things might happen if someone accesses the history �le while you are moving it. Makesure no one else runs any of the cvs commands while you move it.13.3 Copying the history �leThis way also involves direct modi�cations to the repository. It is safe, but not without draw-backs.# Copy the rcs �le inside the repository$ cd $CVSROOT/module$ cp old,v new,v# Remove the old �le$ cd ~/module$ rm old$ cvs remove old$ cvs commit old# Remove all tags from new$ cvs update new$ cvs log new # Remember the tag names$ cvs tag -d tag1$ cvs tag -d tag2: : :By removing the tags you will be able to check out old revisions of the module.Advantages:� Checking out old revisions works correctly, as long as you use `-rtag ' and not `-Ddate' toretrieve the revisions.� The log of changes is maintained intact.� The revision numbers are not a�ected.Disadvantages:� You cannot easily see the history of the �le across the rename.� Unless you use the `-r rev' (see Section A.8.1 [commit options], page 77)
ag when new iscommitted its revision numbers will start at 1.0 again.

Chapter 14: Moving and renaming directories 5314 Moving and renaming directoriesIf you want to be able to retrieve old versions of the module, you must move each �le in thedirectory with the cvs commands. See Section 13.1 [Outside], page 51. The old, empty directorywill remain inside the repository, but it will not appear in your workspace when you check out themodule in the future.If you really want to rename or delete a directory, you can do it like this:1. Inform everyone who has a copy of the module that the directory will be renamed. They shouldcommit all their changes, and remove their working copies of the module, before you take thesteps below.2. Rename the directory inside the repository.$ cd $CVSROOT/module$ mv old-dir new-dir3. Fix the cvs administrative �les, if necessary (for instance if you renamed an entire module).4. Tell everyone that they can check out the module and continue working.If someone had a working copy of the module the cvs commands will cease to work for him,until he removes the directory that disappeared inside the repository.It is almost always better to move the �les in the directory instead of moving the directory.If you move the directory you are unlikely to be able to retrieve old releases correctly, since theyprobably depend on the name of the directories.

54 CVS|Concurrent Versions System

Chapter 15: History browsing 5515 History browsingOnce you have used cvs to store a version control history|what �les have changed when, how,and by whom, there are a variety of mechanisms for looking through the history.15.1 Log messagesWhenever you commit a �le you specify a log message.To look through the log messages which have been speci�ed for every revision which has beencommitted, use the cvs log command (see Section A.13 [log], page 85).15.2 The history databaseYou can use the history �le (see Section B.9 [history �le], page 102) to log various cvs actions.To retrieve the information from the history �le, use the cvs history command (see Section A.11[history], page 82).15.3 User-de�ned loggingYou can customize cvs to log various kinds of actions, in whatever manner you choose. Thesemechanisms operate by executing a script at various times. The script might append a message to a�le listing the information and the programmer who created it, or send mail to a group of developers,or, perhaps, post a message to a particular newsgroup. To log commits, use the `loginfo' �le (seeSection B.6 [loginfo], page 100). To log commits, checkouts, exports, and tags, respectively, youcan also use the `-i', `-o', `-e', and `-t' options in the modules �le. For a more
exible way ofgiving noti�cations to various users, which requires less in the way of keeping centralized scriptsup to date, use the cvs watch add command (see Section 6.6.2 [Getting Noti�ed], page 29); thiscommand is useful even if you are not using cvs watch on.The `taginfo' �le de�nes programs to execute when someone executes a tag or rtag command.The `taginfo' �le has the standard form for administrative �les (see Appendix B [Administrative�les], page 95), where each line is a regular expression followed by a command to execute. Thearguments passed to the command are, in order, the tagname, operation (add for tag, mov for tag-F, and del for tag -d), repository, and any remaining are pairs of �lename revision. A non-zeroexit of the �lter program will cause the tag to be aborted.15.4 Annotate command Commandcvs annotate [-l] �les : : :For each �le in �les, print the head revision of the trunk, together with information onthe last modi�cation for each line. The -l option means to process the local directoryonly, not to recurse (see Section A.4 [Common options], page 67). For example:

56 CVS|Concurrent Versions System$ cvs annotate ssfileAnnotations for ssfile***************1.1 (mary 27-Mar-96): ssfile line 11.2 (joe 28-Mar-96): ssfile line 2The �le `ssfile' currently contains two lines. The ssfile line 1 line was checked inby mary on March 27. Then, on March 28, joe added a line ssfile line 2, withoutmodifying the ssfile line 1 line. This report doesn't tell you anything about lineswhich have been deleted or replaced; you need to use cvs diff for that (see Section A.9[di�], page 79).

Chapter 16: Keyword substitution 5716 Keyword substitutionAs long as you edit source �les inside your working copy of a module you can always �nd outthe state of your �les via `cvs status' and `cvs log'. But as soon as you export the �les from yourdevelopment environment it becomes harder to identify which revisions they are.Rcs uses a mechanism known as keyword substitution (or keyword expansion) to help identifyingthe �les. Embedded strings of the form $keyword$ and $keyword:: : :$ in a �le are replaced withstrings of the form $keyword:value$ whenever you obtain a new revision of the �le.16.1 RCS KeywordsThis is a list of the keywords that rcs currently (in release 5.6.0.1) supports:$Author$ The login name of the user who checked in the revision.$Date$ The date and time (UTC) the revision was checked in.$Header$ A standard header containing the full pathname of the rcs �le, the revision number,the date (UTC), the author, the state, and the locker (if locked). Files will normallynever be locked when you use cvs.Id Same as $Header$, except that the rcs �lename is without a path.$Locker$ The login name of the user who locked the revision (empty if not locked, and thusalmost always useless when you are using cvs).Log The log message supplied during commit, preceded by a header containing the rcs�lename, the revision number, the author, and the date (UTC). Existing log messagesare not replaced. Instead, the new log message is inserted after $Log:: : :$. Each newline is pre�xed with a comment leader which rcs guesses from the �le name extension.It can be changed with cvs admin -c. See Section A.6.1 [admin options], page 71.This keyword is useful for accumulating a complete change log in a source �le, but forseveral reasons it can be problematic. See Section 16.5 [Log keyword], page 59.$RCSfile$ The name of the RCS �le without a path.$Revision$The revision number assigned to the revision.$Source$ The full pathname of the RCS �le.$State$ The state assigned to the revision. States can be assigned with cvs admin -s|SeeSection A.6.1 [admin options], page 71.16.2 Using keywordsTo include a keyword string you simply include the relevant text string, such as Id, inside the�le, and commit the �le. cvs will automatically expand the string as part of the commit operation.

58 CVS|Concurrent Versions SystemIt is common to embed Id string in the C source code. This example shows the �rst few linesof a typical �le, after keyword substitution has been performed:static char *rcsid="$Id: samp.c,v 1.5 1993/10/19 14:57:32 ceder Exp $";/* The following lines will prevent gcc version 2.xfrom issuing an "unused variable" warning. */#if __GNUC__ == 2#define USE(var) static void * use_##var = (&use_##var, (void *) &var)USE (rcsid);#endifEven though a clever optimizing compiler could remove the unused variable rcsid, most com-pilers tend to include the string in the binary. Some compilers have a #pragma directive to includeliteral text in the binary.The ident command (which is part of the rcs package) can be used to extract keywords andtheir values from a �le. This can be handy for text �les, but it is even more useful for extractingkeywords from binary �les.$ ident samp.csamp.c:$Id: samp.c,v 1.5 1993/10/19 14:57:32 ceder Exp $$ gcc samp.c$ ident a.outa.out:$Id: samp.c,v 1.5 1993/10/19 14:57:32 ceder Exp $Sccs is another popular revision control system. It has a command, what, which is very similarto ident and used for the same purpose. Many sites without rcs have sccs. Since what looks forthe character sequence @(#) it is easy to include keywords that are detected by either command.Simply pre�x the rcs keyword with the magic sccs phrase, like this:static char *id="@(#) $Id: ab.c,v 1.5 1993/10/19 14:57:32 ceder Exp $";16.3 Avoiding substitutionKeyword substitution has its disadvantages. Sometimes you might want the literal text string`$Author$' to appear inside a �le without rcs interpreting it as a keyword and expanding it intosomething like `$Author: ceder $'.There is unfortunately no way to selectively turn o� keyword substitution. You can use `-ko'(see Section 16.4 [Substitution modes], page 59) to turn o� keyword substitution entirely.

Chapter 16: Keyword substitution 59In many cases you can avoid using rcs keywords in the source, even though they appear in the�nal product. For example, the source for this manual contains `$@asis{}Author$' whenever thetext `$Author$' should appear. In nroff and troff you can embed the null-character \& insidethe keyword for a similar e�ect.16.4 Substitution modesEach �le has a stored default substitution mode, and each working directory copy of a �le alsohas a substitution mode. The former is set by the `-k' option to cvs add and cvs admin; the latteris set by the -k or -A options to cvs checkout or cvs update. cvs diff also has a `-k' option. Forsome examples, See Chapter 17 [Binary �les], page 61.The modes available are:`-kkv' Generate keyword strings using the default form, e.g. $Revision: 5.7 $ for theRevision keyword.`-kkvl' Like `-kkv', except that a locker's name is always inserted if the given revision iscurrently locked. This option is normally not useful when cvs is used.`-kk' Generate only keyword names in keyword strings; omit their values. For example, forthe Revision keyword, generate the string $Revision$ instead of $Revision: 5.7 $.This option is useful to ignore di�erences due to keyword substitution when comparingdi�erent revisions of a �le.`-ko' Generate the old keyword string, present in the working �le just before it was checked in.For example, for the Revision keyword, generate the string $Revision: 1.1 $ insteadof $Revision: 5.7 $ if that is how the string appeared when the �le was checked in.`-kb' Like `-ko', but also inhibit conversion of line endings between the canonical form inwhich they are stored in the repository (linefeed only), and the form appropriate to theoperating system in use on the client. For systems, like unix, which use linefeed onlyto terminate lines, this is the same as `-ko'. For more information on binary �les, seeChapter 17 [Binary �les], page 61.`-kv' Generate only keyword values for keyword strings. For example, for the Revision key-word, generate the string 5.7 instead of $Revision: 5.7 $. This can help generate �lesin programming languages where it is hard to strip keyword delimiters like $Revision:$ from a string. However, further keyword substitution cannot be performed once thekeyword names are removed, so this option should be used with care.One often would like to use `-kv' with cvs export|see Section A.10 [export], page 81.But be aware that doesn't handle an export containing binary �les correctly.16.5 Problems with the Log keyword.The Log keyword is somewhat controversial. As long as you are working on your developmentsystem the information is easily accessible even if you do not use the Log keyword|just do acvs log. Once you export the �le the history information might be useless anyhow.A more serious concern is that rcs is not good at handling Log entries when a branch ismerged onto the main trunk. Con
icts often result from the merging operation.

60 CVS|Concurrent Versions SystemPeople also tend to "�x" the log entries in the �le (correcting spelling mistakes and maybeeven factual errors). If that is done the information from cvs log will not be consistent with theinformation inside the �le. This may or may not be a problem in real life.It has been suggested that the Log keyword should be inserted last in the �le, and not in the�les header, if it is to be used at all. That way the long list of change messages will not interferewith everyday source �le browsing.

Chapter 17: Handling binary �les 6117 Handling binary �lesThere are two issues with using cvs to store binary �les. The �rst is that cvs by default convertline endings between the canonical form in which they are stored in the repository (linefeed only),and the form appropriate to the operating system in use on the client (for example, carriage returnfollowed by line feed for Windows NT).The second is that a binary �le might happen to contain data which looks like a keyword (seeChapter 16 [Keyword substitution], page 57), so keyword expansion must be turned o�.The `-kb' option available with some cvs commands insures that neither line ending conversionnor keyword expansion will be done. If you are using an old version of rcs without this option, andyou are using an operating system, such as unix, which terminates lines with linefeeds only, youcan use `-ko' instead; if you are on another operating system, upgrade to a version of rcs, such as5.7 or later, which supports `-kb'.Here is an example of how you can create a new �le using the `-kb'
ag:$ echo 'Id' > kotest$ cvs add -kb -m"A test file" kotest$ cvs ci -m"First checkin; contains a keyword" kotestIf a �le accidentally gets added without `-kb', one can use the cvs admin command to recover.For example:$ echo 'Id' > kotest$ cvs add -m"A test file" kotest$ cvs ci -m"First checkin; contains a keyword" kotest$ cvs admin -kb kotest$ cvs update -A kotestWhen you check in the �le `kotest' the keywords are expanded. (Try the above example, anddo a cat kotest after every command). The cvs admin -kb command sets the default keywordsubstitution method for this �le, but it does not alter the working copy of the �le that you have.The easiest way to get the unexpanded version of `kotest' is cvs update -A.

62 CVS|Concurrent Versions System

Chapter 18: Revision management 6318 RevisionmanagementIf you have read this far, you probably have a pretty good grasp on what cvs can do for you.This chapter talks a little about things that you still have to decide.If you are doing development on your own using cvs you could probably skip this chapter. Thequestions this chapter takes up become more important when more than one person is working ina repository.18.1 When to commit?Your group should decide which policy to use regarding commits. Several policies are possible,and as your experience with cvs grows you will probably �nd out what works for you.If you commit �les too quickly you might commit �les that do not even compile. If your partnerupdates his working sources to include your buggy �le, he will be unable to compile the code. Onthe other hand, other persons will not be able to bene�t from the improvements you make to thecode if you commit very seldom, and con
icts will probably be more common.It is common to only commit �les after making sure that they can be compiled. Some sitesrequire that the �les pass a test suite. Policies like this can be enforced using the commitinfo �le (seeSection B.4 [commitinfo], page 98), but you should think twice before you enforce such a convention.By making the development environment too controlled it might become too regimented and thuscounter-productive to the real goal, which is to get software written.

64 CVS|Concurrent Versions System

Appendix A: Reference manual for CVS commands 65AppendixA Referencemanual for CVS commandsThis appendix describes how to invoke cvs, and describes in detail those subcommands ofcvs which are not fully described elsewhere. To look up a particular subcommand, see [Index],page 111.A.1 Overall structure of CVS commandsThe �rst release of cvs consisted of a number of shell-scripts. Today cvs is implemented as asingle program that is a front-end to rcs and diff. The overall format of all cvs commands is:cvs [cvs_options] cvs_command [command_options] [command_args]cvs The program that is a front-end to rcs.cvs_optionsSome options that a�ect all sub-commands of cvs. These are described below.cvs_commandOne of several di�erent sub-commands. Some of the commands have aliases that canbe used instead; those aliases are noted in the reference manual for that command.There are only two situations where you may omit `cvs_command': `cvs -H' elicits alist of available commands, and `cvs -v' displays version information on cvs itself.command_optionsOptions that are speci�c for the command.command_argsArguments to the commands.There is unfortunately some confusion between cvs_options and command_options. `-l', whengiven as a cvs_option, only a�ects some of the commands. When it is given as a command_optionis has a di�erent meaning, and is accepted by more commands. In other words, do not take theabove categorization too seriously. Look at the documentation instead.A.2 Default options and the ~/.cvsrc �leThere are some command_options that are used so often that you might have set up an alias orsome other means to make sure you always specify that option. One example (the one that drovethe implementation of the .cvsrc support, actually) is that many people �nd the default output ofthe `diff' command to be very hard to read, and that either context di�s or unidi�s are mucheasier to understand.The `~/.cvsrc' �le is a way that you can add default options to cvs_commands within cvs,instead of relying on aliases or other shell scripts.The format of the `~/.cvsrc' �le is simple. The �le is searched for a line that begins with thesame name as the cvs_command being executed. If a match is found, then the remainder of the line

66 CVS|Concurrent Versions Systemis split up (at whitespace characters) into separate options and added to the command argumentsbefore any options from the command line.If a command has two names (e.g., checkout and co), the o�cial name, not necessarily the oneused on the command line, will be used to match against the �le. So if this is the contents of theuser's `~/.cvsrc' �le:log -Ndiff -uupdate -Pco -Pthe command `cvs checkout foo' would have the `-P' option added to the arguments, as well as`cvs co foo'.With the example �le above, the output from `cvs diff foobar' will be in unidi� format. `cvsdiff -c foobar' will provide context di�s, as usual. Getting "old" format di�s would be slightlymore complicated, because diff doesn't have an option to specify use of the "old" format, so youwould need `cvs -f diff foobar'.In place of the command name you can use cvs to specify global options (see Section A.3 [Globaloptions], page 66). For example the following line in `.cvsrc'cvs -z6causes cvs to use compression level 6A.3 Global optionsThe available `cvs_options' (that are given to the left of `cvs_command') are:-b bindir Use bindir as the directory where rcs programs are located. Overrides the settingof the $RCSBIN environment variable and any precompiled directory. This parametershould be speci�ed as an absolute pathname.-d cvs_root_directoryUse cvs root directory as the root directory pathname of the repository. Overrides thesetting of the $CVSROOT environment variable. See Chapter 4 [Repository], page 11.-e editor Use editor to enter revision log information. Overrides the setting of the $CVSEDITORand $EDITOR environment variables.-f Do not read the `~/.cvsrc' �le. This option is most often used because of the non-orthogonality of the cvs option set. For example, the `cvs log' option `-N' (turn o�display of tag names) does not have a corresponding option to turn the display on. Soif you have `-N' in the `~/.cvsrc' entry for `diff', you may need to use `-f' to showthe tag names.11 Yes, this really should be �xed, and it's being worked on

Appendix A: Reference manual for CVS commands 67-H Display usage information about the speci�ed `cvs_command' (but do not actually exe-cute the command). If you don't specify a command name, `cvs -H' displays a summaryof all the commands available.-l Do not log the cvs command in the command history (but execute it anyway). SeeSection A.11 [history], page 82, for information on command history.-n Do not change any �les. Attempt to execute the `cvs_command', but only to issuereports; do not remove, update, or merge any existing �les, or create any new �les.-Q Cause the command to be really quiet; the command will only generate output forserious problems.-q Cause the command to be somewhat quiet; informational messages, such as reports ofrecursion through subdirectories, are suppressed.-r Make new working �les �les read-only. Same e�ect as if the $CVSREAD environmentvariable is set (see Appendix C [Environment variables], page 105). The default is tomake working �les writable, unless watches are on (see Section 6.6 [Watches], page 28).-s variable=valueSet a user variable (see Section B.11 [Variables], page 103).-t Trace program execution; display messages showing the steps of cvs activity. Particu-larly useful with `-n' to explore the potential impact of an unfamiliar command.-v Display version and copyright information for cvs.-w Make new working �les read-write. Overrides the setting of the $CVSREAD environmentvariable. Files are created read-write by default, unless $CVSREAD is set or `-r' is given.-z gzip-levelSet the compression level. Only has an e�ect on the cvs client.A.4 Common command optionsThis section describes the `command_options' that are available across several cvs commands.These options are always given to the right of `cvs_command'. Not all commands support all ofthese options; each option is only supported for commands where it makes sense. However, when acommand has one of these options you can almost always count on the same behavior of the optionas in other commands. (Other command options, which are listed with the individual commands,may have di�erent behavior from one cvs command to the other).Warning: the `history' command is an exception; it supports many options that con
ict evenwith these standard options.-D date_specUse the most recent revision no later than date spec. date spec is a single argument,a date description specifying a date in the past.The speci�cation is sticky when you use it to make a private copy of a source �le; thatis, when you get a working �le using `-D', cvs records the date you speci�ed, so thatfurther updates in the same directory will use the same date (for more information onsticky tags/dates, see Section 7.4 [Sticky tags], page 37).A wide variety of date formats are supported by the underlying rcs facilities, similarto those described in co(1), but not exactly the same. The date spec is interpreted asbeing in the local timezone, unless a speci�c timezone is speci�ed. Examples of validdate speci�cations include:

68 CVS|Concurrent Versions System1 month ago2 hours ago400000 seconds agolast yearlast Mondayyesterdaya fortnight ago3/31/92 10:00:07 PSTJanuary 23, 1987 10:05pm22:00 GMT`-D' is available with the checkout, diff, export, history, rdiff, rtag, and updatecommands. (The history command uses this option in a slightly di�erent way; seeSection A.11.1 [history options], page 82).Remember to quote the argument to the `-D'
ag so that your shell doesn't interpretspaces as argument separators. A command using the `-D'
ag can look like this:$ cvs diff -D "1 hour ago" cvs.texinfo-f When you specify a particular date or tag to cvs commands, they normally ignore �lesthat do not contain the tag (or did not exist prior to the date) that you speci�ed. Usethe `-f' option if you want �les retrieved even when there is no match for the tag ordate. (The most recent revision of the �le will be used).`-f' is available with these commands: checkout, export, rdiff, rtag, and update.Warning: The commit command also has a `-f' option, but it has a di�erent behaviorfor that command. See Section A.8.1 [commit options], page 77.-H Help; describe the options available for this command. This is the only option sup-ported for all cvs commands.-k k
ag Alter the default rcs processing of keywords. See Chapter 16 [Keyword substitution],page 57, for the meaning of k
ag. Your k
ag speci�cation is sticky when you use itto create a private copy of a source �le; that is, when you use this option with thecheckout or update commands, cvs associates your selected k
ag with the �le, andcontinues to use it with future update commands on the same �le until you specifyotherwise.The `-k' option is available with the add, checkout, diff and update commands.-l Local; run only in current working directory, rather than recursing through subdirec-tories.Warning: this is not the same as the overall `cvs -l' option, which you can specify tothe left of a cvs command!Available with the following commands: checkout, commit, diff, export, log,remove, rdiff, rtag, status, tag, and update.

Appendix A: Reference manual for CVS commands 69-m message Use message as log information, instead of invoking an editor.Available with the following commands: add, commit and import.-n Do not run any checkout/commit/tag program. (A program can be speci�ed to run oneach of these activities, in the modules database (see Section B.1 [modules], page 95);this option bypasses it).Warning: this is not the same as the overall `cvs -n' option, which you can specify tothe left of a cvs command!Available with the checkout, commit, export, and rtag commands.-P Prune (remove) directories that are empty after being updated, on checkout, orupdate. Normally, an empty directory (one that is void of revision-controlled �les)is left alone. Specifying `-P' will cause these directories to be silently removed fromyour checked-out sources. This does not remove the directory from the repository, onlyfrom your checked out copy. Note that this option is implied by the `-r' or `-D' optionsof checkout and export.-p Pipe the �les retrieved from the repository to standard output, rather than writingthem in the current directory. Available with the checkout and update commands.-W Specify �le names that should be �ltered. You can use this option repeatedly. The speccan be a �le name pattern of the same type that you can specify in the `.cvswrappers'�le. Avaliable with the following commands: import, and update.-r tag Use the revision speci�ed by the tag argument instead of the default head revision.As well as arbitrary tags de�ned with the tag or rtag command, two special tags arealways available: `HEAD' refers to the most recent version available in the repository,and `BASE' refers to the revision you last checked out into the current working directory.The tag speci�cation is sticky when you use this option with checkout or updateto make your own copy of a �le: cvs remembers the tag and continues to use it onfuture update commands, until you specify otherwise (for more information on stickytags/dates, see Section 7.4 [Sticky tags], page 37). The tag can be either a symbolic ornumeric tag. See Section 7.1 [Tags], page 33.Specifying the `-q' global option along with the `-r' command option is often useful, tosuppress the warning messages when the rcs history �le does not contain the speci�edtag.Warning: this is not the same as the overall `cvs -r' option, which you can specify tothe left of a cvs command!`-r' is available with the checkout, commit, diff, history, export, rdiff, rtag, andupdate commands.A.5 add|Add a new �le/directory to the repository� Synopsis: add [-k k
ag] [-m 'message'] �les: : :� Requires: repository, working directory.� Changes: working directory.� Synonym: newUse the add command to create a new �le or directory in the source repository. The �lesor directories speci�ed with add must already exist in the current directory (which must have

70 CVS|Concurrent Versions Systembeen created with the checkout command). To add a whole new directory hierarchy to the sourcerepository (for example, �les received from a third-party vendor), use the import command instead.See Section A.12 [import], page 83.If the argument to add refers to an immediate sub-directory, the directory is created at thecorrect place in the source repository, and the necessary cvs administration �les are created inyour working directory. If the directory already exists in the source repository, add still creates theadministration �les in your version of the directory. This allows you to use add to add a particulardirectory to your private sources even if someone else created that directory after your checkout ofthe sources. You can do the following:$ mkdir new_directory$ cvs add new_directory$ cvs update new_directoryAn alternate approach using update might be:$ cvs update -d new_directory(To add any available new directories to your working directory, it's probably simpler to usecheckout (see Section A.7 [checkout], page 74) or `update -d' (see Section A.19 [update], page 92)).The added �les are not placed in the source repository until you use commit to make the changepermanent. Doing an add on a �le that was removed with the remove command will resurrectthe �le, unless a commit command intervened. See Chapter 11 [Removing �les], page 47, for anexample.Unlike most other commands add never recurses down directories. It cannot yet handle relativepaths. Instead of$ cvs add foo/bar.cyou have to do$ cd foo$ cvs add bar.cA.5.1 add optionsThere are only two options you can give to `add':-k k
ag This option speci�es the default way that this �le will be checked out. The k
agargument (see Section 16.4 [Substitution modes], page 59) is stored in the rcs �leand can be changed with admin -k (see Section A.6.1 [admin options], page 71). SeeChapter 17 [Binary �les], page 61, for information on using this option for binary �les.-m descriptionUsing this option, you can give a description for the �le. This description appears inthe history log (if it is enabled, see Section B.9 [history �le], page 102). It will also be

Appendix A: Reference manual for CVS commands 71saved in the rcs history �le inside the repository when the �le is committed. The logcommand displays this description.The description can be changed using `admin -t'. See Section A.6 [admin], page 71.If you omit the `-m description'
ag, an empty string will be used. You will not beprompted for a description.A.5.2 add examplesTo add the �le `backend.c' to the repository, with a description, the following can be used.$ cvs add -m "Optimizer and code generation passes." backend.c$ cvs commit -m "Early version. Not yet compilable." backend.cA.6 admin|Administration front end for rcs� Requires: repository, working directory.� Changes: repository.� Synonym: rcsThis is the cvs interface to assorted administrative rcs facilities, documented in rcs(1). adminsimply passes all its options and arguments to the rcs command; it does no �ltering or otherprocessing. This command does work recursively, however, so extreme care should be used.If there is a group whose name matches a compiled in value which defaults to cvsadmin, onlymembers of that group can use cvs admin. To disallow cvs admin for all users, create a group withno users in it.A.6.1 admin optionsNot all valid rcs options are useful together with cvs. Some even makes it impossible to usecvs until you undo the e�ect!This description of the available options is based on the `rcs(1)' man page, but modi�ed tosuit readers that are more interrested in cvs than rcs.-Aold�le Might not work together with cvs. Append the access list of old�le to the access listof the rcs �le.-alogins Might not work together with cvs. Append the login names appearing in the comma-separated list logins to the access list of the rcs �le.-b[rev] When used with bare rcs, this option sets the default branch to rev ; in cvs sticky tags(see Section 7.4 [Sticky tags], page 37) are a better way to decide which branch youwant to work on. With cvs, this option can be used to control behavior with respectto the vendor branch.

72 CVS|Concurrent Versions System-cstring Useful with cvs. Sets the comment leader to string. The comment leader is printedbefore every log message line generated by the keyword Log (see Chapter 16 [Keywordsubstitution], page 57). This is useful for programming languages without multi-linecomments. Rcs initially guesses the value of the comment leader from the �le nameextension when the �le is �rst committed.-e[logins] Might not work together with cvs. Erase the login names appearing in the comma-separated list logins from the access list of the RCS �le. If logins is omitted, erase theentire access list.-I Run interactively, even if the standard input is not a terminal.-i Useless with cvs. When using bare rcs, this is used to create and initialize a new rcs�le, without depositing a revision.-ksubst Useful with cvs. Set the default keyword substitution to subst. See Chapter 16[Keyword substitution], page 57. Giving an explicit `-k' option to cvs update, cvsexport, or cvs checkout overrides this default.-l[rev] Lock the revision with number rev. If a branch is given, lock the latest revision on thatbranch. If rev is omitted, lock the latest revision on the default branch.This can be used in conjunction with the `rcslock.pl' script in the `contrib' directoryof the cvs source distribution to provide reserved checkouts (where only one user canbe editing a given �le at a time). See the comments in that �le for details (and see the`README' �le in that directory for disclaimers about the unsupported nature of contrib).According to comments in that �le, locking must set to strict (which is the default).-L Set locking to strict. Strict locking means that the owner of an RCS �le is not exemptfrom locking for checkin. For use with cvs, strict locking must be set; see the discussionunder the `-l' option above.-mrev:msg Replace the log message of revision rev with msg.-Nname[:[rev]]Act like `-n', except override any previous assignment of name.-nname[:[rev]]Associate the symbolic name name with the branch or revision rev. It is normallybetter to use `cvs tag' or `cvs rtag' instead. Delete the symbolic name if both `:'and rev are omitted; otherwise, print an error message if name is already associatedwith another number. If rev is symbolic, it is expanded before association. A revconsisting of a branch number followed by a `.' stands for the current latest revision inthe branch. A `:' with an empty rev stands for the current latest revision on the defaultbranch, normally the trunk. For example, `rcs -nname: RCS/*' associates name withthe current latest revision of all the named RCS �les; this contrasts with `rcs -nname:$RCS/*' which associates name with the revision numbers extracted from keyword stringsin the corresponding working �les.-orange Potentially useful, but dangerous, with cvs (see below). Deletes (outdates) the revi-sions given by range. A range consisting of a single revision number means that revision.A range consisting of a branch number means the latest revision on that branch. Arange of the form `rev1:rev2 ' means revisions rev1 to rev2 on the same branch, `:rev 'means from the beginning of the branch containing rev up to and including rev, and`rev:' means from revision rev to the end of the branch containing rev. None of theoutdated revisions may have branches or locks.Due to the way cvs handles branches rev cannot be speci�ed symbolically if it is abranch. See Section D.1 [Magic branch numbers], page 107, for an explanation.

Appendix A: Reference manual for CVS commands 73Make sure that no-one has checked out a copy of the revision you outdate. Strangethings will happen if he starts to edit it and tries to check it back in. For this reason,this option is not a good way to take back a bogus commit; commit a new revisionundoing the bogus change instead (see Section 8.3 [Merging two revisions], page 41).-q Run quietly; do not print diagnostics.-sstate[:rev]Useful with cvs. Set the state attribute of the revision rev to state. If rev is a branchnumber, assume the latest revision on that branch. If rev is omitted, assume the latestrevision on the default branch. Any identi�er is acceptable for state. A useful setof states is `Exp' (for experimental), `Stab' (for stable), and `Rel' (for released). Bydefault, the state of a new revision is set to `Exp' when it is created. The state is visiblein the output from cvs log (see Section A.13 [log], page 85), and in the `Log' and`$State$' keywords (see Chapter 16 [Keyword substitution], page 57). Note that cvsuses the dead state for its own purposes; to take a �le to or from the dead state usecommands like cvs remove and cvs add, not cvs admin -s.-t[�le] Useful with cvs. Write descriptive text from the contents of the named �le into theRCS �le, deleting the existing text. The �le pathname may not begin with `-'. If�le is omitted, obtain the text from standard input, terminated by end-of-�le or bya line containing `.' by itself. Prompt for the text if interaction is possible; see `-I'.The descriptive text can be seen in the output from `cvs log' (see Section A.13 [log],page 85).-t-string Similar to `-t�le'. Write descriptive text from the string into the rcs �le, deleting theexisting text.-U Set locking to non-strict. Non-strict locking means that the owner of a �le need not locka revision for checkin. For use with cvs, strict locking must be set; see the discussionunder the `-l' option above.-u[rev] See the option `-l' above, for a discussion of using this option with cvs. Unlock therevision with number rev. If a branch is given, unlock the latest revision on thatbranch. If rev is omitted, remove the latest lock held by the caller. Normally, only thelocker of a revision may unlock it. Somebody else unlocking a revision breaks the lock.This causes a mail message to be sent to the original locker. The message contains acommentary solicited from the breaker. The commentary is terminated by end-of-�leor by a line containing . by itself.-Vn Emulate rcs version n. Use -Vn to make an rcs �le acceptable to rcs version n bydiscarding information that would confuse version n.-xsu�xes Useless with cvs. Use su�xes to characterize RCS �les.A.6.2 admin examplesA.6.2.1 Outdating is dangerousFirst, an example of how not to use the admin command. It is included to stress the fact thatthis command can be quite dangerous unless you know exactly what you are doing.The `-o' option can be used to outdate old revisions from the history �le. If you are short ondisc this option might help you. But think twice before using it|there is no way short of restoringthe latest backup to undo this command!

74 CVS|Concurrent Versions SystemThe next line is an example of a command that you would not like to execute.$ cvs admin -o:R_1_02 .The above command will delete all revisions up to, and including, the revision that correspondsto the tag R 1 02. But beware! If there are �les that have not changed between R 1 02 and R 1 03the �le will have the same numerical revision number assigned to the tags R 1 02 and R 1 03. Sonot only will it be impossible to retrieve R 1 02; R 1 03 will also have to be restored from the tapes!A.6.2.2 Comment leadersIf you use the Log keyword and you do not agree with the guess for comment leader that cvshas done, you can enforce your will with cvs admin -c. This might be suitable for nroff source:$ cvs admin -c'.\" ' *.man$ rm *.man$ cvs updateThe two last steps are to make sure that you get the versions with correct comment leaders inyour working �les.A.7 checkout|Check out sources for editing� Synopsis: checkout [options] modules: : :� Requires: repository.� Changes: working directory.� Synonyms: co, getMake a working directory containing copies of the source �les speci�ed by modules. You mustexecute checkout before using most of the other cvs commands, since most of them operate onyour working directory.The modules part of the command are either symbolic names for some collection of sourcedirectories and �les, or paths to directories or �les in the repository. The symbolic names arede�ned in the `modules' �le. See Section B.1 [modules], page 95.Depending on the modules you specify, checkoutmay recursively create directories and populatethem with the appropriate source �les. You can then edit these source �les at any time (regardlessof whether other software developers are editing their own copies of the sources); update themto include new changes applied by others to the source repository; or commit your work as apermanent change to the source repository.Note that checkout is used to create directories. The top-level directory created is always addedto the directory where checkout is invoked, and usually has the same name as the speci�ed module.In the case of a module alias, the created sub-directory may have a di�erent name, but you can besure that it will be a sub-directory, and that checkout will show the relative path leading to each�le as it is extracted into your private work area (unless you specify the `-Q' global option).

Appendix A: Reference manual for CVS commands 75The �les created by checkout are created read-write, unless the `-r' option to cvs (seeSection A.3 [Global options], page 66) is speci�ed, the CVSREAD environment variable is speci-�ed (see Appendix C [Environment variables], page 105), or a watch is in e�ect for that �le (seeSection 6.6 [Watches], page 28).Running checkout on a directory that was already built by a prior checkout is also permitted,and has the same e�ect as specifying the `-d' option to the update command, that is, any newdirectories that have been created in the repository will appear in your work area. See Section A.19[update], page 92.A.7.1 checkout optionsThese standard options are supported by checkout (see Section A.4 [Common options], page 67,for a complete description of them):-D date Use the most recent revision no later than date. This option is sticky, and implies `-P'.See Section 7.4 [Sticky tags], page 37, for more information on sticky tags/dates.-f Only useful with the `-D date' or `-r tag '
ags. If no matching revision is found,retrieve the most recent revision (instead of ignoring the �le).-k k
ag Process rcs keywords according to k
ag. See co(1). This option is sticky; futureupdates of this �le in this working directory will use the same k
ag. The statuscommand can be viewed to see the sticky options. See Section A.17 [status], page 90.-l Local; run only in current working directory.-n Do not run any checkout program (as speci�ed with the `-o' option in the modules �le;see Section B.1 [modules], page 95).-P Prune empty directories.-p Pipe �les to the standard output.-r tag Use revision tag. This option is sticky, and implies `-P'. See Section 7.4 [Sticky tags],page 37, for more information on sticky tags/dates.In addition to those, you can use these special command options with checkout:-A Reset any sticky tags, dates, or `-k' options. See Section 7.4 [Sticky tags], page 37, formore information on sticky tags/dates.-c Copy the module �le, sorted, to the standard output, instead of creating or modifyingany �les or directories in your working directory.-d dir Create a directory called dir for the working �les, instead of using the module name.Unless you also use `-N', the paths created under dir will be as short as possible.-j tag With two `-j' options, merge changes from the revision speci�ed with the �rst `-j'option to the revision speci�ed with the second `j' option, into the working directory.With one `-j' option, merge changes from the ancestor revision to the revision speci�edwith the `-j' option, into the working directory. The ancestor revision is the commonancestor of the revision which the working directory is based on, and the revisionspeci�ed in the `-j' option.

76 CVS|Concurrent Versions SystemIn addition, each -j option can contain an optional date speci�cation which, when usedwith branches, can limit the chosen revision to one within a speci�c date. An optionaldate is speci�ed by adding a colon (:) to the tag: `-jSymbolic Tag:Date Speci�er'.See Chapter 8 [Merging], page 39.-N Only useful together with `-d dir'. With this option, cvs will not shorten module pathsin your working directory. (Normally, cvs shortens paths as much as possible whenyou specify an explicit target directory).-s Like `-c', but include the status of all modules, and sort it by the status string. SeeSection B.1 [modules], page 95, for info about the `-s' option that is used inside themodules �le to set the module status.A.7.2 checkout examplesGet a copy of the module `tc':$ cvs checkout tcGet a copy of the module `tc' as it looked one day ago:$ cvs checkout -D yesterday tcA.8 commit|Check �les into the repository� Version 1.3 Synopsis: commit [-lnR] [-m 'log message' | -f �le] [-r revision] [�les: : :]� Version 1.3.1 Synopsis: commit [-lnRf] [-m 'log message' | -F �le] [-r revision] [�les: : :]� Requires: working directory, repository.� Changes: repository.� Synonym: ciWarning: The `-f �le' option will probably be renamed to `-F �le', and `-f' will be given a newbehavior in future releases of cvs.Use commit when you want to incorporate changes from your working source �les into the sourcerepository.If you don't specify particular �les to commit, all of the �les in your working current directoryare examined. commit is careful to change in the repository only those �les that you have reallychanged. By default (or if you explicitly specify the `-R' option), �les in subdirectories are alsoexamined and committed if they have changed; you can use the `-l' option to limit commit to thecurrent directory only.commit veri�es that the selected �les are up to date with the current revisions in the sourcerepository; it will notify you, and exit without committing, if any of the speci�ed �les must bemade current �rst with update (see Section A.19 [update], page 92). commit does not call theupdate command for you, but rather leaves that for you to do when the time is right.

Appendix A: Reference manual for CVS commands 77When all is well, an editor is invoked to allow you to enter a log message that will be writtento one or more logging programs (see Section B.1 [modules], page 95, and see Section B.6 [loginfo],page 100) and placed in the rcs history �le inside the repository. This log message can be retrievedwith the log command; See Section A.13 [log], page 85. You can specify the log message on thecommand line with the `-m message' option, and thus avoid the editor invocation, or use the `-f�le' option to specify that the argument �le contains the log message.A.8.1 commit optionsThese standard options are supported by commit (see Section A.4 [Common options], page 67,for a complete description of them):-l Local; run only in current working directory.-n Do not run any module program.-R Commit directories recursively. This is on by default.-r revision Commit to revision. revision must be either a branch, or a revision on the main trunkthat is higher than any existing revision number. You cannot commit to a speci�crevision on a branch.commit also supports these options:-F �le This option is present in cvs releases 1.3-s3 and later. Read the log message from �le,instead of invoking an editor.-f This option is present in cvs 1.3-s3 and later releases of cvs. Note that this is not thestandard behavior of the `-f' option as de�ned in See Section A.4 [Common options],page 67.Force cvs to commit a new revision even if you haven't made any changes to the �le.If the current revision of �le is 1.7, then the following two commands are equivalent:$ cvs commit -f �le$ cvs commit -r 1.8 �le-f �le This option is present in cvs releases 1.3, 1.3-s1 and 1.3-s2. Note that this is not thestandard behavior of the `-f' option as de�ned in See Section A.4 [Common options],page 67.Read the log message from �le, instead of invoking an editor.-m message Use message as the log message, instead of invoking an editor.

78 CVS|Concurrent Versions SystemA.8.2 commit examplesA.8.2.1 New major release numberWhen you make a major release of your product, you might want the revision numbers to trackyour major release number. You should normally not care about the revision numbers, but this isa thing that many people want to do, and it can be done without doing any harm.To bring all your �les up to the rcs revision 3.0 (including those that haven't changed), youmight do:$ cvs commit -r 3.0Note that it is generally a bad idea to try to make the rcs revision number equal to the currentrelease number of your product. You should think of the revision number as an internal numberthat the cvs package maintains, and that you generally never need to care much about. Using thetag and rtag commands you can give symbolic names to the releases instead. See Section A.18[tag], page 91 and See Section A.16 [rtag], page 89.Note that the number you specify with `-r' must be larger than any existing revision number.That is, if revision 3.0 exists, you cannot `cvs commit -r 1.3'.A.8.2.2 Committing to a branchYou can commit to a branch revision (one that has an even number of dots) with the `-r' option.To create a branch revision, use the `-b' option of the rtag or tag commands (see Section A.18 [tag],page 91 or see Section A.16 [rtag], page 89). Then, either checkout or update can be used to baseyour sources on the newly created branch. From that point on, all commit changes made withinthese working sources will be automatically added to a branch revision, thereby not disturbingmain-line development in any way. For example, if you had to create a patch to the 1.2 version ofthe product, even though the 2.0 version is already under development, you might do:$ cvs rtag -b -r FCS1_2 FCS1_2_Patch product_module$ cvs checkout -r FCS1_2_Patch product_module$ cd product_module[[hack away]]$ cvs commitThis works automatically since the `-r' option is sticky.A.8.2.3 Creating the branch after editingSay you have been working on some extremely experimental software, based on whatever revisionyou happened to checkout last week. If others in your group would like to work on this software

Appendix A: Reference manual for CVS commands 79with you, but without disturbing main-line development, you could commit your change to a newbranch. Others can then checkout your experimental stu� and utilize the full bene�t of cvs con
ictresolution. The scenario might look like:[[hacked sources are present]]$ cvs tag -b EXPR1$ cvs update -r EXPR1$ cvs commitThe update command will make the `-r EXPR1' option sticky on all �les. Note that your changesto the �les will never be removed by the update command. The commit will automatically committo the correct branch, because the `-r' is sticky. You could also do like this:[[hacked sources are present]]$ cvs tag -b EXPR1$ cvs commit -r EXPR1but then, only those �les that were changed by you will have the `-r EXPR1' sticky
ag. If you hackaway, and commit without specifying the `-r EXPR1'
ag, some �les may accidentally end up onthe main trunk.To work with you on the experimental change, others would simply do$ cvs checkout -r EXPR1 whatever_moduleA.9 di�|Run di�s between revisions� Synopsis: di� [-l] [rcsdi� options] [[-r rev1 | -D date1] [-r rev2 | -D date2]] [�les: : :]� Requires: working directory, repository.� Changes: nothing.The diff command is used to compare di�erent revisions of �les. The default action is tocompare your working �les with the revisions they were based on, and report any di�erences thatare found.If any �le names are given, only those �les are compared. If any directories are given, all �lesunder them will be compared.The exit status will be 0 if no di�erences were found, 1 if some di�erences were found, and 2 ifany error occurred.A.9.1 di� optionsThese standard options are supported by diff (see Section A.4 [Common options], page 67, fora complete description of them):

80 CVS|Concurrent Versions System-D date Use the most recent revision no later than date. See `-r' for how this a�ects thecomparison.cvs can be con�gured to pass the `-D' option through to rcsdiff (which in turnpasses it on to diff. Gnu di� uses `-D' as a way to put cpp-style `#define' statementsaround the output di�erences. There is no way short of testing to �gure out how cvswas con�gured. In the default con�guration cvs will use the `-D date' option.-k k
ag Process rcs keywords according to k
ag. See co(1).-l Local; run only in current working directory.-R Examine directories recursively. This option is on by default.-r tag Compare with revision tag. Zero, one or two `-r' options can be present. With no `-r'option, the working �le will be compared with the revision it was based on. With one`-r', that revision will be compared to your current working �le. With two `-r' optionsthose two revisions will be compared (and your working �le will not a�ect the outcomein any way).One or both `-r' options can be replaced by a `-D date' option, described above.Any other options that are found are passed through to rcsdiff, which in turn passes them todiff. The exact meaning of the options depends on which diff you are using. The long optionsintroduced in gnu di� 2.0 are not yet supported in cvs. See the documentation for your diff tosee which options are supported.A.9.2 di� examplesThe following line produces a Unidi� (`-u'
ag) between revision 1.14 and 1.19 of `backend.c'.Due to the `-kk'
ag no keywords are substituted, so di�erences that only depend on keywordsubstitution are ignored.$ cvs diff -kk -u -r 1.14 -r 1.19 backend.cSuppose the experimental branch EXPR1 was based on a set of �les tagged RELEASE 1 0. Tosee what has happened on that branch, the following can be used:$ cvs diff -r RELEASE_1_0 -r EXPR1A command like this can be used to produce a context di� between two releases:$ cvs diff -c -r RELEASE_1_0 -r RELEASE_1_1 > diffsIf you are maintaining ChangeLogs, a command like the following just before you commit yourchanges may help you write the ChangeLog entry. All local modi�cations that have not yet beencommitted will be printed.$ cvs diff -u | less

Appendix A: Reference manual for CVS commands 81A.10 export|Export sources from CVS, similar to checkout� Synopsis: export [-
Nn] [-r rev|-D date] [-k subst] [-d dir] module: : :� Requires: repository.� Changes: current directory.This command is a variant of checkout; use it when you want a copy of the source for modulewithout the cvs administrative directories. For example, you might use export to prepare sourcefor shipment o�-site. This command requires that you specify a date or tag (with `-D' or `-r'), sothat you can count on reproducing the source you ship to others.One often would like to use `-kv' with cvs export. This causes any rcs keywords to be expandedsuch that an import done at some other site will not lose the keyword revision information. Butbe aware that doesn't handle an export containing binary �les correctly. Also be aware that afterhaving used `-kv', one can no longer use the ident command (which is part of the rcs suite|seeident(1)) which looks for rcs keyword strings. If you want to be able to use ident you must notuse `-kv'.A.10.1 export optionsThese standard options are supported by export (see Section A.4 [Common options], page 67,for a complete description of them):-D date Use the most recent revision no later than date.-f If no matching revision is found, retrieve the most recent revision (instead of ignoringthe �le).-l Local; run only in current working directory.-n Do not run any checkout program.-R Export directories recursively. This is on by default.-r tag Use revision tag.In addition, these options (that are common to checkout and export) are also supported:-d dir Create a directory called dir for the working �les, instead of using the module name.Unless you also use `-N', the paths created under dir will be as short as possible.-k subst Set keyword expansion mode (see Section 16.4 [Substitution modes], page 59).-N Only useful together with `-d dir'. With this option, cvs will not shorten module pathsin your working directory. (Normally, cvs shortens paths as much as possible whenyou specify an explicit target directory.)

82 CVS|Concurrent Versions SystemA.11 history|Show status of �les and users� Synopsis: history [-report] [-
ags] [-options args] [�les: : :]� Requires: the �le `$CVSROOT/CVSROOT/history'� Changes: nothing.cvs can keep a history �le that tracks each use of the checkout, commit, rtag, update, andrelease commands. You can use history to display this information in various formats.Logging must be enabled by creating the �le `$CVSROOT/CVSROOT/history'.Warning: history uses `-f', `-l', `-n', and `-p' in ways that con
ict with the normal use insidecvs (see Section A.4 [Common options], page 67).A.11.1 history optionsSeveral options (shown above as `-report') control what kind of report is generated:-c Report on each time commit was used (i.e., each time the repository was modi�ed).-e Everything (all record types); equivalent to specifying `-xMACFROGWUT'.-m module Report on a particular module. (You can meaningfully use `-m' more than once on thecommand line.)-o Report on checked-out modules.-T Report on all tags.-x type Extract a particular set of record types type from the cvs history. The types areindicated by single letters, which you may specify in combination.Certain commands have a single record type:F releaseO checkoutT rtagOne of four record types may result from an update:C Amerge was necessary but collisions were detected (requiring manual merg-ing).G A merge was necessary and it succeeded.U A working �le was copied from the repository.W The working copy of a �le was deleted during update (because it was gonefrom the repository).One of three record types results from commit:A A �le was added for the �rst time.M A �le was modi�ed.

Appendix A: Reference manual for CVS commands 83R A �le was removed.The options shown as `-flags' constrain or expand the report without requiring option argu-ments:-a Show data for all users (the default is to show data only for the user executing history).-l Show last modi�cation only.-w Show only the records for modi�cations done from the same working directory wherehistory is executing.The options shown as `-options args' constrain the report based on an argument:-b str Show data back to a record containing the string str in either the module name, the�le name, or the repository path.-D date Show data since date. This is slightly di�erent from the normal use of `-D date', whichselects the newest revision older than date.-p repositoryShow data for a particular source repository (you can specify several `-p' options onthe same command line).-r rev Show records referring to revisions since the revision or tag named rev appears inindividual rcs �les. Each rcs �le is searched for the revision or tag.-t tag Show records since tag tag was last added to the the history �le. This di�ers fromthe `-r'
ag above in that it reads only the history �le, not the rcs �les, and is muchfaster.-u name Show records for user name.A.12 import|Import sources into CVS, using vendor branches� Synopsis: import [-options] repository vendortag releasetag: : :� Requires: Repository, source distribution directory.� Changes: repository.Use import to incorporate an entire source distribution from an outside source (e.g., a sourcevendor) into your source repository directory. You can use this command both for initial creationof a repository, and for wholesale updates to the module from the outside source. See Chapter 12[Tracking sources], page 49, for a discussion on this subject.The repository argument gives a directory name (or a path to a directory) under the cvs rootdirectory for repositories; if the directory did not exist, import creates it.When you use import for updates to source that has been modi�ed in your source repository(since a prior import), it will notify you of any �les that con
ict in the two branches of development;use `checkout -j' to reconcile the di�erences, as import instructs you to do.

84 CVS|Concurrent Versions SystemIf cvs decides a �le should be ignored (see Section B.8 [cvsignore], page 101), it does not importit and prints `I ' followed by the �lenameIf the �le `$CVSROOT/CVSROOT/cvswrappers' exists, any �le whose names match the speci�ca-tions in that �le will be treated as packages and the appropriate �ltering will be performed on the�le/directory before being imported, See Section B.2 [Wrappers], page 96.The outside source is saved in a �rst-level rcs branch, by default 1.1.1. Updates are leaves ofthis branch; for example, �les from the �rst imported collection of source will be revision 1.1.1.1,then �les from the �rst imported update will be revision 1.1.1.2, and so on.At least three arguments are required. repository is needed to identify the collection of source.vendortag is a tag for the entire branch (e.g., for 1.1.1). You must also specify at least one releasetagto identify the �les at the leaves created each time you execute import.A.12.1 import optionsThis standard option is supported by import (see Section A.4 [Common options], page 67, fora complete description):-m message Use message as log information, instead of invoking an editor.There are three additional special options.-b branch Specify a �rst-level branch other than 1.1.1. Unless the `-b branch'
ag is given, re-visions will always be made to the branch 1.1.1|even if a vendortag that matchesanother branch is given! What happens in that case, is that the tag will be reset to1.1.1. Warning: This behavior might change in the future.-k subst Indicate the RCS keyword expansion mode desired. This setting will apply to all �lescreated during the import, but not to any �les that previously existed in the repository.See Section 16.4 [Substitution modes], page 59 for a list of valid `-k' settings.-I name Specify �le names that should be ignored during import. You can use this optionrepeatedly. To avoid ignoring any �les at all (even those ignored by default), specify`-I !'.name can be a �le name pattern of the same type that you can specify in the`.cvsignore' �le. See Section B.8 [cvsignore], page 101.-W spec Specify �le names that should be �ltered during import. You can use this optionrepeatedly.spec can be a �le name pattern of the same type that you can specify in the`.cvswrappers' �le. See Section B.2 [Wrappers], page 96.A.12.2 import examplesSee Chapter 12 [Tracking sources], page 49, and See Section 5.1.1 [From �les], page 19.

Appendix A: Reference manual for CVS commands 85A.13 log|Print out 'rlog' information for �les� Synopsis: log [-l] rlog-options [�les: : :]� Requires: repository, working directory.� Changes: nothing.� Synonym: rlogDisplay log information for �les. log calls the rcs utility rlog, which prints all availableinformation about the rcs history �le. This includes the location of the rcs �le, the head revision(the latest revision on the trunk), all symbolic names (tags) and some other things. For eachrevision, the revision number, the author, the number of lines added/deleted and the log messageare printed. All times are displayed in Coordinated Universal Time (UTC). (Other parts of cvsprint times in the local timezone).A.13.1 log optionsOnly one option is interpreted by cvs and not passed on to rlog:-l Local; run only in current working directory. (Default is to run recursively).By default, rlog prints all information that is available. All other options (including those thatnormally behave di�erently) are passed through to rlog and restrict the output. See rlog(1) fora complete description of options. This incomplete list (which is a slightly edited extract fromrlog(1)) lists all options that are useful in conjunction with cvs.Please note: There can be no space between the option and its argument, since rlog parses itsoptions in a di�erent way than cvs.-b Print information about the revisions on the default branch, normally the highestbranch on the trunk.-ddates Print information about revisions with a checkin date/time in the range given by thesemicolon-separated list of dates. The following table explains the available rangeformats:d1<d2d2>d1 Select the revisions that were deposited between d1 and d2 inclusive.<dd> Select all revisions dated d or earlier.d<>d Select all revisions dated d or later.d Select the single, latest revision dated d or earlier.The date/time strings d, d1, and d2 are in the free format explained in co(1). Quotingis normally necessary, especially for < and >. Note that the separator is a semicolon(;).-h Print only the rcs pathname, working pathname, head, default branch, access list,locks, symbolic names, and su�x.

86 CVS|Concurrent Versions System-N Do not print the list of tags for this �le. This option can be very useful when your siteuses a lot of tags, so rather than "more"'ing over 3 pages of tag information, the loginformation is presented without tags at all.-R Print only the name of the rcs history �le.-rrevisions Print information about revisions given in the comma-separated list revisions of revi-sions and ranges. The following table explains the available range formats:rev1:rev2 Revisions rev1 to rev2 (which must be on the same branch).:rev Revisions from the beginning of the branch up to and including rev.rev: Revisions starting with rev to the end of the branch containing rev.branch An argument that is a branch means all revisions on that branch. Youcan unfortunately not specify a symbolic branch here. You must specifythe numeric branch number. See Section D.1 [Magic branch numbers],page 107, for an explanation.branch1:branch2A range of branches means all revisions on the branches in that range.branch. The latest revision in branch.A bare `-r' with no revisions means the latest revision on the default branch, normallythe trunk.-sstates Print information about revisions whose state attributes match one of the states givenin the comma-separated list states.-t Print the same as `-h', plus the descriptive text.-wlogins Print information about revisions checked in by users with login names appearing inthe comma-separated list logins. If logins is omitted, the user's login is assumed.rlog prints the intersection of the revisions selected with the options `-d', `-l', `-s', and `-w',intersected with the union of the revisions selected by `-b' and `-r'.A.13.2 log examplesContributed examples are gratefully accepted.A.14 rdi�|'patch' format di�s between releases� rdi� [-
ags] [-V vn] [-r t|-D d [-r t2|-D d2]] modules: : :� Requires: repository.� Changes: nothing.� Synonym: patchBuilds a Larry Wall format patch(1) �le between two releases, that can be fed directly into thepatch program to bring an old release up-to-date with the new release. (This is one of the few cvs

Appendix A: Reference manual for CVS commands 87commands that operates directly from the repository, and doesn't require a prior checkout.) Thedi� output is sent to the standard output device.You can specify (using the standard `-r' and `-D' options) any combination of one or tworevisions or dates. If only one revision or date is speci�ed, the patch �le re
ects di�erences betweenthat revision or date and the current head revisions in the rcs �le.Note that if the software release a�ected is contained in more than one directory, then it maybe necessary to specify the `-p' option to the patch command when patching the old sources, sothat patch is able to �nd the �les that are located in other directories.A.14.1 rdi� optionsThese standard options are supported by rdiff (see Section A.4 [Common options], page 67,for a complete description of them):-D date Use the most recent revision no later than date.-f If no matching revision is found, retrieve the most recent revision (instead of ignoringthe �le).-l Local; don't descend subdirectories.-r tag Use revision tag.In addition to the above, these options are available:-c Use the context di� format. This is the default format.-s Create a summary change report instead of a patch. The summary includes informationabout �les that were changed or added between the releases. It is sent to the standardoutput device. This is useful for �nding out, for example, which �les have changedbetween two dates or revisions.-t A di� of the top two revisions is sent to the standard output device. This is most usefulfor seeing what the last change to a �le was.-u Use the unidi� format for the context di�s. This option is not available if your di�does not support the unidi� format. Remember that old versions of the patch programcan't handle the unidi� format, so if you plan to post this patch to the net you shouldprobably not use `-u'.-V vn Expand rcs keywords according to the rules current in rcs version vn (the expansionformat changed with rcs version 5).A.14.2 rdi� examplesSuppose you receive mail from foo@bar.com asking for an update from release 1.2 to 1.4 ofthe tc compiler. You have no such patches on hand, but with cvs that can easily be �xed with acommand such as this:

88 CVS|Concurrent Versions System$ cvs rdiff -c -r FOO1_2 -r FOO1_4 tc | \$$ Mail -s 'The patches you asked for' foo@bar.comSuppose you have made release 1.3, and forked a branch called `R_1_3fix' for bug�xes. `R_1_3_1'corresponds to release 1.3.1, which was made some time ago. Now, you want to see how muchdevelopment has been done on the branch. This command can be used:$ cvs patch -s -r R_1_3_1 -r R_1_3fix module-namecvs rdiff: Diffing module-nameFile ChangeLog,v changed from revision 1.52.2.5 to 1.52.2.6File foo.c,v changed from revision 1.52.2.3 to 1.52.2.4File bar.h,v changed from revision 1.29.2.1 to 1.2A.15 release|Indicate that aModule is no longer in use� release [-d] directories: : :� Requires: Working directory.� Changes: Working directory, history log.This command is meant to safely cancel the e�ect of `cvs checkout'. Since cvs doesn't lock�les, it isn't strictly necessary to use this command. You can always simply delete your workingdirectory, if you like; but you risk losing changes you may have forgotten, and you leave no trace inthe cvs history �le (see Section B.9 [history �le], page 102) that you've abandoned your checkout.Use `cvs release' to avoid these problems. This command checks that no uncommitted changesare present; that you are executing it from immediately above a cvs working directory; and thatthe repository recorded for your �les is the same as the repository de�ned in the module database.If all these conditions are true, `cvs release' leaves a record of its execution (attesting to yourintentionally abandoning your checkout) in the cvs history log.A.15.1 release optionsThe release command supports one command option:-d Delete your working copy of the �le if the release succeeds. If this
ag is not given your�les will remain in your working directory.Warning: The release command uses `rm -r `module'' to delete your �le. This hasthe very serious side-e�ect that any directory that you have created inside your checked-out sources, and not added to the repository (using the add command; see Section A.5[add], page 69) will be silently deleted|even if it is non-empty!A.15.2 release outputBefore release releases your sources it will print a one-line message for any �le that is notup-to-date.

Appendix A: Reference manual for CVS commands 89Warning: Any new directories that you have created, but not added to the cvs directoryhierarchy with the add command (see Section A.5 [add], page 69) will be silently ignored (anddeleted, if `-d' is speci�ed), even if they contain �les.U �le There exists a newer revision of this �le in the repository, and you have not modi�edyour local copy of the �le.A �le The �le has been added to your private copy of the sources, but has not yet beencommitted to the repository. If you delete your copy of the sources this �le will be lost.R �le The �le has been removed from your private copy of the sources, but has not yetbeen removed from the repository, since you have not yet committed the removal. SeeSection A.8 [commit], page 76.M �le The �le is modi�ed in your working directory. There might also be a newer revisioninside the repository.? �le �le is in your working directory, but does not correspond to anything in the sourcerepository, and is not in the list of �les for cvs to ignore (see the description of the `-I'option, and see Section B.8 [cvsignore], page 101). If you remove your working sources,this �le will be lost.Note that no warning message like this is printed for spurious directories that cvsencounters. The directory, and all its contents, are silently ignored.A.15.3 release examplesRelease the module, and delete your local working copy of the �les.$ cd .. # You must stand immediately above the# sources when you issue `cvs release'.$ cvs release -d tcYou have [0] altered files in this repository.Are you sure you want to release (and delete) module `tc': y$A.16 rtag|Add a tag to the RCS �le� rtag [-falnR] [-b] [-d] [-r tag | -Ddate] symbolic tag modules: : :� Requires: repository.� Changes: repository.� Synonym: rfreezeYou can use this command to assign symbolic tags to particular, explicitly speci�ed sourcerevisions in the repository. rtag works directly on the repository contents (and requires no priorcheckout). Use tag instead (see Section A.18 [tag], page 91), to base the selection of revisions onthe contents of your working directory.If you attempt to use a tag name that already exists, cvs will complain and not overwrite thattag. Use the `-F' option to force the new tag value.

90 CVS|Concurrent Versions SystemA.16.1 rtag optionsThese standard options are supported by rtag (see Section A.4 [Common options], page 67, fora complete description of them):-D date Tag the most recent revision no later than date.-f Only useful with the `-D date' or `-r tag '
ags. If no matching revision is found, usethe most recent revision (instead of ignoring the �le).-F Overwrite an existing tag of the same name on a di�erent revision. This option is newin cvs 1.4. The old behavior is matched by `cvs tag -F'.-l Local; run only in current working directory.-n Do not run any tag program that was speci�ed with the `-t'
ag inside the `modules'�le. (see Section B.1 [modules], page 95).-R Commit directories recursively. This is on by default.-r tag Only tag those �les that contain tag. This can be used to rename a tag: tag only the�les identi�ed by the old tag, then delete the old tag, leaving the new tag on exactlythe same �les as the old tag.In addition to the above common options, these options are available:-a Use the `-a' option to have rtag look in the `Attic' (see Chapter 11 [Removing �les],page 47) for removed �les that contain the speci�ed tag. The tag is removed from these�les, which makes it convenient to re-use a symbolic tag as development continues (and�les get removed from the up-coming distribution).-b Make the tag a branch tag. See Chapter 7 [Branches], page 33.-d Delete the tag instead of creating it.In general, tags (often the symbolic names of software distributions) should not beremoved, but the `-d' option is available as a means to remove completely obsoletesymbolic names if necessary (as might be the case for an Alpha release, or if youmistagged a module).A.17 status|Status info on the revisions� status [-lR] [-v] [�les: : :]� Requires: working directory, repository.� Changes: nothing.Display a brief report on the current status of �les with respect to the source repository, includingany sticky tags, dates, or `-k' options.You can also use this command to determine the potential impact of a `cvs update' on yourworking source directory|but remember that things might change in the repository before you runupdate.

Appendix A: Reference manual for CVS commands 91A.17.1 status optionsThese standard options are supported by status (see Section A.4 [Common options], page 67,for a complete description of them):-l Local; run only in current working directory.-R Commit directories recursively. This is on by default.There is one additional option:-v Verbose. In addition to the information normally displayed, print all symbolic tags,together with the numerical value of the revision or branch they refer to.A.18 tag|Add a symbolic tag to checked out version of RCS �le� tag [-lR] [-b] [-d] symbolic tag [�les: : :]� Requires: working directory, repository.� Changes: repository.� Synonym: freezeUse this command to assign symbolic tags to the nearest repository versions to your workingsources. The tags are applied immediately to the repository, as with rtag, but the versions aresupplied implicitly by the cvs records of your working �les' history rather than applied explicitly.One use for tags is to record a snapshot of the current sources when the software freeze date ofa project arrives. As bugs are �xed after the freeze date, only those changed sources that are to bepart of the release need be re-tagged.The symbolic tags are meant to permanently record which revisions of which �les were usedin creating a software distribution. The checkout and update commands allow you to extractan exact copy of a tagged release at any time in the future, regardless of whether �les have beenchanged, added, or removed since the release was tagged.This command can also be used to delete a symbolic tag, or to create a branch. See the optionssection below.If you attempt to use a tag name that already exists, cvs will complain and not overwrite thattag. Use the `-F' option to force the new tag value.A.18.1 tag optionsThese standard options are supported by tag (see Section A.4 [Common options], page 67, fora complete description of them):

92 CVS|Concurrent Versions System-F Overwrite an existing tag of the same name on a di�erent revision. This option is newin cvs 1.4. The old behavior is matched by `cvs tag -F'.-l Local; run only in current working directory.-R Commit directories recursively. This is on by default.Two special options are available:-b The -b option makes the tag a branch tag (see Chapter 7 [Branches], page 33), allow-ing concurrent, isolated development. This is most useful for creating a patch to apreviously released software distribution.-d Delete a tag.If you use `cvs tag -d symbolic_tag', the symbolic tag you specify is deleted insteadof being added. Warning: Be very certain of your ground before you delete a tag; doingthis permanently discards some historical information, which may later turn out to bevaluable.A.19 update|Bring work tree in sync with repository� update [-Ad
PpR] [-d] [-r tag|-D date] �les: : :� Requires: repository, working directory.� Changes: working directory.After you've run checkout to create your private copy of source from the common repository,other developers will continue changing the central source. From time to time, when it is convenientin your development process, you can use the update command from within your working directoryto reconcile your work with any revisions applied to the source repository since your last checkoutor update.A.19.1 update optionsThese standard options are available with update (see Section A.4 [Common options], page 67,for a complete description of them):-D date Use the most recent revision no later than date. This option is sticky, and implies `-P'.See Section 7.4 [Sticky tags], page 37, for more information on sticky tags/dates.-f Only useful with the `-D date' or `-r tag '
ags. If no matching revision is found,retrieve the most recent revision (instead of ignoring the �le).-k k
ag Process rcs keywords according to k
ag. See co(1). This option is sticky; futureupdates of this �le in this working directory will use the same k
ag. The statuscommand can be viewed to see the sticky options. See Section A.17 [status], page 90.-l Local; run only in current working directory. See Chapter 9 [Recursive behavior],page 43.-P Prune empty directories.

Appendix A: Reference manual for CVS commands 93-p Pipe �les to the standard output.-R Operate recursively. This is on by default. See Chapter 9 [Recursive behavior], page 43.-r tag Retrieve revision tag. This option is sticky, and implies `-P'. See Section 7.4 [Stickytags], page 37, for more information on sticky tags/dates.These special options are also available with update.-A Reset any sticky tags, dates, or `-k' options. See Section 7.4 [Sticky tags], page 37, formore information on sticky tags/dates.-d Create any directories that exist in the repository if they're missing from the workingdirectory. Normally, update acts only on directories and �les that were already enrolledin your working directory.This is useful for updating directories that were created in the repository since theinitial checkout; but it has an unfortunate side e�ect. If you deliberately avoidedcertain directories in the repository when you created your working directory (eitherthrough use of a module name or by listing explicitly the �les and directories youwanted on the command line), then updating with `-d' will create those directories,which may not be what you want.-I name Ignore �les whose names match name (in your working directory) during the update.You can specify `-I' more than once on the command line to specify several �lesto ignore. Use `-I !' to avoid ignoring any �les at all. See Section B.8 [cvsignore],page 101, for other ways to make cvs ignore some �les.-Wspec Specify �le names that should be �ltered during update. You can use this optionrepeatedly.spec can be a �le name pattern of the same type that you can specify in the`.cvswrappers' �le. See Section B.2 [Wrappers], page 96.-jrevision With two `-j' options, merge changes from the revision speci�ed with the �rst `-j'option to the revision speci�ed with the second `j' option, into the working directory.With one `-j' option, merge changes from the ancestor revision to the revision speci�edwith the `-j' option, into the working directory. The ancestor revision is the commonancestor of the revision which the working directory is based on, and the revisionspeci�ed in the `-j' option.In addition, each -j option can contain an optional date speci�cation which, when usedwith branches, can limit the chosen revision to one within a speci�c date. An optionaldate is speci�ed by adding a colon (:) to the tag: `-jSymbolic Tag:Date Speci�er'.See Chapter 8 [Merging], page 39.A.19.2 update outputupdate keeps you informed of its progress by printing a line for each �le, preceded by onecharacter indicating the status of the �le:U �le The �le was brought up to date with respect to the repository. This is done for any�le that exists in the repository but not in your source, and for �les that you haven'tchanged but are not the most recent versions available in the repository.

94 CVS|Concurrent Versions SystemA �le The �le has been added to your private copy of the sources, and will be added to thesource repository when you run commit on the �le. This is a reminder to you that the�le needs to be committed.R �le The �le has been removed from your private copy of the sources, and will be removedfrom the source repository when you run commit on the �le. This is a reminder to youthat the �le needs to be committed.M �le The �le is modi�ed in your working directory.`M' can indicate one of two states for a �le you're working on: either there were nomodi�cations to the same �le in the repository, so that your �le remains as you lastsaw it; or there were modi�cations in the repository as well as in your copy, but theywere merged successfully, without con
ict, in your working directory.cvs will print some messages if it merges your work, and a backup copy of your working�le (as it looked before you ran update) will be made. The exact name of that �le isprinted while update runs.C �le A con
ict was detected while trying to merge your changes to �le with changes fromthe source repository. �le (the copy in your working directory) is now the output ofthe rcsmerge(1) command on the two revisions; an unmodi�ed copy of your �le is alsoin your working directory, with the name `.#�le.revision' where revision is the rcsrevision that your modi�ed �le started from. (Note that some systems automaticallypurge �les that begin with `.#' if they have not been accessed for a few days. If youintend to keep a copy of your original �le, it is a very good idea to rename it.)? �le �le is in your working directory, but does not correspond to anything in the sourcerepository, and is not in the list of �les for cvs to ignore (see the description of the`-I' option, and see Section B.8 [cvsignore], page 101).Note that no warning message like this is printed for spurious directories that cvsencounters. The directory, and all its contents, are silently ignored.A.19.3 update examplesThe following line will display all �les which are not up-to-date without actually change anythingin your working directory. It can be used to check what has been going on with the project.$ cvs -n -q update

Appendix B: Reference manual for the Administrative �les 95AppendixB Referencemanual for the Administrative�lesInside the repository, in the directory `$CVSROOT/CVSROOT', there are a number of supportive�les for cvs. You can use cvs in a limited fashion without any of them, but if they are set upproperly they can help make life easier.The most important of these �les is the `modules' �le, which de�nes the modules inside therepository.B.1 The modules �leThe `modules' �le records your de�nitions of names for collections of source code. cvs will usethese de�nitions if you use cvs to update the modules �le (use normal commands like add, commit,etc).The `modules' �le may contain blank lines and comments (lines beginning with `#') as well asmodule de�nitions. Long lines can be continued on the next line by specifying a backslash (`\') asthe last character on the line.A module de�nition is a single line of the `modules' �le, in either of two formats. In both cases,mname represents the symbolic module name, and the remainder of the line is its de�nition.mname -a aliases: : :This represents the simplest way of de�ning a module mname. The `-a'
ags thede�nition as a simple alias: cvs will treat any use of mname (as a command argument)as if the list of names aliases had been speci�ed instead. aliases may contain eitherother module names or paths. When you use paths in aliases, checkout creates allintermediate directories in the working directory, just as if the path had been speci�edexplicitly in the cvs arguments.mname [options] dir [�les: : :] [&module: : :]In the simplest case, this form of module de�nition reduces to `mname dir'. This de�nesall the �les in directory dir as module mname. dir is a relative path (from $CVSROOT)to a directory of source in the source repository. In this case, on checkout, a singledirectory called mname is created as a working directory; no intermediate directorylevels are used by default, even if dir was a path involving several directory levels.By explicitly specifying �les in the module de�nition after dir, you can select particular�les from directory dir. The sample de�nition for `modules' is an example of a modulede�ned with a single �le from a particular directory. Here is another example:m4test unsupported/gnu/m4 foreach.m4 forloop.m4With this de�nition, executing `cvs checkout m4test' will create a single workingdirectory `m4test' containing the two �les listed, which both come from a commondirectory several levels deep in the cvs source repository.A module de�nition can refer to other modules by including `&module' in its de�nition.checkout creates a subdirectory for each such module, in your working directory.-d name Name the working directory something other than the module name.-e prog Specify a program prog to run whenever �les in a module are exported.prog runs with a single argument, the module name.

96 CVS|Concurrent Versions System-i prog Specify a program prog to run whenever �les in a module are committed.prog runs with a single argument, the full pathname of the a�ected direc-tory in a source repository. The `commitinfo', `loginfo', and `editinfo'�les provide other ways to call a program on commit.-o prog Specify a program prog to run whenever �les in a module are checked out.prog runs with a single argument, the module name.-s status Assign a status to the module. When the module �le is printed with `cvscheckout -s' the modules are sorted according to primarily module status,and secondarily according to the module name. This option has no othermeaning. You can use this option for several things besides status: forinstance, list the person that is responsible for this module.-t prog Specify a program prog to run whenever �les in a module are tagged withrtag. prog runs with two arguments: the module name and the symbolictag speci�ed to rtag. There is no way to specify a program to run whentag is executed.-u prog Specify a program prog to run whenever `cvs update' is executed fromthe top-level directory of the checked-out module. prog runs with a singleargument, the full path to the source repository for this module.B.2 The cvswrappers �leWrappers allow you to set a hook which transforms �les on their way in and out of cvs. Mostor all of the wrappers features do not work with client/server cvs.The �le `cvswrappers' de�nes the script that will be run on a �le when its name matches aregular expresion. There are two scripts that can be run on a �le or directory. One script isexecuted on the �le/directory before being checked into the repository (this is denoted with the -t
ag) and the other when the �le is checked out of the repository (this is denoted with the -f
ag)The `cvswrappers' also has a `-m' option to specify the merge methodology that should be usedwhen the �le is updated. MERGE means the usual cvs behavior: try to merge the �les (this generallywill not work for binary �les). COPY means that cvs update will merely copy one version over theother, and require the user using mechanisms outside cvs, to insert any necessary changes. The`-m' wrapper option only a�ects behavior when merging is done on update; it does not a�ect how�les are stored. See See Chapter 17 [Binary �les], page 61, for more on binary �les.The basic format of the �le `cvswrappers' is:wildcard [option value][option value]...where option is one of-f from cvs filter value: path tofilter-t to cvs filter value: path to filter-m update methodology value: MERGE or COPYand value is a single-quote delimited value.*.nib -f 'unwrap %s' -t 'wrap %s %s' -m 'COPY'

Appendix B: Reference manual for the Administrative �les 97*.c -t 'indent %s %s'The above example of a `cvswrappers' �le states that all �les/directories that end with a .nibshould be �ltered with the `wrap' program before checking the �le into the repository. The �leshould be �ltered though the `unwrap' program when the �le is checked out of the repository. The`cvswrappers' �le also states that a COPY methodology should be used when updating the �les inthe repository (that is no merging should be performed).The last example line says that all �les that end with a *.c should be �ltered with `indent'before being checked into the repository. Unlike the previous example no �ltering of the *.c �le isdone when it is checked out of the repository. The -t �lter is called with two arguments, the �rstis the name of the �le/directory to �lter and the second is the pathname to where the resulting�ltered �le should be placed.The -f �lter is called with one argument, which is the name of the �le to �lter from. The end resultof this �lter will be a �le in the users directory that they can work on as they normally would.B.3 The commit support �lesThe `-i'
ag in the `modules' �le can be used to run a certain program whenever �les arecommitted (see Section B.1 [modules], page 95). The �les described in this section provide other,more
exible, ways to run programs whenever something is committed.There are three kind of programs that can be run on commit. They are speci�ed in �les in therepository, as described below. The following table summarizes the �le names and the purpose ofthe corresponding programs.`commitinfo'The program is responsible for checking that the commit is allowed. If it exits with anon-zero exit status the commit will be aborted.`editinfo' The speci�ed program is used to edit the log message, and possibly verify that itcontains all required �elds. This is most useful in combination with the `rcsinfo' �le,which can hold a log message template (see Section B.7 [rcsinfo], page 101).`loginfo' The speci�ed program is called when the commit is complete. It receives the log messageand some additional information and can store the log message in a �le, or mail it toappropriate persons, or maybe post it to a local newsgroup, or: : : Your imagination isthe limit!B.3.1 The common syntaxThe four �les `commitinfo', `loginfo', `rcsinfo' and `editinfo' all have a common format.The purpose of the �les are described later on. The common syntax is described here.Each line contains the following:� A regular expression

98 CVS|Concurrent Versions System� A whitespace separator|one or more spaces and/or tabs.� A �le name or command-line template.Blank lines are ignored. Lines that start with the character `#' are treated as comments. Long linesunfortunately can not be broken in two parts in any way.The �rst regular expression that matches the current directory name in the repository is used.The rest of the line is used as a �le name or command-line as appropriate.B.4 CommitinfoThe `commitinfo' �le de�nes programs to execute whenever `cvs commit' is about to execute.These programs are used for pre-commit checking to verify that the modi�ed, added and removed�les are really ready to be committed. This could be used, for instance, to verify that the changed�les conform to to your site's standards for coding practice.As mentioned earlier, each line in the `commitinfo' �le consists of a regular expression and acommand-line template. The template can include a program name and any number of argumentsyou wish to supply to it. The full path to the current source repository is appended to the template,followed by the �le names of any �les involved in the commit (added, removed, and modi�ed �les).The �rst line with a regular expression matching the relative path to the module will be used.If the command returns a non-zero exit status the commit will be aborted.If the repository name does not match any of the regular expressions in this �le, the `DEFAULT'line is used, if it is speci�ed.All occurances of the name `ALL' appearing as a regular expression are used in addition to the�rst matching regular expression or the name `DEFAULT'.Note: when CVS is accessing a remote repository, `commitinfo' will be run on the remote (i.e.,server) side, not the client side (see Section 4.5 [Remote repositories], page 15).B.5 EditinfoIf you want to make sure that all log messages look the same way, you can use the `editinfo' �leto specify a program that is used to edit the log message. This program could be a custom-madeeditor that always enforces a certain style of the log message, or maybe a simple shell script thatcalls an editor, and checks that the entered message contains the required �elds.If no matching line is found in the `editinfo' �le, the editor speci�ed in the environment variable$CVSEDITOR is used instead. If that variable is not set, then the environment variable $EDITOR isused instead. If that variable is not set a precompiled default, normally vi, will be used.The `editinfo' �le is often most useful together with the `rcsinfo' �le, which can be used tospecify a log message template.

Appendix B: Reference manual for the Administrative �les 99Each line in the `editinfo' �le consists of a regular expression and a command-line template.The template must include a program name, and can include any number of arguments. The fullpath to the current log message template �le is appended to the template.One thing that should be noted is that the `ALL' keyword is not supported. If more than onematching line is found, the �rst one is used. This can be useful for specifying a default edit scriptin a module, and then overriding it in a subdirectory.If the repository name does not match any of the regular expressions in this �le, the `DEFAULT'line is used, if it is speci�ed.If the edit script exits with a non-zero exit status, the commit is aborted.Note: when CVS is accessing a remote repository, `editinfo' will be run on the remote (i.e.,server) side, not the client side (see Section 4.5 [Remote repositories], page 15).B.5.1 Editinfo exampleThe following is a little silly example of a `editinfo' �le, together with the corresponding`rcsinfo' �le, the log message template and an editor script. We begin with the log message tem-plate. We want to always record a bug-id number on the �rst line of the log message. The rest of logmessage is free text. The following template is found in the �le `/usr/cvssupport/tc.template'.BugId:The script `/usr/cvssupport/bugid.edit' is used to edit the log message.#!/bin/sh## bugid.edit filename## Call $EDITOR on FILENAME, and verify that the# resulting file contains a valid bugid on the first# line.if ["x$EDITOR" = "x"]; then EDITOR=vi; fiif ["x$CVSEDITOR" = "x"]; then CVSEDITOR=$EDITOR; fi$CVSEDITOR $1until head -1|grep '^BugId:[]*[0-9][0-9]*$' < $1do echo -n "No BugId found. Edit again? ([y]/n)"read anscase ${ans} inn*) exit 1;;esac$CVSEDITOR $1

100 CVS|Concurrent Versions SystemdoneThe `editinfo' �le contains this line:^tc /usr/cvssupport/bugid.editThe `rcsinfo' �le contains this line:^tc /usr/cvssupport/tc.templateB.6 LoginfoThe `loginfo' �le is used to control where `cvs commit' log information is sent. The �rst entryon a line is a regular expression which is tested against the directory that the change is being madeto, relative to the $CVSROOT. If a match is found, then the remainder of the line is a �lter programthat should expect log information on its standard input.The �lter program may use one and only one % modi�er (a la printf). If `%s' is speci�ed in the�lter program, a brief title is included (enclosed in single quotes) showing the modi�ed �le names.If the repository name does not match any of the regular expressions in this �le, the `DEFAULT'line is used, if it is speci�ed.All occurances of the name `ALL' appearing as a regular expression are used in addition to the�rst matching regular expression or `DEFAULT'.The �rst matching regular expression is used.See Section B.3 [commit �les], page 97, for a description of the syntax of the `loginfo' �le.Note: when CVS is accessing a remote repository, `loginfo' will be run on the remote (i.e.,server) side, not the client side (see Section 4.5 [Remote repositories], page 15).B.6.1 Loginfo exampleThe following `loginfo' �le, together with the tiny shell-script below, appends all log messagesto the �le `$CVSROOT/CVSROOT/commitlog', and any commits to the administrative �les (inside the`CVSROOT' directory) are also logged in `/usr/adm/cvsroot-log'.ALL /usr/local/bin/cvs-log $CVSROOT/CVSROOT/commitlog^CVSROOT /usr/local/bin/cvs-log /usr/adm/cvsroot-logThe shell-script `/usr/local/bin/cvs-log' looks like this:#!/bin/sh(echo "---";

Appendix B: Reference manual for the Administrative �les 101echo -n $USER" ";date;echo;sed '1s+'${CVSROOT}'++') >> $1B.7 RcsinfoThe `rcsinfo' �le can be used to specify a form to edit when �lling out the commit log.The `rcsinfo' �le has a syntax similar to the `editinfo', `commitinfo' and `loginfo' �les. SeeSection B.3.1 [syntax], page 97. Unlike the other �les the second part is not a command-linetemplate. Instead, the part after the regular expression should be a full pathname to a �le containingthe log message template.If the repository name does not match any of the regular expressions in this �le, the `DEFAULT'line is used, if it is speci�ed.All occurances of the name `ALL' appearing as a regular expression are used in addition to the�rst matching regular expression or `DEFAULT'.The log message template will be used as a default log message. If you specify a log messagewith `cvs commit -m message' or `cvs commit -f �le' that log message will override the template.See Section B.5.1 [editinfo example], page 99, for an example `rcsinfo' �le.When CVS is accessing a remote repository, the contents of `rcsinfo' at the time a directoryis �rst checked out will specify a template which does not then change. If you edit `rcsinfo' or itstemplates, you may need to check out a new working directory.B.8 Ignoring �les via cvsignoreThere are certain �le names that frequently occur inside your working copy, but that you don'twant to put under cvs control. Examples are all the object �les that you get while you compileyour sources. Normally, when you run `cvs update', it prints a line for each �le it encounters thatit doesn't know about (see Section A.19.2 [update output], page 94).cvs has a list of �les (or sh(1) �le name patterns) that it should ignore while running update,import and release. This list is constructed in the following way.� The list is initialized to include certain �le name patterns: names associated with cvs ad-ministration, or with other common source control systems; common names for patch �les,object �les, archive �les, and editor backup �les; and other names that are usually artifacts ofassorted utilities. Currently, the default list of ignored �le name patterns is:

102 CVS|Concurrent Versions SystemRCS SCCS CVS CVS.admRCSLOG cvslog.*tags TAGS.make.state .nse_depinfo*~ #* .#* ,* _$* *$*.old *.bak *.BAK *.orig *.rej .del-**.a *.olb *.o *.obj *.so *.exe*.Z *.elc *.lncore� The per-repository list in `$CVSROOT/CVSROOT/cvsignore' is appended to the list, if that �leexists.� The per-user list in `.cvsignore' in your home directory is appended to the list, if it exists.� Any entries in the environment variable $CVSIGNORE is appended to the list.� Any `-I' options given to cvs is appended.� As cvs traverses through your directories, the contents of any `.cvsignore' will be appendedto the list. The patterns found in `.cvsignore' are only valid for the directory that containsthem, not for any sub-directories.In any of the 5 places listed above, a single exclamation mark (`!') clears the ignore list. Thiscan be used if you want to store any �le which normally is ignored by cvs.B.9 The history �leThe �le `$CVSROOT/CVSROOT/history' is used to log information for the history command(see Section A.11 [history], page 82). This �le must be created to turn on logging. This is doneautomatically if the cvs init command is used to set up the repository (see Section B.10 [Settingup], page 102).The �le format of the `history' �le is documented only in comments in the cvs source code, butgenerally programs should use the cvs history command to access it anyway, in case the formatchanges with future releases of cvs.B.10 Setting up the repositoryTo set up a cvs repository, choose a directory with ample disk space available for the revisionhistory of the source �les. It should be accessable (directly or via a networked �le system) from allmachines which want to use cvs in server or local mode; the client machines need not have anyaccess to it other than via the cvs protocol.

Appendix B: Reference manual for the Administrative �les 103To create a repository, run the cvs init command. It will set up an empty repository in thecvs root speci�ed in the usual way (see Chapter 4 [Repository], page 11). For example,cvs -d /usr/local/cvsroot initcvs init is careful to never overwrite any existing �les in the repository, so no harm is done ifyou run cvs init on an already set-up repository.cvs init will enable history logging; if you don't want that, remove the history �le after runningcvs init. See Section B.9 [history �le], page 102.B.11 Expansions in administrative �lesSometimes in writing an administrative �le, you might want the �le to be able to know variousthings based on environment cvs is running in. There are several mechanisms to do that.To �nd the home directory of the user running cvs (from the HOME environment variable), use`~' followed by `/' or the end of the line. Likewise for the home directory of user, use `~user'. Thesevariables are expanded on the server machine, and don't get any resonable expansion if pserver(see Section 4.5.2 [Password authenticated], page 16) is in used; therefore user variables (see below)may be a better choice to customize behavior based on the user running cvs.One may want to know about various pieces of information internal to cvs. A cvs internal vari-able has the syntax ${variable}, where variable starts with a letter and consists of alphanumbericcharacters and `_'. If the character following variable is a non-alphanumeric character other than`_', the `{' and `}' can be omitted. The cvs internal variables are:CVSROOT This is the value of the cvs root in use. See Chapter 4 [Repository], page 11, for adescription of the various ways to specify this.RCSBIN This is the value cvs is using for where to �nd rcs binaries. See Section A.3 [Globaloptions], page 66, for a description of how to specify this.CVSEDITORVISUALEDITOR These all expand to the same value, which is the editor that cvs is using. SeeSection A.3 [Global options], page 66, for how to specify this.USER Username of the user running cvs (on the cvs server machine).If you want to pass a value to the administrative �les which the user that is running cvs canspecify, use a user variable. To expand a user variable, the administrative �le contains ${=variable}.To set a user variable, specify the global option `-s' to cvs, with argument variable=value. It maybe particularly useful to specify this option via `.cvsrc' (see Section A.2 [~/.cvsrc], page 65).For example, if you want the administrative �le to refer to a test directory you might createa user variable TESTDIR. Then if cvs is invoked as cvs -s TESTDIR=/work/local/tests, andthe administrative �le contains sh ${=TESTDIR}/runtests, then that string is expanded to sh/work/local/tests/runtests.

104 CVS|Concurrent Versions SystemAll other strings containing `$' are reserved; there is no way to quote a `$' character so that `$'represents itself.

Appendix C: All environment variables which a�ect CVS 105AppendixC All environment variableswhich a�ect CVSThis is a complete list of all environment variables that a�ect cvs.$CVSIGNOREA whitespace-separated list of �le name patterns that cvs should ignore. SeeSection B.8 [cvsignore], page 101.$CVSWRAPPERSA whitespace-separated list of �le name patterns that cvs should treat as wrappers.See Section B.2 [Wrappers], page 96.$CVSREAD If this is set, checkout and update will try hard to make the �les in your workingdirectory read-only. When this is not set, the default behavior is to permit modi�cationof your working �les.$CVSROOT Should contain the full pathname to the root of the cvs source repository (wherethe rcs history �les are kept). This information must be available to cvs for mostcommands to execute; if $CVSROOT is not set, or if you wish to override it for oneinvocation, you can supply it on the command line: `cvs -d cvsroot cvs_command: : :'Once you have checked out a working directory, cvs stores the appropriate root (in the�le `CVS/Root'), so normally you only need to worry about this when initially checkingout a working directory.$EDITOR$CVSEDITORSpeci�es the program to use for recording log messages during commit. If not set, thedefault is `/usr/ucb/vi'. $CVSEDITOR overrides $EDITOR. $CVSEDITOR does not existin cvs 1.3, but the next release will probably include it.$PATH If $RCSBIN is not set, and no path is compiled into cvs, it will use $PATH to try to �ndall programs it uses.$RCSBIN Speci�es the full pathname of the location of rcs programs, such as co(1) and ci(1). Ifnot set, a compiled-in value is used, or your $PATH is searched.$HOME$HOMEPATH Used to locate the directory where the `.cvsrc' �le is searched ($HOMEPATH is used forWindows-NT). see Section A.2 [~/.cvsrc], page 65$CVS_RSH Used in client-server mode when accessing a remote repository using rsh. The defaultvalue is rsh. You can set it to use another program for accssing the remote server (e.g.for HP-UX 9, you should set it to remsh because rsh invokes the restricted shell). seeSection 4.5.1 [Connecting via rsh], page 15$CVS_SERVERUsed in client-server mode when accessing a remote repository using rsh. It speci�esthe name of the program to start on the server side when accessing a remote repositoryusing rsh. The default value is cvs. see Section 4.5.1 [Connecting via rsh], page 15$CVS_PASSFILEUsed in client-server mode when accessing the cvs login server. Default value is`$HOME/.cvspass'. see Section 4.5.2.2 [Password authentication client], page 17$CVS_PASSWORDUsed in client-server mode when accessing the cvs login server. see Section 4.5.2.2[Password authentication client], page 17

106 CVS|Concurrent Versions System$CVS_CLIENT_PORTUsed in client-server mode when accessing the server via Kerberos. see Section 4.5.3[Kerberos authenticated], page 18$CVS_RCMD_PORTUsed in client-server mode. If set, speci�es the port number to be used when accessingthe rcmd demon on the server side. (Currently not used for Unix clients).$CVS_CLIENT_LOGUsed for debugging only in client-server mode. If set, everything send to the server islogged into `$CVS_CLIENT_LOG.in' and everything send from the server is logged into`$CVS_CLIENT_LOG.out'.$CVS_SERVER_SLEEPUsed only for debugging the server side in client-server mode. If set, delays the startof the server child process the the speci�ed amount of seconds so that you can attachto it with a debugger.$CVS_IGNORE_REMOTE_ROOT(What is the purpose of this variable?)$COMSPEC Used under OS/2 only. It speci�es the name of the command interpreter and defaultsto cmd.exe.cvs is a front-end to rcs. The following environment variables a�ect rcs. Note that if you areusing the client/server cvs, these variables need to be set on the server side (which may or notmay be possible depending on how you are connecting). There is probably not any need to set anyof them, however.$LOGNAME$USER If set, they a�ect who rcs thinks you are. If you have trouble checking in �les it mightbe because your login name di�ers from the setting of e.g. $LOGNAME.$RCSINIT Options prepended to the argument list, separated by spaces. A backslash escapesspaces within an option. The $RCSINIT options are prepended to the argument lists ofmost rcs commands.$TMPDIR$TMP$TEMP Name of the temporary directory. The environment variables are inspected in theorder they appear above and the �rst value found is taken; if none of them are set, ahost-dependent default is used, typically `/tmp'.

Appendix D: Troubleshooting 107AppendixD TroubleshootingD.1 Magic branch numbersExternally, branch numbers consist of an odd number of dot-separated decimal integers. SeeSection 2.1 [Revision numbers], page 5. That is not the whole truth, however. For e�ciencyreasons cvs sometimes inserts an extra 0 in the second rightmost position (1.2.3 becomes 1.2.0.3,8.9.10.11.12 becomes 8.9.10.11.0.12 and so on).cvs does a pretty good job at hiding these so called magic branches, but in at least four placesthe hiding is incomplete.� The magic branch can appear in the output from cvs status in vanilla cvs 1.3. This is �xedin cvs 1.3-s2.� The magic branch number appears in the output from cvs log. This is much harder to �x,since cvs log runs rlog (which is part of the rcs distribution), and modifying rlog to knowabout magic branches would probably break someone's habits (if they use branch 0 for theirown purposes).� You cannot specify a symbolic branch name to cvs log.� You cannot specify a symbolic branch name to cvs admin.You can use the admin command to reassign a symbolic name to a branch the way rcs expects itto be. If R4patches is assigned to the branch 1.4.2 (magic branch number 1.4.0.2) in �le `numbers.c'you can do this:$ cvs admin -NR4patches:1.4.2 numbers.cIt only works if at least one revision is already committed on the branch. Be very careful so thatyou do not assign the tag to the wrong number. (There is no way to see how the tag was assignedyesterday).

108 CVS|Concurrent Versions System

Appendix E: GNU GENERAL PUBLIC LICENSE 109AppendixE GNUGENERAL PUBLIC LICENSE

110 CVS|Concurrent Versions System

Index 111Index--j (merging branches) . 39-k (RCS k
ags) . 59..bashrc . 11.cshrc . 11.cvsrc �le . 65.pro�le. 11.tcshrc . 11//usr/local/cvsroot . 11======== . 26>>>>>>>> .. 26<<<<<<<< .. 26AA sample session . 7About this manual . 1Add (subcommand) . 69Add options . 70Adding a tag . 33Adding �les . 45Admin (subcommand) . 71Administrative �les (intro) . 14Administrative �les (reference) . 95Administrative �les, editing them 14ALL in commitinfo . 98annotate (subcommand) . 55Atomic transactions, lack of . 28authenticated client, using . 17authenticating server, setting up 16Author keyword . 57Automatically ignored �les . 101Avoiding editor invocation . 68BBinary �les . 61Branch merge example . 39Branch number . 5Branch numbers . 37Branch, creating a . 35Branch, vendor- . 49Branches . 33

Branches motivation . 35Branches, copying changes between 39Branches, sticky . 37Bringing a �le up to date . 23Bugs, known in this manual . 2Bugs, reporting (manual) . 2CChanges, copying between branches 39Changing a log message . 72Checkin program . 95Checking commits . 98Checking out source . 7Checkout (subcommand) . 74Checkout program . 96Checkout, example . 7Cleaning up. 8Client/Server Operation . 15Co (subcommand) . 74Command reference . 65Command structure . 65Comment leader . 74Commit (subcommand) . 76Commit �les . 97Commit, when to . 63Commitinfo . 98Committing changes . 7Common options . 67Common syntax of info �les . 97COMSPEC . 106Con
ict markers . 26Con
ict resolution . 26Con
icts (merge example) . 26Contributors (CVS program) . 3Contributors (manual) . 2Copying changes . 39Correcting a log message . 72Creating a branch . 35Creating a project . 19Creating a repository . 102Credits (CVS program) . 3Credits (manual). 2CVS 1.6, and watches . 31CVS command structure . 65CVS passwd �le . 16CVS, history of . 3CVS, introduction to . 3CVS CLIENT LOG . 106CVS CLIENT PORT . 18CVS IGNORE REMOTE ROOT 106CVS PASSFILE, environment variable 17CVS PASSWORD, environment variable 18CVS RCMD PORT . 106

112 CVS|Concurrent Versions SystemCVS RSH . 105CVS SERVER . 15CVS SERVER SLEEP . 106CVSEDITOR . 105CVSEDITOR, environment variable 7CVSIGNORE . 105Cvsignore, global . 101CVSREAD . 105CVSREAD, overriding . 67cvsroot . 11CVSROOT . 105CVSROOT (�le) . 95CVSROOT, environment variable 11CVSROOT, module name . 14CVSROOT, multiple repositories 14CVSROOT, overriding . 66CVSWRAPPERS . 105cvswrappers (admin �le) . 96CVSWRAPPERS, environment variable. 96DDate keyword . 57Dates . 67Decimal revision number . 5DEFAULT in commitinfo . 98DEFAULT in editinfo . 99De�ning a module . 20De�ning modules (intro) . 14De�ning modules (reference manual) 95Deleting �les. 47Deleting revisions . 72Deleting sticky tags . 37Descending directories . 43Di� . 8Di� (subcommand) . 79Di�erences, merging . 41Directories, moving . 53Directory, descending . 43Disjoint repositories. 14Distributing log messages . 100driver.c (merge example) . 24Eedit (subcommand) . 30Editinfo . 98Editing administrative �les . 14Editing the modules �le . 20EDITOR . 105Editor, avoiding invocation of . 68EDITOR, environment variable . 7EDITOR, overriding . 66Editor, specifying per module . 98editors (subcommand) . 31emerge . 27Environment variables . 105Errors, reporting (manual) . 2Example of a work-session . 7

Example of merge . 24Example, branch merge . 39Export (subcommand) . 81Export program . 95FFetching source . 7File locking . 23File permissions . 13File status . 23Files, moving . 51Files, reference manual . 95Fixing a log message . 72Forcing a tag match . 68Form for log message . 101Format of CVS commands . 65Four states of a �le . 23GGetting started . 7Getting the source . 7Global cvsignore . 101Global options . 66Group . 13HHeader keyword . 57History (subcommand). 82History browsing. 55History �le . 102History �les . 13History of CVS . 3HOME . 105HOMEPATH . 105IId keyword . 57Ident (shell command) . 58Identifying �les . 57Ignored �les . 101Ignoring �les . 101Import (subcommand) . 83Importing �les . 19Importing �les, from other version control systesm . . 20Importing modules. 49Index . 111Info �les (syntax) . 97Informing others . 27Introduction to CVS . 3Invoking CVS. 65Isolation . 55JJoin . 39

Index 113Kkerberos . 18Keyword expansion . 57Keyword substitution . 57K
ag . 59kinit . 18Known bugs in this manual . 2LLayout of repository . 11Left-hand options . 66Linear development . 5List, mailing list . 3Locally modi�ed . 23Locker keyword . 57Locking �les . 23locks, cvs . 28Log (subcommand) . 85Log information, saving . 102Log keyword . 57Log keyword, selecting comment leader 74Log message entry . 7Log message template . 101Log message, correcting . 72Log messages . 100Log messages, editing . 98Login (subcommand) . 17Loginfo . 100LOGNAME . 106MMail, automatic mail on commit 27Mailing list . 3Mailing log messages. 100Main trunk (intro) . 5Main trunk and branches . 33Many repositories . 14Markers, con
ict . 26Merge, an example . 24Merge, branch example . 39Merging . 39Merging a branch . 39Merging a �le . 23Merging two revisions . 41Modi�cations, copying between branches 39Module status . 96Module, de�ning . 20Modules (admin �le) . 95Modules (intro) . 5Modules �le . 14Modules �le, changing . 20Motivation for branches . 35Moving directories . 53Moving �les . 51Multiple developers . 23Multiple repositories . 14

NName, symbolic (tag) . 33Needing merge . 23Needing update . 23Nro� (selecting comment leader) 74Number, branch . 5Number, revision- . 5Ooption defaults . 65Options, global . 66Outdating revisions . 72Overlap. 24Overriding CVSREAD . 67Overriding CVSROOT . 66Overriding EDITOR . 66Overriding RCSBIN . 66PParallel repositories . 14passwd �le . 16password client, using . 17password server, setting up. 16PATH . 105Per-module editor . 98Policy . 63Precommit checking . 98Preface . 1Pserver (subcommand). 16RRCS history �les . 13RCS keywords . 57RCS revision numbers . 33RCS, CVS uses RCS . 13RCS, importing �les from . 20RCS-style locking . 72RCSBIN . 105RCSBIN, overriding . 66RCS�le keyword . 57Rcsinfo . 101RCSINIT . 106Rdi� (subcommand) . 86Read-only �les . 67Read-only mode . 67Recursive (directory descending) 43Reference manual (�les) . 95Reference manual for variables . 105Reference, commands . 65Release (subcommand). 88Releases, revisions and versions . 6Releasing your working copy . 8Remote repositories . 15Remove (subcommand) . 47Removing a change . 41Removing �les . 47Removing your working copy . 8

114 CVS|Concurrent Versions SystemRenaming directories . 53Renaming �les . 51Replacing a log message . 72Reporting bugs (manual) . 2Repositories, multiple . 14Repositories, remote . 15Repository (intro). 5Repository, example . 11Repository, setting up . 102Repository, user parts . 12Reserved checkouts . 72Resetting sticky tags . 37Resolving a con
ict . 26Restoring old version of removed �le 38Resurrecting old version of dead �le 38Retrieving an old revision using tags 34Revision keyword . 57Revision management . 63Revision numbers . 5Revision tree. 5Revision tree, making branches. 33Revisions, merging di�erences between 41Revisions, versions and releases . 6Right-hand options . 67rsh . 15Rtag (subcommand) . 89rtag, creating a branch using . 35SSaving space . 72SCCS, importing �les from . 20Security . 13setgid . 14Setting up a repository . 102setuid . 14Signum Support . 1Source keyword . 57Source, getting CVS source . 3Source, getting from CVS . 7Specifying dates . 67Spreading information . 27Starting a project with CVS . 19State keyword . 57Status (subcommand). 90Status of a �le . 23Status of a module . 96Sticky tags . 37Sticky tags, resetting. 37Storing log messages . 100Structure . 65Subdirectories . 43Support, getting CVS support. 1Symbolic name (tag) . 33Syntax of info �les . 97TTag (subcommand) . 91

Tag program . 96tag, command, introduction . 33tag, example . 33Tag, retrieving old revisions . 34Tag, symbolic name . 33taginfo . 55Tags . 33Tags, sticky . 37tc, Trivial Compiler (example) . 7Team of developers . 23TEMP . 106Template for log message . 101Third-party sources . 49Time . 67TMP . 106TMPDIR . 106Trace . 67Traceability . 55Tracking sources . 49Transactions, atomic, lack of . 28Trivial Compiler (example) . 7Typical repository . 11UUndoing a change . 41unedit (subcommand) . 30Up-to-date . 23Update (subcommand) . 92Update program . 96update, introduction . 23Updating a �le. 23USER . 106User modules . 12users (admin �le) . 30VVendor . 49Vendor branch . 49Versions, revisions and releases . 6Viewing di�erences . 8Wwatch add (subcommand) . 29watch o� (subcommand) . 29watch on (subcommand) . 29watch remove (subcommand) . 30watchers (subcommand) . 31Watches . 28Wdi� (import example) . 49What (shell command) . 58What branches are good for . 35What is CVS? . 3When to commit . 63Work-session, example of . 7Working copy . 23Working copy, removing . 8Wrappers . 96

iShort ContentsAbout this manual . 11 What is CVS? . 32 Basic concepts . 53 A sample session . 74 The Repository . 115 Starting a project with CVS . 196 Multiple developers . 237 Branches . 338 Merging . 399 Recursive behavior . 4310 Adding �les to a module . 4511 Removing �les from a module . 4712 Tracking third-party sources . 4913 Moving and renaming �les . 5114 Moving and renaming directories . 5315 History browsing . 5516 Keyword substitution . 5717 Handling binary �les . 6118 Revision management . 63Appendix A Reference manual for CVS commands 65Appendix B Reference manual for the Administrative �les 95Appendix C All environment variables which a�ect CVS 105Appendix D Troubleshooting . 107Appendix E GNU GENERAL PUBLIC LICENSE 109Index . 111

ii CVS|Concurrent Versions System

iiiTable of ContentsAbout this manual . 1Checklist for the impatient reader . 1Credits . 2BUGS . 21 What is CVS? . 3CVS is not: : : . 32 Basic concepts . 52.1 Revision numbers . 52.2 Versions, revisions and releases . 63 A sample session . 73.1 Getting the source. 73.2 Committing your changes . 73.3 Cleaning up. 83.4 Viewing di�erences . 84 The Repository . 114.1 User modules . 124.1.1 File permissions . 134.2 The administrative �les . 144.2.1 Editing administrative �les . 144.3 Multiple repositories . 144.4 Creating a repository . 154.5 Remote repositories . 154.5.1 Connecting with rsh . 154.5.2 Direct connection with password authentication 164.5.2.1 Setting up the server for password authentication. 164.5.2.2 Using the client with password authentication . . 174.5.2.3 Security considerations with passwordauthentication . 184.5.3 Direct connection with kerberos. 185 Starting a project with CVS . 195.1 Setting up the �les . 195.1.1 Creating a module from a number of �les 195.1.2 Creating Files From Other Version Control Systems 205.1.3 Creating a module from scratch . 205.2 De�ning the module . 206 Multiple developers . 236.1 File status . 236.2 Bringing a �le up to date . 236.3 Con
icts example . 246.4 Informing others about commits . 276.5 Several developers simultaneously attempting to run CVS 286.6 Mechanisms to track who is editing �les . 28

iv CVS|Concurrent Versions System6.6.1 Telling CVS to watch certain �les . 296.6.2 Telling CVS to notify you . 296.6.3 How to edit a �le which is being watched 306.6.4 Information about who is watching and editing 316.6.5 Using watches with old versions of CVS 317 Branches . 337.1 Tags{Symbolic revisions . 337.2 What branches are good for . 357.3 Creating a branch . 357.4 Sticky tags . 378 Merging . 398.1 Merging an entire branch . 398.2 Merging from a branch several times . 408.3 Merging di�erences between any two revisions 419 Recursive behavior . 4310 Adding �les to a module . 4511 Removing �les from a module 4712 Tracking third-party sources . 4912.1 Importing a module for the �rst time . 4912.2 Updating a module with the import command 4913 Moving and renaming �les . 5113.1 The Normal way to Rename . 5113.2 Moving the history �le. 5113.3 Copying the history �le . 5214 Moving and renaming directories 5315 History browsing . 5515.1 Log messages . 5515.2 The history database . 5515.3 User-de�ned logging . 5515.4 Annotate command . 5516 Keyword substitution . 5716.1 RCS Keywords . 5716.2 Using keywords . 5716.3 Avoiding substitution. 5816.4 Substitution modes . 5916.5 Problems with the Log keyword. 5917 Handling binary �les . 6118 Revision management . 6318.1 When to commit? . 63

vAppendix A Reference manual for CVS commands. 65A.1 Overall structure of CVS commands . 65A.2 Default options and the ~/.cvsrc �le . 65A.3 Global options . 66A.4 Common command options . 67A.5 add|Add a new �le/directory to the repository 69A.5.1 add options . 70A.5.2 add examples . 71A.6 admin|Administration front end for rcs . 71A.6.1 admin options . 71A.6.2 admin examples . 73A.6.2.1 Outdating is dangerous . 73A.6.2.2 Comment leaders . 74A.7 checkout|Check out sources for editing . 74A.7.1 checkout options . 75A.7.2 checkout examples . 76A.8 commit|Check �les into the repository . 76A.8.1 commit options . 77A.8.2 commit examples . 78A.8.2.1 New major release number 78A.8.2.2 Committing to a branch . 78A.8.2.3 Creating the branch after editing 78A.9 di�|Run di�s between revisions . 79A.9.1 di� options . 79A.9.2 di� examples . 80A.10 export|Export sources from CVS, similar to checkout 81A.10.1 export options . 81A.11 history|Show status of �les and users . 82A.11.1 history options . 82A.12 import|Import sources into CVS, using vendor branches 83A.12.1 import options . 84A.12.2 import examples . 84A.13 log|Print out 'rlog' information for �les . 85A.13.1 log options . 85A.13.2 log examples . 86A.14 rdi�|'patch' format di�s between releases . 86A.14.1 rdi� options . 87A.14.2 rdi� examples. 87A.15 release|Indicate that a Module is no longer in use 88A.15.1 release options . 88A.15.2 release output . 88A.15.3 release examples . 89A.16 rtag|Add a tag to the RCS �le . 89A.16.1 rtag options . 90A.17 status|Status info on the revisions . 90A.17.1 status options . 91A.18 tag|Add a symbolic tag to checked out version of RCS �le 91A.18.1 tag options . 91A.19 update|Bring work tree in sync with repository 92A.19.1 update options . 92A.19.2 update output . 93A.19.3 update examples . 94

vi CVS|Concurrent Versions SystemAppendix B Reference manual for the Administrative�les . 95B.1 The modules �le . 95B.2 The cvswrappers �le . 96B.3 The commit support �les . 97B.3.1 The common syntax . 97B.4 Commitinfo . 98B.5 Editinfo . 98B.5.1 Editinfo example . 99B.6 Loginfo . 100B.6.1 Loginfo example . 100B.7 Rcsinfo . 101B.8 Ignoring �les via cvsignore . 101B.9 The history �le . 102B.10 Setting up the repository . 102B.11 Expansions in administrative �les . 103Appendix C All environment variables which a�ectCVS. 105Appendix D Troubleshooting . 107D.1 Magic branch numbers . 107Appendix E GNU GENERAL PUBLIC LICENSE. 109Index . 111

