
News Need Not Be Slow

Geoff Collyer

Department of Statistics*

University of Toronto
utzoo!utcsri!utfraser!geoff

Henry Spencer

Zoology Computer Systems
University of Toronto

utzoo!henry

ABSTRACT

C news is a re-write, from scratch, of the ‘transport layer’ of the Usenet software.
C rnews runs at over 19 times the speed of B rnews; C expire runs in minutes rather than
the hours taken by B expire. These performance improvements were (mostly) quite sim-
ple and straightforward, and they exemplify general principles of performance tuning.

1. History and Motivation

In the beginning (of Usenet) (1979) was A news, written at Duke University by Steve Bellovin,
Stephen Daniel, Tom Truscott and others. A single program, news , received, relayed, perused and cleaned
out news articles. All articles were stored in a single UNIX† directory, which made A news suitable for
local news and low volumes of network news. News articles were exchanged using a simple message for-
mat in which the first five lines of a message contained the information nowadays found in the article
headers: unique article-id, newsgroup(s), author, subject, date posted.

As Usenet began to grow (1981), people in and around the University of California at Berkeley,
including Matt Glickman and Mark Horton, modified A news extensively. The articles of each newsgroup
were now stored in a separate directory. The message format was changed from the rigid and inextensible
A news header format to one conforming to ARPA RFC 822 (the current ARPA mail-message format stan-
dard). News was broken into separate programs: readnews, inews (aka rnews), and expire. The authors
dubbed the result ‘‘B news’’. Since the release of B news, it has replaced A news almost‡ everywhere on
Usenet.

It soon became clear that sending individual articles from machine to machine as separate uucp tran-
sactions was unacceptably slow, in part because it produced large uucp spool directories, which are
searched quite slowly* by the kernel. Sites began to batch articles into batches of (typically)
50,000−100,000 bytes for transmission to other machines.

At about this time, B news was changed to file news articles in a tree, as (for example)
/usr/spool/news/net/women/only/123, rather than as /usr/spool/news/net.women.only/123. The motive for
this was primarily elimination of problems with long newsgroup names, but shortening directories (and
thus speeding searches) was also a consideration.
hhhhhhhhhhhhhhhhhh
* Work done mostly while at U of T Computing Services.
† UNIX is a registered trademark of AT&T.
‡ AT&T Bell Laboratories Research still runs A news for local newsgroups.
* Recent uucps (notably Honey DanBer) provide spool sub-directories, and recent 4BSD (4.3BSD and later) kernels pro-
vide linear (as opposed to quadratic) directory searching, both of which help this problem.



- 2 -

As Usenet traffic continued to grow explosively, sites began to use data compression on news
batches. The main objective was to reduce expensive long-distance phone time, but again performance
improved a bit: the extra processor time used for compression and decompression was more than gained
back by the reduction in processor time used by uucp itself.

Unfortunately, B news has been modified by many people since 1981, and has mutated repeatedly to
match the changing nature of Usenet. It has become complex, slow, and difficult to maintain.

During 1985, we observed that the nightly arrival of new news and expiry of old news were consum-
ing resources far out of proportion to the volume of data involved†. Expire often ran for 90 minutes, and
rnews processing averaged 10 seconds or more per article. Both programs tended to cripple systems by
performing much disk i/o and eating much system-mode CPU time. Utcs was running B 2.10.1 news then
and utzoo was running B 2.10 news. Although newer B news releases were available, they offered little
beyond B 2.10, and it was often necessary to regression-test new B news releases to verify that reported,
published bug fixes had in fact been applied.

Spencer acted first and rewrote expire from the ground up. Though it initially lacked any form of
selective expiry, this expire , when run each night, finished in about 15 minutes. (This was on 750-class
machines holding all Usenet news and expiring after 14 days.)

Collyer observed in November 1985 that B rnews , upon receiving a batch of news, immediately
execed a trivial unbatcher which copied each article into a temporary file and then forked and execed B
rnews again. Such a technique is clearly overkill for articles averaging about 3,000 bytes each. Prelim-
inary experiments failed to produce a modified B rnews that could unravel a batch without forking. Con-
sultation with Rick Adams, the current B-news maintainer, revealed that this same technique remained in
the upcoming B news release (variously B 2.10.3 or B 2.11). Within one week‡, a from-scratch C rnews
prototype was working well enough to run experimentally on a ‘leaf’ machine receiving a subset of news.

This prototype version lacked a good many necessary amenities, and over the next eight months it
was enhanced to bring it up to full functionality. It was also tuned heavily to improve its performance,
since it was faster than B rnews but still not fast enough to make us happy.

Once the rnews newsgroup name matching routines were working, Spencer revised expire to add
selective expiry, specified in a control file. Recently, we have also revised our old batcher heavily, largely
to add capability but with an eye on performance.

2. Rnews Performance

The basic objective of C news was simpler code and higher performance. This may sound trite, but
note that performance was an explicit objective. That was important. Programs will seldom run faster
unless you care about making them run faster.

‘Faster’ implies comparison to a slower version. Knowing the value of improvements, and assessing
this in relation to their cost, requires knowing the performance of the unimproved version. Collyer kept
detailed records of his work on rnews , so he could see how much progress he was making. See the Appen-
dix for the final result. To know how to get somewhere, you must know where you are starting from.

The first functional C rnews ran at about 3 times the speed of B rnews . We had assumed that merely
eliminating the fork/exec on each article would give a factor of 10 improvement, so this was disappointing.
Avoiding obvious performance disasters helps... but it’s not always enough.

Profiling, first with prof (1) and later with 4.2BSD’s gprof (1), and rewriting of the bottlenecks thus
discovered, eventually brought the speed up to over 19 times the speed of B rnews . This required a
number of write-profile-study-rewrite cycles. There is undoubtedly still a lot of code which could be faster
than it is, but since profiling shows that it doesn’t have a significant impact on overall performance, who
cares? To locate performance problems, look through the eyes of thy profiler.

Collyer first experimented with using read and write system calls instead of fread and fwrite , and
got a substantial saving. Though the usage of system calls in this experiment was unportable, the saving
hhhhhhhhhhhhhhhhhh
† Never mind the cost/benefit ratio.
‡ 40 hours, Collyer didn’t have to work hard.



- 3 -

eventually lead him to rewrite fread and fwrite from scratch to reduce the per-byte overheads. This helped
noticeably, since pre-System-V fread and fwrite are really quite inefficient. If thy library function offends
thee, pluck it out and fix it.

At the time, C rnews was doing fairly fine-grain locking, essentially locking each file independently
on each use. News doesn’t need the resulting potential concurrency, especially when rnews runs relatively
quickly, and the locking was clearly a substantial fraction of the execution time. C rnews was changed to
use B-news compatible locking, with a single lock for the news system as a whole. Simplicity and speed
often go together.

When sending articles to a site using batching, rnews just appends the filename of each article to a
batch file for that site. The batch file is later processed by the batcher. In principle, batching is an option,
and different sites may get different sets of newsgroups. In practice, few articles are ever sent unbatched,
and most articles go to all sites fed by a given system. This means that rnews is repeatedly appending lines
to the same set of batch files. Noticing this, Collyer changed C rnews to keep these files open, rather than
re-opening them for every article*. Once you’ve got it, hang onto it.

These two simple changes—coarser locking and retaining open files—cut system time by about 20%
and real time by still more.

On return from Christmas holidays, after considerable agonizing over performance issues, Collyer
turned some small, heavily-used character-handling functions into macros. This reduced user-mode time
quite a bit. A function call is an expensive way to perform a small, quick task.

Rnews was always looking up files by full pathnames. Changing it to chdir to the right place and
use relative names thereafter reduced system time substantially. Absolute pathnames are convenient but
not cheap.

Studying the profiling data revealed that rnews was spending a lot of time re-re-re-reading the sys
and active files. These files are needed for processing every article, and they are not large. Collyer
modified rnews to simply read these files in once and keep them in core. This change alone cut system
time and real time by roughly 30%. Again, once you’ve got it, don’t throw it away!

There is a more subtle point here, as well. When these files were re-read every time, they were gen-
erally processed a line at a time. The revised strategy was to stat the file to determine its size, malloc
enough space for the whole file, and bring it in with a single read. This is a vastly more efficient way to
read a file! Tasks which can be done in one operation should be.

At this point (mid-January 1986), C rnews was faster than B rnews by one order of magnitude, and
there was much rejoicing.

In principle, the ‘Newsgroups:’ header line, determining what directories the article will be filed in,
can be arbitrarily far from the start of the article. In practice, it is almost always found within the first
thousand bytes or so. By complicating rnews substantially, it became possible in most cases to creat the
file in the right place (or the first of the right places) in /usr/spool/news before writing any of the article to
disk, eliminating the need for temporary files or even temporary links. The improvement in system time
was noticeable, and the improvement in user time was even more noticeable. Prepare for the worst case,
but optimize for the typical case.

There are certain circumstances, notably control-message articles, in which it is necessary to re-read
the article after filing it. Rnews originally re-opened the article to permit this. Changing the invocation of
fopen to use the w+ mode made it possible to just seek back to the beginning instead, which is much faster.
This, plus some similar elimination of other redundant calls to open , reduced system time by over 30%.
Get as much mileage as possible out of each call to the kernel.

Both scanning the in-core active and sys files and re-writing the active file are simpler if the in-core
copies are kept exactly as on disk, but this implied frequent scans to locate the ends of lines. It turned out
to be worthwhile to pre-scan the active file for line boundaries, and remember them. When storing files in
an unstructured way, a little remembered information about their structure goes a long way in speeding up
hhhhhhhhhhhhhhhhhh
* The price for this tactic is that the code has to be prepared for the possibility that the number of sites being fed exceeds
the supply of file descriptors. Fortunately, that is rare.



- 4 -

access.

We already had a STREQ macro, just a simple invocation of strcmp , as a convenience. As a result
of some other experience by Spencer, Collyer tried replacing some calls of strncmp by a STREQN macro,
which compared the first character of the two strings in-line before incurring the overhead of calling
strncmp . This sped things up noticeably, and later got propagated through more and more of the code.
String-equality tests usually fail on the very first character. Test the water before taking the plunge.

While looking at string functions, Collyer noticed that strncmp s to determine whether a line was a
particular header line had the comparison length computed by applying strlen to the prototype header.
With a little bit of work, the prototypes were isolated as individual character arrays initialized at compile
time. This permitted substituting the compile-time sizeof operation for the run-time strlen . Let the com-
piler do the work when possible.

At this point, profiling was turned off temporarily for speed tests. Profiling does impose some over-
head. The speed trials showed that C rnews was now running at over 15 times the speed of B rnews .

After months of adding frills, bunting and B 2.11 compatibility*, Collyer again returned to perfor-
mance tuning in August 1986. The 4.2BSD kernel on utcs now included the 4.3BSD namei caches, which
improve filename-lookup performance considerably. Unfortunately, considerations of crash recovery dic-
tated some loss in performance: it seemed desirable to put batch-file additions out by the line rather than by
the block. Performance is not everything.

Gprof revealed that newsgroup name matching was an unexpected bottleneck, so that module was
extensively tweaked by adding register declarations, turning functions into macros, applying STREQN and
such more widely, and generally tuning the details of string operations. The code that handled sys -file
lines got similar treatment next. The combination cut 40% off user-mode time. Persistent tuning of key
modules can yield large benefits.

Newsgroup matching remained moderately costly, and an investigation of where it was being used
revealed two separate tests for a particular special form of name. It proved awkward to combine the two,
so the testing routine was changed to remember having done that particular test already. If the same ques-
tion is asked repeatedly, memorize the answer.

By this time, the number of system calls needed to process a single article could be counted on one’s
fingers, and their individual contributions could be assessed. At one point it was desirable for a creat to
fail if the file already existed, so this was being checked with a call to access first. John Gilmore pointed
out that on systems with a 3-argument open (4.2BSD, System V), this test can be folded into the open .
The elimination of the extra name→file (namei) mapping cut both system time and real time by another
15%. (Note that this system does have namei cacheing!) File name lookups are expensive; minimize them.

The development system (utcs, a 750) is now filing 2-3 articles per second on average; utfraser (a
Sun 3/160 with an Eagle disk) is typically filing 6-7 articles per second. C rnews runs over 19 times as fast
in real time as B rnews , over 25 times as fast in system-mode CPU time, roughly 3.6 times as fast in user-
mode CPU time, and over 10 times as fast in combined CPU times.

With one exception (see Future Directions), it now appears that very little can be done to speed up
rnews without changing the specifications. It seems to be executing nearly the bare minimum of system
calls, and the user-level code has been hand-optimised fairly heavily.

3. Expire Performance

The rewrite of expire that started this whole effort was only partly motivated by performance prob-
lems. Performance was definitely bad enough to require attention, but the B expire of the time also had
some serious bugs. Worse, the code was a terrible mess and was almost impossible to understand, never
mind fix. Early efforts were directed mainly at producing a version that would work; rewriting expire from
scratch simply looked like the easiest route. Decisions made along the way, largely for other reasons,
nevertheless produced major speedups.

hhhhhhhhhhhhhhhhhh
* And supposed B 2.11 compatibility, as those who remember the short-lived cross-posting restrictions will recall.



- 5 -

The first of these decisions was a reduction in the scope of the program. B expire had several
options for doing quite unrelated tasks, such as rebuilding news’s history file. The code for these functions
was substantial and was somewhat interwoven with the rest. C expire adheres closely to a central tenet of
the ‘Unix Philosophy’: a program should do one task, and do it well. This may appear unrelated to perfor-
mance, but better-focussed programs are generally simpler and smaller, reducing their resource consump-
tion and making performance tuning easier (and hence more likely). In addition, a multipurpose program
almost always pays some performance penalty for its generality.

The second significant decision had the biggest effect on performance, despite being made for totally
unrelated reasons. For each news article, the B news history file contained the arrival date and an indica-
tion of what newsgroups it was in. This is almost all the information that expire needs to decide whether to
expire an article or not. The missing* data is whether the article contains an explicit expiry date, and if so,
what it is. B expire had to discover this for itself, which required opening the article and parsing its
headers. A site which retains news for two weeks will have upwards of 5,000 articles on file. A few dozen
of them will have explicit expiry dates. But B expire opened and scanned all 5,000+ articles every time it
ran! This was a performance disaster.

We actually did not want to parse headers in expire at all, because the B news header-parsing code
was (and is) complex and was known to contain major bugs. The performance implications of this were
obvious, although secondary at the time. Header parsing is itself a non-trivial task, and accessing 5,000+
files simply cannot be made cheap. Information needed centrally should be kept centrally.

The C news history file has the same format as that of B news, with one addition: a field recording
the explicit expiry date, if any, of each article. If no expiry date is present in the article, the field contains
‘−’ as a placemarker†. In this way, the header parsing is done once per article, on arrival. In fact, the extra
effort involved is essentially nil, since rnews does full header parsing at arrival time anyway. Rnews had to
be changed to write out the expiry date, and code which knew the format of the history file had to be
changed to know about the extra field. Perhaps a dozen lines of code outside expire were involved.

A crude first version of C expire , incorporating these decisions in the most minimal way, ran an
order of magnitude faster than B expire . Precise timing comparisons were not practical at the time, since
the original motive for C expire was that B expire had stopped working completely, crippled by bugs in its
header parsing. Later versions of B expire did cure this problem, but we were no longer interested in put-
ting up slow, buggy software just to make an accurate comparison.

Further work on C expire mostly concentrated on cleaning up the hasty first version, and on incor-
porating desired features such as selective expiry by newsgroup. Selective expiry caused a small loss in
performance by requiring expire to check the newsgroup(s) of each article against an expiry-control list.
Here, expire benefitted from the work done to speed up the newsgroup-matching primitives of rnews, since
expire uses the same routines. If you re-invent the square wheel, you will not benefit when somebody else
rounds off the corners‡.

One improvement that was made late in development was in the format of the dates stored in the his-
tory file. B rnews stored the arrival date in human-readable form, and expire converted this into numeric
form for comparisons of dates. Date conversion is a complex operation, and the widely-distributed getdate
function used by news is not fast. Inspection of the code established that expire was the only program that
ever looked at the dates in the history file. There is some potential use of the information for debugging,
but this is infrequent, and a small program that converts decimal numeric dates to human-readable ones
addresses the issue. Both C rnews and C expire now store the dates in decimal numeric form. Store
repeatedly-used information in a form that avoids expensive conversions.

hhhhhhhhhhhhhhhhhh
* Recent versions of B news have made some attempt to redress this lack, but haven’t gone as far as C expire. The discus-
sion here applies to the B expire that was current at the time C expire was written.
† It would be possible to simply compute a definitive expiry date for an article when it arrives, and record that. This would
eliminate the decision-making overhead in expire, but would greatly slow the response to changes in expiry policy. Since
one reason to change policy is time-critical problems like a shortage of disk space, this loss of flexibility was judged unac-
ceptable. It is better to leave the expiry decision to expire and concentrate on making expire do it quickly.
‡ A corollary of this is: know thy libraries, and use them.



- 6 -

Actually, C expire bows to compatibility by accepting either form on input, but outputs only the
decimal form as it regenerates the history file. Thus, in the worst case, expire does the conversion only
once for each history line, rather than once per line per run. ‘‘If they hand you a lemon, make lemonade’’.

If expire is archiving expired articles, it may need to create directories to hold them. This is an
inherently expensive operation, but it is infrequently needed. However, checking to see whether it is in
fact needed is also somewhat expensive... and the answer is almost always ‘no’. The same is true of check-
ing to see whether the original article really still exists: it almost always does. (This cannot be subsumed
under generic ‘archiving failed’ error handling because a missing original is just an article that was can-
celled, and does not call for a trouble report.) Accordingly, C expire just charges ahead and attempts to do
the copying. Only if this fails does expire analyze the situation in detail. Carrying a net in front of you in
case you trip is usually wasted effort.

Archiving expired articles often requires copying across filesystem boundaries, since it’s not uncom-
mon to give current news and archived news rather different treatment for space allocation and backups.
Copying from one filesystem to another can involve major disk head movement if the two filesystems are
on the same spindle. Since head movement is expensive, maximizing performance requires getting as
much use as possible out of each movement*. Expire is not a large program, and even on a small machine
it can spare the space for a large copying buffer. So it does its archiving copy operations using an 8KB
buffer. Buying in bulk is often cheaper. Since 8KB accommodates most news articles in one gulp, there is
little point in enlarging it further. The law of diminishing returns does apply to buying in bulk.

Since expire is operating on the history file at (potentially) the same time that rnews is adding more
articles to it, some form of locking is necessary. Given that expire has to look over the whole database of
news, and typically has to expire a modest fraction of the articles, it is a relatively long-running process
compared to rnews . Contention for the history-file lock can be minimized by noting that rnews never does
anything other than append to the file. So expire can leave the file unlocked while scanning it; the contents
will not change. When (and only when) expire reaches end-of-file, it locks the news system, checks for
and handles any further entries arriving on the end of the history file meanwhile, and finishes up. Locking
data that won’t change is wasteful.

After careful application of these various improvements, C expire is fast enough that further speedup
is not worth much effort. However, an analysis of where it spends its time does suggest one area that might
merit attention in the future. Expire rebuilds the history file to reflect the removal of expired articles. The
history file is large. Expire must also rebuild the dbm indexing data base, since it contains offsets into the
history file. This data base is comparable in size to the history file itself, and is generated in a less orderly
manner that requires more disk accesses.

Much of the time needed for these operations could be eliminated if expire could mark a history line
as ‘expired’ without changing its size. This could be done by writing into the history file rather than by
rebuilding the whole file, and the indexing database would not need alteration. This would also permit
retaining information about an article after the article itself expires, which would simplify rejecting articles
that arrive again (due to loops in the network, etc.) after the original has expired. The history file should
still be cleaned out, and the indexing database rebuilt, occasionally. C expire contains some preliminary
‘hooks’ for this approach, but to date full implementation does not seem justified: C expire is already fast
enough. Know when you are finished.

4. Batcher Performance

The C batcher is descended from a very old version written to add some minor functionality that was
not present in the B batcher of the time. It is small and straightforward, and contains only a couple of
noteworthy performance hacks.

The batcher works from a list of filed articles, to be composed into batches. The list is by absolute
pathname. All of these files reside in the same area of the system’s directory tree, and referring to them
with absolute pathnames every time implies repeatedly traversing the same initial pathname prefix. To
hhhhhhhhhhhhhhhhhh
* As witness the progressive increase in filesystem block size that produced major performance improvements in succes-
sive versions of 4BSD.



- 7 -

avoid this, the batcher initially chdirs to a likely-looking place such as /usr/spool/news. Thereafter, before
using an absolute pathname to open an article, it checks whether the beginning of the pathname is identical
to the directory where it already resides. If so, it strips this prefix off the name before proceeding. If you
walk the same road repeatedly, consider moving to the other end.

The batcher’s input is usually in fairly random order, with little tendency for successive files to be in
the same directory. If this were not the case, it would be worthwhile for the batcher to actually move
around in the directory tree to be closer to the next file.

The batcher used to copy data using putc(getc()) loops. This has been replaced by fread/fwrite
which is significantly faster, especially if using the souped-up fread/fwrite mentioned earlier. If you need
to move a mountain, use a bulldozer, not a teaspoon.

5. Future Directions

The one improvement we are still considering for rnews is a radical revision of the newsgroup-
matching strategy. Newsgroup matching still consumes about 18% of user-mode processor time. The key
observation is that the information that determines which newsgroups go to which sites seldom changes. It
would probably be worth precompiling a bit array indexed by newsgroup and site, and recompiling it only
when the active file or the sys file changes in a relevant way. This would cut the newsgroup-matching
time to essentially zero.

Rnews would be faster (and simpler) if ‘Newsgroups:’ and ‘Control:’ were required to be the first
two headers (if present) of each article. At present rnews tries to find them before starting to write the arti-
cle out, so that it can put the article in the right place from the start, but it has to allow for the possibility
that vast volumes of other headers may precede them.

Hashing active -file lookups in rnews would be fun, but profiling suggests that it’s not worthwhile
unless the number of newsgroups is in the thousands.

When PDP-11’s are truly dead on Usenet, the use of large per-process memories may allow further
speedups to rnews by reading the entire batch into memory at once and writing each article to disk in a few
writes (it can’t easily be reduced to a single write because headers must be modified before filing).

One optimization we have not considered is re-coding key parts in assembler. C news already runs
on five different types of machine. Use of assembler would be a maintenance nightmare, and probably
would not yield benefits comparable to those of the more high-level changes.

6. Acknowledgements

Ian Darwin ran the very earliest alpha versions of rnews and gave helpful feedback. Mike
Ghesquiere, Dennis Ferguson and others have run later versions and prodded Collyer to fix or implement
assorted things. John Gilmore and Laura Creighton read and criticized an early alpha version of rnews .

7. Appendix: rnews Times

Measurements have been taken on a VAX 750 running 4.2BSD under generally light load, using a
batch of 297,054 bytes of net.unix-wizards containing 171 articles and ˜104 cross-postings. All times are
in seconds per article.

time real user sys commentsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
85 Dec 6 00:54 4.68 0.3 1.29 B news rejecting all. (b.1.rej)
85 Dec 6 00:54 3.184 0.69 0.67 first timing trial; profiling on (c.1)
85 Dec 6 00:54 0.66 0.175 0.199 rejecting all (c.2.rej)
85 Dec 6 03:25 0.58 0.175 0.175 still rejecting all (c.3.rej)
85 Dec 6 23:46 9.058 0.631 2.251 B news using private directories, rejected 53 of the 171 arti-

cles as "too old" (b.2)
85 Dec 7 00:24 - -2.0

(est)
on a 10 MHz 68000 with slow memory and slow disk (crude
timings) (c.darwin.1)



- 8 -

85 Dec 7 00:40 7.576 0.684 2.403 B news without the "too old" reject code and having cleared
out history (b.3)

85 Dec 7 04:43 1.99 0.49 0.53 accepting the articles, using read and write for bulk copies
(c.4)

85 Dec 7 06:10 0.497 0.4492.261
(!)

optimized by less locking & keeping batch files open (c.5)

85 Dec 7 07:32 1.383 0.491 0.414 same as the last one, but with a lower load average (around
1.5) (c.6)

85 Dec 16 03:43 1.380 0.447 0.374 for calibration after misc. cleanup (c.7, c.8)
86 Jan 13 00:23 1.232 0.349 0.301 turned hostchar() into a macro (c.9)
86 Jan 13 04:26 1.36 0.333 0.242

(!)
using in-core active file, under heavy load (c.10)

86 Jan 13 08:24 1.94 0.349 0.253 using in-core sys file too, under heavy load. Re-run this trial!
(c.11)

86 Jan 13 08:42 0.332 0.2450.892
(!)

re-run at better nice. Not striking, except for real time. Was
run in a large directory; ignore. (c.12)

86 Jan 13 08:59 0.3330.861
(!)

0.212
(!)

re-run at good nice & in a small directory. Have beaten B
news by one order of magnitude on real & sys times! Beat it
by more than twice on user time. (c.13)

86 Jan 21 19:15 1.208 0.349 0.245 creat 1st link under final name, only link to make cross-
postings; with HDRMEMSIZ too small (c.14)

86 Jan 21 19:57 0.728 0.318 0.193 previous mod, with HDRMEMSIZ of 4096 (c.15)
86 Jan 22 01:20 0.719 0.315 0.166 fewer opens (just rewind the spool file), but Xref(s): not work-

ing (c.16)
86 Jan 22 01:53 0.3140.637

(!)
0.154
(!)

fewer opens fixed to spell Xref: right; Xref: not working (c.17)

86 Jan 22 04:00 0.874 0.325 0.174 fewer opens with Xref: fixed (times may be high due to calen-
dar) (c.18)

86 Jan 22 05:45 0.694 0.309 0.159 under lighter load, times are better (c.19)
86 Jan 24 04:29 0.715 0.317 0.129

(!)
turn creat & open into just creat, under slightly heavy load
(c.20)

86 Jan 24 06:06 0.628
(!)

0.288
(!)

0.129
(!)

reduce number of calls on index (by noting line starts at the
start) and strncmp (via macro) in active.mem.c, but still
profiling and writing stdout and stderr to the tty (c.21)

86 Jan 24 07:22 0.653 0.209
(!)

0.123
(!)

fewer strlen calls (by using sizeof s - 1), writing stdout to
/dev/null and with profiling off, but under moderate load; try
again (c.23)

86 Jan 24 07:35 0.574
(!)

0.216
(!)

0.123
(!)

as last time, but stdout to tty(!) and under light load. running
15.67 times as fast as B rnews (c.24)

86 Aug 8 04:23 0.839 0.51 0.124 performance hit: fflush after each history line for crash-
resilience; run for gprof output and calibration with later runs.
running under 4.2.1BSD (has 4.3 namei cache) now. real and
user times are way up; due to gprof profiling? (c.25)

86 Aug 8 04:24 0.962 0.1310.438
(!)

run with faster ngmatch, with register decl.s and wordmatch
and STREQN macros; saved 15% user. User time is better
than c.25, but still up from c.24. (c.26)

86 Aug 10 07:35 0.805 0.1350.345
(!)

further speedups: ngmatch has more register decl.s and in-
line index; more use of STREQ(N) macro for str(n)cmp in
hdrmatch, ngmatch.c and transmit.c; faster ishdr without
index. real & user times are better than both c.26 and c.25
(c.27)



- 9 -

86 Aug 11 04:19 1.012 0.1460.303
(!)

rewrote sys.c, used INDEX and STREQ(N) macros
throughout rnews. real and sys times are up, but user contin-
ues to decline. (c.28)

86 Aug 12 03:51 1.315 0.315 0.154 minor tweaks: all.all.ctl caching, etc. (c.29)
86 Aug 30 17:56 0.564 0.189

(!)
0.112
(!)

light load, thought we had 3-arg open in fileart, but didn’t.
Odd. Stopped using gprof. (c.30)

86 Aug 30 17:57 0.1910.475
(!)

0.095
(!)

Really and truly use the 3-arg open. 19 times B rnews speed.
(c.31)


