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Abstract

The advent of freely distributed operating sys-
tems, compilers, and cross-compilers in combina-
tion with the radically lowered costs of hardware
has made it possible to carry out quite ambi-
tious research in operating systems with modest
resources. These same factors make it possible
to teach operating systems in a hands-on fash-
ion that offers students more than a “conceptual”
understanding of operating systems. This paper
briefly describes two research projects in operat-
ing system design and a collection course changes,
all making use of the Linux operating system. The
first research project is aimed at developing a hard
real-time executive to run over Linux. The second
project is aimed at design of scientific workstation
operating systems and is currently focused on 10
and file systems.

1 Introduction

Low-cost personal computers and no-cost full-
scale operating systems permit academic research
and teaching in operating systems to be made
more interesting and useful. In this paper, I
will discuss how the Linux operating system and
other freely distributable software has been incor-
porated into two research projects and into the
systems curriculum at New Mexico Tech. The
research projects include the development of a
real-time operating system — aimed primarily at
instrument control — and a long range project
aimed at developing operating systems for scien-
tific workstations. The curriculum changes ef-
fect both a semi-traditional introductory operat-

ing systems class and ongoing project classes that
cover more advanced material. These classes in-
clude an effort to port Linux to the PowerPC
architecture and projects on real-time operating
systems. All these efforts are still in experimental
stages. They illustrate, however, the liberating ef-
fects of the freely distributable operating systems
and compilers combined with the rapid decline in
costs of computing power. OS research that pre-
viously would have only been practical in a few
well funded and staffed centers and “hands-on”
operating systems education that would have been
enormously expensive are now within the reach of
even modestly funded academic institutions.

Credits. The real-time operating system de-
scribed in section 2.1 has been taken from concept
to a working system by Michael Barabanov and,
in particular, the design of the soft iret is due
to him. The data on file system operation in sec-
tion 2.2 was collected as part of a Masters project
by Wang Jun[Jun95]. The scientific workstation
project is a collaborative effort with Professor Jeff
Putnum of New Mexico Tech and with members of
the scientific staff at the National Radio Astron-
omy Observatory in Socorro, New Mexico. The
new version of the software for this project is be-
ing implemented by Craig Wu. Both projects have
been partially funded by a grant from Sandia Labs
contract AM4413, and my work on this project is
partially funded by NSF Grant CCR-9409454.

2 Research

2.1 Real-time Linux

Research in real-time operating systems has been
handicapped by the paucity of data — actual
problems that have been addressed and solved.
Nearby scientific laboratories give us access to
a collection of interesting and manageable prob-
lems in the control of scientific instruments and
robotics systems. These problems range from
lightning detectors to rocket control to wafer pro-
cessing stations. We’d like to use these applica-
tions to test some design methodologies, schedul-
ing algorithms, and real-time system validation



techniques. Proprietary real-time operating sys-
tems are too expensive and too rigid to serve this
purpose. On the other hand, a from-scratch oper-
ating system will lack the graphical displays, net-
work interfaces, and development tools needed for
any but the smallest project.

One of the problems we are investigating is
a controller for an instrument that measures elec-
trical discharges in thunderstorms. We would like
to be able to read data from the instrument pe-
riodically, buffer and then write the data to disk,
generate a graphical display of the data either lo-
cally or over the network, and possibly accept data
from other instruments over the network. Only
the first of these tasks requires hard real-time,
the remainder are standard programming tasks
for which Linux is well suited. Another prob-
lem concerns the control of a liquid fueled rocket
mounted on a test platform. Here we need to
sample and display data on numerous channels,
update a remote real-time display, accept emer-
gency shutdown commands, and perform routine
control operations. Again, most of the require-
ments are for vanilla operating systems services,
but there are hard real-time components that need
reasonably precise scheduling. For example, the
shutdown sequence must be precisely timed and
cannot be delayed by lower priority tasks without
spectacular and unwelcome results.

At first glance, and at second and third
glance too, Linux seems a very unlikely answer
to the hard real time requirements[SR88]. The
system is large and slow, and it suffers from the
standard inability to preempt kernel mode pro-
cesses. Redesign of the scheduling algorithm will
not help because there are unpredicatable delays
caused by the kernel preemption problem, the vir-
tual memory paging system, and the demands
of interrupt driven devices. One solution then,
would be a complete internal redesign, but this
would defeat the purpose. The correct solution
is to make Linux run as a task under a real-time
executive. Linux itself will not be rewritten. In-
stead a real-time executive will run Linux as its
lowest, priority task, preempting it when needed
regardless of whether Linux is running in kernel
or user mode. Of course, this does not completely
solve the problem. As Koopman has illustrated

[K0093], the cache heavy design of modern com-
puter systems can cause unpredicatable behavior
on the hardware level. But problems with cache
and similar problems with pipelines can be con-
tained with careful programming and relatively
lax deadlines. Unpredictable behavior by the OS
is a more significant problem.

Linux interrupt handling is strongly influ-
enced by the x86 architecture. Kernel code dis-
ables all interrupts by executing a cli macro
which executes a x86 cli instruction to clear the
enable interrupt flag in the processor control word.
Interrupts are enabled by a sti macro which sets
the enable bit. Real-Time Linux interposes the
executive between these commands and the hard-
ware. Instead of changing a bit in the processor
control word, Linux sti and cli commands set
and clear a soft control bit in a memory variable.
Instead of directly managing the hardware inter-
rupt table, Linux manages a soft interrupt table.
Hardware interrupts then are caught by the real-
time executive which can pass them on to Linux
or simply set a bit in an interrupt variable to indi-
cate a pending interrupt. In particular, the clock
cannot be disabled by Linux. When no real-time
tasks are ready to run and the soft interrupt en-
able bit is set, the real-time executive will pass
pending interrupts to Linux. Linux simply runs
using whatever time is not needed by the real-
time system.

A simplified version of the code implement-
ing soft sti on the x86 architecture is reproduced
in figure 1. The code essentially emulates the
hardware interrupt controller. As soft interrupts
are enabled, the highest priority pending interrupt
takes control. When a Linux kernel process exe-
cutes the sti macro it executes a soft sti. The
soft sti first pushes data on the stack to emulate
a trap so that a return from interrupt instruction
will reach the label Done past the macro. The soft
iret macro then acts to clear at least one pending
interrupt as shown in figure 2.

The macro S_IRET begins by saving a few scratch
registers. Then the interrupt bit is cleared in the
hardware to hard disable interrupts. Now in the
critical section the bit map of requested interrupts
is ored with the bit map of enabled soft interrupts
and the index of the highest order set bit is moved



sti
pushfl
pushl $KERNEL_CS
pushl $DoneS_STIf
S_IRET

DoneS_STI:

Figure 1: Soft STI

SAVE_LEAST

cli

movl (SFREQR),%edx
andl (SFMASK),%edx
bsrl %edx,%eax

jz Endf

S_CLI

sti

jmp SFIDT(,%eax,4)
movl $1,SFIF

sti

RESTORE_LEAST

iret

End:

Figure 2: Soft iret

into the a register. If no pending interrupts were
found, we simply unload the saved registers and
execute an iret instruction, in this case, to re-
turn to DoneS_STI. Otherwise, we jump to the in-
terrupt handler. In either case hard interrupts are
enabled. The interrupt handler will terminate by
executing S_IRET.

This code is not particularly efficient right
now, but we still at an early stage and optimiza-
tions can come later. Both the redesign of low
level Linux code that is currently taking place
and our plans to port this design to the Alpha
and PowerPC architectures make it inadvisable to
spend too much time shaving microseconds from
the execution of the non-real-time code.

Special lock-
free data structures [Her91][MP89][MP91] may be
used to allow real-time tasks to exchange data
with Linux processes. Thus, a display program
using X-Windows can run as a Linux process and

display data gathered by a real-time task running
under the real-time executive. In preliminary ex-
periments on a Pentium/120, we have found that
real time processes can be run on a 50 microsecond
period while Linux is heavily loaded with network
and disk transactions. An alternative test ran a
single real-time task with a compute time of ap-
proximately 40ms and a scheduling period of 55ms
while Linux was running a disk copy program and
supporting a terminal display over the network.
In this test, Linux continued to operate, although
with vastly decreased response times — keyboard
response on the remote window was about 1 sec-
ond. But this is exactly the behavior we want.
The non-real-time OS and applications take what
compute time remains when the real time tasks
are not busy.

Of course if a system contains time sensi-
tive IO devices that run under Linux, it may fail
if any real-time task is too long. But in that case,
the control of that device should migrate into the
real-time executive. One project here would be to
move low level time-sensitive control code out of
the Linux drivers entirely and centralize them in
the RT executive. Currently, the timing interac-
tions of low-level device code are discovered only
when a system begins to fail. That is, standard
operating systems contain a real-time component
that is not designed as a real-time component.

The system is now at a stage where we ex-
pect to carry out alpha tests on the lightning in-
strument control and possibly on another similar
project. An exec system call for real time tasks
has just been completed and the fifos for data ex-
change are being made more sophisticated. Once
the basic system is operational, we will turn to a
loadable scheduler so that different scheduling al-
gorithms may be tested. For many systems, a pro-
cess that computes the rate-monotonic schedul-
ing algorithm and loads this schedule before the
real-time tasks are started could be quite useful.
We hope to release a beta version of this system
by March. Volunteers for beta site testing are
needed.



2.2 System instrumentation

The second research project involves the de-
sign operating systems for scientific workstations.
We are looking at a fairly typical application,
the Astronomical Information Processing System
(AIPS) developed by the National Radio Astron-
omy Observatory (NRAO). AIPS is an enormous
collection of FORTRAN programs that are used
to analyze and display radio telescope data. The
size of the data sets is large and increasing — raw
data from the NRAO Very Large Baseline Array
telescope is measured in terabits and the partially
processed data files are several gigabytes. It would
not be surprising if IO turned out to be a limiting
factor in performance. For obvious reasons, the
NRAO is also very interested in central storage.
So, the question of the practicality of networked
IO over low bandwidth wires is also interesting.

There is almost no published research mea-
suring the performance of file caching or other
optimizations or even characterizing the load im-
posed on an operating system under scientific
workstation computing. Much of the small lit-
erature on general file system loads is collected
by programs similar to the the UNIX trace
command which collect data at the user level.
Ruemmler and Wilkes [RW93] offer one of the
rare exceptions in their paper on data collected by
instrumenting the HP-UX operating system (this
paper also contains a good summary of the lit-
erature). Our first step, therefore, has been to
instrument Linux so as to to find out what AIPS
and other programs need from the operating sys-
tem. Once we have collected sufficient data, we
will be able to evaluate design options.

One interesting component of the problem
is that AIPS is being rewritten in C++. We ex-
pect that this will radically change the IO de-
mands of the system by putting more pressure on
the virtual memory system and by making less use
of temporary files. Again, we have found no pub-
lished research on the effects of such transitions
on the IO characteristics of scientific software.

To start, we have instrumented a version of
Linux to trace all I/O system calls and the oper-
ation of the buffer cache. Every file operation —
read, write, seek, etc. — and every buffer cache

access is logged. For file operations, we currently
log the start and end times in units of 100 mi-
croseconds, the inode, file position, and device.
We also log the hit rate per a selectable number
of buffer cache accesses.

It is our intention to make the trace system
an easily installed patch to Linux so that it can
be used to gather data from a wider set of ap-
plications. We hope to be able to use the net to
collect a truly representative sampling. The first
version of this project had a fixed log file that was
written to by the kernel whenever internal buffers
filled. The data file was placed on a second disk
so that writing log information would minimally
skew our data. A new version is currently being
implemented which relies on a daemon program to
periodically empty kernel log buffers. The rewrite
was designed to minimize the amount of kernel
code needed for logging and to permit remote col-
lection of log data. The newer version also takes
advantage of the internal timer on the Pentium
for more precise measurement of time intervals.

Early work has been encouraging although
it has not revealed any major surprises. Figure 4
shows the pattern of reads seen on a make of the
Linux kernel. Figure 3 shows the pattern of reads
seen on a run of the AIPS DDT benchmark which
exercises several features in AIPS and is designed
to provide some measure of how well a system
runs AIPS. The DDT exercise used moderate size
files in the several megabyte range and runs for
about 20 minutes on a P90 with 24 megabytes
of memory. The results shown in the two figures
were typical of several hundred runs taken to elim-
inate artifacts. The preponderance of sequential
file accesses in AIPS and the contrast with the ker-
nel make is quite clear. One would expect from
this data that aggressive read-ahead would be a
good strategy, but much closer analysis is needed.
One possible problem with aggressive read-ahead
is that it might displace the code of frequently
executed processes from the buffer cache.

A different perspective on the same two
loads can be seen from figures 6 and 5 showing
the hit rate on the buffer cache. As one might
expect, the sequential accesses in AIPS results in
uneven performance. LRU policies do not work
well in this situation although they work very well



for the kernel make. What is surprising about the
AIPS results are the significant periods in which
the cache satisfies all requests. These counteract
the lows to produce a deceptively high cumulative
hit rate of close to 90%.

More measurements will be ready soon and
will be put on the web page. The kernel patch and
analysis programs will be also made available over
the web page when they are reliable and properly
packaged.

3 Concrete Operating Sys-
tems

The mathematics textbook of Graham, Knuth,
and Patashnik [GKP89] begins with a quotation
from J. Hammersley that bears requoting.

what we should ask of educated
mathematicians is not what they can
speechify about, nor even what they know
about the existing corpus of mathemati-
cal knowledge, but rather what they now
do with their learning and whether they
can actually solve mathematical prob-
lems. In short we look for deeds not
words. [Ham68]

The same standard should be applied to com-
puter scientists. But the traditional operating
systems class does little to prepare students to
“solve problems”. Instead emphasis is placed on
general concepts and on a high-level perspective
that ignores the critical implementation details.
The reason for this emphasis is that teaching stu-
dents how a particular operating system works is
less important than teaching them the fundamen-
tal principles behind all operating systems. It can
be argued that most students will never need to
program operating systems internals and thus are
better served by a high level course. This seems to
me to be a philosophy suited to producing man-
agers and coders, not computer scientists capable
of creative work. Just as one would not attempt
to teach the principles of the differential calcu-
lus without solving problems, one should not try
to teach operating systems without solving prob-

lems. The details are needed in order to animate
the principles.

Students who have taken an introduction
to operating systems class often have only the
most idealized view of synchronization and are
completely unable to construct a semaphore from
a test-and-set primitive or to analyze the pos-
sible deadlocks in a realistic sleep/wakeup sys-
tem. Time-sharing and virtual memory, in par-
ticular, remain mysteries until the students get
their hands dirty actually working with code and
bare machines. This problem is worse for ad-
vanced courses where, for example, understanding
distributed shared memory depends on a detailed
understanding of the mechanisms of memory man-
agement, network device drivers, and disk IO.

To give students “hands on” experience, we
have incorporated Linux into the junior level oper-
ating systems course and several advanced classes.
We are now considering how to move some of the
simpler OS projects, such as writing system calls,
into lower level classes as well.

3.1 You are expected to understand

this

The primary equipment for the current version
of our junior level operating systems class con-
sists of a collection of 486/Pentium workstations
running both Linux and Novell Netware. Be-
cause we have to share these workstations with
other undergraduate classes and even other de-
partments it is impossible to allow students to ex-
periment with the operating system code or to
gain access to the raw file system structures or
to the raw device interfaces. Since this is exactly
what we would like students to do for their OS
projects, we have equipped the workstations with
rack mounted drives. The drives can be unlocked
and swapped out in a few seconds by any of the
user consultants employed by the computer cen-
ter. Students in the OS class are divided into
small development teams of between 2 and 4 mem-
bers. Each team is given a bootable Linux disk
for the semester. Copies of the disk are kept
on the network so that when project teams de-
stroy their own file systems or otherwise render
the disk unbootable they can get a fresh start.



Running AIPS read-1

file number 0 o

file position

Figure 3: Reads for AIPS



Making kernel read-1
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Figure 4: Reads for kernel make
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Running AIPS buffer cache per thousand references hit rate
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Figure 6: Buffer hit rate for AIPS



The issue of security is dealt via the usual tech-
nical means and by warnings that anyone found
exploiting the security holes will find themselves
in serious academic and legal difficulties. As more
and more students have Linux capable machines
of their own (70% of our freshman class this year
arrived with computers) we expect to be able to
reduce the number of disks reserved for the class.

The OS course provides students with a se-
ries of projects of increasing difficulty. We be-
gin with some warm up exercises, making sure
that students know how to recompile the kernel
and add simple system calls. Later projects range
from copying data between kernel and user space
(reimplementing Linux utilities) to controlling de-
vices and switching tasks. An example of a late
course project is to implement system calls that
can read and write the floppy disk — without us-
ing any of the Linux components that do this in
the ordinary course of events. One of the projects
scheduled for this year’s course is to reimplement
the core process switch code without using the
x86 task switch instructions. In addition to the
projects, Linux is brought directly into the course
lectures to illustrate such concepts as semaphores
and virtual memory management.

Linux is not the most elegantly designed or
coded operating system. In fact, the code qual-
ity is uneven and the design shows the stresses
of rapid growth. For our purposes, this is not a
disadvantage. First, students see the operating
system internals as something written partially
by other students and not as a mysterious ob-
ject produced whole by higher powers. Second,
the results of prior design decisions, the effects of
peculiar hardware, and changes in the design are
visible in the code. During the course, we discuss
how the system design could be improved, why
some parts of the code are so complex, and the
relationship between OS design and computer ar-
chitecture. Finally, the very opaqueness of some
of the code requires deeper reading. One cannot
simply look at the surface structure and gain a
superficial understanding. Students are required
to really study the code and think about what it
should be doing. And this is the purpose of the
course.

10

3.2 Advanced courses.

Advanced operating systems courses here are
taught as seminars. The goal here is to give stu-
dents some experience in research and develop-
ment in place of lecture. Students read current
papers and books and take part in projects. The
simpler projects that are appropriate for the intro-
ductory course are not appropriate for higher level
courses. Currently our primary project is a port
of Linux to the PowerPC architecture. We are
also setting up projects involving alpha testing of
the real-time OS. Within the port project we have
been able to provide students with mini-projects
tailored to their interests. Several of the students
have worked on low level kernel design and debug-
ging, a small team has worked on a redesign of the
memory management system, and other students
have worked on developing and porting tools. The
challenge here is to keep the project small enough
so that individual students can take responsibility
for complex pieces and, not coincidentally, so that
management requirements are minimized.
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