
OSF Development Environment

User’s Guide

ODE Release 2.3.4 A (Spring 1995)

Printed on: May 23, 1995

Open Software Foundation

11 Cambridge Center

Cambridge, MA 02142

Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995 Open Software Foundation, Inc.

This documentation and the software to which it relates are derived in part from
materials supplied by the following:

Copyright (c) 1989, 1990 Carnegie-Mellon University

Permission is hereby granted to use, copy, modify and freely distribute this
documentation for any purpose without fee, provided that the above copyright notice
appears in all copies and that both the copyright notice and this permission notice appear
in supporting documentation. Further, provided that the name of Open Software
Foundation, Inc. ("OSF") not be used in advertising or publicity pertaining to distribution
of the software without prior written permission from OSF. OSF makes no
representations about the suitability of this software for any purpose. It is provided "as
is" without express or implied warranty.

ii Preface

Preface
The OSF Development User’s Guide (DUG) explains the concepts behind behind the
OSF Development Environment (ODE), its methodologies, and the use of the tools for
source control, compilation, and release. If you are a new user and have decided to
familiarize yourself with the ODE, you should read through the introductions and
overviews of each chapter, scanning the examples, before getting into the details.
Experienced developers can go directly to the topic or subtopic they are interested in and
get the details they need. Listed below are the reference pages related to ODE.

The chapters of this document covers four basic aspects of ODE: sandboxes, compilation
environments, source management, and the submission of private work to a public
backing tree.

Many of the examples in this document use suzieq as the user-ID, proj2.0b1 as the build
name, and latest as the default build; pmax is used as the target machine.

• Chapter 1 of the DUG introduces the basic concepts and terminology of ODE.

• Chapter 2, "Sandboxes" describe what sandboxes are and how one can use them.

• Chapter 3, "Source Control," covers ODE’s source control management system. This
includes a description on how ODE manages source control, the source control
operations available to the user, how to group files into sets, and the operations that
can be performed on sets. The tutorial is concluded in this chapter.

• Chapter 4, "Building Software," details the build process.

• Chapter 5, "Submitting," describes how files get placed from the developer’s private
sandbox into the next public build. This chapter details the bsubmit command for
submitting files. The tutorial is concluded in this chapter.

Audience
This document is written for developers and release engineers using the ODE tools..

Applicability
This is Version 3.0 of this document. It is accurate to the changes made in ODE 2.3.

Purpose
The purpose of this document is to provide a guide to the new and experienced developer
using the OSF development process and tools. It is also intended to provide an
introduction to the concepts behind those processes and tools.

Typographic and Keying Conventions
This document uses the following typographic conventions:

Bold Bold words or characters represent system elements that you
must use literally, such as commands, flags, and pathnames.
Bold words also indicate the first use of a term included in the
glossary.

ODE User´s Guide iii

Italic Italic words or characters represent variable values that you
must supply.

Constant width Examples and information that the system displays appear in
the constant width typeface.

[] Brackets enclose optional items in format and syntax
descriptions.

{ } Braces enclose a list from which you must choose an item in
format and syntax descriptions.

 | A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard.

... Horizontal ellipsis points indicate that you can repeat the
preceding item one or more times. Vertical ellipsis points
indicate that you can repeat the preceding item one or more
times.

This document uses the following keying conventions:

<Ctrl-x> or ˆx The notation <Ctrl-x> or ˆx, followed by the name of a key,
indicates a control character sequence. For example, <Ctrl-c>
means that you hold down the control key while pressing <c>.

Reference Pages
The following reference pages relate to ODE:
bci(1)
bco(1)
bcreate(1)
bcs(1)
bdiff(1)
blog(1)
bmerge(1)
bstat(1)
bsubmit(1)
build(1)
currentsb(1)
genpath(1)
makefiles(5)
make(1)
mklinks(1)
mksb(1)
resb(1)
sadmin(1)
oderc(5)
sbinfo(1)
uptodate(1)

iv Preface

workon(1)

These can be found in appendix A of this document. Reference pages also exist in
Section 3 for the library routines found in libsb.a.

Problem Reporting
If you have any problems with the software or documentation, please contact a member
of the Release Engineering and Distribution group. For ODE users outside OSF, you can
send mail to the Release Engineering group at ode-info@osf.org.

ODE User´s Guide 1

1. Introduction
The OSF Development Environment User’s Guide (DUG) is part of a collection of
documents that describe the OSF Development Environment (ODE). Other documents
include the OSF Development Environment System Administration Guide and the man
pages.

1.1 The OSF Development Environment
The OSF Development Environment (ODE) is designed to allow simultaneous
development on multiple revisions of a single set of sources to be compiled for a variety
of different and essentially incompatible hardware platforms. At the same time it must
satisfy the needs to ship complete, reproducible systems to customers while being
flexible enough for individual development.

Three basic areas to ODE are:

• Source code control

• Build Environment

• Private and Public work areas

Each area must allow the individual developer to work independently of other
developers, yet allow Release Engineering to bring this work together on a regular basis
to create systems for testing and release.

The source control mechanism protects a public revision of each file while allowing
developers to simultaneously modify private revisions. It provides controls so these
private changes, once they have been built and tested, can be merged back together and
integrated with the public revision. Finally, source control provides a method for
reproducing earlier releases for bug fixes.

The build environment works with source control to facilitate the building of systems for
both release and individual development. It provides a standard set of tools, header files,
and libraries allowing official systems to be duplicated while giving developers the
flexibility to insert their own tools and files as needed. Much of the details of how a
system is to be built is embedded in the ODE common makefiles and the build tools.
Within ODE the build environment "knows" a great deal about how the system is to be
built.

The ODE build processes are based on the UNIX1 command make and associated
Makefiles. ODE uses an enhanced version of make, which has functionality to support
the build environment.

1. UNIX is a registered trademark of UNIX Systems Laboratories, Inc. in the U.S. and other countries.

2 Introduction

1.1.1 Terminology

You should understand the following terms before proceeding:

build A front-end to make.

a A complete set of sources, objects, and binaries which have been
"built" and put in one place.

default build For each project there is a default build that contains the newest
revisions of submitted sources. In this document, that build is referred
to as latest; see the supplemental DUGs for the actual name of the
default build for each project.

defunct This refers to making a file that is under source control inactive. Once
it is made defunct, it can no longer be checked out for editing.

outdating Removes from source control all references to work done on a file in a
private sandbox.

project A set of sources that have been grouped together and are treated as a
unit. Projects can be as large as the OS and as small or smaller than
ODE itself. Each project has separate builds and a separate default
build from all other projects.

sandbox A private working area that a developer owns and controls.

set A group of sources within a sandbox that can be manipulated as a unit
using the ODE tools.

backing trees A complete set of sources, compilation tools, header files, and libraries
that support a sandbox.

ODE User´s Guide 3

2. Sandboxes
This chapter describes how to begin working with ODE. It describes the basic
development environment supported by ODE, known as a sandbox. After reading this
chapter, you should understand what a sandbox is, its relationship to backing builds and
other sandboxes, how to retarget a sandbox to different backing builds, and operations
typically performed within a sandbox.

2.1 What is a sandbox?
Sandboxes provide developers with an isolated source development environment.
Changes made in one developer’s sandbox are not visible to other developers working in
their own sandboxes. This makes it possible for many developers to simultaneously
develop and test code using the same files without interfering with one another. Once a
developer is satisfied with their changes he can integrate them into a backing build.
When the changes are integrated, they are then publicly available and other developers
can develop software based on these changes.

A sandbox initially contains no source files. Typically, a user only populates his sandbox
with files they want to change. These files are taken from the backing builds. During
building, the sources from the backing build are used except for the files that exist in the
user’s sandbox. This allows a developer to make changes to a source tree without having
to have the entire tree in his sandbox.

A complete development environment requires a backing build. All sandboxes are
backed by backing builds. Each backing build provides a full source tree and the tools,
libraries, and header files required to build those sources. Together, these comprise a
specific instance of the product built from the sources.

There are two general categories of builds: "static" builds and "dynamic" builds.
"Dynamic" builds have changeable source trees and usually contain the most recent
sources. When changes are made to this kind of build, they will be immediately visible in
all sandboxes backed by it. Builds with source trees that do not change are known as
"static" builds. Static builds usually represent "known to be stable" reference points in
the development of a product.

The combination of a sandbox and a backing build enable a developer to develop and test
a small set of sources against a variety of complete development environments. Although
a sandbox is originally backed by a particular build, it can freely float from one backing
build to another. The user can change which instance of the software product they would
like to develop and test against as often as they need to.

When the changes in a developer’s sandbox become stable they can be made available to
a wider audience to be used as a basis for further development by others. The integration
of a developer’s changes into a default build is called "submission."

Submitting to a backing build involves merging your changes with the changes other
developers may have submitted and resolving conflicts. If there were only one sandbox
that submitted changes to a backing chain then there would never be any conflicts in
submissions.

4 Sandboxes

If two developers (each in their own sandbox) are working on the same file, a conflict
will arise. This conflict is resolved when each user submits source changes to the default
build. All submissions are to a public branch in the default build and submissions are
done one at a time. Therefore, each user will integrate their changes with the public
branch.

Although you can only submit changes to a dynamic build, most static builds have a
default build associated with them. Default builds are always dynamic. When submitting
to a static build which has a default build, the changes will actually be submitted to the
default build.

2.2 Components of a sandbox
There are three basic components of an ODE sandbox: a source tree for sources being
edited, an area for building object modules, and an area to hold header files and libraries
for commands. Sources are placed in the src directory and objects are placed in the obj
directory. It is not necessary for the user to specify different directories, they are
separated automatically by the tools. All operations on the obj tree by the tools are done
from the source tree.

For most projects, before any libraries can be built, the header files must be collected into
an area where the compiler will find them. Likewise, before the commands can be built,
the libraries must be built and copied into an area known to the linker. It is not always
convenient to refer to these in the src or obj directory, so these headers and libraries are
copied into an export directory. The backing build will have a fully populated export
area containing all headers and libraries necessary to build the product and, in most
cases, it is not necessary to populate a sandbox export directory. Any headers or
libraries being developed in a sandbox, however, must be in the export directory if you
are building other commands with them. The procedure for moving header files and
libraries into the export directory is covered in the chapter on the build environment.

The layout of a sandbox is shown in Figure 1. The elements within solid boxes are related
to source control, and the elements within dashed boxes are related to the ODE build
environment.

ODE User´s Guide 5

Sandbox Directory Structure

src

link -> backing_tree

sbox3

sbox4

sbox5

Sandbox-base rc_files

sbox1

sbox2

obj

sets

Buildconf

Buildconf.exp

<project>

projects

sb.conf

.BCSset-<user>_sbox3

.BCSlog-<user>_sbox3

.BCSlock

<subdirs>

Makeconf

export
<machine 1>

<machine 2>

<machine 2>

<machine 1>

Figure 1.

6 Sandboxes

2.3 Chaining sandboxes and backing builds
Sandboxes can be chained together. That is, a sandbox can be set up that is backed by
another sandbox, which may be backed by yet another sandbox. These sandboxes can be
chained together to any depth as long as the last link in the chain is a full backing build.

Chaining sandboxes is beneficial when it is important to stage integration and visibility
of source changes into different levels of development. Each level in the chain can
represent an integration point for a different group of users. Also, each level up the chain
can represent some subset of a user community, the lowest level representing the smallest
set, that is, a developer and his private sandbox. The highest level representing the
largest audience, that is, the backing build available to everyone.

The actual structure of the chain and the function of each level in the chain is up to the
group of people maintaining it. The essence of each level in a sandbox/backing build
chain is to provide an area of private development for a small group of people and allow
submission of those changes to a wider audience.

The structure of a backing chain is shown in Figure 2.

ODE User´s Guide 7

with a backing build at the end.
A backing chain is any number (including zero) of shared sandboxes

backing
build

shared
sandbox n

build
backing

sandbox

sandbox n
shared

build
backing

shared
sandbox 1

sandbox

sandbox 1
shared

sandbox n
shared

build
backing

.

.

.

.

sandbox

.

.

chain
Backing

sandbox

Figure 2.

8 Sandboxes

2.4 The .sandboxrc File
Each ODE user has a file that contains information about the sandboxes the user
accesses. Such information includes: the list of the user’s sandboxes, the base directory
to each sandbox, and the user’s default sandbox. It can also contain default arguments
for any of the ODE commands. This file is usually located in ${HOME}/.sandboxrc.

The entries in the .sandboxrc file for ODE commands have the following format:

cmdname option ...

It is possible to place the .sandboxrc file in a directory other than ${HOME}. However,
each time any of the ODE tools that access this file are used, the user has to specify the
new path.

2.5 Operations within sandboxes
The operations on sandboxes supported by ODE include: creating sandboxes, working in
sandboxes, populating sandboxes, retargeting sandboxes to different backing trees, and
removing sandboxes. Here we will discuss these operations within ODE and the tools
available to perform them.

2.5.1 Creating Sandboxes

The command to create a sandbox is mksb. This command is the first step in setting up a
development environment under ODE. mksb creates the sandbox structure which
includes the directories src, obj, export, and a directory rc_files that maintains datafiles
that refer to a backing build or shared sandbox. mksb also creates the symbolic link link
that points to the backing build.

Sandboxes can be created to support any or all of the different machine types. mksb
creates each of these directories for each machine type listed with the command line
option -m.

You should be aware of the following restrictions when creating a sandbox:

• Sandbox names cannot contain dashes ’-’, periods ’.’, or slashes ’/’.

• Each execution of mksb creates only one sandbox. Do not specify more than one
sandbox name on the command line.

• Each sandbox must be backed by an existing backing build or sandbox. You cannot
create a null sandbox and retarget it later.

• Since sandbox names are listed in the file ${HOME}/.sandboxrc file and the
.sandboxrc file maps sandbox names to the directories where they reside, a user
cannot have more than one sandbox with the same name.

• Moving a sandbox to a different directory will require the following changes:
symbolic links created to populate the sandbox must be recreated, and the
.sandboxrc file must to be updated to show the new sandbox base.

ODE User´s Guide 9

Examples:

The following command is used to create the sandbox symphony in the current working
directory backed by the osc1.1 backing build for the machine type pmax.

mksb -back /project/osc/build/osc1.1 -m pmax symphony

The following command is used to create the same sandbox but, supports building for the
machine types pmax, mmax and at386.

mksb -back /project/osc/build/osc1.1 -m pmax:mmax:at386 symphony

2.5.2 Working on a Sandbox

workon is used to get into a sandbox environment for editing, compiling, and linking.
workon sets the user up in a new shell, establishes the proper environment for working
in the sandbox, and places the user in the sandbox src tree.

The command syntax is simple,

workon [-sb sandbox-name]

2.5.3 Populating a Sandbox

Sandboxes, by design, do not require sources in them to build. The ODE tools go through
a search path to find all sources required to build. The sandbox is searched, and if
sources are not available, each successive link in the backing chain is searched. The last
link in the backing chain is a backing build with a fully populated source tree. We
recommend that users of ODE do not populate sandboxes with sources, rather, the only
sources found in a sandbox should be those checked out for editing.

There are times when populating a sandbox may be desirable to the user (such as source
browsing). The ODE tools do support populating of sandboxes in two ways. Setting up
symbolic links to sources in the backing chain and physically copying sources from the
backing chain. Given a choice between the two, we recommend using symbolic links
rather than physical copying of files.

When you create a sandbox, you can specify to mksb to put links to the backing tree in
the sandbox for all sources, exported files, and tools. You can also have these files
copied into the sandbox. Copying them into place limits your ability to retarget your
sandbox to other backing trees.

Whether you copy files from the backing tree or merely create links from the sandbox,
you should be aware of the advantages and disadvantages of each. Copying files from
the backing build to a sandbox takes up a large amount of space and, if it is a dynamic
backing build, the sources copied can easily become out of date. Symbolic links take up
less space, however, they can pose problems if the sandbox is ever moved around on the
file system. Each sandbox contains a link to the backing build appropriately named link.
It is through this link that all tools refer to the backing build. Each link in a populated
sandbox refers to the backing tree through the path absolute-pathname-to-
sandbox/link/.... If the sandbox is moved then the absolute pathnames to the sandbox in
each symbolic link becomes invalid. Each of these links will need to be recreated.

10 Sandboxes

The mklinks command can also be used to populate a sandbox. This tool provides more
flexibility in that you can use it to link individual sources, objects, tools, and headers.
You can populate an area with a single file or and entire subsystem By default mklinks
uses symbolic links for each file it creates.

Example:

The commands:

cd usr/bin
mklinks date

will create symbolic links to all of the sources for the date command.

2.5.4 Retargeting a Sandbox

Retargeting a sandbox refers to changing the shared sandbox or backing build that a
developers sandbox is backed by. As mentioned earlier, sandboxes rely on backing
chains for a complete development environment. Since each backing chain represents a
different point in the development of a software product, developers may find it useful to
switch to a newer backing chain as time goes on.

When you want to be backed by a different build or sandbox, you need to retarget the
sandbox using resb.

Example:

resb -sb symphony /project/osc/build/osc1.2

2.5.5 Removing a Sandbox

If a mistake has been made in creating a sandbox, the user can -undo with mksb.

Example:

mksb -undo symphony

2.6 Accessing the Builds
You should consult the release engineers on your project to locate the builds are and how
to access them. Usually, all the builds for a single project will be available under a single
directory; however, as this is a project-by-project decision, this may not necessarily be
the case.

2.7 Split Sandboxes
A user’s sandbox can be set up to be backed by multiple backing builds on a directory by
directory basis. This is accomplished with the ’projects’ file which resides in the rc_files
directory. The contents of the projects file is a list of directories and projects. The first
field is the directory and the second field is the project to use for that directory.

Along with the projects file, you will need an sb.conf file for every project listed in the
projects file. In sandboxes created with ODE 2.3 mksb, there will already be a single line

ODE User´s Guide 11

in the projects file corresponding to the project of the backing build which the sandbox is
backed by. There will also be an sb.conf file for that project. You will only need to
modify the projects file and add an sb.conf file if you wish to have a sandbox backed by
more than one project.

The sb.conf file has 4 entries:

backing_project The name of the project that the sandbox is backed by.

backing_build The logical path used to access the top of the backing build.

ode_sc Indicates whether ODE source control is being used, set to ’true’ or
’false’.

ode_build_env Indicates whether the ODE build environment is being used, set to
’true’ or ’false’.

12 Source Control

3. Source Control
This chapter gives an overview of how source control works in ODE. This chapter is
divided into three sections. The first section gives an overview of ODE source control.
The second section discusses the tools and operations that apply to source files. Such
operations include creating new source, checking out files, deleting obsolete source. The
last section describes the grouping of source files into sets and operations performed on
sets.

3.1 The ODE Source Control Structure
Source control in ODE involves maintaining a revision history of the source being
developed as well as integrating source developed in sandboxes to backing builds. The
history of a file is maintained to isolate and retrieve specific instances of the software
being developed. During the life cycle of a product, it is not uncommon to have multiple
development groups working on a common set of sources. For instance, at OSF, groups
of developers may be working on many different instances of OSF/1. OSF/1 is currently
being developed for release 1.1 while snapshot (bugfix) releases 1.0.1 and 1.0.2 are being
developed based on release 1.0. Software quality testing may be done on the latest
versions of the sources while benchmarking and test validation may be done on some
earlier stable milestone revision. Each of these tasks needs to be performed on a specific
instance of the source being developed and requires a revision control system.

ODE uses RCS as the basis for its source control. RCS is a basic revision control system
available on most implementations of Unix.

3.2 Source Control tools and operations
The ODE source control commands support a basic set of operations to maintain revision
history. These include: creating files, checking files out for editing, checking files in,
deleting files, and getting file status information. These operations are available in most
configuration management systems. Here we will discuss these operations within ODE,
the tools available to perform them, and some hints on general usage.

3.2.1 Creating Files

Files are created in the source control system through the bcreate command. bcreate
will create the new file under source control, create a path in the current sandbox (if
necessary), and put an initial version in your sandbox that is ready for editing.

At this point you can begin to do software development on the file.

The syntax for this command is

bcreate /path/filename

There are three ways to indicate the location of a file to the ODE tools. By specifying the
filename, the tools assume that the file is located in the current directory. By specifying a
relative pathname, the tools assume that the file is located in a directory relative to the
current directory. By specifying an absolute pathname the tools assume that the file is
located in a directory relative to the src directory at the base of the sandbox.

ODE User´s Guide 13

The ODE tools expect header information to precede each file. This header is to
optionally include copyrights or markers for copyright information and a section
describing the history of the file. Details of the copyrights can be found in the project
specific DUG as well as the bci man page.

If your project is using full copyrights, the headers have the following format:

comment-leaderCOPYRIGHT NOTICE
comment-leader<copyright 1>
comment-leader<copyright 1 continued>
comment-leader<copyright 2>
comment-leader<copyright 3>
comment-leader<copyright ...>
comment-leaderHISTORY
comment-leader$Log: $
comment-leader$EndLog$

If your project is using copyright markers, the headers have the following format:

comment-leader@OSF_COPYRIGHT@

comment-leaderHISTORY
comment-leader$Log: $
comment-leader$EndLog$

Since the ODE tools expect to find these markers in each file (and they must be found
within a comment), it is important to indicate to bcreate what the comment leader will
be. For example the headers for a .c file would be:

/*
* @OSF_COPYRIGHT@
*/
/*
* HISTORY
* $Log: source.control.tbl,v $
* $EndLog$
*/

and for a Makefile:

@OSF_COPYRIGHT@
#
HISTORY
$Log: source.control.tbl,v $
$EndLog$

In most cases bcreate will be able to pick the correct leader based on the suffix of the
filename, for example, .c files are given the leader * (an asterisk). A list of comment
leaders and associated filename suffixes is maintained in the rc File sc.conf. If bcreate
cannot find an appropriate filename suffix entry, it will prompt you for the comment
leader.

14 Source Control

If a file type does not support comments then you should use the comment leader of
NONE, which tells ODE not to look for headers in the file. The BIN leader will tell
ODE that the file being created is a binary file and that it should not have a header.

If, for any reason, you need to remove a newly created file from source control, you can
use the -undo option with bcreate . Be warned that this option is intended as a quick way
of removing newly created files. Once people have started making changes to a file,
bcreate -undo will no longer be able to remove the file from source control.

To create a file in the current directory type

bcreate food.c

If you find a typo in the filename or it has been placed in the wrong directory, newly
created files can be removed by typing

bcreate -undo food.c

Create the file with the correct filename

bcreate foo.c

3.2.2 Checking Out Files

The src tree in a sandbox is initially empty. Sources can be incorporated into a sandbox
by retrieving them from the source control system for viewing (read-only, no editing) or
for editing (also referred to as "locked"). Retrieving a file from source control it is
referred to as checking out a file.

Files are checked out with the bco command.

To check a file out for editing the following command is used:

bco myfile.c

To check out a file for reading only use the following command:

bco -read anotherfile.c

3.2.3 Checking In Files

The command for checking in files is bci. Within a sandbox you can check out a file,
edit it, check it in, check out the file again, edit it, and so on as many times as you want
and always know the changes to the file remain local to your sandbox.

The check-in operation validates the copyright and history markers and prompts you for
log information. The log message can be put on the command line with the -m option.

ODE User´s Guide 15

If the file foo.c has been checked out for editing, it can be checked in with the command

bci foo.c

If you wish to check in the file and skip the copyright/history checking then first set the
comment leader to ’NONE’ as follows:

bcs -c NONE foo.c

You can specify the comment on the command line with the command

bci -m "This is an example comment" foo.c

3.2.4 Deleting Files

Files can be deleted in one of two ways: outdate the private work done to the file in
your sandbox, or make the file defunct so that it remains under source control, but is no
longer accessible and no submissions can be made to it.

Files can be outdated from your sandbox by using the -o option to bcs. Outdating a file
causes the file to be removed from the sandbox and the work that was local to the
sandbox for that file is removed from source control. If there is important work done to
the file that was not submitted, then outdating the file will cause this work to be lost.

One way to delete a file is simply to make it inactive, or defunct. A defunct file remains
under source control (along with its history) but is no longer part of the backing tree.

To defunct a file, use the -defunct option with bci and submit the file to the default build
using bsubmit.

Making a file defunct in the default build does not prevent you from successfully
checking out an older revision of the file. This is done intentionally so that development
can continue for snapshot (bugfix) releases based on earlier revisions of the source.

To make a file defunct, use the following commands:

bci -defunct foo.c

bsubmit foo.c

3.2.5 Displaying File Status

There are a number of commands that indicate the current status of the files and their
branches. The primary commands for getting information are blog and bstat. These
commands print check-in and submission information. The user can find out what
revisions exist, the changes checked into a local sandbox, and changes submitted to a
backing build.

16 Source Control

To print the log header and revision history information for your branch type

blog foo.c

To print the revision that is on the end of the branch labeled OSC1_1 type

bstat -r OSC1_1 -R -V foo.c

3.2.6 Maintaining files under Source Control

The bcs command is used for general maintenance of files under source control such as
outdating files, labelling revisions, and for changing a comment leaders.

A private development branch can be outdated with the command

bcs -o foo.c

The branch 1.2.3 can be outdated with the command

bcs -o -r 1.2.3 foo.c

Finally, a comment leader can be changed with the following command

bcs -c ’ * ’ foo.c

See the bcs man page for more details.

3.3 Merging revisions
The bmerge command provides an automated mechanism for merging two revisions of a
file with their common ancestor. The output of the merge is supposed to be the
combination of changes made to each file since it diverged from the common ancestor.
The tool, however, is not always able to discern the correct combination of changes,
especially if the same line has been changed in two different manners. The bmerge,
command, therefore, sometimes requires the user intervention to resolve these conflicts.

In most cases people are not interested in merging specific revisions of files. Keeping
track of the various revisions of a file in which to merge is difficult and error prone.
People are much more interested in keeping the file in their sandbox in-sync with
submissions made to the backing build. This can be done with the command

bmerge foo.c

See the chapter on submitting for more information on merging.

3.4 Sets
Performing the operations described above is relatively simple and straight forward.
When the number of files being checked out, checked in, or submitted is small then using

ODE User´s Guide 17

these tools is simple. With a large system being developed it helps to be able to break the
sandbox into groups of manageable working parts. Within ODE, files can be grouped
into sets whereby each of the operations described above can be applied to the set in one
invocation of each command. A user can define a set consisting of all files specific to a
subsystem, check them out for editing with one bco command, edit, check them in with
one bci command, and submit them with one invocation of bsubmit.

When a sandbox is created a set is automatically defined that includes all the files in the
sandbox. This set is the default set. Additional sets can be added to the sandbox, but at
the very least, there will always be the default set.

Setnames have the same restrictions as sandbox names. Namely, non-shared sandboxes
are made up lower case letters. Shared sandbox setnames contain capital letters. Users
should not begin a set name with a capital letter unless the set is to be shared.

All files are referenced through a combination of the user-id and setname.

Keep in mind that when private branches are created they are labeled with and
referenced through the setname. All operations on this private branch must be
referenced through that setname.

Sets are referenced in one of two ways; by entering a set (via workon) or by the -set
option available to most ODE commands. An individual file can be referenced by
specifying its name on the command line, or, all files can be referenced by using the -all
option.

A user can create and enter a set as follows:

workon -set setname

A user can also access files in another set as follows:

bco -set setname -all

To list the sets in the sandbox use the command

workon -list

To remove a set use the command

workon -undo -set setname

Files are added to and removed from this set when the file is first check out and when it is
submitted to a backing build.

If you have been working on a set of files within a set and wish to delete this work, you
can outdate each of the private branches that contain this work.

The -o option to bcs typically deletes, or outdates a private branch associated with a set.

18 Source Control

The -all option can be used with -o to remove the private branches for all files in the set.

ODE User´s Guide 19

4. Build Environment

This chapter covers the principles for building within an ODE sandbox. This includes
ODEs use of make, the organization of makefiles, how make uses sandboxes and
backing chains, the ability for one to tailor a build environment, and building through
passes.

ODE uses make for building. Backing chains and sandboxes support the building model
found on most Unix systems; building a set of source files using a makefile and make.

The following are fundamental elements of building in ODE:

• build and make are used for all building.

• build and make derive much of their information from environment variables
defined in sandboxes and backing chains. Change these variables to customize the
build environment.

• Sources and built objects are maintained in separate directories.

• Frequently used build rules are collected into common makefiles.

• Each component makefile includes the common makefiles. When building,
definitions of variables within the makefile are used to trigger the execution of rules
in the common makefiles.

4.1 build: a Front-end to make
The primary command for building software in ODE is build. It serves the same
function as the command make does in a standard UNIX development environment. In
fact, build is actually a front-end to make. The difference between build and make is
that build can operate outside the scope of a sandbox. make requires one to workon
into a sandbox before building.

The options for build and make are mutually exclusive and any options that build does
not recognize are passed on to make.

To see how build works; if you want to create the binary wakeup from wakeup.c in the
directory

/sandboxes/suzieq/symphony/src/ode/tutorial/wakeup

Then type

build wakeup

build first searches the src tree in the sandbox then the src tree in the backing chain for
the source. Once the source is found, build provides the compiler with a search list for
libraries and header files. Libraries and header files are searched first in the export

20 Build Environment

directory of the sandbox then in the export directory of the backing chain.

The search list passed to the compiler for header files is similar to:
-I../../../myinclude -I/sandboxes/suzieq/symphony/src/myinclude
-I/project/build/proj2.0b1/src/myinclude

The search list passed to the compiler for libraries is similar to:
-L/sandboxes/suzieq/symphony/export/pmax/usr/shlib
-L/project/build/proj2.0b1/export/pmax/usr/shlib

You will not find the built objects in the same directory as the sources. All objects are
built in the obj directory.

4.1.1 Exporting

Components of a system that are used to build other components are placed in the export
directory.

In most large software projects, many of the header files and libraries needed to build the
system are often part of the project itself. While developing the system; libraries are also
being developed. These libraries require development and testing before becoming
stable enough to be used by the rest of the system. ODE stages the development and
availability of these libraries by using the export directory in the sandbox. A library that
is under development is not available to the rest of the system until a developer places it
into the export directory. The processing of placing anything in this directory is called
exporting.

In addition to libraries, it is convenient to group header files into the export directory to
cut down on the number of search paths passed to the compiler.

4.1.2 Walkthrough of build Execution

The following is a walkthrough of how build would compile the program helloworld.
All references to command execution will be from the directory ode/tutorial/helloworld
in a sandbox which contain the files Makefile and helloworld.c. The sandbox is backed
by a full backing build.

The contents of the files Makefile and helloworld.c are:

PROGRAMS = helloworld

ILIST = helloworld
IDIR = /tmp/

ODE User´s Guide 21

.include <${RULES_MK}>

and

#include <stdio.h>

main() {

printf ("Hello world\n");

}

Running build illustrates the way the tools search for source, header files, and libraries.

% build
relative path: ./ode/tutorial/helloworld.
mkdir ../../../../obj/pmax/ode/tutorial/helloworld
cd ../../../../obj/pmax/ode/tutorial/helloworld
gcc -B -gline -c -Dmips -D__mips__ -D_SHARED_LIBRARIES -O \
-nostdinc -I. -I/sandbox/src/ode/tutorial/helloworld \
-I/backing-tree/src/ode/tutorial/helloworld -I- \
-I/sandbox/export/pmax/usr/include \
-I/backing-tree/export/pmax/usr/include -pic-lib \
-L/sandbox/export/pmax/usr/shlib \
-L/backing-tree/export/pmax/usr/shlib \
-L/sandbox/export/pmax/usr/ccs/lib \
-L/backing-tree/export/pmax/usr/ccs/lib \
../../../../../src/ode/tutorial/helloworld/helloworld.c
gcc -B -gline -%ld," -warn_nopic -glue" \
-L/sandbox/export/pmax/usr/shlib \
-L/backing-tree/export/pmax/usr/shlib \
-L/sandbox/export/pmax/usr/ccs/lib \
-L/backing-tree/export/pmax/usr/ccs/lib -o helloworld.X helloworld.o
mv helloworld.X helloworld

Note that relative to the current directory in the sandbox, the objects were built in
../../../../obj/pmax/ode/tutorial/helloworld.

So, the command that build runs for compiling and linking helloworld consists of:

• The compiler (gcc in our example).

• A series of default compiler options
-B -gline -c -Dmips -D__mips__ -D_SHARED_LIBRARIES -O
-nostdinc

22 Build Environment

• Compiler options to search for include files
-I. -I/sandbox/src/ode/tutorial/helloworld \
-I/backing-tree/src/ode/tutorial/helloworld

• Standard include files
-I- -I/sandbox/export/pmax/usr/include \

-I/backing-tree/export/pmax/usr/include

• A standard linker option (-pic-lib).

• Linker options to search for library files
-L/sandbox/export/pmax/usr/shlib \
-L/backing-tree/export/pmax/usr/shlib \
-L/sandbox/export/pmax/usr/ccs/lib \
-L/backing-tree/export/pmax/usr/ccs/lib

• The source file to be compiled (relative to the obj directory)
../../../../../src/ode/tutorial/helloworld/helloworld.c
Had the source not been found in the sandbox, each src tree in the backing chain
would be searched.

4.2 Building with Passes
Most large systems require that its components follow some sort of ordering when being
built. Components of the system that are used to build other components of the system
must, of course, be built before they can be used.

In most large software projects the best example of this is libraries. If there are
components of a software system that require the use of one of its libraries then the
library must be built first. By the same token, if the system requires header files to be
exported then they must be exported before the system is built.

For software projects, ODE supports ordering builds into the following functions:

• setting up header files in the export directory

• building libraries and placing them in the export directory

• building software components that use these headers and libraries

• installing the built software for testing

• removing unneeded objects and executables from the obj directory

Each step in the build order is called a pass. Each pass is applied to the src tree in
succession. The scope within the src tree varies from pass to pass, but each pass is must
be completed before the next pass begins.

The passes that are supported in ODE are:

• export puts any target which can be exported into the export area

• comp does just the compilation step without doing export.

ODE User´s Guide 23

• build does export and comp.

• install puts files in the directories they will be in on an installed system.

• clean removes object (.o) files.

• rmtarget removes the target (usually a program).

• clobber does a clean and a rmtarget.

• lint runs lint on the sources.

• tags creates a tags file.

During each pass the src tree is traversed. Each makefile in the src tree directs an
operation to be performed by the pass being done on the target supplied to the build
command. The pass indicates the operation to be done while the target indicates the
component on which to perform the pass. Many targets may be listed in the makefile
with each one applicable to one or more passes.

The syntax for specifying a pass to build is:

pass
pass_target
pass_all
pass_all_tag

where the terms are defined as:

pass The pass to be done. (export, comp, clean, install, etc.) If a pass is not
specified, the default will be the build pass.

target The target to perform the pass on. Whenever the target is left out, the default
target all is used.

all A special word which tells make to perform the action on all targets listed in the
Makefile.

tag The target to apply the pass to. The legal tags match the tags a project has setup
for SUBDIRS.

Therefore, to run lint on the program helloworld, the command is:

build lint_helloworld.c

all causes the pass specified to be applied to all targets in the makefile.

For example:
build clean_all

removes all objects for all targets listed in each makefile of the source tree.

24 Build Environment

Example:

If you want to export a file such as stdio.h then type

% build export_stdio.h
%

of course, stdio.h must be listed in the Makefile as a target for exporting.

If you want to export all header files then type

% build export_all
%

4.3 ODE Makefiles
One significant difference between the standard UNIX development environment and
ODE is the use of common makefiles. Common makefiles hold frequently used build
rules in one place so they don’t have to be duplicated in each makefile in the src tree.

Makefiles for most systems are simple. They include the common makefiles and define
makefile variables that trigger execution of common rules.

Including the common makefiles requires the line .include <${RULES_MK}> in
each makefile. It is important that this line appear after all variable defines in the
makefile.

The pass, in conjunction with the variable definitions in the makefile, defines which
common rules are triggered. Certain variables are used for certain passes.

The comp and build passes perform compilation and derive much of their information
from these makefile variables.

• PROGRAMS - list of programs to compile and link.

• OFILES - list of objects that comprise a program or library.

• HFILES - list of header files on which PROGRAMS and OFILES are dependent.

• MSGHDIRS - list of message source files to be processed by mkcatdefs for the
OSF/1 Message Facility.

• CATFILES - list of message catalogs to create for the OSF/1 Message Facility.

The export pass builds and places libraries and header files in an export area for
subsequent building. This pass derives much of its information from the following
makefile variables.

• INCLUDES - list of header files to export.

• EXPDIR - the relative directory within the export area.

ODE User´s Guide 25

• EXPLINKS - list of links to export.

• EXPINC_SUBDIRS - list of subdirectories to traverse during export pass.

• EXPLIB_TARGETS - export a library. Must be assigned a value with prefix
export_. For example export_libsecurity.a.

The install pass installs an executable or datafile into a release area and sets access
rights. It derives much of its information from the following makefile variables:

• ILIST - list of executables or data files to install

• IDIR - the directory in which to install them.

• IMODE - permissions to set on installed executables.

• IGROUP - group to set on installed executables.

• IOWNER - owner to set on installed executables.

4.3.1 How Passes are implemented in Makefiles

To specify which directories of the tree to process for each pass, ODE uses the makefile
variables SUBDIRS and pass_SUBDIRS.

SUBDIRS is used by passes which visit every directory of the src tree. In each source
directory, the makefile variable SUBDIRS lists all subdirectories to traverse.

Makefile will also have a line setting pass_SUBDIRS to the set of subdirectories which
should be processed for pass.

During each pass, if SUBDIRS is defined, make will process each of the subdirectories
listed. This is how a pass is applied to an entire source tree.

Some variables used are:

• SUBDIRS The list of sub-directories to to be searched.

• EXPINC_SUBDIRS The list of sub-directories which should be searched for
include files to export.

• EXPLIB_SUBDIRS The list of sub-directories which should be searched for
libraries to export.

These would appear in a makefile as follows:
SUBDIRS = bin ccs dict doc include lib local sbin
EXPINC_SUBDIRS = include
EXPLIB_SUBDIRS = lib

26 Build Environment

4.4 Modifying the Build Environment

Since the ODE build environment revolves around environment and makefile variables,
almost all changes to it are made by changing variables.

Generally, where you change a variable will depend on:

• How long you want it to be affected.

• If you want the change to last only as long as one run of build, set the
variable on the build command line.

• If you want the change to last for the duration of this login session, affecting
all builds during that time, set the variable in the shell environment.

• If you want the change to last forever, put it in a Makefile or in sandbox
rc_files.

• What part of the source tree you want to be affected.

• Changes to components are made in the Makefiles and common makefiles.

• Whom you want the change to affect.

• If you want it to affect just you, set it in the rc_files in your own sandbox.

• If you want it to affect every build that is backed by the backing build, set it
in a Makefile or in the rc_files of the backing chain.

Most of the commonly used variables in makefiles can be specified on a per-target basis
by prepending the name of the target and an underscore to the variable. So

foo_CARGS=-DMAKETAB

applies -DMAKETAB to foo and no other target.

4.4.1 Adding a Program Target

To build a new program in a directory that already builds another program, just edit the
Makefile to add the new program name to the PROGRAMS list.

To build a simple version of the yes program from a new source file, yes.c in the tc
directory, edit Makefile, and change

PROGRAMS = tc

to

ODE User´s Guide 27

PROGRAMS = tc yes

When you run build, this will tell the common makefiles to build both programs.

To build a simple version of the yes program in a new directory, create a Makefile with
the line

PROGRAMS = yes

and the line that include the common makefiles. When you run build, this will tell the
common makefiles to build the new program.

4.4.2 Location for Building Objects

By default, all objects are built in the obj tree. If you wish to build objects in another
location, change the OBJECTDIR variable in the rc_files/local file in your sandbox.
You may specify either a relative or absolute pathname. If you specify a relative
pathname, it must start from the src directory.

A special case is that if you set

OBJECTDIR = ""

the objects will be put in the same directory as the sources.

4.4.3 Compiler Flags

The flags passed to the compiler are taken from a list of variables defined on either the
command line, or in a makefile. You can change what gets passed to the compiler by
overriding a variable defined in one of these places.

For example, changing a compiler option from the command line:

build "CARGS=-DTARGET"

will add "-DTARGET" on the cc command line.

The following variables allow different people to change this list.

CARGSSet by the developer on the build command line.

28 Build Environment

CENV Set by the developer as shell environment variables.

CFLAGS Set in Makefile by whoever edits it.

4.4.4 Compiler Include Directories

The cc compiler accepts a list of -I options, each with a directory name. The list of
directories specified by these options is searched to find files in #include directives in
the .c source file. The following variables allow different people to change this list.

INCARGS Set by the developer on the build command line.

INCENV Set by the developer as shell environment variables.

INCFLAGS Set in Makefile by whoever edits it.

INCDIRS Set in the rc_files by whoever edits them.

Example:

build "INCARGS=-I../../corona/flare -I../../corona/spots"

will cause the directories ../../corona/flare and ../../corona/spots (in the sandbox and the
backing chain) to be searched for each #include in the source files being built.

4.4.5 Build Tools

Which language tools are used for a project is usually decided on a project basis and set
in the common makefiles by Release Engineering. They can usually be overridden on
the command line, rc_files, or in the makefile by changing the variables that define them.

Example:

If you need to use a different linker than the rest of the project, you can use

LD = gld

The list of tools include: CC, LD, AR, and RANLIB.

4.4.6 Linker Flags

The flags passed to the linker are taken from a list of variables defined on either the

ODE User´s Guide 29

command line, in a makefile, or in a file in the rc_files directory. You can change what
gets passed to the linker by overriding a variable defined in one of these places.

For example, to add an option to the linker from the command line:

build "LDARGS=-nostdlib"

will place "-nostdlib" on the ld command line.

The following variables allow different people to change this list.

LDARGS Set by the developer on the build command line.

LDENV Set by the developer as shell environment variables.

LDFLAGS Set in Makefile by whoever edits it.

4.4.7 Linker Library Directories

The linker accepts a list of -L options, each with a directory name. The list of directories
extracted from these options is searched for libraries during linking.

A set of variables has been defined to allow different people to set the directory list in
various places:

LIBARGS Set by the developer on the build command line.

LIBENV Set by the developer as shell environment variables.

LIBFLAGS Set in Makefile by whoever edits it.

LIBDIRS Set in the rc_files by whoever edits them.

Example:

build "LIBARGS=-L../../export/pmax/usr/lib/corona/flare
-L../../export/pmax/usr/lib/corona/spots" will cause these directories to be searched for
each library specified on the ld command line.

4.4.8 Optimization and Debugging

A separate environment variable, OPT_LEVEL, is provided for defining one of the
several debugging and optimization options that can be used with both the compiler and

30 Build Environment

linker.

Because the -g option is used by both the cc compiler and the ld linker, OPT_LEVEL is
passed to both.

Examples:

To build with debug on:

OPT_LEVEL = -g

To build with optimization:

OPT_LEVEL = -O

To build with neither debug nor optimization, set:

OPT_LEVEL = ""

To specify optimization for just the compiler use the variable CC_OPT_LEVEL. To
specify optimization for just the linker use the variable LD_OPT_LEVEL.

4.4.9 Installing a New Target in Makefile

During the install pass, the common makefiles will install any file listed in the ILIST
variable into the directory specified by the IDIR variable.

Example:

Assume you have built the simple yes program in the same directory as the tc program
(as described in the example for "Adding a New Target"), and now want to install it.

Edit Makefile and change

ILIST = tc

to

ILIST = tc yes

and build will thereafter install the yes program when it installs the tc program.

ODE User´s Guide 31

Example:

Assume that you have built simple yes program in its own directory, and now want to
install it.

Edit the makefile to add the line

ILIST = yes

Henceforward, build will install the yes program on the install pass. (Be sure that this
directory is in the install_SUBDIRS list of the Makefile in the directory above this
one.)

4.4.10 Location to install Programs

The variable TOSTAGE defines the base directory where all executables are to be
installed. The pathname for executables after the install pass will be
${TOSTAGE}/${IDIR}/executable . TOSTAGE can be set as an environment variable
or passed to build on the command line.

As a side effect, objects cannot be rebuilt if TOSTAGE is set. If, during the install pass,
this variable is set and you find you need to rebuild a command; you must unset this
variable before rebuilding.

4.4.11 Changing Variables in the Common Makefiles

Every Makefile in the source tree includes the common makefiles which contain the
shared rules. A significant advantage of having common makefiles is the ability to make
a change in one common makefile and have it "seen" by every Makefile which uses those
rules. For example, if a serious defect in the optimizer was found which necessitated
turning it off, changing the OPT_LEVEL variable in the common makefiles to omit the
-O option would immediately turn optimization off for all compiles backed by that
backing build. While particularly advantageous for Release Engineering, which has to
build the entire source tree, this feature is also useful for developers. By checking out
one of the common makefiles into their sandbox, a developer can change the build rules
for all their work with a single edit.

This is not meant to suggest that the first thing a developer should do is modify all the
common makefiles. In fact, they are not usually checked out at all, but are picked up
from the backing build. Nor are developers the people who usually make permanent
modifications to these files. Such changes are normally made by Release Engineering.
But there are times when the developer needs to temporarily modify their entire working
environment and the rc_files aren’t sufficient for the purpose. That’s when a local copy
of a common makefile comes in handy.

32 Build Environment

The syntax of the common makefiles is mostly that of the standard UNIX make
command, but most of the lines are comprised of variables so they can work with any
type of input.

ODE User´s Guide 33

5. Submitting
During development, all work is performed in sandboxes. The work that one developer
does has no effect on the work of another developer. As developers complete their work,
they update the default build from their sandboxes. When they have updated the default
build, their changes are then visible to all other developers backed by that build.

The process of updating the default build from a sandbox is called submitting. The
program that handles the submission process is called bsubmit.

This chapter describes the general process of submitting files. For complete information
on the submit command and its options, refer to the bsubmit.1 reference page.

5.1 The Submission Process
The goal of any submission is to update a default build to reflect changes made to files in
a developer’s sandbox. This includes updating the source control system, the default
build backing tree, and the submission logs. Since the work of one developer may
overlap the work of another developer, this process needs to be coordinated.

bsubmit coordinates submissions in two ways. It prevents developers from submitting
the same files at the same time and it detects situations in which the submission of a file
would in effect wipe out an earlier submission. The first situation is handled by putting a
hold on submitted files.

All files in the process of being submitted are considered "held." That is, while a file is
being held for submission by one developer, no other developer may submit it. If any of
the files being submitted are held, bsubmit will notify the user and exit.

If none of the files being submitted are held, bsubmit will proceed to "validate" the
submission. The validation stage consists of checking that each file being submitted is in
a valid state in the source control system. This stage is explained in detail in the next
section of this chapter. After bsubmit has validated the submission it checks to see if any
of the files require merging.

Merging is necessary because two or more developers may check out and make different
changes to the same version of a file. Without the merging, all changes excepting those
made by the last developer’s submission would be lost.

Let’s say that two developers check out and make changes to version 1.1.2.6 of the file
wakeup.c. The first developer to submit his changes will not have to perform any special
action to preserve his work. His submission will produce version 1.1.2.7 of the file
wakeup.c. If the second developer then submits his changes without performing any
special actions, he will produce version 1.1.2.8 of the file wakeup.c which will not
contain the changes made by the first developer and incorporated in version 1.1.2.7. This
situation is handled by performing a "merge."

A merge is required for a file only when it is not a direct descendant of the most recent
version in the source control system.

If the ancestor of a file being submitted is the most recent version in the source control
system, that is, the local copy was taken from the default build and no one has submitted

34 Submitting

in the time between then and now, no merge is required. Otherwise, the changes
incorporated in the file being submitted and changes incorporated in the most recent
version in the default build are merged into one new file. After the user resolves any
merge conflicts, bsubmit checks in the merged files and updates their ancestry
information.

At this point, all of the files are ready for submission. There are three steps in the
submission process for each file. The first step is the check-out step. The file is checked
out of the users private branch and the check-in messages for this branch are condensed
into one log message for the public branch. The result is then checked-in to the public
branch.

The last step in the submission process is to update the copy of the file in the backing
build. The files in the backing build are used for doing builds. Once this step has been
completed, the file is considered to be submitted.

After all files have been submitted, bsubmit updates the appropriate log files and
removes the private branches.

bsubmit keeps track of the work that it has done in two special files, the SNAPSHOT file
and the bsubmit.log file. The SNAPSHOT file contains a listing of the most recent
versions of all of the files in the default build. The bsubmit.log file contains a history of
all of the log information entered for all of the files submitted.

At the end of the submission process, the user is asked whether or not she wants to
perform an outdate. Outdating removes all of the submitted files from the user’s sandbox
and all of the user’s versions of the submitted files from the source control system. If this
point is reached with no errors, bsubmit will inform the user that the submission has
succeeded and it will exit.

5.2 Preparing to Submit Files
bsubmit has a number of requirements that must be satisfied by all of the files in a
submission before any work may take place. To qualify for submission, a file must be:

• In your sandbox and in the source control system

• In your current set, or in the set specified to bsubmit

• Read only. This prevents writeable files, which represent un-saved work, from being
submitted.

When listing files to submit, you can use the -all option or you can enter the filenames on
the command line. If you use the -all, all of the files in your current set or the set
specified to bsubmit with the -all option will be submitted. Although bsubmit does not
accept input from standard input, you can keep your own list of files and input it by
entering a line like:

bsubmit -options ‘cat mylist‘

ODE User´s Guide 35

5.3 Merging Files
If an actual merge is necessary and the program thinks it successfully merged the files it
prints:

Merge successful

A merge which contains conflicts that bsubmit could not resolve produces the message:

Warning: num overlaps during merge

where num is the number of conflicts it found. After this warning, it will be necessary to
edit the file that bsubmit created.

You will be given the following prompt:

Abort, ok, edit, merge, [r]co, [r]diff [edit]

At this prompt you have the following options:

Abort - exit bsubmit
ok - accept the file as it is and proceed to the next file
edit - edit the file
merge - perform the merge again
co - check out the latest version of the file
rco - check out the user’s version of the file
diff - diff the common ancestor against the latest version of the file
rdiff - diff the common ancestor against the user’s version of the file

If there are merge conflicts, you will need to edit the file with the conflicts and decide
how to resolve the conflicts. The conflicts will be delineated by less-than and greater-
than signs separated by equal signs. The pattern is

<<<<<<
code being submitted

======
code currently in the default build

>>>>>>

You need to search through the file for these patterns, decide which lines are correct and
delete the rest. Remember to delete the less-than, greater-than, and equal signs. This file
becomes the file that will be checked in to the default build exactly as you have edited it.

If you are absolutely sure the copy of the file you are submitting is correct and want to
overwrite the existing file without dealing with the merge, you can enter:

rco

followed by

ok

and the program will use the submitted revision without reference to the existing file in
the default build or the common ancestor. WARNING:, this procedure removes any
changes other developers have made to the file unless they were also in the local revision
being submitted.

36 Submitting

5.4 Local Cleanup
After the submission is complete and the files have been checked into the default build,
checked out again to make them public, and the logs are updated, you have the option of
cleaning up your local set.

The advantage to outdating the branch is that the next check out will be based on the
revision of the file in the backing tree instead of on the local branch you already have. If
the file was merged during the submission, the next time you want to work on the file,
you will normally want to use the merged revision of the file. To get this revision, you
will have to outdate your local branch and be backed by the default build.

5.5 Submission Failure and Recovery
Whenever any part of a submission fails, bsubmit prints out one of two messages. If the
submission failed, but no actual work has been done, bsubmit will print:

- No work has been done for this submission.
- No files have been changed in any way.
- The files in this submission are not held.
- The use of the -resub option is not required and will not be recognized.

Exiting bsubmit.

If the submission failed and work has been done, bsubmit will print:

*** RE-SUBMISSION REQUIRED ***

- Source control information is in an intermediate state.
- Re-submit using -resub time [-date date]

Exiting bsubmit.

where time is the time of submission and date is the date of submission.

Resubmissions are based on tracks left by bsubmit as it works. Each original submission
records the user, time, and date of the submission, as well as the files being submitted, in
the the bsubmit.hold file. During a resubmission, bsubmit uses this file to confirm the
contents of the original submission. If the owner, time, or date is incorrect, it will not
allow the resubmission to continue.

It also will not allow a resubmission with a different set of files than those listed in
bsubmit.hold. When you resubmit, bsubmit will not accept a list of files because it
expects to get the list from bsubmit.hold.

The second file bsubmit looks for during a resubmission is the tracking log which lists
the steps completed in the original submission. This filename is in the format
H:MM.USER where H is the hour, MM is the minute of the submission and USER is the
user’s name. The file is located in the source control tree and is not accessible by users.
On a resubmission, bsubmit uses this information to determine which steps it has already
completed.

Most of the time, bsubmit is able to pick up the submission from where it left off and you
do not have to be involved in fixing the logs. There are, however, times when it is

ODE User´s Guide 37

necessary to edit the logs or change an entry. While it is safe for you to edit your local
logs, the SNAPSHOT, bsubmit.hold, and bsubmit.logs files must be treated more
carefully. The program sadmin allows safe access to these files, for copying, editing,
locking and unlocking them. If you need to work with these files, you should always use
this program.

38 Appendix A

Appendix A
Manual Pages

This appendix contains the following ODE man pages:
bci(1)
bco(1)
bcreate(1)
bcs(1)
bdiff(1)
blog(1)
bmerge(1)
bstat(1)
bsubmit(1)
build(1)
currentsb(1)
genpath(1)
make(1)
makefiles(5)
mklinks(1)
mksb(1)
oderc(5)
resb(1)
sadmin(1)
sbinfo(1)
sup(1)
uptodate(1)
workon(1)

124 Index

Index

A
accessing

builds, 2-10

B
backing build, changing, 2-10

backing_build, 2-11

backing_project, 2-11

bci
options, 3-15

bcreate
files, 3-12

bcs
options, 3-15, 3-15, 3-17

branches
private, 3-17

build, 4-19
accessing, 2-10
backing, 2-10

C
changing backing build, 2-10

checking in files, 3-14

checking out
files, 3-14

command
bci, 3-14
blog, 3-15

commands
resb, 2-10

comment leaders
choosing, 3-13
NONE, 3-15

configuration files
projects, 2-10
sb.conf, 2-10

controlling source, 3-12

copyright markers, 3-13

COPYRIGHT NOTICE, 3-13

copyrights, 3-13
markers, 3-13

creating
files, 3-12

D
defuncting a file, 3-15

deleting files, 3-14, 3-15

displaying status, 3-15

E
expanded copyrights, 3-13

ODE Users´s Guide 125

F
file headers, 3-13

file
user rc, 2-8

files
checking in, 3-14
checking out, 3-14
creating, 3-12
defuncting, 3-15
deleting, 3-14, 3-15
merging, 3-16
outdating, 3-15
removing, 3-15

H
headers, 3-13

I
information, file, 3-15

information, log, 3-15

L
links

symbolic, 2-10

log information, 3-15

M
make, 4-19

managing source, 3-12

merging files, 3-16

mksb
command, 2-9

N
names, symbolic, 3-15

NONE, 3-15

O
ODE options

-all, 3-17
-set, 3-17

ode_build_env, 2-11

ode_sc, 2-11

options
-defunct, 3-15

OSF_COPYRIGHT, 3-13

outdating files, 3-15

126 Index

P
populating sandboxes, 2-9

private branch, 3-17

projects file, 2-10

R
RCS, 3-12

removing files, 3-15

retargeting
sandbox, 2-10

revision control, 3-12

revision information, 3-15

S
sandbox

populating, 2-9
retargeting, 2-10

sandboxes, 1-3
split, 2-10

sb.conf, 2-10

sets
managing, 3-16
name restrictions, 3-17

source control, 3-12

source file maintenance, 3-16

split sandboxes, 2-10

status

displaying and updating, 3-15

symbolic links, 2-10

symbolic names, 3-15

U
updating status, 3-15

user rc file, 2-8

W
workon, 3-17

options, 3-17, 3-17

bci command, 3-14

blog command, 3-15

resb
command, 2-10

-defunct option:, 3-15

-all, 3-17

-set, 3-17

-undo
bcreate, 3-14

ODE Users´s Guide 127

CONTENTS

Preface . ii
Audience . ii
Applicability . ii
Purpose . ii
Typographic and Keying Conventions ii
Reference Pages iii
Problem Reporting iv

1. Introduction . 1
1.1 The OSF Development Environment 1

2. Sandboxes . 3
2.1 What is a sandbox? 3
2.2 Components of a sandbox 4
2.3 Chaining sandboxes and backing builds 6
2.4 The .sandboxrc File 8
2.5 Operations within sandboxes 8
2.6 Accessing the Builds 10
2.7 Split Sandboxes 10

3. Source Control 12
3.1 The ODE Source Control Structure 12
3.2 Source Control tools and operations 12
3.3 Merging revisions 16
3.4 Sets . 16

4. Build Environment 19
4.1 build: a Front-end to make 19
4.2 Building with Passes 22
4.3 ODE Makefiles 24
4.4 Modifying the Build Environment 26

5. Submitting . 33
5.1 The Submission Process 33
5.2 Preparing to Submit Files 34
5.3 Merging Files 35
5.4 Local Cleanup 36
5.5 Submission Failure and Recovery 36

Appendix A . 38

Index . 124

- i -

