
OSF Development Environment

System Administration Guide

ODE Release 2.3.4 A (Spring 1995)

Printed on: May 23, 1995

Open Software Foundation

11 Cambridge Center

Cambridge, MA 02142

Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995 Open Software Foundation, Inc.

This documentation and the software to which it relates are derived in part from
materials supplied by the following:

Copyright (c) 1989, 1990 Carnegie-Mellon University

Permission to use, copy, modify, and freely distribute this documentation for any purpose
and without fee is hereby granted, provided that the above copyright notice appears in all
copies and that both the copyright notice and this permission notice appear in supporting
documentation, and that the name of "OSF" or Open Software Foundation not be used in
advertising or publicity pertaining to distribution of the software without specific, written
prior permission.

OSF DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL OSF BE
LIABLE FOR ANY SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES OR
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER IN ACTION OF CONTRACT, NEGLIGENCE, OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE

Preface iii

Preface

The OSF Development Environment System Administration Guide (SAG) explains how to
administer the OSF Development Environment (ODE), from initial set-up through
implementation of the tools used to control source, compilation and release.

Audience

This document is written for ODE administrators or release engineers.

Applicability

This document is accurate to the changes made in ODE 2.3.4.

Purpose

The purpose of this document is to provide a guide for the ODE administrator to
installing, porting, configuring and supporting the OSF Development Environment. In
addition to the administration of the source control and build tools, the tasks required to
provide developers with access to up-to-date source code and builds will also be covered
in this document.

Typographic and Keying Conventions

This document uses the following typographic conventions:

literal values Bold: character, words, commands, and keywords including
pathnames which are used literally. Bold words in text indicate the
first use of a new term.

user-supplied values Italic: words or characters which the user must supply.

sample user input In examples, information users enter appears in bold.

output Information the system displays appears in typewriter typeface.

[] Brackets enclose optional items in command descriptions.

{ } Braces enclose a list from which the user must choose an item.

 | A vertical bar separates items in a list of choices.

< > Angle brackets enclose the name of a key on the keyboard or a generic
term which must be replaced by a specific one, for example, <user-id>
must be replaced with an actual user’s login id.

... Horizontal ellipsis points indicate the preceding item can be repeated
one or more times.

This document uses the following keying conventions:

Ctrl/ or ˆ The notation Ctrl/ or ˆ, followed by the name of a key, indicates a
control character sequence. Hold down the Ctrl key while pressing the
key. For example, to obtain <Ctrl/c> hold down the Ctrl key while
pressing c.

iv Preface

<Return> The notation <Return> refers to the key on the terminal or workstation
that is labeled with the word Return or Enter, or with a left arrow.

entering commands When instructed to enter a command, type the command name and
then press <Return>. For example, the instruction "Enter the ls
command" means typing the ls command and then pressing <Return>.
In other words, "enter" = type + <Return>.

Problem Reporting

An electronic mailing list has been set up called ode-info@osf.org to facilitate the
exchange of information, comments, hints, tips, bug fixes, etc. between OSF licensees
that are using ODE. As appropriate, information about bugs and bug fixes along with
development issues will be posted to ode-info. When you have questions about ODE
please feel free to post them to this list, possibly someone else on ode-info will be able to
help.

To be added to the ode-info mailing list please send a request to ode-info-
request@osf.org.

Preface v

Introduction

This document is part of a collection of documents which describe the OSF Development
Environment (ODE). Other documents include the OSF Development Environment
User’s Guide (DUG) and the man pages.

This document is organized into eight chapters: ODE Architecture and Development
Model, ODE Distribution, Building and Installing the Tools, Source Control Server
Configuration, Backing Build Configuration, Shared Sandboxes, and Trouble Shooting
and Error Recovery.

First time administrators should first read Chapter 1 which explains the concepts of ODE,
its logical components, and gives a brief overview of how it is used. Follow Chapter 1 by
becoming familiar with each chapter by reading its introduction and then scanning its
sections. Follow this by reading the appropriate chapters in detail.

Chapter 1: ODE Architecture and Development Model 1

Contents of ODE/SAG: Architecture and Dev Model

1. ODE Architecture and Development Model

This chapter will give the administrator a high-level understanding of what the OSF
Development Environment (ODE) is in terms of its major functional components and
how it can be used to support the development and release of software. You should
already have a good understanding of UNIX as well as source control and compilation
environments.

1.1 High Level View of ODE Architecture

ODE is a network-based set of tools which support source control, individual and group
work areas (builds and sandboxes), and compilation in a distributed environment. These
three functions are modular to some extent, so individual projects can select which ODE
components to use. When actually constructing a development environment,
administrators can ignore components which do not apply to their projects.

These three functional components map closely to specific machines that communicate
over a network. This triangle of systems; the build servers, rcs servers, and systems with
sandboxes; are the key pieces in a complete ODE environment.

2 Chapter 1: ODE Architecture and Development Model

NFS/AFS Reads +

(rcs commands)

Remote Execution

(file copy and update)

Remote Execution

Developer’s
Sandbox

Project’s

RCS Server

ODE COMPONENTS

Build Server
Project’s

The first step you must take is to decide which ODE components are going to be used in
your project. The choices are similar to those listed above: source control, and
compilation. Components which must always be part of the development environment
are the backing builds and sandboxes. Regardless of which features a project uses, you
need to install these components.

1.1.1 Backing Builds

A backing build can be static or dynamic. A static backing build can be thought of as
frozen, and the sources do not change after creation. An example of a static build might
be a baseline or a release. Dynamic backing builds change to reflect ongoing
development. When using the source control component of ODE, source changes are
made by the process of submissions being made to the build. These submissions (of
changes to files under source control) appear in the build and are instantly available to all
developers backed by that build.

Chapter 1: ODE Architecture and Development Model 3

In its simplest form, a backing build is a directory containing a complete set of the
project sources and ODE configuration files. In almost all cases, a backing build also
contains an export area which has the project specific files needed to build the sources.
For example, header files and libraries are found in the export area. Optional directories
in the backing build include a place to hold the objects produced by compiling the
sources, a tools directory to hold tools specific to a particular backing build, and a logs
directory to track source control information.

Within each build, the sub-directories and files vary according to the components being
used, the machines-types being supported, and project specific needs. This document
attempts to cover as broad an implementation of ODE as it reasonably can, however, you
are encouraged to read at least the introductions to each chapter in the ODE User Guides
as well as the ODE man pages to get more details on specific aspects of the environment.

1.1.2 Sandboxes

Sandboxes are individual work areas which mirror the structure of a backing build.
Unlike backing builds, they normally do not contain all the source. Instead, sandboxes
are backed by backing builds, hence the name. Being backed by a build means that
whenever something which is needed to compile in the sandbox is not there, ODE tools
look for it in the backing build. The other thing sandboxes inherit from their backing
builds is the environment set by the configuration files (see chapter 6). Sandboxes can be
backed by builds or other sandboxes.

In all cases, a sandbox can supersede a backing tree: with source, for example, a local
copy of a file has preference over the backing tree’s copy. The advantage of using
sandboxes is that most developers will want to use the majority of the environment set up
by the backing tree including the source files, Makefiles, headers, and libraries. Most
sandboxes are sparsely filled, containing only the few source files the developer is
actually editing and abbreviated versions of the configuration files.

At OSF, the backing builds and sandboxes are not on the same systems. Most sandboxes
are on the developers’ systems while backing builds are kept on a server. Actually, the
backing builds can themselves be spread out over the network.

1.1.3 Source Control

The source control tools are invoked from the developer’s system and start remote
processes on the servers to manipulate the files under source control.

The underlying source control tool ODE uses is rcs so each project must have its sources
in an rcs tree. A part of the source control component is the server hosting the rcs tree.
Like the builds, these trees can be kept on any system.

1.1.4 Further Information

For details on sandboxes, see chapter one of the Users Guide. For information on ODE
source management, refer to chapter two. To compile sources, read chapter three.

4 Chapter 1: ODE Architecture and Development Model

1.2 High Level View of the ODE Development Model

At OSF, we use the source control component of ODE.

Developers do their work in sandboxes that are backed by builds or possibly other
sandboxes. As their work proceeds they check-in and check-out (bci, bco) files in their
sandbox. When the developer feels that a file or group of files is stable enough, the
changes are submitted (bsubmit) to a public build.

Depending on project needs, all submitted sources in this public build are compiled
periodically. At OSF, the sources are compiled nightly in order to provide the access to
the latest development and check for any inconsistencies. As a result of the constant
change, this build is relatively unstable.

After a sufficient number of changes have been made to this public submission build a
new baseline build is made from it and a new submission build is started.

The static, baseline builds are often installed internally for more complete testing on
various users’ systems. Procedures are available in ODE which facilitate this process of
collecting the binaries and making an image of the installed offering for distribution.

Details on how to set up the source control and builds and the steps necessary for
performing these procedures can be found in Chapters 4 through 7 of this document.

Chapter 2: ODE Distribution 5

2. ODE Distribution

This chapter discusses how to unload the OSF Development Environment (ODE) from
the distribution media and shows the organization of the sources as they appear on the
media.

In addition to the source code for all the tools, the ODE distribution includes scripts for
installing and maintaining the system, man pages and documentation.

2.1 Unloading the tape

The ODE build tree is distributed on the same media that your OSF offering is on.
Consult the release notes which came with the offering to determine how many archives
are on the tape and which one is the ODE archive.

2.1.1 Requirements for Unloading the tape

The ODE source code and documentation when unloaded off from the tape will require
approximately 6 megabytes of disk space.

2.1.2 Instructions for Unloading the tape

To install all of the ODE sources from the distribution tape, follow these steps:

1. Make sure that there is enough disk storage space available for the data to be unloaded
from the tape. Use the df command or whatever command is appropriate for your
operating system to determine the amount of free space on your disks.

2. Mount the tape in accordance with site-specific and operating-system specific
procedures.

3. Change directories to where you want to store the ODE source code.

cd /ode-path

In the instructions in this chapter the path to the ode directory is indicated by /ode-path.

4. If this is an ODE distribution available via (anonymous) ftp, then instructions about
where to find and unload the appropriate tar archives should be available directly on the
server (e.g., README files). Announcements and mail messages sent to ode-
info@osf.org will also contain informative and up to date information about the
whereabouts of the most recent ODE sources.

If this is an ODE tape release, then make sure your tape is positioned at the beginning of
the ODE archive. Use the mt, or equivalent, command to skip forward and backward
past other archives on the tape as needed.

5. Use tar to unload the ODE archive.

tar xvfp /dev/non-rewinding-tape-device

6 Chapter 2: ODE Distribution

If the tar completes without errors, proceed to the next section on building ODE.

2.2 The ODE Directory Structure

src/ode/bin/ o Sources to all of the ODE commands
bci/
bco/
bcreate/
bcs/
bdiff/
blog/
bmerge/
bstat/
bsubmit/
build/
currentsb/
genpath/
make/

AIXARCH/
BSDARCH/
OSFARCH/
SVR4ARCH/
doc/
lst.lib/

makepath/
md/
mklinks/
mksb/
odexm_cli/
rcs/ o Plug in Source Control Tree (RCS)
release/
resb/
sadmin/
sbinfo/
sup/
upgrade/
uptodate/
workon/

src/ode/doc/ o ODE documentation
users.gd/

common/
osc/
dce/

sag/

Chapter 2: ODE Distribution 7

templates/

src/ode/server/ o Server side of tools
bco_s/
bcs_s/
blog_s/
bmerge_s/
branch_ci/
bstat_s/
bsubmit_s/
logsubmit/
odexm/
rcsacl/
srcacl/
supfilesrv/
supscan/

src/ode/lib/ o Some access control cmds and libode
libcom/
libode/
libsup/

src/ode/man/ o Man pages
man1/
man3/
man5/
man8/

src/ode/include/ o Global header files

src/ode/setup/ o Scripts to build and install ODE

src/ode/mk/ o Common Makefiles

8 Chapter 3: Building and Installing the ODE Tools

3. Building and Installing the ODE Tools

This chapter describes how to unload the OSF Development Environment (ODE) from
the distribution tape and how to build and install it on the reference platforms. Each task
(unloading the tape, building, and installing) is covered in a separate section. Each
section outlines the requirements and the commands that are used to perform that step.
The command lines shown in this chapter use the syntax of the Bourne shell; however
they could easily be modified to be run under any shell.

The instructions in Section 3 assume the reader is familiar with some basic system
administration commands for a UNIX environment.

3.1 Building ODE

This section describes the requirements for building ODE and then provides the specific
commands to perform the build.

The build process begins by using a script called setup.sh to build a few of the
commands that are necessary to bootstrap the remainder of the tools. Once the minimal
subset of ODE tools has been built, they are used to build the remaining tools.

3.1.1 Requirements for Building

This version of ODE has been ported to the following platforms; approximate amounts of
disk space required for building are listed below for some platforms.

Platform Disk Space (MB) Context Name__
Intel 386 running OSF/1 1.3 or mk6.1 15 at386_osf1___
HP 9000/700 running HP-UX 9.05 21 hp700_hpux___
IBM RISC System/6000 running AIX 3.2 17 rios_aix___
Sparc system running SunOS 4.1.3 16 sparc_sunos___
DEC 3000 M400 running OSF/1 V3.2 17 alpha_osf1___
DECstation 3100 system running ULTRIX 4.1 19 pmax_ultrix___
Intel 386 system running SINIX 5.41 15 at386_sinix___
Intel 386 system running linux 1.2.3
from slackware 2.2 distribution * 10 at386_linux___LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

LL
L
L
L
L
L
L
L
L
L
L
L
L

* Note: only minimal tools built by setup.sh have been ported.

It is possible to port ODE to other platforms by making appropriate source code
modifications. Refer to Appendix A for more detailed information on building ODE.

Chapter 3: Building and Installing the ODE Tools 9

3.1.2 Building the Minimal ODE Build Environment (Running setup.sh)

The first step in building ODE is to run the setup.sh script. This script will build a
minimal set of tools required to bootstrap building the full set of ODE tools.

The specific programs built by setup.sh are: build, genpath, make, makepath, md, and
release. A temporary libode.a is also built during this step. It is removed at the end of the
setup.sh script. When built using the setup.sh script, these programs are compiled with
the -D_BLD switch; this switch builds versions of the programs that minimally depend
upon libode.a (the ODE library). This minimal subset of ODE tools will be rebuilt and
replaced once the complete set of build and source control tools is built (as described in
the next section).

The setup.sh script (located in /ode-path/ode/src/ode/setup) takes the context name as
an argument. Please refer to the previous table for a list of supported context names. Use
the following procedure to run setup.sh, using the appropriate values from the table
above for the context name.

First create a directory to save the logs in (this only needs to be done once per platform):

mkdir /ode-path/ode/logs
mkdir /ode-path/ode/logs/<context-name>

Then run the setup.sh script:

cd /ode-path/ode/src
sh -x ode/setup/setup.sh <context-name> > ../logs/<context-name>/setup.log
2>&1

Once setup.sh has completed, examine the setup.log file to check for any error
messages. If any errors have occurred, they must be corrected and the setup.sh script
should be rerun before proceeding to the next step. The setup.log may be monitored
while setup.sh is running by placing the above command in the background and using
tail -f to display the log file as the script is running.

After running setup.sh, verify that the build, genpath, make, makepath, md, and
release binaries have been created under ode-path/ode/tools/<context_name>/bin.

Once the setup.sh script has finished successfully, continue on to the next section.

3.1.3 Building the Complete ODE Build and Source Control Environments

After successful completion of the setup.sh script, the minimal set of ODE build tools
(build, genpath, make, makepath, md, release) should be found under:

/ode-path/ode/tools/<context_name>/bin

This section describes how to build a full ODE distribution including all the build tools,
source control tools, and various other utility programs (e.g. sup and supfilesrv). The full
build of ODE requires the successful completion of the setup.sh script (as described in
the previous section). Hence, if you have any doubts about the results of setup.sh, you
should verify/test your work before continuing. (For instance, when porting ODE to a

10 Chapter 3: Building and Installing the ODE Tools

different platform, you should first resolve any build errors or warnings before
proceeding).

It is not necessary to build the full ODE distribution in order to build an OSF technology
(such as a Mach micro-kernel distribution). That is, if you are only interested in building
the source code for an OSF technology distribution and/or snapshot, but do not plan to
subsequently use the ODE build or source control environments, then setup.sh has
already produced the minimal set of tools you will require. The release notes for a
specific OSF technology should include a description of how to build the source code
distribution using this minimal set of ODE build tools.

Also, if you plan to use the full ODE build environment, but do not intend to use the
source code control component of ODE, you may want to set the environment variable
NO_RCS before building ODE. This will prevent the building of the RCS code. (ODE
build and source control components are completely independent).

ODE uses simple configuration files to augment building.

Either create a new /.sandboxrc file or modify the existing /.sandboxrc file (that is
included with the ODE distribution) under /ode-path/ode/.sandboxrc to contain the
following three lines:

default ode
base * /ode-path
sb ode

Set up the the minimal ODE configuration files in the /ode-path/ode/rc_files directory.
For the purposes of bootstrapping ODE, you will only need:

/ode-path/ode/rc_files/projects
/ode-path/ode/rc_files/ode/sb.conf

If your ODE distribution does not already include these files, then refer to the complete
description of how to set up these rc files in section 5.4, rc File Setup.

The ODE commands will complain if the contents of your /.sandboxrc and rc_files are
incorrect or do not agree with the location of your ODE distribution under ode-
path/ode/src. These errors should be self-explanatory.

Follow these steps to build ODE:

cd /ode-path/ode/src
PATH="/ode-path/ode/tools/<context-name>/bin:$PATH"
build -rc /ode-path/ode/.sandboxrc > ../logs/<context-name>/cmds.log 2>&1

Once again, review the resulting log file for any errors. If you encounter any errors, you
will need to correct them and then run build again to build those components that failed
the first time. (You might want to consult the Porting Hints in Appendix A to resolve
build errors). After running build, all libraries, programs and documentation should have
been built successfully.

Once ODE has been successfully built, proceed to the next section which provides details
on how to install ODE.

Chapter 3: Building and Installing the ODE Tools 11

3.2 Installation

This section describes how to start installing ODE on your system by using a script called
install.sh. There are other parts to installing the ODE RCS servers and creating builds
that are covered in chapters 4 and 5.

3.2.1 Requirements for Installation

In order to install ODE you must have successfully completed building the ODE project
(see the previous section on Building ODE). To install ODE you must be logged in as
root.

The installed ODE tools require approximately 5 to 10 Mb of disk space.

3.2.2 Installing the Tools Binaries (Running install.sh)

The install.sh script is located in the same directory as the setup.sh script. install.sh
takes two arguments: the first one is the context name (as specified to setup.sh). The
second argument is optional and represents the absolute path to the location where the
tools are to be installed. If the second argument is omitted the install location will
default to /usr/ode.

The following commands will install ODE in /ode-install-path/ode/release

su root
mkdir /ode-install-path
cd /ode-path/ode/src
sh -x ode/setup/install.sh <context-name> /ode-install-path \

> ../logs/<context-name>/install.log 2>&1

Any commands that previously failed to build when building the ODE project will also
appear as errors in install.log.

The install.sh script sets the variables OWNER and GROUP to "bin" for the ODE
binaries. If these values are incorrect for your cite/installation, then change them
appropriately.

Once you have built and installed the ODE tools proceed to the following chapters of this
guide which provide details on how to create an ODE RCS server and backing builds.

12 Chapter 4: Setting up odexm

4. Setting up the ODE execution monitor, odexm

This chapter describes how to set up odexm to provide a distributed development
environment. If you won’t be using the source control component of ODE you can safely
skip this chapter.

You will need to read chapters 5 and 6 before actually using the material in this chapter,
but it is a good idea to read this chapter first.

4.1 Making odexm available as an inetd service

All ODE server machines need to have odexm installed and available. This consists of
adding an entry for odexm in the /etc/services and inetd.conf files, and installing odexm.
The line for the /etc/services file should have the form:

odexm N/tcp

where N is the service number. There should be whitespace, usually a single tab, between
the two parts of the entry.

The service number needs to be unique to odexm in /etc/services so the system
administrator should be consulted to make sure the number is correct. This number can
be set via the tcp_service_number entry in the sc.conf file of the backing build or by
changing the SERV_NUM definition in the program ode/lib/oxm_relay_tcp.c. It is
recommended that the service number be defined in the sc.conf file.

The line to be added to /etc/inetd.conf is:

odexm stream tcp nowait /etc/odexm odexm

Note: This is an example, please follow the configuration in your /etc/inetd.conf file.
Some files may require the addition of a user-id (root) between the fourth and fifth
(nowait and /etc/odexm) fields. If you see other entries in the inetd.conf file with the
user-id field, you will need to put it in your entry as well. Copy odexm into /etc. The
inetd daemon must then be restarted on the system.

4.2 odexm configuration files

There are a minimum of two configuration files which the user needs to install on each
ODE server. These are the odexm configuration file, odexm.conf; and the odexm
mapping file(s). Generally, there is only one mapping file and it is called odexm.map.
However, odexm.conf can refer to as many mapping files as needed.

4.2.1 odexm.conf

The odexm.conf file provides odexm with information about rcs, src, and logs directories
for source control and builds. It must be installed in the /etc directory. Each line contains
5 fields. Field one is a unique identifier. It consists of three parts; an rcs, src, or logs
directory; the project name; and the build name. Each of these are separated by a ’/’. For
instance, information regarding the src directory on the source server for the ode2.2.1
build of project ode would start with the field ’src/ode/ode2.2.1’ .

Chapter 4: Setting up odexm 13

The second field specifies the physical location of the odexm accessible directory. The
third field specifies the physical location of any tools that odexm will need in order to
fulfill a request. The fourth field is the owner of the directory. The last field indicates the
location of the odexm mapping file.

As an example, let’s assume that the source control and build servers for a particular
build are on the same machine and that there is just one tools directory, /u0/tools/ode.
The rcs files are in /u0/rcs/ode, the src and logs directories are in /u0/build/ode2.2.1. Our
odexm.conf file would look like this:

rcs/ode/ode2.3.4 /u0/rcs/ode /u0/tools/ode devrcs /etc/odexm.map
src/ode/ode2.3.4 /u0/build/ode2.3.4/src /u0/tools/ode devsrc /etc/odexm.map
logs/ode/ode2.3.4 /u0/build/ode2.3.4/logs /u0/tools/ode devsrc /etc/odexm.map

4.2.2 odexm.map

The mapping file maps command requests into the actual programs that will satisfy those
requests. In most cases, the request will map to a program of the same name. In other
cases, the request will map to srcacl or rcsacl which do some parameter checking before
calling a program of the same name as the request.

An odexm.map file is provided in ode/doc/sag/templates. It can be copied without
change into /etc. This file is also available in the install tree in the server directory. Each
line of the odexm.map file has three fields.

The first field in odexm.map is the name of a request. The second field is the program to
execute when the request comes in. The third field is for authentication purposes.
Currently, ODE does not provide authentication as-is. The third field is provided for
historical reasons and will most likely be removed in a future release of ODE. For an
example, take a look at the odexm.map file provided as a template.

14 Chapter 5: Source Control Server Configuration

5. Source Control Server Configuration

This chapter describes how to set up a source control server and how to take your project
sources and turn them into an ODE source control system. The reader should have
already built and installed the tools as listed in the previous chapters. You also need to
determine what machine will be used as your source control server.

5.1 Source Control Account

The ODE toolset uses an execution monitor that prevents unauthorized or accidental
access to the source control tree. It is therefore recommended to set up a special ODE
source control account for exclusive use by the ODE programs and the administrator. At
OSF the account is devrcs. The source control tree should be owned by this account.

To install the account see your system administrator.

5.2 Creating the Source Control Tree

ODE uses rcs release 5.6 as the underlying mechanism to manage the source control tree.
This means that the tree is a directory structure with rcs files. To create an empty source
control tree, simply create the directory where the rcs files will reside, make it owned by
the source control account, and set the permissions to 755.

The source control configuration is in four places: the odexm configuration files, the rcs
tools directory, the rc_files directory of the backing build and in a set specific directory
in the rcs server tree. The last two are covered in chapter 6. Some of the set specific
setup is covered in this chapter in the section called "Source Control Configuration files."

5.3 Distributed access setup

5.3.1 Making the rcs tree accessible via odexm

In order to allow users to perform source control operations you will need to set up
odexm and/or add an entry to the odexm.conf file in the /etc directory on the rcs server.
You will need an entry for the rcs directory with an appropriate owner. At OSF it is
devrcs. Refer to Chapter 4 for detailed instructions on how to set up odexm and add an
entry to odexm.conf .

5.3.2 Tools needed by odexm for source control

There is one remote execution program which needs to be available (installed) on each
machine that uses ode tools for sandboxes. In addition, odexm needs to have access to a
number of source control tools.

These are:

• bco_s

• bcs_s

• blog_s

Chapter 5: Source Control Server Configuration 15

• bmerge_s

• bstat_s

• bsubmit_s

• branch_ci

• ci

• co

• diff

• makepath

• oxm_relay_tcp

• rcs

• rcsacl

• rcsdiff

• rcsstat

• rlog

Install these tools in an appropriate tools directory. This should be one central place on a
machine. Make sure that the tools directory in the odexm.conf file refers to the directory
containing these tools. If your source control tree and build tree is on the same machine,
you can put all of the tools you need in the same directory. E.g., ode2.3tools.

5.4 Source Control Configuration Files

In a future release, the configuration files and rcs files will be in separate directories. As
it is now, there is a directory called ode2.3_server_base in the top of the rcs tree which
contains the source control configuration files. It is called ode2.3_server_base to
emphasize that it is temporary. You will need to create this directory, owned by the
source control account with permissions of 755. You will also need to create a file with
the same ownership and permissions within this directory called bsubmit.hold. This file
is used for locking.

Below the ode2.3_server_base directory, create a directory called sets with the same
ownership and permissions. This directory is used to hold set directories which contain
configuration files and files containing state information used by the ODE tools for
recovery operations. The instructions in Chapter 6 will assume that the set directory has
already been created.

5.5 Populating the Source Control Tree

When populating a tree there are a number of possible startup conditions. One is that a
source tree exists and the rcs tree is to be derived from that tree. The existing tree might
already be managed under a different source control system and you may want to run a
conversion program to change the files into rcs format. For example, there is a program
called sccstorcs which will convert sccs-formatted files into rcs-formatted files. Another

16 Chapter 5: Source Control Server Configuration

startup scenario is that there is no source currently and development will begin from
scratch. In the latter case, read no further.

The size of the source tree is not important, nor is its structure; however, the source
control server and location on the server must be determined.

5.5.1 Creating the rcs files

There are a number of approaches to creating an rcs tree and procedures change if some
of the source is already under rcs. If the project source is not under rcs but currently
exists in a source tree somewhere, the included scripts described below should be used.

1. After determining what system will host the source control and what the location
of the tree on that system will be, login into the source control system and become
the source control owner (devrcs).

2. Create a directory called rcs and copy (cp or tar) the source tree into it.

3. Change the permissions on the directories and files to give yourself write
permission on them. A simple find using chown and chmod will work.

4. In the setup directory found on the ODE distribution there are two shell scripts
used to create your rcs tree. They are :

• bldrcstree.sh which finds all the files in the tree and calls the second script.

• add_header.sh is the second script and it does the real work of creating the rcs
,v files.

The purpose of the scripts is to create rcs files from the project source files. The
rcs files are created in place. First, the scripts determine the type of file and tests if
it is a ’known’ format. Formats that are known to the script are: Makefile,
Imakefile, .c, .h or roff files. This information is needed because ODE uses a
header in each rcs file to store a copyright tag (or embedded copyright) and give
the revision history so that a user can see the revision history for the file each time
it is checked out. If copyrights are to be provided through copyright tags (also
known as copyright markers) then use the tag @OSF_FREE_COPYRIGHT@. If
you have a specific need to use a different copyright tag, the add_header.sh script
should be changed accordingly; also refer to the bci man page and the
documentation of the copyright_list shared rc variable (chapter 5) for details on
specifying alternate copyright markers on check-in. When copyright tags are used
at OSF we run an awk script over the files to expand this tag when necessary, e.g.
at release time, to our specific copyright information. However, you can expand it
to any text that you wish. The capability to explicitly override this requirement
exists, but it is not recommended that a file be checked-in without a copyright tag.
If using copyright tags is not desirable; users have the option of embedding
copyrights directly into the source files.

The header itself is enclosed within a comment, hence the comment leader must be
known. The comment leader is derived from the set of comment leader templates,

Chapter 5: Source Control Server Configuration 17

provided with the scripts, and is concatenated to the top of all known files in the rcs
tree. The file is then used to create an rcs file by using the ci command. An
example of a header for a .c file with a copyright tag is shown below.

/*
* @OSF_FREE_COPYRIGHT@
*/
/*
* HISTORY
* Log
* $EndLog$
*/

An example of a header for a .c file with an embedded copyright is shown below.

/*
* COPYRIGHT NOTICE
* Copyright (c) 1994 Open Software Foundation, Inc.
* ALL RIGHTS RESERVED
*
*/
/*
* HISTORY
* Log
* $EndLog$
*/

Any file names that are not Makefiles, Imakefiles, .c, .h, or roff format files, i.e. not
know by the scripts, are placed into a file called FILES_NOT_FOUND. These
files are not created into rcs files because a comment leader template does not exist
for them. You may add to the list of known files by modifying add_header.sh
appropriately to reflect the new comment leader. Just follow the examples in the
script.

NOTE: Do not place the text Log anywhere in your project source files. rcs
will expand this to be where your history log information is placed.

5. To run the scripts you just change directory into the setup directory and type:

bldrcstree.sh <src-base>

where <src-base> is the base of what will be the rcs tree.

6. When the script finishes, check the FILES_NOT_FOUND file. This will be a list
of all files whose type was not known to the script and were therefore not changed
into rcs files. You can then rework the script to search for those (by modifying the
find) and adding the comment leader template and adding the new if statement in
the script that searches for that type of file. Or, if there are only a few files, you

18 Chapter 5: Source Control Server Configuration

can repeat the process described above and illustrated in the scripts by hand.

7. Once the rcs tree is created, you will want to change permission for the directories
to 755 (drwxr-xr-x) and files to 444 (-r--r--r--). You can also do this with find.

Chapter 6: Backing Build Configuration 19

6. Backing Build Configuration

This chapter discusses how to create a backing build and populate it with project sources
to turn them into a backing build. It also briefly discusses how to build the sources
though this topic is more thoroughly covered in the Release Notes for each offering.

The reader should have already read and executed the work in the previous chapters
relating to creating and populating a source control tree, and building the tools.

6.1 Creating the Backing Build

Both types of builds, static and dynamic, are set up in the same way with the exception
that the configuration variables that control submissions don’t allow submissions to a
static build.

Each build defines a default submission build where the submissions are made to. The
default build has to be a dynamic build. A static build will always reference a dynamic
build as the submission build; a dynamic build will define itself to be the submission
build.

The first step in creating a backing build is to create the build’s directory. At OSF, the
physical location of the builds can be anywhere but is always mounted on a user’s system
under:

/project/project_name/build/build_name

where project_name in OSF can be osc, dce, motif, dme, etc. and build_name is the
name of a specific build. At OSF, each build has a name of the form
project.rel_numbnum, for example osc1.1b1 or motif2.2b6.

Create the actual physical directory on the build server. Make it owned by the source file
account and set the permissions to 755.

6.1.1 Directories to Create

You will need to create a number of directories below the build directory. The list of
directories to make is:

• src

• export

• logs

• obj

• rc_files

Make them all owned by the source file owner and set the permissions to 755.

6.1.2 Log Files

If the project is using ODE source control, the default build, i.e. the build submissions

20 Chapter 6: Backing Build Configuration

are sent to, must have the following files created under logs:

• DEFUNCT

• SNAPSHOT

• bsubmit.log

Initially, these files must contain at least one blank line.

The DEFUNCT file will hold the list of files previously submitted but which now have
been deleted from the build. bsubmit.log keeps the history of all submissions. Refer to
the ODE User’s Guide for more information on submissions. Over time, this file can get
quite large; it should be saved to some other location and started over occasionally. At
OSF, this is done each time there is a new build.

6.1.3 Makeconf

This file is located under src and marks the top of the source tree. It must be present in
all builds. Several built-in make variables for the ODE make are defined based upon the
location of this file and its relationship to the directory make was invoked from. You
should copy this file from the src directory of the ODE distribution. Change the file
permissions to 444 and make the file owned by the source file account.

6.2 Common make files

If you are using an offering from OSF, use the common make files that have been
provided. If you are setting up a new project, copy the following files into src/ode/mk:

• osf.depend.mk

• osf.doc.mk

• osf.lib.mk

• osf.man.mk

• osf.obj.mk

• osf.prog.mk

• osf.rules.mk

• osf.script.mk

• osf.std.mk

• sys.mk
Also, copy the osf.ode.* files. Rename them from osf.ode.* to osf.<your project>.*.

6.3 Copyrights

A backing tree can now be configured to handle copyrights in one of two ways. Using
copyright markers (the old way) or embedding expanded copyright text directly into
source files (the new way). Copyright markers (i.e. @OSF_COPYRIGHT@) have been
used in the past to mark the where, in the source file, copyright text should be placed.

Chapter 6: Backing Build Configuration 21

During a projects lifecycle copyright text is added to a file just before a release is done.
Typically, a release engineer checks out all source files to a staging area and runs a script
that replaces copyright markers with copyright text. This has turned out to be both time
consuming and error prone.

To expedite the release process we have enabled bci to recognise and validate fully
expanded copyright text within source files. In order to use this feature each backing tree
must be configured for expanded copyright validation and each source file must have its
copyright markers replaced with expanded copyrights.

Configuring a backing tree for expanded copyright validation requires a copyrights file
and the variables check_copyrights and copyright_years must be set to true in the
sc.conf file. Details are given in the section Source Control Configuration File.

6.4 rc File Setup

An rc file is a file that contains information which affects the way the tools will work. For
example, the tools read these files to determine where to find a backing build and what
machine types to build for. The rc files need to be in place and contain the correct
information to allow the build to serve as a backing tree. The relationship between the rc
files is described in detail in the ODE User’s Guide; additional project-specific rc file
variables are discussed in the supplemental ODE User’s Guides. Basically, the
.sandboxrc file is needed to allow the build to do sandbox operations such as check-outs
and check-ins. The Buildconf rc file sets the environment for the build and the sc.conf
file sets the environment for source control operations.

6.4.1 .sandboxrc

This file is needed only in a build which which will actually be directly built in or
submitted from, such as a nightly build or a shared sandbox. The file should be under the
build directory at the same level as src. It contains three lines:

default build_name
base * base-directory
sb build_name

These three lines provide the minimum sandbox description: the default sandbox, its
base directory, and the sandbox name. Since the only sandbox is the build itself, the
arguments to default and sb are identical. The "*" after base and before the base
directory indicates that all sandboxes use this base directory. It would also be correct to
write the line like this:

base build_name base-directory

At OSF, these three lines have values such as:

default dce1.0
base * /project/dce/build
sb dce1.0

22 Chapter 6: Backing Build Configuration

All of the rc files use keywords before some entries. The keyword replace indicates that
this line should override any previously existing value. If the keyword replace is not
present and there is already a value for the variable, it is left as is. The keyword setenv
indicates to ODE that this variable should be treated internally as an environment
variable. The keyword on followed by a machine type, indicates that this definition only
applies to this specific machine type. This must match exactly the MACHINE value
from the machine-specific configuration script used in building the tools (see Chapter 3).

6.4.2 Buildconf and Buildconf.exp

OSF offerings using ODE 2.3.X will already have a Buildconf file and a Buildconf.exp
file which do not need to be modified. If you are starting a new project, you should copy
the Buildconf and Buildconf.exp files from the ODE distribution. These files file resides
in a project specific directory in the source tree. This directory is given the name of the
project. The ODE project name is ode. Thus, ODE’s Buildconf file is in
.../src/ode/Buildconf.

The Buildconf file and the Buildconf.exp file serve similar purposes. For a build which is
not backed by other builds, only the Buildconf file is used. The Buildconf file is
evaluated and that is all.

When the Buildconf file is evaluated, the variable ’sandbox_base’ is set to be the full path
to the build that the user is working in. For instance, at OSF, the ode2.3.4 build is in
/project/ode/build. The full path is thus /project/ode/build/ode2.3.4. This is the same as if
the Buildconf file contained the following line:

replace sandbox_base /project/ode/build/ode2.3.4

Most variables set in the build environment are simple strings which do not refer to
multiple builds. All of these variables are set in Buildconf. Here are a few simple
variable settings:

replace setenv RULES_MK osf.rules.mk
replace setenv MAKESYSPATH ${source_base}/ode/mk

The Buildconf.exp is the ’expansion’ file for Buildconf. It is used to expand the values of
certain variables. When the build that a user is building in is backed by other builds, the
Buildconf file is evaluated first, and then the Buildconf.exp file is evaluated once for
each build in the backing chain, including the build that the user is building in.

In this case the value of sandbox_base is set a little differently. sandbox_base is first set
to the path for the last build in the backing chain and Buildconf is evaluated.
sandbox_base is then set to each build in the chain starting with the last and ending with
the build that the user is in. Buildconf.exp is evaluated once for each value of
sandbox_base.

Let’s say that we are in the sandbox /usr/users/suzieq/sb/ode which is backed by
/project/ode/build/ode2.3.4. For the value of MAKESYSPATH, Buildconf would have:

replace setenv MAKESYSPATH ${source_base}/ode/mk

Chapter 6: Backing Build Configuration 23

Buildconf.exp would have:

replace setenv MAKESYSPATH ${source_base}/ode/mk:${MAKESYSPATH}

This would result in MAKESYSPATH having a value of:

/usr/users/suzieq/sb/ode/src/ode/mk:/project/ode/build/ode2.3.4/src/ode/mk

The first lines of the Buildconf file contain settings for the context variable using the on
keyword, for specific machine types. This variable is used in the src/Makeconf file to
conditionally set the target_machine and target_os used by make. Again, these should
match the values used to build the tools (see Chapter 3) as well as the name of the
machine-specific directories created earlier. You need to edit these lines for each
machine type being supported.

These next variables define the characteristics of the build:

build_base This is the base directory for builds for this project. The assumption in
OSF is that there will be multiple builds for each project but, within a
project, the builds will all be accessed from under the same base
directory. You should edit this line.

sandbox_base You do not need to enter this field, it will be entered for you when this
file is evaluated. If you have this field, remove it.

build_list At OSF there are many builds and it is convenient to create a single
file which lists all build names, their configuration information and
base directory. By using this file, many of the tools can accept just the
name of the build as a command line option. From this they figure out
where the build is and what revision of the source to apply to it. This
variable indicates the path and name of the file with this information.
If there is no build_list associated with the site, this entry should be
deleted. See a latter section of this chapter for more information on
this file.

The remaining variables listed here affect the compilation environment.

build_makeflags These are the flags build calls make with. The flags are those needed
on every call to make. You need to modify these flags according to
the local build environment.

source_base The location of the src directory in the sandbox. This line is normally
not edited.

object_base The location of the object directory in the sandbox. This line is
normally not edited.

export_base The location of the export directory in the sandbox. This line is
normally not edited.

SITE This line should be edited to reflect the site of the project.

24 Chapter 6: Backing Build Configuration

OWNER This line indicates the default owner for files which are installed.

GROUP This line indicates the default group for files which are installed.

PROJECT_NAME This string is used to include project-specific makefiles into the
common makefiles. You should modify this to contain your project
name in upper-case letters.

project_name This string is used to include project-specific makefiles into the
common makefiles. You should modify this to contain your project
name in lower-case letters.

RULES_MK This indicates the name of the top-level common makefile. It should
not be edited.

MAKESYSPATH This indicates the path to the common makefiles.

SOURCEDIR This variable gets used by sandboxes backed by this build and is set
here to override any existing value. This line is normally not edited.

BACKED_SOURCEDIR This variable gets used by sandboxes backed by this build and
begins by being set to the build’s source directory. This line is not
normally edited.

EXPORT_BASE This variable gets used by sandboxes backed by this build and begins
by being set to the build’s export directory. This line is not normally
edited.

INCDIRS This variable sets the path for compiles to search for header files.
Each sandbox will put its own path in front of this path so the order of
search will be the sandbox’s export directory followed by the build’s
export directory. This line is only edited if the exported header files
are kept somewhere other than the standard export directory.

LIBDIRS This variable sets the path for compiles to search for libraries. Each
sandbox will put its own path in front of this path so the order of
search will be the sandbox’s export directory followed by the build’s
export directory. This line is only edited if the exported libraries are
kept somewhere other than the standard export directory.

SHLIBDIRS This variable is identical to LIBDIRS but applies to shared libraries.
This line is only edited if the exported shared libraries are kept
somewhere other than the standard export directory.

NO_SHARED_LIBRARIES If this variable is set, the build will not attempt to create
shared libraries. To build shared libraries, remove this entry
completely.

USE_STATIC_LIBRARIES If this variable is set and NO_SHARED_LIBRARIES is
not set, the shared libraries will be built but no attempt will be made to
link with them. To link to the shared libraries, remove this entry
completely.

Chapter 6: Backing Build Configuration 25

6.4.3 sets

The sets file contains only two lines, one with the default set name and one which would
begin the list of sets if there was more than one. The default set is the same value as
default_set in the Buildconf rc file. Create this file in the rc_files directory with
permission 444 and owned by the source file account. The two lines should be:

default <default_set>
set <default_set> .

6.4.4 Sandbox Configuration File

This file is used to indicate whether or not a build is backed by another build and whether
ODE source control and/or the ODE build environment should be used. Create an
sb.conf file in the rc_files<project> directory.

In a backing build that is not backed by another build, this file can be empty. Optionally,
there are two variables which can be set: ode_sc and ode_build_env. In a build which is
backed by another build, all four of the variables listed must be set.

backing_project Project that this build is backed by.

backing_build Logical path to the build that this build is backed by.

ode_sc This variable can be ’true’ or ’false’. True means that ODE source
control should be used.

ode_build_env This variable can also be ’true’ or ’false’. true means that the ODE
build environment should be used.

6.5 Source Control Configuration File

The source control configuration file, sc.conf is only necessary if you are using the ODE
source control component. It is needed so that developers can check-in, check-out, and
otherwise manipulate source control files which are actually kept on another system.

You will need to create two identical sc.conf files. This need will be removed in a future
release. The sc.conf file resides in the rc_files/<project> directory of the backing build
and a build specific directory in the source control server tree. The directory in the source
control server tree is ode2.3.4_server_base/sets/<default_set>. See below for
information on naming the default set.

The sc.conf file must contain the following entries:

submit_host This variable indicates the machine where the build logs are actually
kept. At OSF it is one of the Release Engineering servers.

source_host This variable indicates the machine where the build sources are
actually kept. At OSF it is one of the Release Engineering servers.

rcs_host This variable gives the name of the system rcs is running on; it does
not have to be the same as the system the builds are on. If OSF’s
source control is being used, rcs_host needs to be specified.

26 Chapter 6: Backing Build Configuration

rcs_relay The relay program to use for communicating with odexm on the rcs
server. This will usually be oxm_relay_tcp.

src_relay The relay program to use for communicating with odexm on the
source server. This will usually be oxm_relay_tcp.

logs_relay The relay program to use for communicating with odexm on the
source server. This will usually be oxm_relay_tcp.

tcp_service_number Optional entry which sets the tcp service number that
oxm_relay_tcp should use to communicated with odexm. If this is not
set, the value of SERV_NUM in the oxm_relay_tcp.c file will be used.

copyright_list This variable enables the use of alternative copyright markers to be
accepted by the bci program. When copyright markers are used in a
backing tree, bci will normally recognize the OSF_COPYRIGHT or
OSF_FREE_COPYRIGHT markers. Additional copyright markers
can be recognized by adding the markers to this list. The copyright list
should be a semicolon-separated list (enclosed in double quotes) of
copyright strings and/or files containing copyright strings preceded by
’include’. A valid copyright string must contain the string
’COPYRIGHT’. For example, "OSF_COPYRIGHT;include
/project/othercopys;YOUR_COPYRIGHT_TOO" The format of the
file /project/othercopys is one copyright string per line. Keep in mind
that there are now two ways in which copyrights are treated. Using
copyright markers is the old way and will be phased out over time.
Copyright markers will be replaced with expanded copyrights within
the source files.

check_copyrights This is used in conjunction with expanded copyrights. When set to
’true’ check for fully expanded copyrights at bci & bsubmit time, and
add full copyrights to newly bcreated files from the copyrights file.
See the description of the copyrights file below.

copyright_years This is used in conjunction with expanded copyrights. The string to
expand @YEARS@ to when inserting copyrights from the copyrights
file into newly bcreated files.

project_name Same as the project_name in the Buildconf file.

default_build This variable is the name of the build submissions are made to.

default_set Submissions require the name of the default set to submit to. Since
there is normally only one set associated with any build, this variable
should contain the name of that set. It is important that this name be in
ALL capital letters.

submit_defect This variable is used to toggle the defect query in submissions. If the
value is true, bsubmit will ask the user for a defect number to
associate with the submission. Otherwise, it will not prompt the user
for this information.

Chapter 6: Backing Build Configuration 27

cr_validate Sets the validation level for the defect query. Levels are: any,
strict_or_space, or strict. any is the default and will be used if there
is no entry for cr_validate. strict_or_space is the same as strict, but
whitespace is allowed. strict requires the cr field to consist of
cardinals > 0 separated by commas. Whitespace is permissible, but
there must be at least one cr # entered.

check_out_config Because the OSF source control retrieves the correct file revision
using a set name and/or by date, it is necessary to establish the order of
search. This variable defines the search order with a semi-colon
separated list of set names and dates. It usually gives the default set
name followed by an include of the CONFIG file (see subsequent
section).

lock_dirs This variable governs exclusive file locking. When it is present,
exclusive file locking is on. If it is not present exclusive file locking is
off. The value is a semicolon separated list of directories and/or files
to lock. At bco time, any file that matches the pattern of one of the
lock_dirs entries will be added to a list of files that are locked. This list
is kept in the bsubmit.hold file. Exclusive file lock entries are prefaced
by a "::" as opposed to the hold file entries which are prefaced with a
":". If a person tries to bco a file which already has a "::" entry, that
person will be prevented from checking out the file.

COMMENT_LEADERS This is the list of default comment leaders to use with various
file types. The format is: "(<file_pattern>;<comment_leader>)..."
See the man page for match(3) for details on ODE’s pattern matching.

6.6 copyrights file

The file ’copyrights’ lives in the backing build with the sc.conf file. This file is used when
check_copyrights is set to ’true’ in the sc.conf file.

The copyrights file is a concatenation of all of the legal (literally!) copyrights for a
project. Each copyright entry consists of a header and a body. The header is a single line
starting with ’COPYRIGHT NOTICE’ followed by the name for the copyright. There
must be at least one copyright entry and there must be one and at most one entry named
’DEFAULT’. An example of a copyright header is:

COPYRIGHT NOTICE DEFAULT

The copyright body consists of one legal copyright and may take as many lines as
necessary.

The body may contain the string ’@YEARS@’. When bci and bsubmit are checking a
file for legal copyrights, the string ’@YEARS@’ will match any comma separated list of
numbers.

Here is an example copyrights file:

28 Chapter 6: Backing Build Configuration

---cut---
COPYRIGHT NOTICE DEFAULT
Copyright (c) @YEARS@ Open Software Foundation, Inc.
ALL RIGHTS RESERVED
COPYRIGHT NOTICE BORING
Copyright (c) 1993, XYZ Software Associates
Please do not distribute our software for free. We worked on it really hard.
If you find a bug, please fix it and send us the patch.
---cut---

The copyrights in source files are compared to the copyrights defined in the backing tree
as follows. A legal copyright in a source file has the following format:
<comment leader>COPYRIGHT NOTICE
<comment leader>copyright text...............
<comment leader>copyright text...............
<comment leader>copyright text...............
<comment leader>copyright text...............
<comment leader>copyright text...............
<end-of-copyright>

ODE recognizes the end of a copyright section of a source file in one of two ways.

1) A ’<comment leader>HISTORY’ marker is found.

For example:

COPYRIGHT NOTICE
Copyright (c) 1992 Open Software Foundation, Inc.
ALL RIGHTS RESERVED
#
HISTORY

This example states that all lines between COPYRIGHT NOTICE and HISTORY are
copyrights to be verified against the ’copyrights’ file. There may be multiple copyrights,
however, each one will be verified against the list defined in the backing tree. This
behavior allows users to make sure that all copyrights in the source file are legal
copyrights.

2) A line containing any text that DOES NOT START with a comment leader.

For example:
COPYRIGHT NOTICE
Copyright (c) 1993, XYZ Software Associates
Please do not distribute our software for free. We worked on it really hard.
If you find a bug, please fix it and send us the patch.
#
Any other text
Copyright (c) 1992 Brockport State University
All Rights Reserved.
HISTORY

Chapter 6: Backing Build Configuration 29

This example states that all lines between "COPYRIGHT NOTICE" and "Any other text"
are copyrights to be verified in the University is ignored. This allows users to add
copyright notices (or any other text) that need not be verified with the list of legal
copyrights.

6.7 Distributed Access Setup

If you are not using the ODE source control component, you may want to test out your
system up to this point. For instance you might want to try using the mksb or build
commands. Refer to Chapter 7 for more information about testing out your system.

6.7.1 The CONFIG File

The CONFIG file is required in all builds if using the ODE source control component.
This file provides the source control tools with the information on which revision of a file
to check out. It does this using a date set to the time the build was created. The time
should be set after all file versions for the build have been determined. The revision of
the file to check-out is the revision closest to the date without being greater than it.

The format of the date is:

<YYYY/MM/DD,HH:II

where YYYY is the year, MM the month, DD the date, HH the hour, II the minute. The
"<" symbol is necessary as are the comma and colon. This file needs to be directly under
the build in:

/base_dir/build_name/CONFIG

6.7.2 Making the build accessible via odexm

In order to allow users to submit to a dynamic backing build, you will need to set up
odexm and/or add two entries to the odexm.conf file in the /etc directory on the build
server. You will need an entry for the src directory and the logs directory. In both cases,
the owner should be the same. At OSF it is devsrc. Refer to Chapter 4 for detailed
instructions on how to set up odexm and add entries to odexm.conf .

6.7.3 Tools needed by odexm for builds

There are two remote execution programs which need to be available (installed) on each
machine that uses ode tools for sandboxes. These are installed by default in
/usr/ode/server (see chapter 3):

• logsubmit

• srcacl

Install these tools in an appropriate tools directory. This should be in one central place on
a machine, such as /usr/ode/server, or /usr/ode2.3.4tools. Make sure that the tools
directory in the odexm.conf file refers to the directory containing these tools.

30 Chapter 6: Backing Build Configuration

6.8 Compiling a Backing Build

Once there is a fully populated source directory and all the support files are in place, at
least some of the sources need to be built. How much depends on the project’s needs. If
nothing else is built, at least those files which need to be exported must be compiled and
put in the export directory. See the ODE User’s Guide for more information about the
export directory. In some cases, the entire source directory is built so the object
directory is completely populated. One reason for doing this would be to provide targets
for the ODE command mklinks which links files in the backing build to the sandbox.

If building an OSF offering, the OSF Release Notes will explain how to build and export
the sources.

If the project is not from OSF, you will need to compile the build as appropriate making
sure the export directory is completely filled. Optionally, you may also populate the
object directory.

6.9 Creating the build_list file

It is possible to provide a build_list file which allows users the shorthand of giving only
the name of the build as command line options. The file can be set up using a project-
independent pathname and made available to all users. For example, at OSF the file is
located in /project/projects/build_list. This file is read to provide the tools the
additional information they need.

The file has one line for each build. The format of each line is:

buildname configinfo basedirectory

where each entry is separated by a tab. The buildname is simply the name of the build
directory. The config info usually contains the build’s source control label followed by
the date found in the CONFIG file, described below in the section on Submission
Setup; and the base directory is the path to the build name.

An example line from OSF is:

dce1.0b2 DCE1_0;<1990/12/11,16:00 /project/dce/build

A shorthand way of specifying the configinfo is to use a "*" for the middle field. This
indicates that the CONFIG info from the build should be used.

6.10 Populating the src Directory

If the project is not using ODE source control, the src directory should be populated in a
manner appropriate for the set of tools being used.

If the project is using ODE source control, this should be done by checking all the files
out, unlocked, into a directory. The files must be owned by the special source user,
devsrc at OSF, as defined in the odexm.conf file for the src directory If the files are not
owned by this special user, the source control commands will not work. However, if you
are using the straight rcs command co, as shown in the following subsections, you will

Chapter 6: Backing Build Configuration 31

have to run the command as the rcs tree owner (devrcs at OSF) and then change the
ownership of the files to the source owner.

The files can be checked-out a number of ways including using the ODE command bco,
or by mounting the rcs tree on the build’s system and use co directly.

6.10.1 Creating a SNAPSHOT file

Before you check out the files, you need to create a list of the files and version numbers
that you wish to check out. This file is called the SNAPSHOT file and contains the list of
every file and its revision number in the submission build. You may want to put this file
in a static backing build as well, just to have a reference list of the files comprising the
build. You should move the SNAPSHOT file that you used to check out your sources
into the logs directory. To create a SNAPSHOT file that represents the most recent trunk
revision of the files in the rcs tree, use the following command from the build directory
(one level above the src directory):

cd /build-tree
(cd /rcs-tree; find . -name "*,v" -print | \
rcsstat -q -R -V -r"<>" -) | sort > SNAPSHOT

Note that the rcs commands must be installed and in your command search path.

6.10.2 Checking Out Sources from the rcs Tree

To check out the top of the trunk you would run the following commands from the src
directory in the build to create the necessary directories and then checkout the sources as
listed in the SNAPSHOT file:

cd /build-tree/src
cat ../SNAPSHOT | sed ’s;,v.*;;’ | awk ’{print "makepath "$0}’ | sh -x
cat ../SNAPSHOT | sed ’s;ˆ\./\(.*\),v<tab>\(.*\);co -u\2 /rcs-tree/\1,v \1;’ | sh -x

As mentioned earlier, these commands must be run as the rcs_owner, devrcs at OSF, in
order to access the rcs tree directly. Once the files have been checked out, their
ownership should be changed back to the source_owner, devsrc at OSF. Note that the
ODE command makepath is used to create the directories. Make sure that in the second
sed command a tab follows the ,v.

6.11 Subsequent Builds

Backing trees can be used to reflect the sources at a specific point in time (e.g. a
baseline) or reflect the current state of the sources under development. Periodic full
builds of the software under development are helpful in identifying integration problems.
After a certain amount of changes have gone into a build it is often desirable to preserve
that build in it’s current state and create a new build in which the sources will continue to
change with ongoing development.

32 Chapter 6: Backing Build Configuration

A separate copy of the sources (and tools) should be used for the new build. The
SNAPSHOT file, which is updated automatically with each bsubmit, in the backing tree
can be used to quickly capture the entire set of sources in a backing tree. This file
contains a list of all files and version numbers that define the sources at a certain point in
development.

Builds are done by first copying the SNAPSHOT file to a build machine, checking out
the sources represented by the SNAPSHOT file, and then following the build procedures
used in your specific project. See Chapter 3 for more information on tailoring the build
environment.

Chapter 7: Shared Sandboxes 33

7. Shared Sandboxes

Shared sandboxes, as the name implies, are special sandboxes that are meant to be shared
by multiple users. This chapter describes how to create and use a shared sandbox.

7.1 Creating a shared sandbox

A shared sandbox is really just a variation of a regular sandbox, so the first step is to
make a sandbox with mksb.

su devsrc
mkdir /build_base>/<shared_sandbox>
mksb -rc /<build_base>/<shared_sandbox>

-back <backing_build>
-dir <build_base>

<shared_sandbox>

For instance, if you wanted to create a shared sandbox called patches for DCE 1.0, you
would do the following:

su devsrc
mkdir /project/dce/build/patches
mksb -rc /project/dce/build/patches

-back /project/dce/build/dce1.0
-dir /project/dce/build

patches

Remove the sandbox lock

rm src/.BCSlock

You will also need to follow the directions in Chapter 6 pertaining to creating directories,
log files, and sc.conf files. Don’t worry about the SNAPSHOT file. It should be empty.
The sections that you should read are 6.1.2, 6.1.3, and 6.4.

7.2 Distributed Access Setup

Follow the instructions in the Distributed Access Setup section of Chapter 6, Backing
Build Configuration. Skip the part about the CONFIG file.

7.3 Using a shared sandbox

For the most part, using a shared sandbox is the same as using a backing build. You can
make a sandbox backed by the shared sandbox, you can do source control operations
with it, and you can build backed by it. You can also submit from it to the build that it is
backed by.

7.3.1 Submitting from a shared sandbox

Before submitting from a shared sandbox, follow the directions for creating a .sandboxrc
file and a sets file in sections 6.3.1 and 6.3.3 respectively.

Submitting from a shared sandbox is now the same as submitting from a user sandbox.
Simply become the user that owns the shared sandbox, and submit from the shared
sandbox as though you were submitting from a user’s sandbox. If the .sandboxrc file is
not in the user’s home directory, make sure to use the -rc switch to access the correct

34 Chapter 7: Shared Sandboxes

.sandboxrc file.

Chapter 8: Administration 35

8. Administrating ODE

8.1 Locking a build against submission

8.1.1 Locking the entire build

To lock a build against submission, create a directory called lock_sb in the logs directory
of the backing build. This will lock all submissions to the build until the directory is
removed.

8.1.2 Locking portions of a build

To lock a portion of a build, add an entry to the bsubmit.hold file that looks like this:

: <default_set> devsrc; Date: <date>; Time: <time>

This will lock any files matching <pattern>. See the match man page for details on ODE
pattern matching.

This feature can also be used to lock the entire build if the pattern is ’*’.

36 Chapter 9: Trouble Shooting and Error Recovery

9. Trouble Shooting and Error Recovery

This chapter discusses various things which can go wrong in setting up and administering
ODE and tries to give hints on where to look for fixes to the problems. It is impossible to
predict all the things that can go wrong in setting up a complex development
environment, therefore, this chapter tries to cover the most common problems and to
indicate areas the user should investigate for various types of problems.

This chapter assumes the user has read the preceding manual and has a good
understanding of the steps to install ODE.

The chapter begins with suggestions on testing the ODE tools after initial setup. The
section after that gives suggestions for fixing some common problems. The section is
divided according to different areas of ODE functionality.

9.1 Testing ODE Tools

Once the ODE tools have been installed, you may want to use the unsupported test suite
that can be found in the src/ode/test_suite directory to test your installation. The test
suite will exercise basic commands for each ODE component. The test suite should be
self-explanatory when run.

As a general testing mechanism, keep in mind that most of the commands have a -debug
switch which may be used to give helpful information on detailed processing when a
problem is encountered. Additionally, if you are having trouble with a command that is
using the remote authentication programs you can set the environment variable
AUTHCOVER_DEBUG to on to get processing information from those programs

9.2 Error Recovery Procedures

The following sections give some examples of problems that might occur in the daily
use/administration of ODE and the suggested procedure for recovering from the errors.

9.2.1 In Using Makefiles to Build Objects

If a problem occurs when using the make or build command with makefiles to compile
programs, it may be helpful to invoke the make command with special debug switches
set. For example, the -d A switch will give all possible debugging information for make.
More info on the debug flags can be found in the make man page.

9.2.2 In Using the Backing Tree

Occasionally the SNAPSHOT file will get corrupted.

When this happens, you can regenerate the SNAPSHOT file using the following
command:

cd /build-tree/src
find . -type f -print | sort | \
(cd rcs-tree; xargs rcsstat -q -V -R -r"SET_NAME;\

Chapter 9: Trouble Shooting and Error Recovery 37

‘cat build-tree/CONFIG‘") > NEW_SNAPSHOT_FILE

9.2.3 In Merging a Build’s Files into Source Control

In the process of merging the sources from a build into source control you often get
conflicts when moving latest branches up the trunk.

When this happens you will get put into the editor automatically and must edit the file by
hand. You should always choose the code from branch extension version, never the
trunk, as what you want to select in the merge.

9.2.4 In Submitting

An error might occur in the middle of the process of submitting (bsubmit) a file to source
control, and the file(s) will not get submitted.

When this happens, the user should use the -resub switch on bsubmit to resubmit the file
at the point in the submission process where it left off after determining the cause of the
initial error.

If that doesn’t work then you may have to use the sadmin command to correct a problem
in a bsubmit log. Refer to the man sadmin man page for more information.

Another problem that might happen is when you first try to submit a file you get an error
that says that the revision of the file does not exist. This may indicate an error in the date
give in the CONFIG file. For example, if the date is from the previous year, then the
revision of the file did not exist at that time.

38 Chapter 9: Trouble Shooting and Error Recovery

Index

.sandboxrc, 6-21, 7-33

/etc/inetd.conf, 4-12

/etc/odexm.conf, 4-12, 5-14, 5-15, 6-29
example, 4-13

/etc/odexm.map, 4-13

/etc/services, 4-12

@OSF_FREE_COPYRIGHT@, 5-16

A
account

devrcs, 5-14

add_header.sh, 5-16

authentication, 4-13

B
backing build, 6-19

bco_s, 5-14

bcs_s, 5-14

bldrcstree.sh, 5-16

blog_s, 5-14

bmerge_s, 5-14

branch_ci, 5-14

bstat_s, 5-14

bsubmit, 1-4

bsubmit.hold, 5-15, 8-35

bsubmit.log, 6-20

bsubmit_s, 5-14

build
backing, 6-19
dynamic, 6-19
static, 6-19

Buildconf, 6-21, 6-22

Buildconf.exp, 6-22

C
check_copyrights, 6-25, 6-27

check_out_config, 6-25

ci, 5-14

co, 5-14

comment leaders, 6-25

COMMENT_LEADERS, 6-25

common make files, 6-20

CONFIG, 7-33

configuration files
Buildconf, 6-22
Buildconf.exp, 6-22
odexm.conf, 4-12, 6-29
odexm.map, 4-13
sb.conf, 6-25
sc.conf, 4-12, 6-25
sets, 6-25

COPYRIGHT NOTICE, 6-27

copyright
default, 6-27

copyrights file, 6-25, 6-27

copyrights, 6-20

copyright_list, 5-16, 6-25

Chapter 9: Trouble Shooting and Error Recovery 39

copyright_years, 6-25

cr_validate, 6-25

D
default copyright, 6-27

default_build, 6-25

default_set, 6-25

DEFUNCT, 6-20

devrcs, 5-14

diff, 5-14

distributed development, 3-12

dynamic build, 6-19

E
exclusive file locking, 6-25

F
FILES_NOT_FOUND, 5-17

I

inetd, 4-12

inetd.conf, 4-12

L
locking, 5-15, 6-25

build, 8-35

lock_dirs, 6-25

lock_sb, 8-35

logs_relay, 6-25

M
make files, 6-20

make, 6-20

Makeconf, 6-20

makepath, 5-14

mksb, 7-33

O
ode2.3_server_base, 5-15

odexm, 3-12, 5-14

odexm.conf, 4-12, 5-14, 5-15, 6-29
example, 4-13

odexm.map, 4-13
template, 4-13

40 Chapter 9: Trouble Shooting and Error Recovery

oxm_relay_tcp, 5-14, 6-25

oxm_relay_tcp.c, 4-12

R
RCS, 1-3, 5-14

rcsacl, 5-14

rcsdiff, 5-14

rcsstat, 5-14

rcs_host, 6-25

rcs_relay, 6-25

revision control, 1-3

rlog, 5-14

S
sandbox, 1-3

shared, 7-33

sb.conf file, 6-25

sc.conf, 4-12, 6-21, 6-25, 6-27

server
source control, 5-14

services file, 4-12

SERV_NUM, 4-12

shared sandbox, 7-33

SNAPSHOT, 6-20, 7-33

source control, 1-3
configuration, 6-25

source_host, 6-25

src_relay, 6-25

static build, 6-19

submission
locking, 8-35

submitting, 1-4

submit_defect, 6-25

submit_host, 6-25

T
tcp_service_number, 4-12, 6-25

templates
odexm.map, 4-13

tools
server, 4-13

CONTENTS

Preface . iii
Audience . iii
Applicability . iii
Purpose . iii
Typographic and Keying Conventions iii
Problem Reporting iv
Introduction . v

1. ODE Architecture and Development Model 1
1.1 High Level View of ODE Architecture 1
1.2 High Level View of the ODE Development Model 4

2. ODE Distribution 5
2.1 Unloading the tape 5
2.2 The ODE Directory Structure 6

3. Building and Installing the ODE Tools 8
3.1 Building ODE 8
3.2 Installation 11

4. Setting up the ODE execution monitor, odexm 12
4.1 Making odexm available as an inetd service 12
4.2 odexm configuration files 12

5. Source Control Server Configuration 14
5.1 Source Control Account 14
5.2 Creating the Source Control Tree 14
5.3 Distributed access setup 14
5.4 Source Control Configuration Files 15
5.5 Populating the Source Control Tree 15

6. Backing Build Configuration 19
6.1 Creating the Backing Build 19
6.2 Common make files 20
6.3 Copyrights 20
6.4 rc File Setup 21
6.5 Source Control Configuration File 25
6.6 copyrights file 27
6.7 Distributed Access Setup 29
6.8 Compiling a Backing Build 30
6.9 Creating the build_list file 30
6.10 Populating the src Directory 30
6.11 Subsequent Builds 31

7. Shared Sandboxes 33
7.1 Creating a shared sandbox 33
7.2 Distributed Access Setup 33
7.3 Using a shared sandbox 33

- i -

8. Administrating ODE 35
8.1 Locking a build against submission 35

9. Trouble Shooting and Error Recovery 36
9.1 Testing ODE Tools 36
9.2 Error Recovery Procedures 36

Index . 38

- ii -

