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CHAPTER 1 Introduction

This document describes information of generic interest to anyone who is writing a
Mach server, or any Mach task that wishes to communicate with another task. Whereas
the Kernel Interfaces document describes the “pure kernel” which any task must use (pos-
sibly hidden under multiple emulation layers), this document describes facilities that a
task does not need in an absolute sense, but probably wishes to use to work in the Mach
environment.

Mach subscribes to the client–server model of computing. The Mach kernel provides pro-
tected access to shared hardware resources sufficient to support server tasks that provide
access to the physical and logical resources of the system, and the kernel provides “inter-
process” communication (IPC) between tasks so that clients may make service requests
upon servers.

Mach IPC is oriented towards sending discrete messages to destinations named by kernel
protected capabilities. The facility allows both synchronous and asynchronous communi-
cation. The mechanisms are sufficient to construct remote procedure calls (RPC), provide
(system-level) object-oriented programming (using capabilities (port rights) to name ob-
jects) and streaming of data. Copy-on-write virtual memory optimizations are provided
for efficient passing of large data. The mechanisms are network transparent.

The fine details of Mach IPC are described in the Kernel Principles document and speci-
fied in the Kernel Interfaces document. Those documents should be referenced before at-
tempting to read this volume.

The precise details of generating messages suitable for Mach IPC, including marshalling
data into and un-marshalling data out of the message, are normally handled by “stub”
programs generated by MIG, the Mach Interface Generator. This tool, described in this
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volume, does not hide IPC features; it provides a more convenient syntax in which to ex-
press the use of these features.

MIG does not provide transparent programming language-level remote procedure call
support. It is used to specify the operations performed by a server, and the parameters re-
quired for the messages between clients and servers, in a way usable by multiple languag-
es, but mostly for C.

A Mach server executes a service loop (provided by library routines) that receives IPC
messages from clients, invokes the service routine so requested, then sends a reply mes-
sage to the client, returning to the service loop. The generation of a server requires:

• The specification of the messages that a client will send to the server and the replies
to be returned (normally in the form of RPCs), which MIG will translate into appro-
priate stubs.

• The implementation of the service routines to be invoked by the MIG stubs.

• Initialization code to start the server, create appropriate initial objects, make them po-
tentially known to clients and invoke the service loop code.

The details of these portions of a server are discussed in this volume at length.

For a server to be known to client tasks, it must register itself in some client visible name
space. This name space is provided by a Name Server, the basic interface and support for
which are described in this volume.

A server that wishes to process multiple service requests in parallel would use multiple
threads to service the requests. Given that most servers are not written in parallel or task-
ing languages, the C threads package is provided. This package, discussed in this vol-
ume, supports multi-threaded programming in the C (or C++) language.

The C threads package provides a friendly interface to kernel-level threads. It provides
traditional mutex and condition variable synchronization primitives. Control is provided
over the creation and destruction of threads and the multiplexing of user threads onto ker-
nel threads.

Subsequent chapters deal with details involved in server mechanisms and in writing spe-
cific types of servers. Issues involved in writing a correctly operating multi-threaded serv-
er are also covered in this volume.

This volume describes, with examples, the structure of a basic single-threaded server, the
structure of a multi-threaded object-oriented server and the structure of a basic external
memory manager.
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A task starts life with a limited set of port rights. It can ask for its own port (mach_task_-
self), that of its executing thread (mach_thread_self), its host (mach_host_self) and a re-
ply port (mach_reply_port). It has a handful of special ports (task_get_special_port)
which name an exception port and a bootstrap port. The bootstrap port is typically used
to name the principal server controlling the task; in the single-server system, this is the
request port for the single-server. The only other ports inherently known to a new task
are the registered ports (mach_ports_lookup). It is these registered ports that are used to
locate extra services.

The significant port found in the set of registered ports names a name service. Since regis-
tered ports are inherited by created tasks, all tasks tend (unless overridden) to share the
port to a single name service. The name service provides a common repository of name
to server mappings that allow tasks to locate and share access to system servers.

Local Name Space

An application task locates a server with name_server→netname_look_up. This call
takes an argument of a name string naming the desired service. The call returns a send
right to the port associated with the service.

A server task makes itself publicly known by calling name_server→netname_check_in.
This call registers a supplied port (send right) with a given service name. The server also
supplies a signature port of its choosing that the name server requires for subsequent ma-
nipulations of this service mapping so that random tasks cannot affect the mapping. In-
deed, since any task may use the netname_check_in function, it is necessary to provide
unique service names for all of the system servers and to arrange for them to initialize
and register themselves with the name server prior to running any application tasks.
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A server task can de-register itself with   name_server→netname_check_out. This call
requires the signature port specified in the check-in call. Destroying the service port has
the same result.

The original name server was part of the Net Message Server (the Net Name server),
hence the name of these interfaces. The typical name service used in base Mach systems
is snames, a simple name server. Since any number of servers could be written to pro-
vide the name server protocol, an additional call, name_server→netname_version, is
provided which returns a string describing (naming) the name server in use and its ver-
sion.

Network Name Space

The snames name server provides a single local name space. Only those clients who
have as their registered name server port the port to the same snames server will share
the given name space.

The original Net Name server (part of the Net Message server) provides a set of per-node
name spaces. Clients on a node have as their registered name server port the port to the
local name server. With this port they can look-up and check-in servers on their local
node.

As part of system / network initialization, the Net Name server on a given node locates
other nodes and announces itself to the name service on the other nodes. With the host_-
name parameter to netname_look_up, clients can locate servers on other nodes. It is nec-
essary for clients to establish a convention as to what host will check-in a server (so all
clients know what host_name value to use to find it) or clients must browse the set of
name servers in some undefined manner.

Each name server is registered in its own name space (with the string “NameServer”). As
such, a client can obtain the port for the local name server on another node (by supplying
that node’s host name to netname_look_up). With this port, a client can directly look-up
servers on that node, as well as check in servers on that node.
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CHAPTER 3 Mach Interface Generator 
(MIG)

This chapter describes MIG, the Mach Interface Generator.

Introduction

MIG is a program which generates remote procedure call (RPC) code for communication
between a client (hereafter referred to as the user side) and a server process (the server
side). Mach servers execute as separate tasks and communicate with their users by send-
ing Mach inter-process communication (IPC) messages. The IPC interface is language in-
dependent and fairly complex. The MIG program is designed to automatically generate
procedures in C to pack and send, or receive and unpack the IPC messages used to com-
municate between processes. 

The user must provide a specification file defining parameters of both the message pass-
ing interface and the procedure call interface. MIG then generates (by default) three files: 

• User Interface Module: This module is meant to be linked into the user program. It
implements and exports procedures and functions to send and receive the appropriate
messages to and from the server.

• User Header Module: This module is meant to be included in the user code to define
the types and routines needed at compilation time.

• Server Interface Module: This module is linked into the server process. It extracts the
input parameters from an IPC message, and calls a server procedure to perform the
operation. When the target server procedure or function returns, the generated inter-
face module gathers the output parameters and correctly formats a reply message.
Note that this generated module does not perform the action of receiving or sending
messages, only the interpretation and generation of messages.
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A given MIG specification file defines either some interfaces to a subsystem, or the data
types of values to be passed to or returned from that subsystem, or both. By default, giv-
en a file defining interfaces with names foo, bar, etc. to subsystem sys, the output of MIG
will be as follows:

• The user interface module will consist of C functions named foo, bar, etc. that gather
the parameters defined for these operations and generate a Mach IPC message for the
desired port.

• The user header module will consist of the necessary data descriptions, and the func-
tion prototypes for these C functions. The prototypes for these functions are derived
from the MIG specification in a way described at length below.

• The server interface module will consist of a top-level C function whose name is set
by the serverdemux declaration (or to sys_server if no name is chosen) appropriate
for use by mach_msg_server. This generated routine has the following prototype:

boolean_t sys_server (mach_msg_header_t *InHeadP, mach_msg_header_t 
*OutHeadP);

(The actual parameters are of type mig_reply_header_t which are cast from the sup-
plied mach_msg_header_t.) This routine examines the given message header to see if
the message is one recognized by this subsystem (by examining InHeadP→msgh_id).
If the message is not recognized, FALSE is returned by sys_server. If the message is
recognized, the parameters from the IPC message are unpacked and the correspond-
ing routine (i.e., foo, bar, etc.) will be called, with TRUE returned by sys_server. The
return code from the called function will be returned as the RetCode field in the out-
put message. By default, the routines called in the server have the same names as
those called by the user since it is assumed that the user and server live in separate
spaces.

The server interface module also contains a message typing routine named serverde-
mux_routine (that is, the same name as the message de-multiplexing routine with
_routine appended) useful for quickly determining if the given message is acceptable
to this MIG subsystem (and which internal stub should be called). This routine is of
use when messages received from a given port may be directed to multiple MIG sub-
systems. This generated routine has the following prototype:

typedef void (*mig_routine_t) (mach_msg_header_t *InHeadP, 
mach_msg_header_t *OutHeadP);

mig_routine_t sys_server_routine (mach_msg_header_t *InHeadP);

This routine examines the given message header to see if the message is one recog-
nized by this subsystem (by examining InHeadP→msgh_id). If the message is recog-
nized, a pointer to a message unpacking routine is returned. The intended use is:

[1] mig_reply_setup (&request, &reply);
[2] if (( routine = sys1_server_routine (&request) != 0) ||
[3] (routine = sys2_server_routine (&request) != 0) ||
[4] (routine = sys3_server_routine (&request) != 0))
[5] (* routine) (&request, &reply);
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MIG provides many controls over this generation process, including changing the names
of the various generated entities.

MIG Specification File Basics

A MIG specification file contains the following components, some of which may be omit-
ted.

• SubSystem identification

• ServerDemux declaration

• RcsId specification

• Type specifications

• Import declarations

• Operation descriptions

• Options declarations

A MIG specification file may include comments and preprocessor macros such as #in-
clude or #define. For example the statement:

#include <std_types.defs>

can be used to include the type definitions for standard Mach and C types.

The subsystem identification should appear first for clarity. Types must be declared be-
fore they are used. Code is generated for the operations and import declarations in the or-
der in which they appear in the definitions files. Options affect the operations that follow
them.

SubSystem Identification
The subsystem identification statement is of the form:

subsystem sys message-base-id;

sys is the name of the subsystem. It is used as the prefix for all generated file names. The
user file name will be sysUser.c, the user header file will be sys.h, and the server file will
be sysServer.c. These file names may be overridden by command line switches.

message-base-id is a decimal integer that is used as the IPC message ID (msgh_id field)
of the first operation in the specification file. Operations are numbered sequentially begin-
ning with this base. The message-base-id can be selected arbitrarily by the implementor
of the subsystem, but it is recommended for “official” subsystem implementors to re-
quest an unused message-base-id from the Mach librarian. The only technical require-
ment is that all requests sent to a single service port should have different IDs, to allow
the server to easily distinguish them. The IPC message ID for the reply message for any
given user message is 100 (decimal) more than the request ID.
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ServerDemux Declaration
By default, the server de-multiplexing routine in the server stub for use by mach_msg_-
server generated by MIG is called sys_server. A different name can be used if set by the
serverdemux declaration, of the form:

serverdemux identifier;

The message typing routine always has the same name as the server de-multiplexing rou-
tine with _routine appended.

RcsId Specification
The rcsid specification is of the form:

rcsid “$Header information$”;

This specification causes a string variable Sys_user_rscid in the user and Sys_server_rc-
sid in the server module to be set to the input string.

Type Declarations
A type declaration is of the form:

type user-typename = type-desc [translation-info ];

(The [] indicate that the translation-info  is optional.) The purpose of type declarations is
to inform MIG about the types to use for the parameters of the various operation rou-
tines, and to inform MIG of the storage requirements for parameters and the method by
which the parameters are to be “marshalled” to form the data for an IPC message. It is
possible to describe the types of the parameters for a routine directly in the declaration of
a routine; but, it is often more convenient to define the types and their attributes separate-
ly, giving this collection of information a user-typename, and then just simply use this
user-typename when specifying a routine parameter.

The user-typename is the name by which MIG will refer to the type. It must eventually
be defined in terms of built-in MIG types, although <mach/std_types.defs> and <mach/
mach_types.defs> already make most of the needed definitions. A MIG type definition
really defines three related notions:

• The MIG type name itself, used in making new MIG type declarations.

• The underlying Mach IPC type. For example, if a MIG type is defined as an array of
structures of the basic type MACH_MSG_TYPE_INTEGER_32, then the Mach IPC
type (which is placed in the msgt_name field in a data descriptor) will be MACH_MS-
G_TYPE_INTEGER_32. MIG will set the msgt_size field accordingly (in this case,
32 bits), and will compute the value for msgt_number on the basis of msgt_size, given
the array and structure sizes given in the MIG type declaration.

• The data types used in the generated C code. The MIG type name is used, by default,
whenever a C type name is used. The C types to be used can be directly specified. Ei-
ther way, MIG separates the notions of its type name by which it refers to parameters
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and the type names used in the generated C code. Regardless of whether the MIG
type name is used or a user specified type name is used for the C data types, the C
data types must be specified in some header file “imported” into the generated C
code, as well as the users of this code.

The type-desc defines the properties of the MIG type, such as its derivation from basic
MIG types, and the storage attributes for the type. It also specifies attributes that will im-
plicitly or explicitly set various IPC flags in generated type descriptors:

• msgt_inline — data follows the type descriptor (as opposed to a pointer to the data)

• msgt_longform — type descriptor is the long form (mach_msg_type_long as opposed
to mach_msg_type)

• msgt_deallocate — de-allocate related port or storage

The optional translation-info  defines the C types to use, as well as translation functions
to be called to translate data types in the generated server stub.

MIG understands the Mach IPC types as built-in types. It allows the construction of
types from these built-in types as structures of, arrays of and “pointers” to these basic or
generated types.

Import Declarations
If any of the type names to be used in the generated C code are other than the standard C
types (e.g. int, char, etc.), C type definition files must be imported into the user and serv-
er interface modules so that they will compile. The import declarations specify files
which are imported into the modules generated by MIG. 

An import declaration is of one of the following forms: 

import file-name;

uimport file-name;

simport file-name;

where file-name is in a form acceptable by cpp in #include statements, e.g. <file-name>
or “file-name” .

For example:

import “my_defs.h”;

import “/usr/mach/include/cthreads.h”;

import <cthreads.h>;
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import declarations are included in both the user and server side code. uimport declara-
tions are included in just the user side. simport declarations are included in just the serv-
er side.

Standard Operations
There are two types of standard operations that may be specified:

• Routine

• Simple Routine

Also, the keyword skip is provided to allowed a procedure to be removed from a sub-
system without causing all the subsequent message interfaces to be renumbered. It caus-
es no code to be generated, but uses up a msgh_id number.

An operation definition has the syntax:

operation-type operation-name (parameter-list);

The parameter-list is a list of parameter names and types separated by “;”. The form of
each parameter is:

specification var-name: type-description

where specification may either be omitted or one of the following:

• the direction of the parameter (in, out or inout)

• the explicit specification of which parameter supplies the request port (requestport)

• the explicit specification of the reply port to use (replyport, sreplyport, ureplyport)

• a property of the generated mach_msg call (waittime, msgseqno, msgoption)

type-description can be any user-typename that was declared in the type definitions sec-
tion or can be a complete type description in the same form as in the type definition sec-
tion. The type-description may be appended with additional IPC flags to override any
IPC attributes defined in the user-typename.

A simpleroutine sends a message to the server but does not expect a reply. The return val-
ue of a simpleroutine (type kern_return_t) is the value returned by the mach_msg primi-
tive send operation. A simpleroutine is used when asynchronous communication with a
server is desired (or to declare the asynchronous response from the server). simplerou-
tines cannot have out or inout parameters.

A routine operation waits for a reply message from the server. It is a function whose re-
sult is of type kern_return_t. This result indicates whether the requested operation was
successfully completed. If a routine returns a value other than KERN_SUCCESS the re-
ply message will not include any of the reply parameters except the error code. 
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ServerPrefix Specification
The serverprefix specification is of the form:

serverprefix string;

The word serverprefix is followed by an identifier string which will be prefixed to the ac-
tual names of all the following server side functions implementing the message opera-
tions. This is particularly useful when it is necessary for the user and server side
functions to have different names, as must be the case when a server is also a client of
the same interface. This specification applies to all operations defined after this specifica-
tion in the definition file.

UserPrefix Specification
The userprefix specification is of the form:

userprefix string;

The word userprefix is followed by an identifier string which will be prefixed to the actu-
al names of all the following user side functions calling the message operations. server-
prefix should usually be used when different names are needed for the user and server
functions, but userprefix is also available for completeness sake. This specification ap-
plies to all operations defined after this specification in the definition file.

Options Declarations
Along with serverprefix and userprefix, several special-purpose options about the generat-
ed code may be specified. Defaults are available for each, and simple interfaces do not
usually need to change them. These options may occur more than once in the specifica-
tion file. Each time an option declaration appears it sets that option for all the following
operations.

The waittime specification has two forms:

waittime time;

nowaittime;

The word waittime is followed by an integer or an identifier that specifies the maximum
time in milliseconds that the user code will wait for a reply from the server. If an identifi-
er is used, it should be declared as an extern variable by some module in the user code. If
the waittime option is omitted, or if the nowaittime statement is seen, the RPC does not
return until a message is received. This value sets the timeout argument to the (user-side)
mach_msg call.

The msgoption specification is of the form:

msgoption manifest-constant;
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where the manifest-constant may be one of the option values from the file <message.h>.
This value is OR’ed into the option argument to the (user-side) mach_msg call. The val-
ue MACH_MSG_OPTION_NONE can be used to reset the msgoption value. Most of the
option values to mach_msg cannot be specified since they would require manipulating
the arguments to the mach_msg call itself. Two that may be specified are MACH_-
SEND_INTERRUPT and MACH_RCV_INTERRUPT, which cause mach_msg to re-
turn to the caller if the send or receive operations are interrupted instead of retrying the
calls.

Type Specifications

All types referenced in a definition file must be defined if they are other than the built-in
IPC types.

Simple Types
A simple type declaration declares a user-typename which names a MIG type that can be
used for parameters of the defined operations. The declaration is of the form:

type user-typename = type-desc [translation-info ];

(the [] indicate that the translation-info  is optional) where a type-desc is either a previ-
ously defined user-typename or an ipc-type-desc which is of the form:

(ipc-typename, size [, IPC-flags])

or:

ipc-typename

(The [] indicate that the comma separated IPC-flags list is optional.)

The ipc-type-desc of simple types is enclosed in parentheses and consists of an IPC type-
name, decimal integer or integer expression that is the number of bits in the IPC type,
and optional IPC option keywords which are: dealloc, dealloc [], notdealloc, islong, is-
notlong, servercopy and countinout. The user may define additional IPC types.

If the ipc-typename is one of the standard ones, except for MACH_MSG_TYPE_S-
TRING, MACH_MSG_TYPE_STRING_C, MACH_MSG_TYPE_UNSTRUCTURED
or MACH_MSG_TYPE_REAL, just the ipc-typename can be used.

IPC Flags
There are three sets of IPC flags: one set pertains to de-allocation of the parameter, one
pertains to normal versus long form type descriptors and the third refers to handling vari-
able sized data that may be transmitted in or out of line in the message.
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The de-allocation flag is used to describe the treatment of ports and “pointers” (out-of-
line data) after the messages with which they are associated have been sent. dealloc caus-
es the de-allocation bit in the IPC message to be set on. Otherwise it is always off. deal-
loc can be used only with ports and “pointers”. If it is used with a port, the port will be
de-allocated after the message is sent. If dealloc is used with a “pointer”, the memory
that the pointer references will be de-allocated after the message has been sent. (It can
also be used with unbounded arrays (those that can be passed either in-line or out-of-line
depending on size). In such a case, the flag only applies when the data is sent out-of-
line.) An error will result if dealloc is used with any argument other than a port or a
“pointer”. The use of dealloc with ports is not normally needed, as there are built-in
types that dispose of ports properly. 

The dynamic de-allocation flag:

dealloc []

causes the generated stub to accept an additional parameter (of C type boolean_t) that al-
lows the caller to specify whether the de-allocation flag should be set in the data descrip-
tor (TRUE meaning that the data should be de-allocated).

Normally, MIG will choose the appropriate size for the type descriptor (mach_msg_type
or mach_msg_type_long). The islong keyword forces a long form type descriptor to be
used for a parameter of this type. If a long form type descriptor was not needed, a warn-
ing is issued, but a long form type descriptor is used anyway. isnotlong specifies that a
normal form type descriptor is to be used. If a long form type descriptor is needed, a
warning is issued, and a long form type descriptor will be used. This keyword is provid-
ed for compatibility with previous versions of MIG in which some parameters (variable
sized arrays, in particular) always had long form descriptors. It should now be consid-
ered obsolete.

The servercopy keyword can be used only for in parameters and only affects the server
side routine. This keyword is used for parameters that can optionally be transmitted ei-
ther in-line or out-of-line—namely, unbounded “in-line” arrays (data declared as a
“pointer” to an unbounded array is always out-of-line). Normally, parameters passed in-
line (present in the message body) are destroyed on the server side when the server side
routine returns (because the message buffer is recycled) whereas out-of-line parameters
(those allocated their own virtual copy) will not be touched on the assumption that the
server will de-allocate this space. The server is free, though, to keep this out-of-line
copy. For consistency, arguments that may be optionally transmitted either in-line or out-
of-line are given the in-line semantics (in as much as that they are declared as in-line);
namely, the data will be destroyed when the server routine returns. To achieve the out-of-
line semantics, the servercopy keyword is specified. When set, the server’s routine will
be called with an additional parameter (of type boolean_t) specifying whether the corre-
sponding argument was transmitted in-line in the message. If the data was transmitted in-
line (the additional servercopy argument is TRUE), the data passed to the server routine
will be destroyed when the server routine returns (because the message buffer will be re-
cycled) and so the server routine must make a copy if it wishes it to persist. If the data is
out-of-line, the servercopy parameter will be FALSE, informing the server routine that it
does not need to make a copy of the data; the data will not be de-allocated upon return.



14 Mach 3 Server Writer’s Guide

Mach Interface Generator (MIG)

The countinout keyword applies to variable length out parameters. It does what the name
implies: the count parameter that the user side must specify to receive the number of re-
turned elements is also considered as an input parameter to be sent to the server routine
so that the server does not attempt to return too many values. In the absence of this key-
word, the number of elements in the user’s buffer is not sent to the server. If the server re-
turns a message with more values than for which the user allowed, the user’s MIG stub
will discard the data and return MIG_ARRAY_TOO_LARGE.

Simple Types
Some examples of simple type declarations are:

type int = MACH_MSG_TYPE_INTEGER_32;

type my_string = (MACH_MSG_TYPE_STRING,8*80);

type kern_return_t = int;

The MIG generated code assumes that the C types my_string and kern_return_t are de-
fined in a compatible way by a user provided include file. The files <mach/std_types.-
defs> and <mach/mach_types.defs> define the basic C and Mach types.

MIG assumes that any variable of type MACH_MSG_TYPE_STRING or MACH_MS-
G_TYPE_STRING_C (which are considered the same) is declared as a C char *foo or
char foo[n]. Thus it generates code for a parameter passed by reference and uses strncpy
for assignment statements.

Structured Types
Four kinds of structured types are recognized: arrays, C strings, structures and “pointers”.

Basic Arrays and Structures
Definitions of arrays and structures follow the Pascal-style syntax of:

struct [size] of comp-type-desc

array [size] of comp-type-desc

where comp-type-desc may be a simple type-desc or may be an array or struct type and
size may be a decimal integer constant or expression.

If a type is declared as an array the C type must also be an array, since the MIG RPC
code will treat the user type as an array (i.e. assuming it is passed by reference and gener-
ating special code for array assignments). A variable declared as a struct is assumed to
be passed by value and treated as a C structure in assignment statements. Other than the
difference in argument passing, the fixed size struct and array declarations are the same.
There is no way to specify the fields of a C structure to MIG. That is, all elements of the
structure must derive from the same basic C type, as any data conversion that Mach IPC
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may attempt when crossing machine boundaries will be based on this base type. The size
and comp-type-desc are just used to give the size of the structure.

Variable Sized Arrays
The array form:

array [*: maxsize] of comp-type-desc

specifies that a variable length array is to be passed in-line in the message. In this form
maxsize is the maximum length of the item. For variable length arrays an additional
count parameter is generated to specify how much of the array is actually being used.
Variable-length in-line inout arguments are not supported. The comp-type-desc must be
of fixed size (i.e., not a variable sized array).

Unbounded Arrays
The final array form:

array [] of comp-type-desc

specifies an unbounded array whose size is provided at run-time via an additional param-
eter. If the size of the array does not exceed a certain size (currently 2048 bytes), it will
be sent in-line, otherwise out-of-line (appearing allocated as if by vm_allocate). This
form is not permitted for inout parameters.

For an unbounded in parameter, the data will be transmitted in-line or out-of-line as ap-
propriate; the server will be passed a pointer to the received data (in accordance with C
array rules). By default, the semantics of the data reception at the server will be as if the
data is always transmitted in-line; that is, when the server routine returns, the data will be
destroyed. If the server wishes to make a copy of the data, and wishes to take advantage
of the fact that the data may be transmitted out-of-line (and so a virtual copy had been
made), the parameter would be given the servercopy keyword. This will prevent the serv-
er stub from deleting the array data upon return from the service routine if the data was
transmitted out-of-line; also, an additional parameter will be supplied to the server in-
forming it whether it must make a copy (the data was in-line) or whether it can simply
use the allocated copy (data was out-of-line).

For an unbounded out parameter, the data will be transmitted in-line or out-of-line as ap-
propriate, visible to the user and server sides. The user supplies a pointer to a buffer
pointer naming a buffer to receive the data and a pointer to the size of the buffer. Upon re-
turn, the size will reflect the number of values returned; if the values were transmitted in-
line and fit into the user’s buffer, the values will be placed there and the user’s buffer
pointer will be unchanged; otherwise, vm_allocate produced space will be made (either
because the data was sent out-of-line or because the MIG stub allocates space) and the
user’s buffer pointer will be changed to point to the allocated space. For example:

[1] type buffer [MAX];
[2] type* ptr;
[3] unsigned int count;
[4] ptr = &buffer[0];
[5] count = MAX;
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[6] (void) user_stub (..., &ptr, &count, ...);
/*

*/
Reference data

[7] if (ptr != buffer)
[8] (void) vm_deallocate (mach_task_self (), (vm_offset_t) ptr, count * 

sizeof (type));

The server operates accordingly. The server is passed a pointer to a buffer pointer and a
pointer to the maximum count. (The count will either be the user’s value, if the counti-
nout keyword is in effect, or the size of the stub’s buffer, namely the maximum size that
can be transmitted in-line.) If the server’s data fits into the supplied buffer, it does so; oth-
erwise it allocates space and changes the buffer pointer to refer to it. The dealloc key-
word can be used to specify that this allocated memory is to be de-allocated in such
cases.

C Strings
C strings have the format:

c_string [size]

c_string [*: size]

(Variable sized strings cannot be specified as inout.) The fixed sized C string is equiva-
lent to an array of characters:

array [size] of (MACH_MSG_TYPE_STRING_C, 8)

The variable sized C string presents the semantics of C strings (as presented by the ANSI
C library), namely, a null-byte terminated string. A variable sized C string will transmit
the (variable sized) valid portion of the string (all characters up to and including the null
byte) in the message. This form saves space in the message by not always transmitting
the full size of the character array. No additional parameter is generated requesting from
the sender nor providing to the receiver the current size of the string; this size is derived
from the string itself.

“Pointer” (Out-of-Line) Types
In the definition of “pointer” types, the symbol “^” precedes a simple, array or structure
definition.

^ comp-type-desc

Data types declared as “pointers” are always sent out-of-line in the message. “Pointers”
to variable sized arrays (unbounded or otherwise) transmit the actual size as an addition-
al parameter. Since sending out-of-line is considerably more expensive than in-line data,
“pointer” types should only be used for large or variable amounts of data. A call that re-
turns an out-of-line item allocates the necessary space in the user’s virtual memory (as if
with vm_allocate). It is up to the application to de-allocate this memory when it is fin-
ished with the data.
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The C type name is assumed to resolve to a C type of form *... MIG will generate code
to indirect through the parameters of these types to access the actual data.

Examples of Complex Types:
[1] type procids = array [10] of int;
[2] type procidinfo = struct [5*10] of 

MACH_MSG_TYPE_INTEGER_32;
[3] type vardata = array [*: 1024] of int;
[4] type array_by_value = struct [1] of array [20] of 

MACH_MSG_TYPE_CHAR;
[5] type page_ptr = ^ array [4096] of 

MACH_MSG_TYPE_INTEGER_32;
[6] type var_array = ^ array [] of int;

Polymorphic Types
MIG supports polymorphic types. For example, using this facility, one may specify an ar-
gument which can be either an integer or a port, with the exact type determined at run-
time. The type information is passed in an auxiliary argument, similar to the way size in-
formation in variable-sized arrays is handled. (If an argument is both variable-sized and
polymorphic, the auxiliary type argument comes before the count argument.) 

[1] type poly_t = (MACH_MSG_TYPE_POLYMORPHIC,32);
[2] simpleroutine SendPortOrInt
[3] (
[4] server: mach_port_t;
[5] poly: poly_t
[6] );

and then in user C code

[1] mach_port_t server, port;
[2] kern_return_t kr;
[3] kr = SendPortOrInt (server, 5, MACH_MSG_TYPE_INTEGER_32);
[4] kr = SendPortOrInt (server, port, MACH_MSG_TYPE_COPY_SEND);

The built-in type polymorphic is effectively defined as:

type polymorphic = (MACH_MSG_TYPE_POLYMORPHIC,32);

Type Translation Information
Optional information describing procedures for translating the type or destroying values
may appear after the type definition information. Translation functions allow the type as
seen by the user process and the server process to be different. Destructor functions al-
low the server code to automatically de-allocate input or translated types after they have
been used.

For each MIG type, there are up to three corresponding C types. These are:
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• The type used in the user stub module (the UserType), which is the value that will de-
fine the type seen in the prototype to the user side stub module and the type used for
inserting data into the outgoing IPC message to the server.

• The type seen by the server stub module (the ServerType) when it extracts this value
from the incoming IPC message. It is also the type used by the server stub when in-
serting a value into an outgoing (return) IPC message. No conversion functions are
called to convert between the UserType and the ServerType; these types must be effec-
tively equivalent (at least in storage requirements) and are simply different names giv-
en by the different environments to the same storage.

• The translated type used by the server procedure (the TransType). This is the value
used to define the type seen by the target routine called in the server.

By default these three types are all the same, and have the same name as the MIG type. 

The UserType and ServerType may be specified with the cusertype and cservertype op-
tions, respectively, or both specified together with the ctype option. The TransType de-
faults to the ServerType; it can not be set explicitly; it is set implicitly by the
specification of translation functions.

Examples:

type mach_port_move_receive_t = MACH_MSG_TYPE_MOVE_RECEIVE
ctype: mach_port_t;

type funny_int = int
cusertype: user_int
cservertype: server_int;

If the ServerType and the TransType are to be different, then translation functions must
be defined to perform the conversion. All data type translations (and the destructor func-
tion as well) are performed on the server side.

Translation from the ServerType to the TransType is performed by an intran function.
The syntax is:

intran: TransType intran-function  (ServerType)

Note that specifying an intran function implicitly sets both ServerType and TransType. A
call to the intran function is inserted automatically by MIG before the call to the target
server routine. The actual translation function must be “hand coded” (that is, it is not gen-
erated by MIG) and imported, with the following prototype:

TransType intran-function (ServerType x);

Translation back from the TransType to the ServerType is performed by an outtran func-
tion. The syntax is:

outtran: ServerType outtran-function  (TransType)
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Note that specifying an outtran function implicitly sets both ServerType and TransType.
A call to the outtran function is inserted automatically by MIG after the call to the target
server routine. The actual translation function must be “hand coded” and imported, with
the following prototype:

ServerType outtran-function (TransType x);

Consider an example for task related kernel primitives:

[1] type task_t = mach_port_t
[2] intran: task_t convert_port_to_task(mach_port_t)
[3] outtran: mach_port_t convert_task_to_port(task_t)
[4] destructor: task_deallocate (task_t);

(The destructor function will be explained shortly.) In this example, mach_port_t, which
is the type seen by the user code, is defined as a port in the message. The type seen by
the target server code is task_t, which is some data structure used by the server (the ker-
nel, in this case) to store information about each task it is serving. The intran function,
convert_port_to_task, translates values of type mach_port_t to task_t on receipt by the
server process. The outtran function, convert_task_to_port, translates values of type
task_t to type mach_port_t before return.

For this example to work within the kernel, the kernel must hold some valid reference
(and therefore, some lock) upon its task_t object. Imagine that the intran function will do
this. This reference must be released after the target server routine is called. When intran
functions are called, it is fairly common that the translation results in allocated storage,
or perhaps additional reference counts for some objects that must be released. For this
purpose, there are destructor functions. The syntax is:

destructor: destructor-function (TransType)

Note that specifying a destructor function implicitly sets TransType. A call to the destruc-
tor function is inserted automatically by MIG after the call to the target server routine.
The actual destructor function must be “hand coded” and imported, with the following
prototype:

void destructor-function (TransType x);

In the example, task_deallocate is called on the translated input parameter, task_t, after
the return from the server procedure and can be used to de-allocate any or all parts of the
internal variable.

Destructor functions are called only for in parameters. They are not called if the parame-
ter is also an out argument, because the correct time to de-allocate an out parameter is af-
ter the reply message has been sent, which is not code that can be generated by MIG. (In
these circumstances, dealloc flags are needed.)

A destructor function can be used even if no translation is specified. For example, if a
large out-of-line data segment is passed to the server it could use a destructor function to
de-allocate the memory after the data was used. 
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Note that translation functions are called only for scalar values; MIG will not generate
code to translate the multiple elements of an array.

Transmission Type Changes
MIG supports types which change during transmission. The syntax is:

type type-name = sending-IPCType | receiving-IPCType;

This syntax indicates that the msgt_name field in the message should be set to the IPC
type associated with sending-IPCType when the message is transmitted, and that, in
some magic way, the msgt_name field will be the IPC type associated with receiving-IP-
CType when it is received. Such an IPC type change clearly only occurs when the associ-
ated parameter is handled by some intermediary, or when it is handled by the kernel.

In cases other than a KernelServer subsystem, when this type is sent (either as an in pa-
rameter or the return of an out or inout parameter), the msgt_name field is set by the send-
er of the message to the IPC type associated with sending-IPCType and the receiver
expects the field to have the IPC type value associated with receiving-IPCType. This has
the expected behavior for in and out parameters, namely, that the sender and receiver of
the parameter sees the sending and receiving IPC types, respectively. For inout parame-
ters, this is probably not what is desired, since the user will see the inout parameter re-
turn with a different IPC type then that with which it was sent.

Note that this syntax only expresses that the IPC type, as reflected in the msgt_name
field, will be changed; it does not express an actual type change as seen by the user stub
or target server routine, nor does it express how such a conversion occurs. If this feature
is used with other than port types, it will probably be used in conjunction with cusertype
and cservertype to express the probable (magic) type conversions that will be occurring.

One use for transmission type changes is in KernelServer subsystems where the recipient
of a message is the kernel and so the kernel can arrange for IPC type translations. This is
most likely to be used in conjunction with request and reply ports, which are translated
by necessity in the transmission process. For example, given the following definitions for
the Mach IPC port types:

[1] #define MACH_MSG_TYPE_MOVE_RECEIVE 16
[2] #define MACH_MSG_TYPE_MOVE_SEND17
[3] #define MACH_MSG_TYPE_MOVE_SEND_ONCE18
[4] #define MACH_MSG_TYPE_COPY_SEND19
[5] #define MACH_MSG_TYPE_MAKE_SEND20
[6] #define MACH_MSG_TYPE_MAKE_SEND_ONCE21
[7] #define MACH_MSG_TYPE_POLYMORPHIC-1

the following built-in MIG types can be viewed as defined in the following way from the
Mach IPC types:

[1] type MACH_MSG_TYPE_MOVE_RECEIVE = 16;
[2] type MACH_MSG_TYPE_MOVE_SEND = 17;
[3] type MACH_MSG_TYPE_MOVE_SEND_ONCE =18;
[4] type MACH_MSG_TYPE_COPY_SEND = 19 | 17;
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[5] type MACH_MSG_TYPE_MAKE_SEND =20 | 17;
[6] type MACH_MSG_TYPE_MAKE_SEND_ONCE =21 | 18;

The other major use of transmission type changes is to specify a parameter (most likely a
port type) that is polymorphic on the sender’s side (user side for in parameters, server
side for out parameters, both for inout parameters) but of a known type on the receiver’s
side. That is, the sender will specify a port and a port type, but the result of sending this
port will be to generate a known port type. The following built-in MIG types have such a
specification:

[1] type MACH_MSG_TYPE_PORT_RECEIVE =-1 | 16;
[2] type MACH_MSG_TYPE_PORT_SEND = -1 | 17;
[3] type MACH_MSG_TYPE_PORT_SEND_ONCE =-1 | 18;

As an example, std_types.defs makes the following definition:

type mach_port_send_t = MACH_MSG_TYPE_PORT_SEND
ctype: mach_port_t;

The (kernel) function device_set_filter is defined as follows:

[1] routine device_set_filter
[2] (
[3] device: device_t;
[4] receive_port: mach_port_send_t;
[5] priority: int ;
[6] filter: filter_array_t
[7] );

On the sending side, receive_port is of MIG type polymorphic, so it expands into an argu-
ment of type mach_port_t (the ctype) and an argument to specify the MIG type for the
message header (mach_msg_type_name_t). The sender can supply a receive or send
right, specifying MACH_MSG_TYPE_MAKE_SEND or MACH_MSG_TYPE_COPY_-
SEND, respectively, for the port type parameter. On the receive side, receive_port will
automatically become of IPC type MACH_MSG_TYPE_MOVE_SEND, and the receiv-
er will only see a single parameter, of C type mach_port_t.

Operation Descriptions

An operation description has the syntax:

operation-type operation-name (parameter-list);

The parameter-list is a list of parameter names and types separated by “;”. The form of
each parameter is:

specification var-name: type-description [,IPC-flags]



22 Mach 3 Server Writer’s Guide

Mach Interface Generator (MIG)

where specification may either be omitted or be one of the following: in | out | inout | re-
questport | replyport | sreplyport | ureplyport | waittime | msgseqno | msgoption. type-de-
scription can be any user-typename that was declared in the type definitions section or
can be a complete type-description in the same form as in the type definition section.
The IPC-flags are either omitted or consist of a comma separated list of dealloc, dealloc
[], notdealloc, islong, isnotlong, servercopy and countinout. These flags will override any
IPC flags associated with the type definition. (Refer to IPC Flags on page 12.)

The operation-type is either routine, to specify an operation that expects a reply, or sim-
pleroutine, for an operation that does not receive a reply.

Request and Reply Ports
The first (not otherwise specified) parameter in any operation statement is assumed be
the requestport unless a requestport parameter is specified. This is the port to which the
message will be sent.

By default, MIG user stub routines use a MIG internal reply port for receiving the reply
message. The replyport specification allows one of the parameters to be an explicitly
named reply port. The sreplyport and ureplyport specifications have a related effect that
is related to the generation of the actual function interface prototypes, as explained below.

Parameter Direction
The keywords in, out and inout are optional and indicate the direction of the parameter.
If no such keyword is given the default is in. The keyword in is used with parameters that
are to be sent to the server. The keyword out is used with parameters to be returned by
the server. The keyword inout is used with parameters to be both sent and returned.

WaitTime Parameter
The waittime keyword indicates that the corresponding argument to the user stub speci-
fies the time-out value to be used. The value is the maximum time in milliseconds that
the user code will wait for a reply from the server. If no waittime parameter is used, or if
no wait time statement has been seen, the RPC does not return until a message is re-
ceived. This value sets the timeout argument to the mach_msg call.

MsgOption Parameter
The msgoption keyword indicates that the corresponding argument to the user stub speci-
fies message options for the mach_msg call. The value is OR’ed into the option argu-
ment to the mach_msg call.

MsgSeqno Parameter
Messages received from a port contain a sequence number indicating the order of recep-
tion. This information can be of use to multi-threaded servers to order the activities of
multiple threads receiving from the same port. This sequence number can be made avail-
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able with the msgseqno keyword. The associated server-side parameter will receive the
message’s sequence number.

Function Prototype Generation

The prototype for a user stub or target server function is derived from the MIG operation
definition. In a general way, the argument list for the prototype is the same as that for the
MIG operation, with the MIG type names replaced by the UserType or TransType names,
when defined.

Parameter Order
A single parameter or possibly a set of parameters will be generated for each parameter
listed in the operation definition, in the order specified in the operation definition, in both
the user and server sides, with the following exceptions.

• The presence of the replyport parameter causes an explicit parameter to appear in the
argument list for the user stub routine, as well as the corresponding argument to ap-
pear in the call to the target server routine, to pass an explicitly named reply port. If
replyport is not specified, a reply port private to the MIG interface routines will be
used; it will not appear as a parameter in any calls. The sreplyport and ureplyport pa-
rameters can be used if only the user or server side parameter is needed. When a ure-
plyport parameter is present, the user stub routine will have an extra parameter
through which it can name an explicit reply port. However, the target server routine
will not have this extra parameter; the reply port will be known only to the MIG gen-
erated server function. When a sreplyport parameter is named, the user stub routine
will not have an extra parameter through which an explicit reply port is named. In-
stead, the MIG local reply port will be used. However, the target server routine will
be passed this reply port as an explicit argument (instead of its being known only in-
side the MIG server stub).

• The waittime and msgoption parameters appear only on the user side.

• The msgseqno parameter appears only on the server side.

The requestport parameter, whether implicitly or explicitly specified, is always a parame-
ter to both the user and server side routines. The requestport specification merely allows
the specification of which parameter in the list is the request port; the default is the first
parameter.

Data Parameter Type
The data parameter generated by a given MIG argument definition has a C type chosen
from the MIG declared ctype as follows:

• A type-name that is a built-in IPCType, where IPCType is other than MACH_MSG_-
TYPE_STRING or MACH_MSG_TYPE_STRING_C, has type-name as its C data
parameter type for in parameters, and *type-name for out or inout parameters.



24 Mach 3 Server Writer’s Guide

Mach Interface Generator (MIG)

• A type-name that is a built-in IPCType of MACH_MSG_TYPE_STRING or
MACH_MSG_TYPE_STRING_C has type-name as its C data parameter type, regard-
less of the direction of the parameter.

• A type-name that is an array type or a C string has type-name as its C data parameter
type, regardless of the direction of the parameter. However, an unbounded out array
has *type-name as its C data parameter type. This type is assumed to convert to a C
pointer type

• A type-name that is a structure type has type-name as its C data parameter type for in
parameters, and *type-name for out or inout parameters.

• A type-name that is a “pointer” type has type-name as its C data parameter type for in
parameters, and *type-name for out or inout parameters.

Pseudo Parameters
A MIG parameter can expand into up to five actual parameters. The first parameter in the
prototype is the data parameter derived from the MIG type, as explained above.

The next (pseudo) parameter is added for polymorphic types, to supply the actual IPC
type at run-time. Whether such a parameter is added to the user or to the server side, or
both, depends on the nature and direction of the polymorphic parameter.

A parameter which is polymorphic to both the sender and receiver of the parameter (for
example, derived from MACH_MSG_TYPE_POLYMORPHIC), will add a parameter of
type mach_msg_type_name_t for in parameters and of type *mach_msg_type_name_t for
out or inout parameters to both the user and server sides.

A parameter which is polymorphic only on the sender’s side (for example,
MACH_MSG_TYPE_PORT_SEND), will add the extra parameter only to the sender’s
side. That is, for in parameters, an extra parameter of type mach_msg_type_name_t will
be added to the user side to specify the outgoing type, but not the server side. For an out
parameter, an extra parameter of type *mach_msg_type_name_t will be added to the serv-
er side to allow the return of the outgoing type, but not the user side. For an inout parame-
ter, an extra parameter of type mach_msg_type_name_t will be added to the user side to
specify the outgoing type, and an extra parameter of type *mach_msg_type_name_t will
be added to the server side to allow the return of the outgoing (return) type.

If the MIG type is or derives in any way from a variable sized (or unbounded) array (but
not a C string), an extra parameter is added to contain the actual array size (the number
of elements). MIG scales this array element count when calculating the msgt_number
field in the message type field. This parameter is of type mach_msg_type_number_t for
in parameters, and *mach_msg_type_number_t for out or inout parameters. This extra pa-
rameter is added to both the user and server sides. (The countinout keyword does not af-
fect this; it only affects whether the user side supplied count value is transmitted to the
server for unbounded out parameters.)

If the MIG type specifies dynamic de-allocation (dealloc []), an additional parameter is
added to the sending side to permit the specification of dynamic de-allocation. For in pa-
rameters, an extra parameter of type boolean_t will be added to the user side to specify
the de-allocation flag, but not the server side. For an out parameter, an extra parameter of
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type *boolean_t will be added to the server side to allow the return of the de-allocation
flag, but not the user side. For an inout parameter, an extra parameter of type boolean_t
will be added to the user side to specify the de-allocation flag, and an extra parameter of
type *boolean_t will be added to the server side to allow the return of the de-allocation
flag.

If the MIG type specifies servercopy, an additional parameter of type boolean_t will be
added to the server side, but not the user side, to specify whether the data value was in-
line (that is, the server needs to make a copy if desired).

Special Environment Subsystems

MIG generates alternate code for the user or server stubs for various special environ-
ments. MIG generates this code when a subsystem modifier is specified in the subsystem
specification:

subsystem subsystemmod sys message-base-id;

KernelServer Subsystem
The KernelServer environment is that in which a routine which is to be the target server
routine associated with a MIG definition is to reside in the Mach kernel. The target serv-
er routines have the same prototypes as they would otherwise.

A KernelServer subsystem modifies the behavior of MIG type translation in that the serv-
er stub expects the types to have been translated on the way to it, but it sets the msgt_-
name field on return to the IPC type associated with receiving-IPCType, instead of
expecting the type to be changed magically.

MIG hacks port types on the server side of a KernelServer subsystem. Any server side C
types of mach_port_t are automatically converted to their (true) kernel type, ipc_port_t.
This hack was introduced to avoid the use of explicit type coercions and conditionals in
the kernel MIG definitions.

Various name conflicts can arise when the user and server code exist in the same space.
One method to resolve this conflict available for KernelServer subsystems is to redefine
the names of the user stub routines. This is done with an internal header file. This file
consists of one line for each operation foo, of the form:

#define foo foo_external

This file can be #included into a file using the user interface, to force it to call the MIG
user stubs instead of the target server routines, if they would otherwise have the same
name. When an internal header file is generated (via the -iheader MIG option), this file is
automatically #included in the user stub file.
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KernelUser Subsystem
This is the environment in which a routine in the Mach kernel wishes to call what would
be the user stub. The user stub for this environment has the same prototype as it would
otherwise. It differs only in that it uses a Mach kernel routine to perform the Mach IPC
operation; an internal kernel port is used as the reply port.

MIG hacks port types on the user side of a KernelUser subsystem. Any user side C types
of mach_port_t are automatically converted to their (true) kernel type, ipc_port_t. This
hack was introduced to avoid the use of explicit type coercions and conditionals in the
kernel MIG definitions.

Using the Interface Modules

In the following discussion let random be the declared subsystem name in the definitions
file. 

To use the calls exported by the user interface module, a user must first find the port on
which to call the server. The service ports for basic system servers are inherited when a
task is created and can be found in various globals. One of these ports is the port to the
Name Server which can be used to check-in or look-up user supplied ports. The reply-
port for MIG is a per-thread global that is initialized when the thread is created. The re-
plyport can be specified as a parameter to an operation if necessary. 

When making specific interface calls the user should be aware if any out-of-line data is
being returned to it. If so, it may wish to de-allocate the space with a call to vm_deallo-
cate.

The most common system error that a user of MIG interface may encounter is invalid_-
port. This can mean several things:

• The requestport parameter is an invalid port or lacks send rights.

• The replyport is invalid or lacks receive rights. If the user is supplying this port as pa-
rameter it may be at fault. If the system provided reply port is being used this error
should not happen.

• A port that is being passed in either the send or reply message is invalid.

timed_out is another system error a user could receive. This results from a RPC with a
timeout value set, timing out before a reply is received. This usually only happens if the
server is on a remote machine from the user. The MIG errors defined in mig_errors.h
usually only occur if the user is using a different version of the interface than the server.
MIG error codes can be interpreted by the routines in mach_error.

The subsystem writer must hand code two things in addition to the MIG definition file.
First, the actual operations must be declared and imported into the server module, and all
normal operations must be coded. Second, code must be written to receive messages, call
the server interface module, and then send a reply message when appropriate. This set of
functions is provided by the libmach.a function mach_msg_server. The server module
exports one function called random_server, which accepts as arguments a pointer to the
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message received, and a pointer to a record for the reply message. The function will re-
turn TRUE if the received message id was in the server’s range. 

In general, a reply should always be returned for any message received unless the return
code from the Server was MIG_NO_REPLY or the request message doesn’t have a reply
port. The boolean function value from the server function may be used to have the same
receive loop processing several logically distinct server’s requests. Once a server has re-
turned TRUE, or all the servers have returned FALSE the receive-serve-send loop should
send a reply (unless of course, the return code was MIG_NO_REPLY or the reply port is
MACH_PORT_NULL). 

Details of a Mach IPC-based server are discussed at length in CHAPTER 4 and CHAP-
TER 6.

Compiling Definition Files

MIG is implemented as a cover program that recognizes a few switches, calls cpp to pro-
cess comments and preprocessor macros and then passes the preprocessed output to the
program migcom which generates the C files.

The switches that MIG recognizes are:

–[r,R] r—use mach_msg with both the MACH_SEND_MSG and MACH_-
RCV_MSG options; R—use a pair of calls, mach_msg with the
MACH_SEND_MSG option and mach_msg with the MACH_-
RCV_MSG option. Default is r.

–[q,Q] q—suppress warning statements; Q—print warning statements. De-
fault is Q.

–[v,V] v—verbose, prints out routines and types as they are processed; V—
compiles silently. Default is V.

–[s,S] s—generate symbol table in the sysServer.c code. The layout of a sym-
bol table (mig_symtab_t) is defined in <mig_errors.h>. S—suppresses
the symbol table. Default is S. This is useful for protection systems
where access to the server’s operations is dynamically specifiable or
for providing a server call interface that is re-directed at run-time ala
syscall (server-to-server calls made on behalf of a user).

–i instead of a single user file, generate individual files for each routine,
for ease in building a library. The file name for each file is operation-
name.c.

–server name name the server file name.

–user name name the user file name.
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–header name name the user header file name.

–sheader name name the server header file name. This file is generated only if this op-
tion is specified. The server header file contains function prototypes for
the various functions to be called on the server side by the MIG gener-
ated de-multiplexing routine.

–iheader name name the user internal header file name. This is only used for ker-
nelserver subsystems.

Any switches that MIG does not recognize are passed on to cpp. MIG also notices if” –
MD” is being passed to cpp. If it is, MIG fixes up the resulting sys.d file to show the de-
pendencies of the sys.h, sysUser.c and sysServer.c on the sys.defs and any #included
“ .defs”  files. For this feature to work correctly the name of the subsystem must be the
same as the name of the sys.defs file.

To use MIG, give the name of the “ .defs”  file or files and any switch values on a MIG
command line, for example:

mig –v random.defs

If  random is the subsystem name declared in the definitions file, then MIG will produce
the files random.h, randomUser.c and randomServer.c as output. If the “–MD” switch
was given, a random.d file will also be generated.



Mach 3 Server Writer’s Guide 29 

CHAPTER 4 Basic IPC–Based Servers

A server has a wide range of concerns in order to correctly function.. This chapter con-
cerns the details involved in writing a basic single-threaded server. Multi-threaded serv-
ers are covered in CHAPTER 6.

Basic Request Processing

Unlike most application programs that perform some processing to produce some results
and then terminate, a server (almost) never terminates; it continues to process in a loop,
receiving requests for service from its clients, performing them, returning results and
waiting to receive more requests.

The details of the mach_msg call and the format of Mach messages are sufficiently in-
volved that they are best left, and fortunately can be left, to system supplied library rou-
tines (and MIG generated stubs). The basic form of a server is as follows:

/*
Allocate a service port from which the server will receive client request

*/
messages.

[1] (void) mach_port_allocate (mach_task_self (), 
MACH_PORT_RIGHT_RECEIVE, &service_port);

/*

*/
“Announce” the request port in some way so that clients can find it.

[2] result = netname_check_in (name_server_port, “service-name”, 
mach_task_self (), service_port);

[3] if ( result != KERN_SUCCESS)
[4] die horribly...
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/*
Use mach_msg_server to loop over all incoming messages, handling error
cases, disposition of messages, etc. while calling the server’s message de-

*/
multiplexing routine (normally generated by MIG).

[5] result = mach_msg_server (MIG_demux_server, MAX_MSG_SIZE, 
service_port);

[6] terminate...

The mach_msg_server routine is the basic server loop. It receives an initial request mes-
sage, processes it and sends a reply while waiting for the next client request. The server
loop routine, beside implementing the basic server driver, hides important details con-
cerning the mach_msg call, especially error conditions.

The message de-multiplexing server routine called by mach_msg_server,

boolean_t demux_server (mach_msg_header_t *request-msg, 
mach_msg_header_t *reply-msg),

returns TRUE if this function processed the request. In any case, it must initialize the re-
ply message. This function is normally the service_server routine generated by MIG.
This routine hides the details of the format of Mach messages. It is this routine that calls
the actual target server routine.

This basic structure handles all of the details of basic RPC communication with a client.
In particular, it handles message formats, handling of request and reply port rights, mar-
shalling and un-marshalling of arguments, method dispatch and error handling.

The use of mach_msg_server provides a variety of benefits:

• Uses combined send/receive whenever possible.

• Sends a reply message if there is a reply port.

• De-allocates resources in request message unless server function consumes them.

• De-allocates resources in reply message if it isn't sent.

• Protects against too-large request messages.

• Protects against dead reply ports.

• Protects against “full” reply ports.

Almost all of the remaining details of request processing are concerned with details of
the operation of the service routines themselves.

For example, given the simple MIG definition:

[1] routine getbalance
[2] (
[3] server : mach_port_t;
[4] out balance : int
[5] )

with the corresponding client call:
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[1] result = getbalance (server, &balance);

the server only need provide the following simple service routine:

[1] kern_return_t getbalance (mach_port_t server, int *balance)
[2] {
[3] * balance = server_balance;
[4] return KERN_SUCCESS;
[5] }

Handling Multiple Request Types
The service_server routine generated by MIG de-multiplexes messages associated with a
single MIG definition file. It is sometimes the case that a server needs to handle messag-
es that may be received from a given port that were generated by multiple definition files.
In such cases, a custom de-multiplexing routine must be constructed.

The following example uses the service_server_routines generated by MIG. (The con-
struct below is faster than calling the various service_server routines in succession.)

[1] boolean_t multiple_service_demux (mach_msg_header_t *inmsg, 
mach_msg_header_t *outmsg)

[2] {
[3] mig_routine_t routine;
[4] mig_reply_setup (& inmsg, &outmsg);
[5] if (( routine = sys1_server_routine (& inmsg) != 0) ||
[6] (routine = sys2_server_routine (& inmsg) != 0) ||
[7] (routine = sys3_server_routine (& inmsg) != 0))
[8] {
[9] (* routine) (& inmsg, &outmsg);

[10] return TRUE;
[11] }
[12] else
[13] return FALSE;
[14] }

Synchronous, Asynchronous and Deferred Processing
Most client–server interactions are synchronous (RPC): the client makes a request of the
server and waits for a response; the server receives the request and directly replies. This
mode of operation is declared as a MIG routine. This mode of operation is recommended
because of general simplicity.

The problem with synchronous processing is the fact that clients must wait. This can ei-
ther lead to loss of parallelism (the client thread can’t be doing anything else), or a poten-
tial source of denial-of-service if the server is not trusted (as is the case for external
memory managers). For these circumstances, asynchronous processing can be desirable.
With asynchronous processing, the client does not wait for a response; at some later time
the client may receive a reply, but need not. Asynchrony on the server side can involve
deferring client requests, processing them out of order (by priority order, for example).
Asynchronous processing is discouraged for general use for a variety of reasons:
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• Asynchronous programming is difficult. It is also difficult to maintain; both the client
and server code looks like an RPC; the asynchrony is not immediately evident.

• The server must be very careful about the order in which it executes client requests.

• The server’s request port is no longer the sole source of control flow; the server also
contributes in the way that it defers or processes these requests.

• Since it is the most common use of Mach IPC, Mach is optimized for synchronous
processing. In particular, combined send/receive calls are the most efficient (and the
type used by the MIG RPC stubs and mach_msg_server).

Asynchronous processing is necessary at times. There are two ways in which this can oc-
cur.

First, the asynchrony can be explicitly declared in MIG as a simpleroutine.

[1] simpleroutine asetbalance
[2] (
[3] server : mach_port_t;
[4] in balance : int
[5] )

with the corresponding client call:

[1] result = asetbalance (server, balance);

has the following (non-replying) service routine:

[1] kern_return_t asetbalance (mach_port_t server, int balance)
[2] {
[3] server_balance = balance;
[4] return KERN_SUCCESS;
[5] }

Notice that both the client and server routines appear the same as their synchronous coun-
terparts. The client call still returns a result; this is the success of the message queuing.
The server routine also returns a result value to indicate to the server loop that it has ac-
cepted the request.

In typical asynchronous use, the server would eventually return a reply to the client. This
reply would also have to be declared as a simpleroutine to MIG. For example, given what
appears to a client as a synchronous request:

[1] subsystem client_example 362700;
[2] routine getbalance
[3] (
[4] server : mach_port_t;
[5] out balance : int
[6] )

with the corresponding client call:

[1] result = getbalance (server, &balance);
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The server could process this asynchronously with the following pair of MIG definitions:

[1] subsystem server_example 362700;
[2] simpleroutine getbalance
[3] (
[4] server : mach_port_t;
[5] sreplyport reply_port : mach_port_make_send_once_t;
[6] out balance : int
[7] )

Notice that the server’s view of this interface has the same message ID but differs in that
it is declared as a simpleroutine. An important addition is the sreplyport declaration.
Since a reply must be generated explicitly by the server, the server must know the reply
port itself, instead of this being known merely by the server loop routine.

Since the server is so declared, the MIG stub does not expect a reply. Not only must the
server generate a reply, but the reply message must have its own MIG definition. A reply
message consists of:

• The client’s reply port.

• The client’s result code.

• Any return values.

[1] type reply_port_t = MACH_MSG_TYPE_MOVE_SEND_ONCE ctype: 
mach_port_t;

[2] msgoption MACH_SEND_TIMEOUT;
[3] subsystem server_example_reply 363700;
[4] simpleroutine getbalance_reply
[5] (
[6] reply_port : reply_port_t;
[7] in result : kern_return_t;
[8] in balance : int
[9] )

Note that the reply message ID is 100 more than the request message ID. Note that what
were output values in the routine are now input values to the reply stub. This pair of mes-
sages could have the following (effectively synchronous) routine:

[1] kern_return_t getbalance (mach_port_t server, mach_port_t reply_port, int 
*balance)

[2] {
[3] result = getbalance_reply (reply_port, KERN_SUCCESS, 

server_balance);
[4] return KERN_SUCCESS;
[5] }

In line [3], the KERN_SUCCESS value is the result code to be returned to the client. The
KERN_SUCCESS value in line [4] indicates to the MIG stub that the client request was
accepted.

The msgoption of MACH_SEND_TIMEOUT is supplied to provide protection against a
full reply port. This will cause the send to time-out (after zero time since the MIG stubs
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provide a zero value for the time-out argument to mach_msg) if the message cannot be
sent.

In some cases, a server may provide a synchronous interface for which some requests for
service are indeed handled synchronously but for which some requests must be deferred
(perhaps processed out of order) and therefore processed asynchronously. In this case,
the client would still see the synchronous (routine) MIG definition. The server also wants
to use this definition, since it wants to use synchronous processing when possible. A serv-
er routine can have it both ways, that is, to be able to synchronously or asynchronously
handle different requests as they come in. To do this, the server declares its interface as a
routine. It also needs to declare a simpleroutine reply message as above to handle the cas-
es when it will defer processing and send its own response. When the server routine does
handle a request synchronously, it returns KERN_SUCCESS. When the routine wishes
to defer processing, it returns MIG_NO_REPLY. This tells the server loop not to return a
reply, but otherwise indicates the server routine did accept the client’s request.

Consume-On-Success
The server loop and message de-multiplexing routines handle the details of message for-
mats and transmittal. The in-coming request and out-going reply message headers, as
well as the in-line data and descriptors, are considered the property of mach_msg_serv-
er. The server routine allocates space for the messages. It recycles these spaces as it re-
ceives additional messages. For in arguments to the service function, this is not a
problem; all of these values are passed by value. For out arguments, which are passed by
pointer reference (according to C requirements), this can be a potential source of error;
the space to which these pointers refer will be recycled when the service routine returns
so it must not attempt to hold these pointers once it returns.

Data not contained in the message body (out-of-line, declared as pointer types (“^”) in
MIG) or port rights (remember that the value in the message is a port name, the actual
right is kernel protected and not actually in the message) need special processing. These
resources (port rights and out-of-line memory) must be counted in some way and de-allo-
cated when no longer needed. The responsibility for dealing with these resources varies
with circumstances.

The basic rule is referred to as consume-on-success. Any resources present in the request
message are the responsibility of the service function, if it is successful in responding to
the request. Success is defined in two ways:

• Returning KERN_SUCCESS. This says that the user’s request was processed and all
in-coming resources are recorded or de-allocated.

• Returning MIG_NO_REPLY. This says that the user’s request has been accepted and
all in-coming resources are recorded by the server routine.

If the server routine returns any other value, it is assumed that the server routine has re-
jected the request. As such, mach_msg_server will destroy all resources present in the
in-coming message. This behavior occurs whether the server routine was a routine or a
simpleroutine. Therefore, the return code from asynchronous server functions is impor-
tant.
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For example:

[1] type memory_t = ^array [] of MACH_MSG_TYPE_INT ctype: vm_address_t;
[2] routine setvalues
[3] (
[4] server : mach_port_t;
[5] in values : memory_t
[6] )

with the corresponding client call:

[1] address = 0;
[2] (void) vm_allocate (mach_task_self (), &address, sizeof (int) * size, TRUE);
[3] fill in values...
[4] result = setvalues (server, address, size);
[5] vm_deallocate (mach_task_self (), address, sizeof (int) * size);

(Of course, the values parameter could have the de-allocate flag set.) The corresponding
server routine would be as follows:

[1] kern_return_t setvalues (mach_port_t server, vm_address_t address, vm_size_t 
size)

[2] {
[3] if (size > MAX_SIZE)
[4] return SERVICE_TOO_BIG;
[5] copy values...
[6] vm_deallocate (mach_task_self (), address, sizeof (int) * size);
[7] return KERN_SUCCESS;
[8] }

Notice that the memory is de-allocated only in the success path.

Likewise,

[1] routine giveport
[2] (
[3] server : mach_port_t;
[4] in port : mach_port_t = 

MACH_MSG_TYPE_MOVE_RECEIVE
[5] )

with the corresponding client call:

[1] (void) mach_port_allocate (mach_task_self (), 
MACH_PORT_RIGHT_RECEIVE, &port);

[2] result = giveport (server, port);

The corresponding server routine would be as follows:

[1] kern_return_t giveport (mach_port_t server, mach_port_t port)
[2] {
[3] if (MACH_PORT_VALID (port))
[4] mach_port_mod_refs (mach_task_self (), port, 

MACH_PORT_RIGHT_RECEIVE, -1);
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[5] return KERN_SUCCESS;
[6] }

What about resources in reply messages? Since the server routine loses control after re-
turning to the MIG stub, it can do nothing. Therefore, mach_msg_server has the respon-
sibility. The only way to dispose of the resources in the reply message is to use the
appropriate port types that cause movement of the rights, or the appropriate de-allocate
flag so that out-of-line memory is deleted when the reply message is queued. If the mes-
sage cannot be delivered, mach_msg_server takes the responsibility of destroying all re-
sources that would have been destroyed (or moved) if the message had been sent.

Port Reference Maintenance
As mentioned above, server routines are responsible for the maintenance of the port
rights they receive in messages. Also, the interface definitions must specify the correct
disposition of port rights in outgoing (reply) messages.

The request port in the incoming message is not a concern. This port right is a special
case in message transmission; the act of receiving the message does not cause the recep-
tion of the send right (or now dead send-once right) used to send the message. The port
name in the received message header names the receive right over which the message
was received; the send right count for this name is unaffected.

MIG generated stubs produce send-once rights for reply ports. As such, when the server
produces a reply, this right will vanish. If a reply is explicitly generated, as in the exam-
ple above, the reply port (which appears as the request port for the reply generating stub)
must specify MACH_MSG_TYPE_MOVE_SEND_ONCE. (Standard type mach_port_t
defaults to MACH_MSG_TYPE_COPY_SEND.)

The difficulties arise when other port rights are received in a message. These port rights
do accumulate in the server. For instance, every message from the kernel to an external
memory manager receives a new send right for the memory cache control port to name
the kernel making the request. The server can remove each user right reference each time
it receives one, but this can be costly. Instead, it is typical practice to keep a count of all
such accumulated rights and to periodically remove them en masse.

Single-Threaded Server Example

The following source is a simplified version of the core of the machid server. This server
maintains a mapping between port (send) rights and MachIDs (integers) naming the
ports. The server provides requests to return a send right given a MachID or to return the
MachID given a send right. All send rights to the same port will have the same MachID.
Whenever a new send right is presented to the server (one it hasn’t seen before), a new
MachID is assigned for it. The <MachID, send right> pair is added to a pair of hash ta-
bles. This entry will continue to exist until the port is destroyed. The server becomes
aware of this via a dead-name notification for the port.
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Type Definitions
The definition of the server’s interface includes a custom C type mach_id_t which de-
fines the client name for a send right and the MIG equivalent thereof.

[1] #ifndef _MACHID_TYPES_H_
[2] #define _MACHID_TYPES_H_
/*

File: machid_types.h
Author: Richard P. Draves

*/
External definitions for machid.

[3] typedef unsigned int mach_id_t;
[4] #endif _MACHID_TYPES_H_

MIG types. It is good practice to place type definitions in separate MIG files from the in-
terface definitions. Notice the importation of the corresponding C header file.

[1] #ifndef _MACHID_TYPES_DEFS_
[2] #define _MACHID_TYPES_DEFS_
/*

File: machid_types.defs
Author: Richard P. Draves

*/
MIG definitions for machid.

[3] #include <mach/std_types.defs>
[4] type mach_id_t = unsigned;
[5] import “machid_types.h”;
[6] #endif _MACHID_TYPES_DEFS_

Interface Definitions
Notice the use of userprefix and serverprefix declarations. In this way, client and server
side routines will have distinct names. This can be very useful if both client and server
functions are bound into the same program, perhaps during testing.

The register function returns a MachID given a send right. It is named register because
it registers the new port right if not previously known. The MACH_MSG_TYPE_P-
ORT_SEND indicates that the server routine will receive a send right; whether that right
was copied, moved or made by the client is not known (or relevant).

The lookup function returns a port right given a MachID. Notice that the output is de-
clared as MACH_MSG_TYPE_MOVE_SEND, which will remove a user reference from
the server’s send right. This is done to help keep down the number of user references that
are accumulating in the server.

/*
File: machid.defs
Author: Richard P. Draves

*/
MIG interface for machid.

[1] subsystem machid 4375300;
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/*
A simple interface to establish and query mappings between send rights and

*/
MachIDs.

[2] userprefix machid_;
[3] serverprefix do_;
[4] #include <mach/std_types.defs>
[5] #include “machid_types.defs”
[6] routine register
[7] (
[8] server : mach_port_t;
[9] port : mach_port_t = 

MACH_MSG_TYPE_PORT_SEND;
[10] out name : mach_id_t
[11] );
[12] routine lookup
[13] (
[14] server : mach_port_t;
[15] name : mach_id_t;
[16] out port : mach_port_t = 

MACH_MSG_TYPE_MOVE_SEND
[17] );

Server Program Definitions
The server source itself follows. This basic translation service is derived from the Mach
3 machid server.

port_record_t defines the relationship between a port right and a MachID. Notice the
maintenance of the count of current user references (send right count) for the port right.
This example also shows the desired hash function for port names given the current im-
plementation of Mach IPC.

/*
File: machid.c
Author: Richard P. Draves

*/
MachID to name translation server.

[1] #include <stdio.h>
[2] #include <mach.h>
[3] #include <mach/message.h>
[4] #include <mach/notify.h>
[5] #include <mach_error.h>
[6] #include “machid_types.h”
/*

*/
Port–name records

[7] static mach_id_t next_machid_name = 1;
/*

MachID to be assigned to next new

*/
port

[8] typedef struct port_record
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[9] {
[10] struct port_record *pr_pnnext;

/*

*/
link for port→name hash table

[11] struct port_record *pr_npnext;
/*

*/
link for name→port hash table

[12] mach_port_t pr_port;
/*

*/
a send right for the port

[13] mach_port_urefs_t pr_urefs;
/*

*/
number of user references we hold

[14] mach_id_t pr_name;
/*

*/
the MachID for the port

[15] } port_record_t;
[16] #define HASH_TABLE_SIZE 256

/*
good hash function for port names
combine the low 8 bits and the

*/
high 24 bits

[17] #define PORT_HASH (port) ((((port) & 0xff) + ((port) >> 8)) 
% HASH_TABLE_SIZE)

[18] #define NAME_HASH (name) ((name) % HASH_TABLE_SIZE)
/*

*/
Hash table headers

[19] static port_record_t *port_to_name 
[HASH_TABLE_SIZE];

[20] static port_record_t *name_to_port 
[HASH_TABLE_SIZE];

Hash Table Search Routines
/*

*/
Look for a port in the port→name hash table

[21] static port_record_t * find_port (mach_port_t port)
[22] {
[23] port_record_t * this;
[24] for (this = port_to_name[PORT_HASH(port)]; this != NULL; this = 

this→pr_pnnext)
[25] if (this→pr_port == port)
[26] return this;
[27] return NULL;
[28] }
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/*

*/
Look for a name in the name→port hash table

[29] static port_record_t * find_name (mach_id_t name)
[30] {
[31] port_record_t * this;
[32] for (this = name_to_port[NAME_HASH(name)]; this != NULL; this = 

this→pr_npnext)
[33] if (this→pr_name == name)
[34] return this;
[35] return NULL;
[36] }

User Reference Count
The add_reference routine is called when a send right is received. Most of the time this
routine merely counts the new send right. When this count exceeds a reasonable bounds,
the extra rights are removed en masse.

sub_reference (subtract reference) is called when a port right is being returned to a cli-
ent. This routine mostly subtracts from the user reference count. If that would remove the
last reference (thereby deleting our send right), a number of user references are added
(prior to returning this right to the client).

/*

*/
User reference count manipulation.

[37] #define MAX_UREFS 1000
/*

*/
max urefs we will hold for a port

[38] #define MORE_UREFS 100
/*

when we need urefs, how many to

*/
make

/*

*/
Add a user-reference to the port record

[39] static void add_reference(port_record_t *pr)
[40] {
[41] kern_return_t kr;
[42] if (++pr→pr_urefs > MAX_UREFS)
[43] {

/*

*/
Remove excess user references held by this module

[44] kr = mach_port_mod_refs(mach_task_self(), pr→pr_port, 
MACH_PORT_RIGHT_SEND, 1 – 
pr→pr_urefs);

[45] if (kr == KERN_INVALID_RIGHT)
[46] kr = mach_port_mod_refs(mach_task_self(), 

pr→pr_port, 
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MACH_PORT_RIGHT_DEAD_NAME
, 1 – pr→pr_urefs);

[47] if (kr != KERN_SUCCESS)
[48] quit (1, “machid: add_reference: 

mach_port_mod_refs: %s\n”, 
mach_error_string(kr));

[49] pr→pr_urefs = 1;
[50] }
[51] }

/*

*/
Take a user-reference from the port record

[52] static void sub_reference(port_record_t *pr)
[53] {
[54] kern_return_t kr;
[55] if (––pr→pr_urefs == 0)
[56] {

/*

*/
Create more user references for this module

[57] kr = mach_port_mod_refs(mach_task_self(), pr→pr_port, 
MACH_PORT_RIGHT_SEND, 
MORE_UREFS);

[58] if (kr == KERN_INVALID_RIGHT)
[59] kr = mach_port_mod_refs(mach_task_self(), 

pr→pr_port, 
MACH_PORT_RIGHT_DEAD_NAME
, MORE_UREFS);

[60] if (kr != KERN_SUCCESS)
[61] quit (1, “machid: sub_reference: 

mach_port_mod_refs: %s\n”, 
mach_error_string(kr));

[62] pr→pr_urefs += MORE_UREFS;
[63] }
[64] }

Service Routines
The following name_lookup and port_lookup routines do the actual work of locating
names, creating new entries and maintaining the reference counts. They form the body of
the actual top level server routines.

Note that name_lookup accounts for the received send right whether it is previously
known or not. It does this once it finds or creates the corresponding port record. port_-
lookup, on the other hand, subtracts a reference because of the use of MACH_MSG_-
TYPE_MOVE_SEND when returning this right to the client.

/*
Convert a send right to our exported name, consuming a user-reference for the

*/
send right

[65] static mach_id_t name_lookup (mach_port_t port)
[66] {
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[67] port_record_t * this, ** bucket;
[68] mach_port_t previous;
[69] kern_return_t kr;
[70] if (!MACH_PORT_VALID (port))
[71] return 0;
[72] this = find_port (port);
[73] if (this != NULL)
[74] {

/*

*/
Found an existing port record

[75] add_reference (this);
[76] return this→pr_name;
[77] }

/*

*/
No port record, so create a new one

[78] this = (port_record_t *) malloc (sizeof *this);
[79] if (this == NULL)
[80] quit (1, “machid: malloc failed\n”);
[81] this→pr_port = port;
[82] this→pr_name = next_machid_name++;
[83] this→pr_urefs = 1;

/*

*/
consume a user-reference

/*

*/
Link record into port→name hash table

[84] bucket = &port_to_name[PORT_HASH(port)];
[85] this→pr_pnnext = *bucket;
[86] *bucket = this;

/*

*/
Link record into name→port hash table

[87] bucket = &name_to_port[NAME_HASH(this→pr_name)];
[88] this→pr_npnext = *bucket;
[89] *bucket = this;

/*

*/
Request a dead-name notification

[90] kr = mach_port_request_notification(mach_task_self(), port, 
MACH_NOTIFY_DEAD_NAME, TRUE, notify, 
MACH_MSG_TYPE_MAKE_SEND_ONCE, 
&previous);

[91] if ((kr != KERN_SUCCESS) || (previous != MACH_PORT_NULL))
[92] quit (1, “machid: mach_port_request_notification: %s\n”, 

mach_error_string(kr));
[93] return this→pr_name;
[94] }

/*
Convert an exported name to a send right, returning a user-reference for the

*/
send right
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[95] static kern_return_t port_lookup (mach_id_t name, mach_port_t *portp)
[96] {
[97] port_record_t * this;
[98] this = find_name (name);
[99] if (this == NULL)

[100] return KERN_INVALID_NAME;
[101] sub_reference (this);
[102] *portp = this→pr_port;
[103] return KERN_SUCCESS;
[104] }

A port record is destroyed when the port is. This function, port_destroy, is called when
the server receives a dead name notification. Remember that receiving a dead name notifi-
cation adds a user reference to the dead right.

/*
Destroy the port record of a dead port, consuming an extra user-reference for

*/
the dead-name notification

[105] static void port_destroy (mach_port_t port)
[106] {
[107] port_record_t * this, ** prev;
[108] kern_return_t kr;

/*

*/
Remove the port record from port→name hash table

[109] for (prev = &port_to_name[PORT_HASH(port)]; (this = *prev) != 
NULL; prev = &this→pr_pnnext)

[110] if (this→pr_port == port)
[111] break;
[112] if (this == NULL)
[113] quit (1, “machid: port_destroy: didn't find port\n”);
[114] *prev = this→pr_pnnext;

/*

*/
Remove the port record from name→port hash table

[115] for (prev = &name_to_port[NAME_HASH(this→pr_name)]; (this = 
*prev) != NULL;  prev = &this→pr_npnext)

[116] if (this→pr_port == port)
[117] break;
[118] if (this == NULL)
[119] quit (1, “machid: port_destroy: didn't find port\n”);
[120] *prev = this→pr_npnext;

/*

*/
De-allocate the dead name

[121] kr = mach_port_mod_refs(mach_task_self(), port, 
MACH_PORT_RIGHT_DEAD_NAME, – 
(this→pr_urefs + 1));

[122] if (kr != KERN_SUCCESS)
[123] quit (1, “machid: port_destroy: mach_port_mod_refs: 

%s\n”, mach_error_string(kr));
[124] free ((char *) this);
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[125] }

Top-Level Server Routines
/*

*/
Server functions for the machid interface.

[126] kern_return_t do_register (mach_port_t server, mach_port_t port, mach_id_t 
*namep)

[127] {
[128] mach_id_t name;

/*
We have a port right that must be consumed. name_lookup does this

*/
for us.

[129] name = name_lookup(port);
[130] *namep = name;
[131] return KERN_SUCCESS;
[132] }
[133] kern_return_t do_lookup (mach_port_t server, mach_id_t name, mach_port_t 

*portp)
[134] {
[135] mach_port_t port;
[136] kern_return_t kr;

/*
We must return a port right reference to put into the reply message.

*/
port_lookup returns a reference for us.

[137] kr = port_lookup (name, &port);
[138] if (kr != KERN_SUCCESS)
[139] return kr;
[140] *portp = port;
[141] return KERN_SUCCESS;
[142] }

Notification Routines
/*

Server functions for the notification interface. We should only get dead-name

*/
notifications.

[143] kern_return_t do_mach_notify_dead_name(mach_port_t notify, mach_port_t 
name)

[144] {
/*

The dead-name notification generated an extra reference for the dead

*/
name. port_destroy consumes it for us.

[145] port_destroy(name);
[146] return KERN_SUCCESS;
[147] }
[148] kern_return_t do_mach_notify_port_deleted(mach_port_t notify, mach_port_t 

name)
[149] {
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[150] quit (1, “machid: do_mach_notify_port_deleted\n”);
[151] return KERN_FAILURE;
[152] }
[153] kern_return_t do_mach_notify_msg_accepted(mach_port_t notify, 

mach_port_t name)
[154] {
[155] quit (1, “machid: do_mach_notify_msg_accepted\n”);
[156] return KERN_FAILURE;
[157] }
[158] kern_return_t do_mach_notify_port_destroyed(mach_port_t notify, 

mach_port_t port)
[159] {
[160] quit (1, “machid: do_mach_notify_port_destroyed\n”);
[161] return KERN_FAILURE;
[162] }
[163] kern_return_t do_mach_notify_no_senders(mach_port_t notify, 

mach_port_mscount_t mscount)
[164] {
[165] quit (1, “machid: do_mach_notify_no_senders\n”);
[166] return KERN_FAILURE;
[167] }
[168] kern_return_t do_mach_notify_send_once(mach_port_t port)
[169] {
[170] quit (1, “machid: do_mach_notify_send_once\n”);
[171] return KERN_FAILURE;
[172] }

Server Loop and Main Program
A custom message de-multiplexing routine (machid_demux) is provided so that a single
server loop may service both notification and client request messages. The de-multiplex-
ing routine merely differentiates the type on the basis of the destination port, then calls
the MIG generated de-multiplexing routine for messages associated with that port.

/*

*/
Main server loop support.

[173] static mach_port_t service;
/*

*/
our own service port

[174] static mach_port_t notify;
/*

*/
our notification port

[175] static boolean_t machid_demux (mach_msg_header_t *request, 
mach_msg_header_t *reply)

[176] {
/*

*/
Handle a request message based on the port from which it was received.

[177] if (request→msgh_local_port == service)
[178] return machid_server (request, reply);
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[179] else if (request→msgh_local_port == notify)
[180] return notify_server (request, reply);
[181] else
[182] quit (1, “machid: machid_demux: bad local port %x\n”, 

request→msgh_local_port);
[183] }

/*

*/
Initialization and main server loop

[184] #define MAX_MSG_SIZE 512
/*

An upper bound on messages that

*/
we handle

[185] int main (int argc, char *argv[])
[186] {
[187] mach_port_t pset;
[188] kern_return_t kr;

/*

*/
Allocate our service port and check it into the name service.

[189] (void) mach_port_allocate (mach_task_self(), 
MACH_PORT_RIGHT_RECEIVE, &service);

[190] kr = netname_check_in (name_server_port, “demoMachID”, 
mach_task_self(), service);

[191] if (kr != KERN_SUCCESS)
[192] quit  (1, “machid: netname_check_in: %s\n”, 

mach_error_string (kr));
/*

Allocate a port for receiving notifications and a port set, and put the

*/
service port and the notify port into the port set.

[193] (void) mach_port_allocate(mach_task_self(), 
MACH_PORT_RIGHT_RECEIVE, &notify);

[194] (void) mach_port_allocate(mach_task_self(), 
MACH_PORT_RIGHT_PORT_SET, &pset);

[195] (void) mach_port_move_member(mach_task_self(), service, pset);
[196] (void) mach_port_move_member(mach_task_self(), notify, pset);
[197] kr = mach_msg_server(machid_demux, MAX_MSG_SIZE, pset);
[198] quit (1, “machid: mach_msg_server: %s\n”, mach_error_string(kr));
[199] return 0;
[200] }

Sample Client
/*

File: mclient.c
Author: Richard P. Draves

*/
Sample client for machid.

[1] #include <stdio.h>
[2] #include <mach.h>
[3] #include <mach/message.h>
[4] #include <mach_error.h>
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[5] #include <servers/netname.h>
[6] #include “machid.h”
[7] main (int argc, char *argv)
[8] {
[9] mach_port_t server;

[10] kern_return_t kr;
/*

*/
Lookup the port for the machid service

[11] kr = netname_look_up(name_server_port, “”, “demoMachID”, 
&server);

[12] if (kr != KERN_SUCCESS)
[13] quit (1, “mclient: netname_look_up (demoMachID): %s\n”, 

mach_error_string(kr));
/*

*/
Loop reading and executing commands until eof

[14] for (;;)
[15] {
[16] char command[2];
[17] mach_port_t port;
[18] mach_id_t name;
[19] printf (“mclient>”);
[20] if (scanf(“%1s”, command) < 1)
[21] {
[22] printf(“\n”);
[23] break;
[24] }
[25] switch (command[0])
[26] {
[27] case '?':
[28] case 'h':
[29] printf(“Commands:\n”);
[30] printf (“a – allocate a port\n”);
[31] printf (“d <port> – de-allocate a port\n”);
[32] printf (“r <port> – register a port to get a name\n”);
[33] printf (“l <name>– lookup a name to get a port\n”);
[34] break;
[35] case 'a':

/*

*/
Allocate a port

[36] kr = mach_port_allocate(mach_task_self(), 
MACH_PORT_RIGHT_RECEIVE, 
&port);

[37] if (kr == KERN_SUCCESS)
[38] printf (“allocated port %x\n”, port);
[39] else
[40] printf (“mclient: mach_port_allocate: 

%s\n”, mach_error_string(kr));
[41] break;
[42] case 'd':
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[43] if (scanf (“%x”, &port) < 1)
[44] {
[45] printf (“syntax error\n”);
[46] break;
[47] }

/*

*/
Destroy all rights for the port

[48] kr = mach_port_destroy(mach_task_self(), port);
[49] if (kr == KERN_SUCCESS)
[50] printf (“de-allocated port %x\n”, port);
[51] else
[52] printf (“mclient: mach_port_destroy: 

%s\n”, mach_error_string(kr));
[53] break;
[54] case 'r':
[55] if (scanf (“%x”, &port) < 1)
[56] {
[57] printf (“syntax error\n”);
[58] break;
[59] }

/*

*/
Get a name for the port, using a new send right

[60] kr = machid_register (server, port, 
MACH_MSG_TYPE_MAKE_SEND, 
&name);

[61] if (kr == KERN_SUCCESS)
[62] printf (“register port %x => name %d\n”, 

port, name);
[63] else
[64] printf (“mclient: machid_register: %s\n”, 

mach_error_string(kr));
[65] break;
[66] case 'l':
[67] if (scanf (“%d”, &name) < 1)
[68] {
[69] printf (“syntax error\n”);
[70] break;
[71] }

/*
Convert the name to a send right, which we don't de-

*/
allocate

[72] kr = machid_lookup (server, name, &port);
[73] if (kr == KERN_SUCCESS)
[74] printf (“lookup name %d => port %x\n”, 

name, port);
[75] else
[76] printf (“mclient: machid_lookup: %s\n”, 

mach_error_string(kr));
[77] break;
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[78] }
[79] }
[80] exit(0);
[81] }

Makefile
/*

File: Makefile
Author: Richard P. Draves

*/
Makefile for machid.

[1] all : machid mclient
[2] machid : machid.o machidServer.o
[3] $(CC) –o $@ machid.o machidServer.o –lthreads –lmach
[4] mclient : mclient.o machidUser.o
[5] $(CC) –o $@ mclient.o machidUser.o –lmach
[6] mclient.o : machid.h
[7] machid.h machidUser.c machidServer.c : machid.defs
[8] mig machid.defs
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Mach provides a set of low-level, language-independent primitives for manipulating
threads of control in support of multi-threaded programming. The C Threads package is
a run-time library that provides a C language interface to these facilities. The constructs
provided are similar to those found in Mesa and Modula-2+: forking and joining of
threads, protection of critical regions with mutex variables and synchronization by means
of condition variables.

Naming Conventions

An attempt has been made to use a consistent style of naming for the abstractions imple-
mented by the C Threads package. All types, macros, and functions implementing a giv-
en abstract data type are prefixed with the type name and an underscore. The name of the
type itself is suffixed with _t and is defined via a C typedef. Documentation of the form:

typedef struct mutex {...} * mutex_t;

indicates that the mutex_t type is defined as a pointer to a referent type struct mutex
which may itself be useful to the programmer. (In cases where the referent type should
be considered opaque, documentation such as:

 typedef... cthread_t;

is used instead.)

Continuing the example of the mutex_t type, the functions mutex_alloc and mutex_free
provide dynamic storage allocation and de-allocation. The functions mutex_init and mu-
tex_clear provide initialization and finalization of the referent type. These functions are
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useful if the programmer wishes to include the referent type itself (rather than a pointer)
in a larger structure, for more efficient storage allocation. They should not be called on
objects that are dynamically allocated via mutex_alloc. Type-specific functions such as
mutex_lock and mutex_unlock are also defined, of course.

Initializing the C Threads Package

Initialization of the C threads package is fairly automatic, given the inclusion of
libthreads.a when linking. The libthreads library must be included when linking before
libmach because libthreads redefines certain functions to operate correctly given the
presence of multiple threads.

The header file cthreads.h defines the C threads interface. All programs using C threads
must include this file.

The cthread_init function initializes the C threads implementation. This call is automati-
cally made by _start if the C threads package was linked with the task.

Threads of Control

The C threads package allows for multiple threads of control in a C application.

Creation
When a C program starts, it contains a single thread of control, the one executing main.
The thread of control is an active entity, moving from statement to statement, calling and
returning from procedures. New threads are created by fork operations.

Forking a new thread of control is similar to calling a procedure, except that the caller
does not wait for the procedure to return. Instead, the caller continues to execute in paral-
lel with the execution of the procedure in the newly forked thread. At some later time,
the caller may rendezvous with the thread and retrieve its result (if any) by means of a
join operation, or the caller may detach the newly created thread to assert that no thread
will ever be interested in joining it.

Termination
A thread t terminates when it returns from the top-level procedure it was executing.1 If t
has not been detached, it remains in limbo until another thread either joins it or detaches
it; if t has been detached, no rendezvous is necessary.

1.  This is also effectively true of the initial thread (executing main). After effectively terminating
itself, the initial thread waits for all other threads to terminate. It then terminates the task.
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Stack Management
The C threads package automatically allocates space for the stack for each C thread.
Each C thread will have a stack of the same size. All stacks are page aligned and have a
length which is an integral multiple of the page size. The only control over this process is
control over the size of stacks to be allocated. Such control can only be affected at com-
pile time by declaring (at file scope):

vm_size_t cthread_stack_size = N;

The stack size in effect can be examined at run-time by reading cthread_stack_size.

Thread Management
The sole means of creating new threads is via the cthread_fork function. This function
returns a value of type cthread_t. The cthread_self function returns the cthread_t value
that was returned by cthread_fork to the creator of the thread. This value forms a thread
identifier that uniquely identifies the thread, and hence may be used as a key in data struc-
tures that associate user data with individual threads. Since thread identifiers may be re-
used by the underlying implementation, the programmer should be careful to clean up
such associations when threads exit.

Although a thread automatically terminates when it returns from its top-level function, it
may also terminate itself explicitly with cthread_exit.

The cthread_detach function indicates that the named thread will not rendezvous with
any other thread. cthread_join is used to rendezvous with a thread’s termination. When
a rendezvous occurs, the joining thread proceeds, given the return value from the joined
thread’s top-level function, or the value supplied to cthread_exit, if that is the means of
termination for the joined thread.

It follows that attempting to join one’s own thread will result in deadlock.

The C threads package allows for a single value (of type any_t) to be associated with
each thread, providing a simple form thread-specific “global” variable. This value is set
by cthread_set_data and retrieved with cthread_data. More elaborate mechanisms,
such as per-thread property lists or hash tables, can then be built with these primitives.

The current number of C threads can be obtained from cthread_count.

Execution of Threads
A set of C threads may execute in parallel on multiple processors within a system. Vari-
ous factors, even beyond those involve kernel scheduling, affect the extent of parallelism
achieved by a set of C threads.

Underlying C threads is the notion of cproc’s, and under cproc’s fall Mach threads. It is
Mach threads that are actually managed by the kernel and therefore schedulable on pro-
cessors. A C thread executes only when:
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• A cproc has been assigned to the C thread

• A Mach thread has been assigned to the cproc.

• The kernel has decided to schedule the Mach thread.

(The issues involving the scheduling of Mach threads involves processor sets and task
and thread assignments, policies and priorities and is not covered here.)

A cproc is assigned to a C thread when one is free. By default, cproc’s are created so that
each C thread has its own. However, the number of cproc’s can be limited (with
cthread_set_limit) so that the number of C threads that can be making progress is limit-
ed. A cproc becomes free when the C thread assigned to it terminates.

A Mach thread is assigned to a cproc when one is free. By default, Mach threads are cre-
ated so that each cproc has its own. However, the number of Mach threads can be limited
(with cthread_set_kernel_limit). Making such a limit has a variety of effects:

• The maximum degree of true parallelism is set.

• The kernel overhead associated with the number of Mach threads is controlled.

• Allowing multiple C threads the chance to share a Mach thread reduces the overhead
of synchronization between them by allowing context switches without kernel in-
volvement.

It is possible to force a binding between a C thread and a Mach thread with cthread_-
wire (cthread_unwire undoes this). Wiring a C thread to a Mach thread keeps that C
thread from being serviced by any other Mach thread; it also prevents that Mach thread
from servicing any other C thread. In this way, a Mach thread will always be available to
service this C thread, in the case where the number of Mach threads is being limited to
less than the number of C threads.

The cthread_yield procedure is a hint to the scheduler, suggesting that this would be a
convenient point to schedule another thread to run on the current processor. This may be
required to avoid starvation when the number of Mach threads is limited.

When a C thread executes a blocking kernel function (mach_msg perhaps being the
most extreme example), its corresponding Mach thread is blocked as well. To avoid
blocking an excessive number of Mach threads, a special version of mach_msg,
cthread_mach_msg is provided. This function performs just like mach_msg, but it lim-
its the number of C threads that can be “active” listeners for a port. A C thread is de-
clared an active listener for a port when it calls cthread_msg_active or
cthread_mach_msg specifying a port. It ceases to be an active listener when it calls
cthread_msg_busy or cthread_mach_msg for a different port. If a C thread is not an ac-
tive listener for a port when it calls cthread_mach_msg (intending to perform a message
receive), and making it a listener would exceed the limit set for that port, the C thread it-
self will block (without blocking its underlying Mach thread), thereby providing more
free (un-blocked) Mach threads. The C thread will get to execute its message receive op-
eration when some other C thread stops being a listener for that port.
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This section describes mutual exclusion and synchronization primitives, called mutexes
and condition variables. In general, these primitives are used to constrain the possible in-
terleaving of threads’ execution streams. They separate the two most common uses of
Dijkstra’s P and V operations into distinct facilities. This approach basically implements
monitors, but without the syntactic sugar.

Mutex Variables
Mutually exclusive access to mutable data is necessary to prevent corruption of data. As
simple example, consider concurrent attempts to update a simple counter. If two threads
fetch the current value into a (thread-local) register, increment, and write the value back
in some order, the counter will only be incremented once, losing one thread’s operation.
A mutex solves this problem by making the fetch-increment-deposit action atomic. Be-
fore fetching a counter, a thread locks the associated mutex. After depositing a new val-
ue, the thread unlocks the mutex. If any other thread tries to use the counter in the
meantime, it will block when it tries to lock the mutex. If more than one thread tries to
lock the mutex at the same time, the C threads package guarantees that only one will suc-
ceed; the rest will block.

While a mutex is locked, all other attempts to lock the mutex will block until the mutex
is unlocked. When the mutex is unlocked, one of the blocked threads will then succeed in
locking the mutex. Unlocking a mutex does not guarantee that one of the blocked threads
will run immediately; normally the unlocking thread will continue to run and other
threads will have to wait for assignment to kernel threads.

A mutex variable is locked with the mutex_lock function. This function will block until
the mutex can be (and is) locked. It is fairly common that a thread wishes to lock a mu-
tex, but has other things it can do until it can succeed in locking the mutex. For these pur-
poses, there is the mutex_try_lock function. If this function cannot lock the mutex, it
simply returns instead of blocking (returning a status indicating this occurrence). The
thread can proceed to accomplish other work and try its lock attempt later. A mutex is un-
locked with mutex_unlock.

Condition Variables
Condition variables are used when one thread wants to wait until another thread has fin-
ished doing something. Every condition variable should be protected by a mutex. Con-
ceptually, the condition is a boolean function of the shared data that the mutex protects.
Commonly, a thread locks the mutex and inspects the shared data. If it doesn’t like what
it finds, it waits using a condition variable. This operation also temporarily unlocks the
mutex, to give other threads a chance to get in and modify the shared data. Eventually,
one of them should signal the condition (which wakes up the blocked thread) before it un-
locks the mutex. At that point, the original thread will regain its lock and can look at the
shared data to see if things have improved. It can’t assume that it will like what it sees,
because some other thread may have slipped in and mucked with the data after the condi-
tion was signaled.
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The condition_signal function should be called when one thread wishes to indicate that
the condition represented by the condition variable is now true. If any other threads are
waiting (via condition_wait), then at least one of them will be awakened. If no threads
are waiting, then nothing happens. The condition_broadcast function is similar to condi-
tion_signal, except that it awakens all threads waiting for the condition, not just one of
them.

The condition_wait function takes as arguments a mutex m and a condition variable c. It
unlocks m, suspends the calling thread until the specified condition is likely to be true,
and locks m again when the thread resumes. Since there is no guarantee that the condi-
tion will be true when the thread resumes, use of this procedure should always be of the
form:

[1]  mutex_lock(m);
[2]  while (/* condition is not true */)
[3]  condition_wait (c, m);
[4] /* do work requiring condition */
[5] mutex_unlock (m);

Shared variables should be inspected on each iteration to determine whether the condi-
tion is true.

Because of the use of a mutex in the condition_wait call, that mutex must be held by
any caller of condition_signal or condition_broadcast for the associated condition vari-
able, or the results are unspecified.

Precautions
One must take special care with data structures that are dynamically allocated and de-al-
located. In particular, if the mutex that is controlling access to a dynamically allocated
record is part of the record, one must be sure that no thread is waiting for the mutex be-
fore freeing the record.

Attempting to lock a mutex that one already holds is another common error. The offend-
ing thread will block waiting for itself. This can happen when a thread is traversing a
complicated data structure, locking as it goes, and reaches the same data by different
paths. Another instance of this is when a thread is locking elements in an array, say to
swap them, and it doesn’t check for the special case that the elements are the same.

In general, one must be very careful to avoid deadlock. Deadlock is defined as the condi-
tion in which one or more threads are permanently blocked waiting for each other. The
above scenarios are a special case of deadlock. The easiest way to avoid deadlock with
mutexes is to impose a total ordering on the mutexes, and then ensure that threads only
lock mutexes in increasing order.

One important issue the programmer must decide is what kind of granularity to use in
protecting shared data with mutexes. The two extremes are to have one mutex protecting
all shared memory, and to have one mutex for every byte of shared memory. Finer granu-
larity normally increases the possible parallelism, because less data is locked at any one
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time. However, it also increases the overhead lost to locking and unlocking mutexes and
increases the possibility of deadlock.

Management of Synchronization Variables
A mutex or condition variable can be allocated dynamically from the heap, or the pro-
grammer can take an object of the referent type, initialize it appropriately, and then use
its address.

The functions mutex_alloc and condition_alloc provide dynamic allocation of mutex
and condition objects.

mutex_free and condition_free allow the programmer to de-allocate mutex and condi-
tion objects that were allocated dynamically. Before de-allocating such an object, the pro-
grammer must guarantee that no other thread will reference it. In particular, a thread
blocked in mutex_lock or condition_wait should be viewed as referencing the object
continually, so freeing the object “out from under” such a thread is erroneous, and can re-
sult in bugs that are extremely difficult to track down.

A programmer can initialize an object of the struct mutex or struct condition referent type
with mutex_init or condition_init , so that its address can be used wherever an object of
type mutex_t or condition_t is expected. For example, the mutex_alloc function could be
written in terms of mutex_init as follows:

[1]  mutex_t mutex_alloc()
[2] {
[3] register mutex_t m;
[4]  m = (mutex_t) malloc (sizeof (struct mutex));
[5]  mutex_init(m);
[6]  return m;
[7] }

Initialization of the referent type is most often used when the programmer has included
the referent type itself (rather than a pointer) in a larger structure, for more efficient stor-
age allocation. For instance, a data structure might contain a component of type struct
mutex to allow each instance of that structure to be locked independently. During initial-
ization of the instance, the programmer would call mutex_init on the struct mutex com-
ponent. The alternative of using a mutex_t component and initializing it using
mutex_alloc would be less efficient.

mutex_clear and condition_clear should be called before freeing the storage associated
with an object of the struct mutex or struct condition referent type. (Clearing a mutex cur-
rently does nothing; clearing a condition variable broadcasts its condition.) For example,
the mutex_free procedure could be written in terms of mutex_clear as follows:

[1] void mutex_free (mutex_t m)
[2] {
[3] mutex_clear(m);
[4] free ((char *) m);
[5] }
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Shared Variables

All global and static variables are shared among all threads: if one thread modifies such a
variable, all other threads will observe the new value. In addition, a variable reachable
from a pointer is shared among all threads that can de-reference that pointer. This in-
cludes objects pointed to by shared variables of pointer type, as well as arguments passed
by reference in cthread_fork.

When pointers are shared, some care is required to avoid dangling reference problems.
The programmer must ensure that the lifetime of the object pointed to is long enough to
allow the other threads to de-reference the pointer. Since there is no bound on the relative
execution speed of threads, the simplest solution is to share pointers to global or heap-al-
located objects only. If a pointer to a local variable is shared, the procedure in which that
variable is defined must remain active until it can be guaranteed that the pointer will no
longer be de-referenced by other threads. The synchronization functions can be used to
ensure this.

The programmer must remember that unless a library, like the standard C library, has
been designed to work in the presence of re-entrancy, the operations provided by the li-
brary must be presumed to make unprotected use of shared data. Hence, the programmer
must protect against this through the use of a mutex that is locked before every library
call (or sequence of library calls) and unlocked afterwards.

Dynamic allocation and freeing of user-defined data structures is typically accomplished
with the standard C functions malloc and free. The C threads package provides versions
of these functions that work correctly in the presence of multiple threads.

Using the C Threads Package

To compile a program that uses C threads, the user must include the file cthreads.h. To
link a program that uses C threads, the user must specify on the cc command line the -lth-
reads library before the -lmach library. Linking a program in this way is sufficient to ini-
tialize and begin use of the C threads package.

Debugging

Debugging with multiple C threads can be a problem for a variety of reasons:

• The order of thread context switching is not repeatable in successive executions of the
program, so obvious synchronization bugs may be difficult to find.

• Since the program consists of multiple execution points, existing debuggers may not
be usable.1

• The user may need to worry about concurrent calls to C library routines.

1.  A C thread version of gdb is in the works.
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One way to avoid these problems is to set the number of kernel threads to 1 (cthread_-
set_kernel_limit). In this way, the various C threads act as co-routines and may be de-
bugged more as a sequential program.

Associating Names with C Thread Objects
A name (actually, a pointer to a character string) can be associated with a C thread, a mu-
tex or a condition variable. These names are not currently used for anything, but they can
be of use to debugging. Such names are set via cthread_set_name, mutex_set_name
and condition_set_name, and retrieved via cthread_name, mutex_name and condi-
tion_name.

Pitfalls of Preemptively Scheduled Threads
The C run-time library needs a substantial amount of modification in order to be used
with preemptively scheduled threads. Currently the user must ensure that calls to the stan-
dard I/O library are serialized, through the use of one or more mutex variables. (The stor-
age allocation functions malloc and free do not require any special precautions.)

The debuggers currently available under Mach cannot be used on programs that run with
preemptively scheduled threads. Furthermore, the very act of turning on tracing or add-
ing print statements may perturb programs that incorrectly depend on thread execution
speed. One technique that is useful in such cases is to vary the granularity of locking and
synchronization used in the program, making sure that the program works with coarse-
grained synchronization before refining it further.

Examples

The following examples illustrate the use of the C threads facilities.

Hoare Monitors
This program demonstrates the use of these facilities to program Hoare monitors.

/*
Producer/consumer with bounded buffer.
The producer reads characters from stdin and puts them into the buffer. The
consumer gets characters from the buffer and writes them to stdout. The two

*/
threads execute concurrently except when synchronized by the buffer.

[1] #include <stdio.h>
[2] #include <cthreads.h>
[3] typedef struct buffer
[4] {
[5] struct mutex lock;
[6] char * chars;
/*

*/
chars[0...size–1]

[7] int size;
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[8] int px, cx;
/*

*/
producer and consumer indices

[9] int count;
/*

number of un-consumed chars in

*/
buffer

[10] struct condition non_empty, non_full;
[11] } * buffer_t;
[12] void buffer_put (char ch, buffer_t b)
[13] {
[14] mutex_lock (&b→lock);
[15] while (b→count == b→size)
[16] condition_wait (&b→non_full, &b→lock);
[17] ASSERT(0 <= b→count &&  b→count < b→size);
[18] b→chars [b→px] = ch;
[19] b→px = (b→px + 1)% b→size;
[20] b→count += 1;
[21] condition_signal (&b→non_empty);
[22] mutex_unlock (&b→lock);
[23] }
[24] char buffer_get (buffer_t b)
[25] {
[26] char ch;
[27] mutex_lock (&b→lock);
[28] while (b→count == 0)
[29] condition_wait (&b→non_empty, &b→lock);
[30] ASSERT(0 < b→count &&  b→count <= b→size);
[31] ch = b→chars [b→cx];
[32] b→cx = (b→cx + 1)% b→size;
[33] b→count –= 1;
[34] condition_signal (&b→non_full);
[35] mutex_unlock (&b→lock);
[36] return ch;
[37] }
[38] void producer (buffer_t b)
[39] {
[40] int ch;
[41] do
[42] buffer_put ((ch = getchar()), b);
[43] while (ch!= EOF);
[44] }
[45] void consumer (buffer_t b)
[46] {
[47] int ch;
[48] while ((ch = buffer_get (b))!= EOF)
[49] printf (“%c”, ch);
[50] }
[51] buffer_t buffer_alloc (int size)
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[52] {
[53] buffer_t b;
[54] extern char *malloc();
[55] b = (buffer_t) malloc (sizeof (struct buffer));
[56] mutex_init (&b→lock);
[57] b→size = size;
[58] b→chars = malloc ((unsigned) size);
[59] b→px = b→cx = b→count = 0;
[60] condition_init (&b→non_empty);
[61] condition_init (&b→non_full);
[62] return b;
[63] }
[64] #define BUFFER_SIZE 10
[65] int main()
[66] {
[67]  buffer_t b = buffer_alloc(BUFFER_SIZE);
[68] cthread_detach(cthread_fork(producer, b));
[69] cthread_detach(cthread_fork(consumer, b));
[70] return 0;
[71] }

Single Master / Multiple Slaves
The following example shows how to structure a program in which a single master
thread spawns a number of concurrent slaves and then waits until they all finish.

/*

*/
Master/slave program structure.

[1] #include <stdio.h>
[2] #include <cthreads.h>
[3] int count;
/*

*/
number of slaves active

[4] mutex_t lock;
/*

*/
mutual exclusion for count

[5] condition_t done;
/*

*/
signalled each time a slave finishes

/*
Each slave just counts up to its argument, yielding the processor on each
iteration. When it is finished, it decrements the global count and signals that it is

*/
done.

[6] void slave (int n)
[7] {
[8] int i;
[9] for (i = 0; i < n; i += 1)

[10] cthread_yield();
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[11] mutex_lock(lock);
[12] count –= 1;
[13] printf (“Slave finished %d cycles.\n”, n);
[14] condition_signal (done);
[15] mutex_unlock (lock);
[16] }

/*
The master spawns a given number of slaves and then waits for them all to

*/
finish.

[17] void master (int nslaves)
[18] {
[19] int i;
[20] for (i = 1; i <= nslaves; i += 1)
[21] {
[22] mutex_lock(lock);

/*
Fork a slave and detach it, since the master never joins it

*/
individually.

[23] count += 1;
[24] cthread_detach(cthread_fork(slave, random()% 1000));
[25] mutex_unlock (lock);
[26] }
[27] mutex_lock(lock);
[28] while (count!= 0)
[29] condition_wait (done, lock);
[30] mutex_unlock (lock);
[31] printf (“All %d slaves have finished.\n”, nslaves);
[32] cthread_exit(0);
[33] }
[34] int main()
[35] {
[36] count = 0;
[37] lock = mutex_alloc();
[38] done = condition_alloc();
[39] srandom (time ((int *) 0));

/*

*/
initialize random number generator

[40] master ((int) random()% 16);
/*

*/
create up to 15 slaves

[41] return 0;
[42] }



Mach 3 Server Writer’s Guide 63 

CHAPTER 6 Multi-Threaded IPC–
Based Servers

A server has a wide range of concerns in order to correctly function. This is especially
true if the server is multi-threaded; that is, if it can process multiple simultaneous re-
quests. This chapter concerns the details involved in writing a correctly functioning
multi-threaded server. (The basic issues involved in an IPC-based server are covered in
CHAPTER 4.)

Basic Multi-Threaded Server Structure

A multi-threaded server can process multiple requests in parallel. The most obvious rea-
son to write a multi-threaded server is for parallelism. Multi-threading allows a server to
make use of multiple processors. Also, for server operations that can block waiting for I/
O completion, multiple threads can support multiple outstanding I/O operations for great-
er I/O parallelism.

This latter case, overlapping I/O operations, is a special case of the more general issue of
starvation. If a server has some operations that can take a long time, multiple threads al-
low other client requests to be processed in the interim, assuming no interdependencies.

Not all servers should be multi-threaded, though. A server whose operations are invoked
infrequently (there tends to be little parallelism) or whose operations complete quickly or
always prevent other concurrent operations from proceeding would be best served being
single-threaded.

The issues involved in writing a multi-threaded server—server organization, locking, op-
eration sequencing, consistency—are the basic issues involved in all system program-
ming, clearly beyond the scope of a text such as this. These issues are driven by the
nature and extent of parallelism desired and the consistency that must be presented to cli-
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ents. The remainder of this text covers such issues at top level in the context of Mach
IPC-based servers.

Server Organization
With a single-threaded (synchronous) server, it does not matter which service requests
act upon which server maintained objects. There are no conflicts; each request is pro-
cessed in order; order of requests is maintained; the single thread handles whatever ob-
ject a request names, and when it is done, can safely work on a different object for the
next request.

When a server is multi-threaded, the relationship between active threads and the objects
they are manipulating is much more complex. Unless something is done, it is possible
that multiple threads are simultaneously trying to manipulate the same object (one even
possibly trying to delete it).

There are various ways to handle this class of problem. The simplest approach is to have
a single thread that receives all incoming messages and hands them off, portioning them
to service threads. The single thread keeps track of which service threads are doing what
so that it can guarantee order and consistency. This approach has the advantage that order
is easily handled. Request priorities, if provided, are also easily handled. This approach
is not very efficient, though; the single thread is a bottleneck and all requests require addi-
tional context switches for processing.

Most multi-threaded servers utilize multiple threads each directly receiving requests for
service. Given the multiple possible receivers, it is possible to have different mappings of
service threads to objects they service.

At one extreme, each thread can receive from its own (unique) port (set) which names a
set of objects maintained by that thread which is disjoint from the set maintained by all
other threads. In this way, each thread is basically its own single-threaded server. This
was the approach taken by some early Mach servers. The disadvantage of this approach
is that given the static allocation of objects to threads, the server does not adjust to the dy-
namic distribution of requests from clients—it is difficult to make a reasonable assign-
ment of a new object to a thread. Also, this approach does not simplify locking concerns
as much as might be suspected; the various threads must still be concerned with the cre-
ation and deletion of objects.

At the other extreme, each service thread receives requests from a single port (set) repre-
senting all objects maintained by the server. This approach provides the greatest dynam-
ics, but requires the greatest care for operation ordering and consistency.

Either of these multiple thread approaches makes priority management, if provided, diffi-
cult. Different ports (and sets) are typically required to represent different priority of ser-
vice.
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How Many Threads?
The number of threads a server should have depends on the possible or expected parallel-
ism the server will provide.

The number and nature of threads allocated depends on the server organization. If indi-
vidual threads service individual objects or clients, then the allocation of threads is driv-
en by this concern. In a more dynamic server, the question becomes more difficult.

First of all, assuming that the possible usage could be that high, a server would normally
allocate a number of Mach kernel threads at least as large as the number of processors
that could execute them.

The number of C-threads multiplexed onto those kernel threads depends on the possible
resource or locking conflicts that can occur while servicing a client request. For example,
if no client request will ever cause a C-thread to block waiting for another, there is no rea-
son why a one-to-one mapping of C-threads to kernel threads is not possible.

If client requests can block (especially indefinitely), there are various other concerns.
First of all, there should always be a thread waiting for new client requests (such as the
one that may un-block some waiting threads). One possibility is to create a new thread
when the last thread becomes busy. A more deferred approach is to create a new thread
when a thread (perhaps the last one) blocks.

Locking, Operation Sequencing and Consistency

Unless one allocates a different thread for each object (or set) and has no issue with the
dynamic creation and deletion of objects, then one needs to lock server data structures to
guarantee the proper operation sequencing and consistency. This section will briefly
touch on these issues.

Lock Granularity
The basic mechanism used to maintain consistency when manipulating an object is lock-
ing. A lock (called a mutex in C-threads parlance) protects data (not code) by preventing
other threads not holding the lock from manipulating the data protected by the lock while
a thread holding the lock is manipulating the data. A lock protects a data element if a
thread must hold the lock protecting the data element in order to make any reference to
the data element. Since only one thread holds the lock at a time, the data element cannot
be undergoing modification by another thread while being examined or modified by the
lock holding thread.

The granularity of locks is concerned with the extent of data protected by that lock and
the extent of the operations performed upon that data while holding the lock; coarse-
grained locking is in effect when a small number of locks is used, each protecting a wide
range of data (the limit being a single global lock that protects all data); fine-grained
locking is in effect when each lock protects a small amount of data (possibly one lock
per object or even finer-grained than that).
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The locking granularity needed for a server is directly related to the reason why the serv-
er is multi-threaded in the first place: if the server wishes to perform some number of op-
erations concurrently, the data must have sufficiently fine-grained locks to permit those
multiple threads to execute without needing the locks held by the other threads. If
threads are assigned per object or client, locks should be chosen accordingly; if threads
are dynamically assigned, locks are chosen to permit operations to proceed with as few
lock conflicts as possible given the expected distribution of requests.

It is often reasonable to use a small number of coarse-grained locks. For example, if each
service request is very short, a single global lock may be reasonable. The existence of a
single lock doesn’t mean that every operation in the server is serialized; there is still par-
allel reception and validation of service requests, the execution time of which may very
much dwarf the request execution time. Such coarse-grained locks also have the advan-
tage that they can be statically allocated.

When there are more and finer-grained locks, the complexity rises dramatically. Also, it
is possible that the overhead in manipulating the locks can exceed the benefit achieved
from maintaining them.

A typical form of fine-grained locks is a lock per structure. As such, the allocation of a
new structure involves the allocation of a protecting lock as well, most likely in the struc-
ture itself. This brings up the topic of the existence of objects and the protection needed.

Object Existence and Naming
With a single-threaded (synchronous) server, the server has no constraint on its object
naming scheme. Each service request is received, with some object name; the server de-
termines if the named object exists, performs the operation and returns a result.

With a multi-threaded server, the issue of whether an object exists when a request comes
in and locating the object is not trivial. It follows that while the server is receiving and be-
ginning to start a service request for some object that another thread may be trying to de-
lete that object.

A simple approach to this problem is to maintain a table that maps client object names
into data structure references. This table would have a single global lock protecting the
existence of elements in the table. However, this global lock forms a major bottleneck. A
global lock may be necessary to protect the master data structures that govern the exist-
ence of an object (and therefore this global lock must be held to create or delete an ob-
ject), but it is undesirable to have to hold the global lock merely to locate an object for
each and every service request.

The base alternative is to provide clients with some identifier that more directly locates
the object data structures in the server.

One such identifier is an array index. If objects are allocated from an array, clients can di-
rectly supply an array index to name an object’s data structure. The index that a client
supplies may not name an entry in use, but the static location of the entry corresponding
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to that index allows the server to locate and lock the structure safely. With the structure
locked, the server can determine whether the indexed element is still valid.

An alternative is to use the request port name itself. With mach_port_allocate_name, it
is possible to arrange for the request port names to match the address of the object struc-
ture so named. However, since a task does not have complete control over its port name
space (the kernel creates port names for rights received in messages), an arbitrary virtual
address may not be usable as a port name because of name collision. Thus, some care in
choosing port names is necessary

For this latter approach to be valid, the server must arrange for the object address to re-
main valid as long as any client can send a service request, that is, the server cannot free
the object structure until it processes a no-more-senders notification. (A no-more-senders
notification indicates the absence of send rights at the time the message was generated. It
does not, however, indicate the absence of send-once rights. If send-once rights are given
to clients as well, the server must wait until the number the number of send-once generat-
ed messages (and send-once notifications) received matches the number of send-once
rights it generated.) Since the no-more-senders processing must synchronize with other
threads possibly executing (older) requests upon the object, the no-more-senders process-
ing would typically require obtaining the object’s own lock.

The no-more-senders notification races with the production of send rights in the server.
That is, between the time the kernel generates a no-more-senders notification and the
time the server receives it, the server may have generated another send right. Thus, the
server must synchronize with its own send right generation via the make-send count in
the no-more-senders notification message.

The no-more-senders notification message does not include the name of the port (receive
right) losing its senders. Thus, each port for which notifications are desired needs a sepa-
rate port from which the no-more-senders notification can be received so as to differenti-
ate the notifications. To avoid a proliferation of ports, a convenient choice for this port is
to use the object’s port itself (that is, use the same port for both client service requests
and kernel notifications). The server can safely detect kernel notifications (differentiate
them from fake client generated messages) by the IPC right type included in the mes-
sage. Notification messages are sent via send-once rights. If only the kernel is provided
send-once rights (clients need send rights so as to send multiple service requests any-
way), then the server can tell messages that must have originated in the kernel.

Blocking Operations and Deadlock
It is typically the case that the data in a server will be protected by multiple locks. For ex-
ample, there may be a global lock that protects the list of objects and a per-object lock
protecting the state of each object. The order in which these multiple locks can be locked
must be chosen carefully to avoid deadlock.

Deadlock is a situation in which multiple threads are each blocked waiting for locks that
the other threads hold. For example, if thread A holds lock X and is waiting for lock Y,
and thread B holds lock Y and is waiting for lock X, neither thread will ever proceed.
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The typical way to avoid these situations is to choose a (partial) order in which locks
must be acquired. So, given any two locks X and Y, there would be a rule stating whether
X must be obtained first, or Y. If all code locks these locks in the same order, no dead-
lock can occur. It is not necessary that all locks be acquired by all code paths, though; if
locks X, Y and Z must be acquired in that order to prevent deadlock, but a particular
code path needs only locks X and Z, it need not acquire Y. Also, code is free to release
the locks in any order, as long as it does not try to reacquire any locks it released.

It must be remembered that a server’s own locks are not the only source of deadlock. If a
thread makes a request of another thread (or another server) that then makes a (nested) re-
quest of this server/thread, this loop of calls can deadlock if the nested call requires the
same lock (or thread, if the request requires service by a thread dedicated to some func-
tion).

Request Ordering
If a single client makes only synchronous requests of a server, then no matter how the
server is organized, the client’s requests will be processed in order. When there are multi-
ple (asynchronously executing) clients, or clients making asynchronous service requests
(such as the kernel’s external memory management and notification interfaces), the issue
of the order in which these requests should be executed arises.

On the one hand, it would seem as though requests should be executed in strict order ac-
cording to the order in which they were received from the request port. Even this rule,
though, is difficult to implement. If multiple threads can receive messages from a given
port, then service thread A can receive a message, be preempted, be followed by service
thread B which receives the next message and processes it before thread A even had a
chance to record the fact that it received a message.

This problem can be avoided by using the kernel generated sequence numbers associated
with each port. The kernel increments its sequence number whenever a message is re-
ceived. The server would maintain its own count of the last message processed. When a
thread receives a message, it would compare its message’s sequence number with the
server’s count (under protection of some lock, of course); if there is a gap, then some oth-
er threads have received messages that they have not yet processed, so this thread must
defer to them. Note that the set of threads holding messages waiting to be processed
forms the deferred processing queue.

It is not always possible, or desirable, to execute client requests in strict first-in, first-out
order, nor is it always necessary. For example, consider the data read logic in a POSIX
file system. A given client request may require reading more than one disk block. The
read atomicity rules state that the data read must be an atomic view of the file—the read
must not show partial results of not-yet-completed write calls. Thus, all blocks affected
by the data read must be locked while the data is being copied from the blocks. However,
it is not necessary to keep the blocks already in memory locked while waiting for others
to be transferred from disk; only when all blocks are in memory is it necessary to hold
them locked. As such, a request to write one of the blocks that strictly speaking arrived at
the server after the read request could be processed first.
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In general, it is not necessary to execute client requests in strict client order; it is only
necessary to execute them in the order that the clients can detect that they were executed.
That is, if a client cannot tell that a request was executed until it gets its reply or via
some other request of the server, then the server is free to (implicitly) re-order requests
until it does send such a reply or respond to some other request that exposes the com-
pleteness or non-completeness of the previous request.

For increased parallelism, a server may not want to hold an object locked during the en-
tire execution of a service request. In such a situation, then, the server needs some other
defense besides the object lock to prevent no-more-senders processing from deleting the
object. A typical approach is to maintain a count of the number of in-progress operations
on the object (the count being protected by the object lock). The object can be deleted
when the no-more-senders notification is received and the in-progress count hits zero.

Documentation
The locking rules are perhaps the most important property of a server to document. The
server should document:

• The locking hierarchy.

• For each data field, the lock protecting it.

• For each module entry, what locks must be held on entry, what locks can be held and
what locks might be taken or released.

Multi-Threaded Object-Oriented Example

The following C++ example shows a simplified but typical object-oriented server. In this
server, a send right held by a client represents a reference to an object managed by the
server. The server’s port name for the corresponding receive right locates the data struc-
ture representing the object. No-more-senders notification is used to determine when an
object should be deleted. The example maintains a single linked list of objects protected
by a global lock; each object has its own object lock that protects manipulation of the ob-
ject’s visible state.

Interface Definitions
There are two interface definition files. Operations upon objects, sent to the object’s port,
are defined in object.defs. The server’s lookup operation, though, is not sent to an object
port, it is sent to a specific server port that responds to such requests. This operation is de-
fined in ooserver.defs.

The interesting detail in the lookup operation is the use of MACH_MSG_TYPE_-
MOVE_SEND. Refer to the definition of this operation (object_list::find_or_make) for
an explanation.



70 Mach 3 Server Writer’s Guide

Multi-Threaded IPC–Based Servers

/*
File: ooserver.defs
Author: Richard P. Draves

*/
Interface definitions for ooserver.

[1] subsystem ooserver 2783600;
[2] serverprefix do_;
[3] #include <mach/std_types.defs>
/*

*/
Get an object port.

[4] routine ooserver_lookup
[5] (
[6] server : mach_port_t;
[7] name : int;
[8] out object : mach_port_t = 

MACH_MSG_TYPE_MOVE_SEND
[9] );

This file defines a simple change and query operation for the object’s integer value.

/*
File: object.defs
Author: Richard P. Draves

*/
Interface definitions for ooserver objects.

[1] subsystem object 2783700;
[2] serverprefix do_;
[3] #include <mach/std_types.defs>
/*

*/
Operations on an object port.

[4] routine object_change
[5] (
[6] object : mach_port_t;
[7] value : int
[8] );
[9] routine object_query

[10] (
[11] object : mach_port_t;
[12] out value : int
[13] );

Server Program Definitions
The server code follows. It begins with the pre-requisite external definitions (all defined
as extern “C” because they were written for general C use). Included are definitions of
the MIG generated server routines. Notice that some internal routines are also declared
here as extern “C” so that appropriate linkage is generated for them so that they can be
called by MIG generated stubs.

/*
File: ooserver.c
Original C version by Richard P. Draves
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Sample object-oriented server. Each object provides a single value that can be

*/
set and examined.

[1] extern “C”
[2] {
[3] #include <stdio.h>
[4] #include <mach.h>
[5] #include <mach/message.h>
[6] #include <mach/notify.h>
[7] #include <mach_error.h>
[8] #include <mig_errors.h>
[9] #include “cthreads.h”

[10] extern kern_return_t mach_msg_server (boolean_t (*) 
(mach_msg_header_t*, mach_msg_header_t*), 
mach_msg_size_t, mach_port_t);

[11] extern kern_return_t netname_check_in (mach_port_t, char*, 
mach_port_t, mach_port_t);

[12] extern void quit (int, ...);
[13] extern int atoi (char*);
[14] extern boolean_t ooserver_server(mach_msg_header_t*, 

mach_msg_header_t*);
[15] extern boolean_t object_server(mach_msg_header_t*, 

mach_msg_header_t*);
[16] typedef long int size_t;
[17] extern void *malloc(size_t);
[18] extern void free (void*);
[19] extern kern_return_t do_object_change(mach_port_t port, int value);
[20] extern kern_return_t do_object_query(mach_port_t port, int *valuep);
[21] extern kern_return_t do_ooserver_lookup(mach_port_t server, int 

name, mach_port_t *portp);
[22] }

Space and Matching Port Allocator
Since the objects maintained by this server will use their object data structure virtual ad-
dress as their receiving port right name, memory space and receive rights are generated
together. To handle the case where a virtual address accidentally collides with a port
name, the general memory allocator (global ::operator new) is redefined to ensure this
match. The allocator continues to allocate space until it can allocate a matching port
name, then frees any extraneous blocks (badobjects). Any space freed will probably be
usable in the future, as the conflicting rights in client messages come and go.

/*
Allocate a structure and a port together, so that the structure’s address and the

*/
port’s name are the same

[23] static void* ::operator new (size_t size)
[24] {
[25] char * badobjects = NULL;
[26] char * object_p;
[27] kern_return_t kr;
[28] for (;;)
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[29] {
[30] object_p = (char*) malloc(size);
[31] if (object_p == NULL)
[32] quit(1, “ooserver: malloc failed\n”);

/*

*/
Try to allocate a port with this name

[33] kr = mach_port_allocate_name(mach_task_self(), 
MACH_PORT_RIGHT_RECEIVE, 
(mach_port_t) object_p);

[34] if (kr == KERN_SUCCESS)
[35] break;
[36] if (kr != KERN_NAME_EXISTS)
[37] quit(1, “ooserver: mach_port_allocate_name: 

%s\n”, mach_error_string(kr));
/*

*/
Save this structure and try again

[38] * (char **) object_p = badobjects;
[39] badobjects = object_p;
[40] }

/*

*/
Free the unused objects

[41] while (badobjects != NULL)
[42] {
[43] char * next = * (char **) badobjects;
[44] free(badobjects);
[45] badobjects = next;
[46] }
[47] return (void*) object_p;
[48] }

Object Definition
The object class defines the client visible object. It’s definition is divided among three
classes (via inheritance) that define data protected by different locks supporting different
levels of mechanism.

The lowest level class, object_link, defines the fields that link an object into the object
list (friend class object_list). These fields concern the basic existence and naming of an
object. (A class parameterized by type of name would probably be used in a more gener-
al example.) This class defines only a constructor. All manipulations of these fields are
made by the object_list class and so they are private to the object_link class. Since all of
these fields concern existence and naming, they are protected by the global lock (in the
object_list class), another good reason to make them private so derived classes can’t ma-
nipulate them (since they don’t reference the global lock).

The object_base class defines fields concerned with controlling and synchronizing opera-
tions upon objects. These fields are all protected by the object lock, one of the fields.
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The object class, then, only defines the fields of interest to the client visible object (the
object’s value). These fields are also protected by the (inherited as protected) object lock.

[49] class object_list;
/*

*/
forward reference

The object_link class defines the name–port relationship and the linking of the object in
the global list so that a name lookup operation can be done. The name–port relationship
includes the make-send count used to determine when the object may be unlinked (no
more send rights mean that no one continues to care about the object’s value).

[50] class object_link
[51] {
[52] friend class object_list;
[53] public:
[54] object_link (int name, object_link* next_object);
[55] private:

/*
All fields are protected by the global lock. They are all private since only friend

*/
class object_list manipulates them.

[56] object_link* o_next;
/*

*/
next in list of objects

[57] mach_port_t o_port;
/*

*/
port representing the object

[58] mach_port_mscount_t o_mscount;
/*

*/
make-send count for the port

[59] int o_name;
/*

*/
client ID

[60] };
[61] object_link::object_link (int name, object_link* next_object)
[62] {
[63] o_port = (mach_port_t) this;

/*
operator new allocated a port with

*/
this name

[64] o_mscount = 0;
[65] o_next = next_object;
[66] o_name = name;
[67] }

The object_base class encapsulates the operation-in-progress and object synchronization
mechanisms. Included is a lock on all of these fields (and fields in derived classes, which
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is why the lock is protected instead of private). The wait and seqno fields are used to syn-
chronize the beginning of operations; in particular, to defer the beginning of no-more-
senders notifications until all preceding operations have obtained a reference. The alive_-
count field is a count of references to the object that prevent the object from being delet-
ed. (The object can be unlinked whenever the send count is zero; the object_list class
will do this without obtaining the object lock. The object will not actually be deleted,
though, until the global list reference is removed (when the object is unlinked from the
global list) and all operations in progress have completed. The alive count records all of
these references.)

The methods defined for the object_base class (aside from the constructor) add a refer-
ence and remove a reference. synchronize_and_reference adds a reference; while it is at
it, it synchronizes (under protection of the object lock and sequence number fields) with
other operations. is_alive_and_dereference removes a reference; it also indicates wheth-
er there are any remaining references. If there are none, no new references can be added
(the object is not in the global list so no client can find it and no operations are in
progress) so the object can be deleted.

Although the object is locked for every manipulation thereof (and one of the benefits of
the structure here is that each method in object_base and its derived class object take and
release the object lock), the object is not held locked from the time that the message is re-
ceived and synchronized with others to the time that the reply is generated. This is done
here to show the mechanisms when the object is not to be locked for the entire duration.
The alternative would be to have a method that performs object synchronization, return-
ing with the object locked, and another method that unlocks the object. (Additional meth-
ods would be necessary to handle the global list reference.) Having such external
knowledge as to whether the object is locked differs little from the explicit reference ma-
nipulation here. One must be careful holding the lock for the operation duration, though;
the no-more-senders logic would then need to hold both the global and object locks.
Some order would be chosen for these locks (either obtain the global lock before starting
no-more-senders processing, or after the synchronization and object locking has been
done); this order must be the same for all other such manipulations (of which there are
currently none).

[68] class object_base : public object_link
[69] {
[70] public:
[71] object_base (int name, object_link* next_object);
[72] void synchronize_and_reference (int seqno);
[73] int is_alive_and_dereference ();
[74] protected:

/*

*/
All fields are protected by the object lock.

[75] struct mutex o_lock;
/*

*/
lock for the object

[76] private:
[77] struct condition o_wait;
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/*

*/
wait for sequence number

[78] mach_port_seqno_t o_seqno;
/*

*/
sequence number for the port

[79] unsigned int o_alive_count;
/*

internal refs—one for being in the
object list, one for each

*/
outstanding operation

[80] };
[81] object_base::object_base (int name, object_link* next_object)
[82] : object_link (name, next_object)
[83] {
[84] o_alive_count = 1;

/*
One because the object will have a

*/
send right assigned

[85] o_seqno = 0;
[86] mutex_init (&o_lock);
[87] condition_init (&o_wait);
[88] }

The condition_wait call below releases the lock (and re-obtains it); this is okay, since be-
fore that we increment the alive count to indicate our operation in progress, and we ha-
ven’t yet incremented the sequence number indicating that we have synchronized with
other operations in progress.

[89] void object_base::synchronize_and_reference (int seqno)
[90] {
[91] mutex_lock(&o_lock);
[92] o_alive_count++;

/*
We wait for any previous requests to get this far. In particular, we can’t
process a no-more-senders notification for a port while some previous
requests on the port haven’t yet translated the port into an object and

*/
taken a reference for the object, incrementing the alive_count count.

[93] while (o_seqno < seqno)
[94] condition_wait (&o_wait, &o_lock);
[95] o_seqno++;
[96] mutex_unlock(&o_lock);
[97] condition_broadcast(&o_wait);
[98] }
[99] int object_base::is_alive_and_dereference ()

[100] {
[101] int referenced;
[102] mutex_lock(&o_lock);
[103] referenced = (0 != ––o_alive_count);
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[104] mutex_unlock(&o_lock);
[105] return referenced;
[106] }

The object class has only the object’s value to define. The only methods are the query
and change operations. The object lock is held while referencing the object value.

[107] class object : public object_base
[108] {
[109] public:
[110] object (int name, object_link* next_object);
[111] void change (int value);
[112] int query ();
[113] private:

/*

*/
The following fields are protected by the object lock.

[114] int o_value;
/*

*/
the object’s value

[115] };
[116] object::object (int name, object_link* next_object)
[117] : object_base (name, next_object)
[118] {
[119] o_value = 0;
[120] }
[121] void object::change (int value)
[122] {
[123] mutex_lock(&o_lock);
[124] o_value = value;
[125] mutex_unlock(&o_lock);
[126] }
[127] int object::query ()
[128] {
[129] int value;
[130] mutex_lock(&o_lock);
[131] value = o_value;
[132] mutex_unlock(&o_lock);
[133] return value;
[134] }

Object List Definition
The object_list class defines the list of object known to the server. Its methods concern
the existence of the objects (class object).

The find_or_make method locates or creates an object. It can do this using just the glo-
bal lock. If the object exists, the method returns a new send right for the object (using
only fields in the object_link base class). If the object doesn’t exist, it is created. Note
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that the object lock isn’t necessary in such a case because there can be no references to
the object and no other thread can find it (given the holding of the global list lock).

The unreferenced_object method is effectively the reverse of find_or_make. If success-
ful, it unlinks the object. (Actual deletion of the object cannot be done with only the glo-
bal lock held—there may be operations in progress.) This method contains the logic to
synchronize with the kernel’s make-send count logic, so the method will not necessarily
unlink the object.

The port_set method is used simply to return the value of the port set held by the list
naming all object ports.

[135] class object_list
[136] {
[137] public:
[138] object_list ();
[139] mach_port_t find_or_make (int name);
[140] int unreferenced_object (object_link* object_p, 

mach_port_mscount_t mscount);
[141] mach_port_t port_set ();
[142] private:

/*
The global lock protects the object list, which implies the existence and names
of objects, including the mscount. Each object has its own lock for its private

*/
fields.

[143] struct mutex g_lock;
[144] object_link* g_head;

/*

*/
pointer to first object in list

[145] mach_port_t g_object_ports;
/*

*/
port set to hold all object ports

[146] };
[147] object_list::object_list ()
[148] {
[149] mutex_init (&g_lock);
[150] g_head = NULL;

/*

*/
Allocate a port set from which server threads will receive

[151] (void) mach_port_allocate(mach_task_self(), 
MACH_PORT_RIGHT_PORT_SET, &g_object_ports);

[152] }

The structure of the objects and the list allows this method to operate purely with the glo-
bal lock, simply searching the object list for the client supplied name. As mentioned
above, it is safe to create a new object here if the desired one is not found, adding its re-
ceive right to the port set and starting the no-more-senders notification (race).
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The interesting detail here is the use of mach_port_insert_right (MACH_PORT_-
TYPE_MAKE_SEND) and the use of MACH_PORT_TYPE_MOVE_SEND in the MIG
definition for the method (ooserver_lookup). It would seem that this could be replaced
with the use of MACH_PORT_TYPE_MAKE_SEND in the MIG interface definition.
This replacement fails, however, in error cases. To see this, consider the race between the
time that the global lock is released and the time that the send right would be created via
the send of the reply message. During this time a no-more-senders notification could ar-
rive which could delete the object (and the port) thereby causing our reply to use an in-
valid port (possibly a port which could be reassigned during that time). This is why our
make-send count must be incremented here (under protection of the global lock). Howev-
er, if the reply message (which would have made a send right) cannot be sent (such as be-
cause of an invalid reply destination), mach_msg_server will destroy the message
without a send right having been made (thereby not incrementing the kernel’s make-send
count, which must be done so that it matches our count). As such, we need a way to guar-
antee the generation of the send right, by doing it explicitly. The use of MACH_MSG_-
TYPE_MOVE_SEND in the reply message not only arranges for the kernel to give away
the right, but it also cues in mach_msg_server to deallocate the right if the message can-
not be sent.

[153] mach_port_t object_list::find_or_make (int name)
[154] {
[155] object_link* object_p;
[156] mach_port_t port;
[157] kern_return_t kr;

/*

*/
We reference no fields here protected by the object lock.

[158] mutex_lock(&g_lock);
[159] for (object_p = g_head; object_p != NULL; object_p = 

object_p→o_next)
[160] if (object_p→o_name == name)
[161] break;
[162] if (object_p == NULL)
[163] {
[164] mach_port_t previous;

/*

*/
Create a new object and port for it

[165] object_p = new object (name, g_head);
[166] g_head = object_p;
[167] port = (mach_port_t) object_p;

/*

*/
Put the object port into the port set

[168] kr = mach_port_move_member(mach_task_self(), port, 
g_object_ports);

[169] if (kr != KERN_SUCCESS)
[170] quit(1, “ooserver: mach_port_move_member: 

%s\n”, mach_error_string(kr));
/*

*/
Request the initial no-more-senders notification
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[171] kr = mach_port_request_notification(mach_task_self(), 
object_p→o_port, 
MACH_NOTIFY_NO_SENDERS, 1, 
object_p→o_port, 
MACH_MSG_TYPE_MAKE_SEND_ONCE, 
&previous);

[172] if ((kr != KERN_SUCCESS) || (previous != 
MACH_PORT_NULL))

[173] quit(1, “ooserver: 
mach_port_request_notification: 
%s\n”, mach_error_string(kr));

[174] }
[175] object_p→o_mscount++;
[176] port = object_p→o_port;
[177] kr = mach_port_insert_right (mach_task_self(), port, port, 

MACH_MSG_TYPE_MAKE_SEND);
[178] if (kr != KERN_SUCCESS)
[179] quit(1, “ooserver: mach_port_insert_right: %s\n”, 

mach_error_string(kr));
[180] mutex_unlock(&g_lock);

/*
It is safe to unlock everything now, with the port value remaining valid,
even though we have not incremented the alive_count count, because
no new no-more-senders notification will be generated given our new
send right, and any pending no-more-senders notification will find our
make-send count not matching the kernel’s since we have incremented

*/
our mscount.

[181] return port;
[182] }

The following method unlinks the object if there really are no more send rights. Object
deletion doesn’t occur until object_demux finds the last reference removed. If the object
is unlinked, TRUE is returned so the caller knows to remove the global list reference
(alive count) corresponding to being un-linked. The caller of this method faces no race in
removing the global link reference (which requires the object lock) with other threads try-
ing to locate the object (which requires the global lock), even though the caller will not
be holding the global lock when it does, because no new messages will be arriving for
this object (no send rights exist) and the object is unlinked. An interesting property of the
program’s structure is that there is no place in the program where both the global and ob-
ject locks are held at the same time.

/*

*/
Possibly delete (unlink) an object.

[183] int object_list::unreferenced_object (object_link* object_p, 
mach_port_mscount_t mscount)

[184] {
[185] int result = FALSE;
[186] mutex_lock(&g_lock);
[187] if (object_p→o_mscount == mscount)
[188] {
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/*
Since we hold the global lock, no new send rights are being
generated (that are not reflected in our make-send count).
Thus, we are safe to mark the object dead and unlink it. There
may still be other outstanding operations in progress; when
the last one ends (probably this one), the object will be

*/
deleted (by object_demux).

[189] object_link* prev_object_p;
[190] if (object_p == g_head)
[191] g_head = object_p→o_next;
[192] else
[193] {
[194] for (prev_object_p = g_head; prev_object_p != 

NULL; prev_object_p = 
prev_object_p→o_next)

[195] if (prev_object_p→o_next == object_p)
[196] break;
[197] if (prev_object_p == NULL)
[198] quit(1, “ooserver: object not in object 

list\n”);
[199] prev_object_p→o_next = object_p→o_next;
[200] }
[201] (void) mach_port_mod_refs (mach_task_self (), 

object_p→o_port, 
MACH_PORT_RIGHT_RECEIVE, –1);

[202] object_p→o_port = MACH_PORT_NULL;
[203] result = TRUE;

/*

*/
means object no longer known

[204] }
[205] else
[206] {
[207] mach_port_t previous;
[208] kern_return_t kr;

/*
This means a do_ooserver_lookup slipped in and created
another send right for the object, so we shouldn’t destroy it

*/
yet. We request another no-more-senders notification instead.

[209] kr = mach_port_request_notification(mach_task_self(), 
object_p→o_port, 
MACH_NOTIFY_NO_SENDERS, 
object_p→o_mscount, object_p→o_port, 
MACH_MSG_TYPE_MAKE_SEND_ONCE, 
&previous);

[210] if ((kr != KERN_SUCCESS) || (previous != 
MACH_PORT_NULL))

[211] quit(1, “ooserver: 
mach_port_request_notification: 
%s\n”, mach_error_string(kr));

[212] }
[213] mutex_unlock(&g_lock);
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[214] return result;
[215] }

/*

*/
Return the port set into which all object ports are placed

[216] mach_port_t object_list::port_set ()
[217] {
[218] return g_object_ports;
[219] }

MIG Target Routines
The following routines are the actual target routines of the MIG generated stubs, after ini-
tial object reference processing by object_demux. Virtually all work is done by object
methods.

[220] static object_list* all_objects;
/*

*/
pointer to the global object list

[221] kern_return_t do_object_change (mach_port_t port, int value)
[222] {
[223] object* object_p = (object*) port;
[224] object_p→change (value);
[225] return KERN_SUCCESS;
[226] }
[227] kern_return_t do_object_query(mach_port_t port, int *valuep)
[228] {
[229] object*  object_p = (object*) port;
[230] *valuep = object_p→query();
[231] return KERN_SUCCESS;
[232] }
[233] kern_return_t do_ooserver_lookup(mach_port_t server, int name, mach_port_t 

*portp)
[234] {
[235] *portp = all_objects→find_or_make (name);
[236] return KERN_SUCCESS;
[237] }

Object Reference Processing
The object_demux routine brackets all incoming operations on an object so as to proper-
ly maintain the alive_count count. Note that a no-more-senders notification, which can
be viewed as an operation on the global list, is still object specific and must synchronize
with all other operations on an object (to prevent premature unlinking of the object).

[238] static boolean_t object_demux(mach_msg_header_t *request, 
mach_msg_header_t *reply)

[239] {
[240] object* object_p;
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/*

*/
Translate the port into an object

[241] object_p = (object*)  request→msgh_local_port;
/*

It is not necessary to hold the global lock here to maintain the
existence of the object while we try to lock it. We can’t possibly be
racing with some other thread trying to delete the object (that is,
processing a no-more-senders notification) because the strict sequence
number ordering of these messages (the same port is used for no-more-
senders as well as client requests) means that no-more-senders will be
deferred (not started) until the other requests (such as this one) have at

*/
least started (thereby obtaining a reference).

[242] object_p→synchronize_and_reference (request→msgh_seqno);
/*

If this message was sent to a send-once right, then it must be a
legitimate no-more-senders notification. (We give send-once rights

*/
only to the kernel.) Otherwise use object_server, passing the object.

[243] if (MACH_MSGH_BITS_LOCAL(request→msgh_bits) == 
MACH_MSG_TYPE_PORT_SEND_ONCE)

[244] {
[245] mach_no_senders_notification_t *n = 

(mach_no_senders_notification_t *) request;
[246] mig_reply_header_t * r = (mig_reply_header_t *) reply;

/*

*/
Handle the notification

[247] if (all_objects→unreferenced_object (object_p, 
n→not_count))

[248] (void) object_p→is_alive_and_dereference ();
/*

*/
remove global reference

/*
Tell mach_msg_server not to send a reply. we need this

*/
because we didn’t use notify_server()

[249] r→Head.msgh_bits = 0;
[250] r→Head.msgh_remote_port = MACH_PORT_NULL;
[251] r→RetCode = KERN_SUCCESS;
[252] }
[253] else
[254] (void) object_server (request, reply);

/*
Decrement the alive_count count. If we find no references, the object
has already been unlinked from the object chain, there are no extant
send rights for it, therefore no one can find it, so we can delete the

*/
object here (without the global lock).

[255] if (! object_p→is_alive_and_dereference ())
[256] delete object_p;
[257] return TRUE;
[258] }
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Server Loop and Initialization
The following is basic multi-threaded server loop start-up processing.

[259] #define MAX_MSG_SIZE 512
/*

an upper bound on messages that

*/
we handle

[260] static any_t server_thread (any_t arg)
[261] {
[262] kern_return_t kr;
[263] kr = mach_msg_server(object_demux, MAX_MSG_SIZE, 

all_objects→port_set());
[264] quit(1, “ooserver: mach_msg_server: %s\n”, mach_error_string(kr));
[265] return 0;
[266] }
[267] int main (int argc, char *argv[])
[268] {
[269] int i, num_threads;
[270] mach_port_t service;
[271] kern_return_t kr;
[272] switch (argc)
[273] {
[274] case 1:
[275] num_threads = 1;
[276] break;
[277] case 2:
[278] num_threads = atoi(argv[1]);
[279] if (num_threads >= 0)
[280] break;
[281] default:
[282] quit(1, “usage: ooserver [num-threads]\n”);
[283] }

/*

*/
Start object list.

[284] all_objects = new object_list;
/*

*/
Service port created when object_list was allocated.

[285] service = (mach_port_t) all_objects;
[286] kr = netname_check_in(name_server_port, “OOServer”, 

mach_task_self(), service);
[287] if (kr != KERN_SUCCESS)
[288] quit(1, “ooserver: netname_check_in: %s\n”, 

mach_error_string(kr));
[289] for (i = 0; i < num_threads; i++)
[290] cthread_detach(cthread_fork(server_thread, 0));

/*

*/
We service messages sent to the service port.

[291] kr = mach_msg_server(ooserver_server, MAX_MSG_SIZE, service);
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[292] quit(1, “ooserver: mach_msg_server: %s\n”, mach_error_string(kr));
[293] return 0;
[294] }

Sample Client
This sample client program can directly invoke all defined methods. It does not itself
keep track of the rights it accumulates, but it does detect when it releases the last right
for the object last located with the l request.

/*
File: ooclient.c
Author: Richard P. Draves

*/
Sample client for ooserver.

[1] #include <stdio.h>
[2] #include <mach.h>
[3] #include <mach/message.h>
[4] #include <mach_error.h>
[5] #include <servers/netname.h>
[6] #include “ooserver.h”
[7] #include “object.h”
[8] main (int argc, char *argv)
[9] {

[10] mach_port_t server;
[11] mach_port_t object;
[12] kern_return_t kr;

/*

*/
Lookup the port for the ooservice

[13] kr = netname_look_up(name_server_port, “”, “OOServer”, &server);
[14] if (kr != KERN_SUCCESS)
[15] quit (1, “ooclient: netname_look_up(OOServer): %s\n”, 

mach_error_string(kr));
/*

*/
Loop reading and executing commands until eof

[16] object = MACH_PORT_NULL;
[17] for (;;)
[18] {
[19] char command[2];
[20] int value;
[21] mach_port_urefs_t object_refs;
[22] printf (“ooclient> “);
[23] if (scanf(“%1s”, command) < 1)
[24] {
[25] printf(“\n”);
[26] break;
[27] }
[28] kr = KERN_SUCCESS;
[29] switch (command[0])
[30] {
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[31] case '?':
[32] case 'h':
[33] printf (“Commands:\n”);
[34] printf (“l <num> – lookup object port reference\n”);
[35] printf (“d – de-allocate object port reference\n”);
[36] printf (“c <num> – change the value of the 

object\n”);
[37] printf (“q – query the value of the object\n”);
[38] break;
[39] case 'l':
[40] if (scanf (“%d”, &value) < 1)
[41] {
[42] printf (“syntax error\n”);
[43] break;
[44] }

/*

*/
Lookup a send right for the object port

[45] kr = ooserver_lookup (server, value, &object);
[46] if (kr == KERN_SUCCESS)
[47] printf (“Received a send right for the object 

port.\n”);
[48] else
[49] printf (“ooclient: ooserver_lookup: %s\n”, 

mach_error_string(kr));
[50] break;
[51] case 'd':

/*

*/
De-allocate a send right for the object port

[52] kr = mach_port_get_refs (mach_task_self (), 
object, MACH_PORT_RIGHT_SEND, 
&object_refs);

[53] if (kr != KERN_SUCCESS)
[54] {
[55] printf (“ooclient: mach_port_get_refs: 

%s\n”, mach_error_string(kr));
[56] break;
[57] }
[58] kr = mach_port_deallocate(mach_task_self(), 

object);
[59] if (kr == KERN_SUCCESS)
[60] {
[61] if (object_refs == 1)
[62] {
[63] printf (“De-allocated the last send 

right for the object 
port.\n”);

[64] object = MACH_PORT_NULL;
[65] }
[66] else
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[67] printf (“De-allocated a send right 
for the object 
port.\n”);

[68] }
[69] else
[70] printf (“ooclient: mach_port_deallocate: 

%s\n”, mach_error_string(kr));
[71] break;
[72] case 'c':
[73] if (scanf (“%d”, &value) < 1)
[74] {
[75] printf (“syntax error\n”);
[76] break;
[77] }

/*

*/
Change the value of the object

[78] kr = object_change (object, value);
[79] if (kr == KERN_SUCCESS)
[80] printf (“Changed the object's value to 

%d.\n”, value);
[81] else
[82] printf (“ooclient: object_change: %s\n”, 

mach_error_string(kr));
[83] break;
[84] case 'q':

/*

*/
Query the value of the object

[85] kr = object_query (object, &value);
[86] if (kr == KERN_SUCCESS)
[87] printf (“The object's current value is 

%d.\n”, value);
[88] else
[89] printf (“ooclient: object_query: %s\n”, 

mach_error_string(kr));
[90] break;
[91] }
[92] if (kr != KERN_SUCCESS)
[93] object = MACH_PORT_NULL;
[94] }
[95] exit(0);
[96] }

Makefile
/*

File: Makefile
Author: Richard P. Draves

*/
Makefile for ooserver.

[1] all : ooserver ooclient
[2] ooserver : ooserver.o ooserverServer.o objectServer.o
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[3] $(CC) –o $@ ooserver.o ooserverServer.o objectServer.o –lthreads –
lmach –lc++

[4] ooserver.o : ooserver.h object.h ooserver.c
[5] $(CC_PLUS_PLUS) –c ooserver.c
[6] ooclient : ooclient.o ooserverUser.o objectUser.o
[7] $(CC) –o $@ ooclient.o ooserverUser.o objectUser.o –lmach
[8] ooclient.o : ooserver.h object.h
[9] ooserver.h ooserverUser.c ooserverServer.c : ooserver.defs

[10] mig ooserver.defs
[11] object.h objectUser.c objectServer.c : object.defs
[12] mig object.defs
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CHAPTER 7 External Memory 
Managers

Perhaps the most novel of Mach’s features is its support for external (to the kernel, that
is) memory managers. The basic dialog between the memory manager, which maintains
the “backing store” representing an abstract memory object, and the kernel, which main-
tains the physical memory cache (memory cache object) of data from the abstract memo-
ry object, is described in the Kernel Principles document. This chapter looks at that
dialog in more detail, examining a simple example of a memory manager and consider-
ing other details that a memory manager must cover.

Overview

Because of the infinite variety of external memory managers that could be written, it is
difficult in a document such as this to provide sufficiently general information for those
wishing to write an arbitrary manager. In principle, all of the information that one needs
appears in the Kernel Principles and Kernel Interfaces documents. Practice, however, has
shown that producing a correct external memory manager is a difficult task.

This chapter discusses in detail the mechanics of basic memory managers, such as might
appear in the default memory manager. The initial discussion concerns the basics of the
page-in / page-out path, reviewing the kernel interactions and considering the interac-
tions with backing storage that a simple manager would encounter. Of course, not all
managers have separate backing store; some might back storage in their own address
space (such as a shared memory server) or not back storage at all, if they reconstruct pag-
es when needed.

Eventually the discussion leads to an example manager that supports both a paging and a
message interface to a memory object. This simple example illustrates the use of much
of the kernel mechanisms and interfaces. In particular, the example raises the issue of
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maintaining consistency between the page images held by the kernel in its memory ob-
ject cache versus the page image a manager might hold (or that other kernels might
hold). The discussion leading to the chapter’s example considers the simple case of main-
taining strict read–write consistency between a single manager and a single kernel.

After the example, more advanced topics are discussed, but in less detail. Some ideas are
provided for managers that are multi-threaded, although much of these concerns are cov-
ered in CHAPTER 4.

The chapter also includes a brief discussion of consistency management between kernels
sharing a memory object. A full discussion of this topic (distributed shared memory) is
beyond the scope of this text.

Role of a Memory Manager

A memory manager has two responsibilities:

• “Paging” the memory object (supplying data to the kernel to satisfy page-in requests,
accepting the (modified) data back for storage to satisfy page-out requests).

• Providing consistency between backing store and the kernel’s memory object cache
or the memory object caches of multiple kernels.

One would write a memory manager if one had specific requirements for:

• Backing storage management (such as the source of storage or its format, such as
compressed or encrypted).

• Consistency management of the backing store versus the memory cache. Examples in-
clude mapped file support, transaction-based virtual memory or distributed shared
memory.

• Paging mechanisms. The memory manager has direct involvement with the paging
mechanisms for the objects it manages. It has indirect influence on overall paging pol-
icy by its actions.

This chapter concentrates on the issues of mechanism and consistency. The issue of the
management of backing store proper is out of scope for this volume.

Memory Object State

Most of the services of a memory manager concern individual pages or ranges of pages.
Certain operations, mostly initialization and termination, concern the memory object as a
whole.

Initialization
There are two broad phases of memory object initialization.
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A port representing the abstract memory object must be created and made available to cli-
ents that wish to vm_map the object. There is nothing special about this port relative to
port management. The memory manager is free to destroy it when it chooses. Normally,
this would not be done until the object is known to not be in use (until all memory_ob-
ject_terminate messages have been received). 

The abstract memory object is not known to the kernel until some client performs a vm_-
map operation against the abstract memory object port. This results in a memory_objec-
t_init  message being sent to the memory manager. The manager responds with
memory_object_ready (or memory_object_set_attributes if an old form manager)
when ready.

The memory_object_init message carries a send right to the memory cache name port.
This port serves a single purpose: it is the port returned by vm_region in an attempt to
provide the identity of virtual memory regions. This port is normally discarded once re-
ceived.

The memory cache control port is the important value in the memory_object_init mes-
sage. The manager saves this port as the identification of the object being manipulated by
future kernel requests. All kernel–-to–manager messages (except memory_object_termi-
nate) provide a send right to this memory cache control port. These extra send rights ac-
cumulate in the manager which must handle and dispose of them appropriately.

It is common practice to merely count these accumulated rights and to de-allocate them
in bunches, thereby avoiding a (common) extra kernel interaction.

Termination
At some future time, unknown to the manager, all clients will vm_deallocate their ac-
cesses to the object. This will cause a memory_object_terminate message to be sent to
the manager.

Alternately, the manager can invoke memory_object_destroy to destroy the object; the
kernel’s response is the same (memory_object_terminate). If the manager de-allocates
the abstract memory object port (as would happen if it died), the result is the same as
memory_object_destroy. Destroying the object discards its pages. An explicit lock re-
quest (flush) sequence should be used if the pages are desired.

There is a race between the delivery of the memory_object_terminate message and
manager invoked operations upon the object. That is, the kernel can send the terminate
message (and disavow any knowledge of the object) before the manager realizes this and
is therefore still trying to manipulate the object. For this reason, the memory_object_ter-
minate message includes the receive right to the memory cache control port (as well as
the memory cache name port). When the manager receives the memory cache control
port, it should drain any messages from this port, if they carry valuable information. This
would be the case if precious pages could have been supplied to the kernel during this
race.
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It does not follow that when a memory object is terminated that no clients hold rights to
the abstract memory object port. Indeed, the memory_object_terminate message may
be followed by a subsequent memory_object_init message. (Actually, it is currently the
case that the subsequent initialization message can precede the termination message, but
this is scheduled to be corrected in the future.) Of course, when multiple kernels are in-
volved, multiple initialization messages can be received from the various kernels.

Page-in and Page-out

The basic kernel page-in request and kernel page-out eviction path for a page is fairly
simple. What complicates the situation is the asynchronous nature of this path and its re-
lationship to the (typically asynchronous) backing store update path.

In-Transit Pages
The various states of a page (as visible to the memory manager) for the basic page-in /
page-out path are shown in FIGURE 1.

The kernel makes a variety of guarantees involving its protocol:

• No page-in requests (memory_object_data_request) will be made for a resident
page.

• No page-in request will be made for a page with an outstanding (unsatisfied) page-in
request.

FIGURE  1 Basic Page-in / Page-out Path
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• Page-out requests (memory_object_data_return (new form) or memory_object_-
data_write (old form)) will precede a subsequent page-in request for the same page.

The page-in path by itself presents no special difficulty. The kernel will request a page
(memory_object_data_request). The manager will request the page from its backing
store; when the page is received it can be supplied to the kernel (memory_object_data_-
supply (new form) or memory_object_data_provided (old form)). When a page is
evicted, it will be supplied by the kernel to the manager (memory_object_data_return
(new form) or memory_object_data_write (old form)). The manager will write the
page out to its backing store.

The difficulty presented is caused by the relationship between the page-out and page-in
paths. The kernel may request a page that it has just evicted. That is, since the kernel has
no knowledge or understanding of the manager’s interaction with its backing store, the
kernel may request a page that is in transit to the manager’s backing store. This means
that the manager cannot just blindly send pages (asynchronously) to its backing store and
forget about them; the manager must keep track of outstanding backing store activities so
that, if the kernel should request a page on transit to the backing store, the manager can
either supply a copy it is still holding or the manager will wait for the page to be known
to have to reached the backing store (a reply was received) before requesting the page
again from backing store.

Page “Stealing”
Whenever a page is sent to the kernel in a memory_object_data_supply or memory_-
object_data_provided message or sent to the manager in a memory_object_data_re-
turn  or memory_object_data_write message (or in interactions with backing store,
most likely), it is logically copied. Performance is clearly improved if the page is not
physically copied. A page can be stolen (that is, directly moved (mapped) from one place
to another) if three conditions hold: the page is in memory, it is not shared and if it is de-
allocated from its source as it is sent in the message (de-allocate flag set). The kernel
transfers pages to the manager in this way. memory_object_data_supply allows the
manager to specify the de-allocation of the pages it is sending.

Unfortunately, Mach does not track uses of individual pages, and therefore cannot tell
whether an individual page is shared or not. The page stealing code relies on the object
reference count that records all mappings or other uses of the object. If the count is one,
then the object is not shared, and if the object is shared, then the count will be at least
two. False page sharing will be seen when disjoint ranges of an object are mapped. Man-
agers must therefore avoid creating such mappings (e.g., by de-allocating memory in the
middle of the object). Two possible techniques are:

• Creating a separate (buffer) region of memory and using it sequentially

• Passing memory obtained directly from the Mach device interface (which returns data
in newly created memory objects).
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The external memory management interactions may involve multiple pages, but they al-
ways deal with whole pages. Because these interactions are asynchronous, it is not, in
general, possible for the memory manager to know precisely the state of the pages at any
given time. That is, a page may be in-transit (in a message) or in the process of being ma-
nipulated by the kernel (or the hardware).

A simple memory manager such as the default manager is not concerned with this class
of difficulty. This manager does not synchronize with kernel manipulations (actually cli-
ent manipulations) of the pages. The manager deals with one kernel; if that kernel re-
quests a page, the manager knows its contents are the current contents; if that kernel
returns the page, the result must be the latest contents. No other kernel interactions are
meaningful.

Some memory managers, however, need to manipulate their pages at times other than
when the kernel voluntarily gives up access. Possible reasons for this are:

• The manager supports a message interface to access the memory object.

• Like the network shared memory server, the manager needs to provide the latest con-
tents of the page to another node.

• The manager is providing transaction semantics for the pages and needs their value
when a client “commits” them.

These memory managers need to synchronize with kernel manipulations of the pages.

There are a variety of consistency policies that a memory manager may provide with re-
spect to the view that it and its multiple clients (or kernels) have to a given memory ob-
ject. Given sufficient higher level information about client accesses to memory, advanced
consistency protocols are possible.

The most typical consistency policy, that supplied by the default memory manager and
the XMM library, is full read–write consistency. This policy mimics standard hardware’s
shared memory policy—once a client modifies a memory object, those changes are (ef-
fectively) immediately visible to all clients referencing the memory object.

Clients on any given node that share a memory object (vm_map the same abstract memo-
ry object port) automatically receive full read–write consistency. It may seem that a mem-
ory manager could enjoy this same level of consistency with its clients simply by
vm_map-ping the object itself. A memory manager does not typically do this, though,
for two reasons:

• A manager can only share (physical) pages with the kernel on which it is executing,
which is not necessarily the ones on which its clients are executing.

• Direct manager reference to its own memory objects often leads to deadlock. Any ref-
erence at all to the contents of a memory object must be viewed as a potential interac-
tion with its manager, since the kernel can evict pages at any time. Therefore, if the
manager were busy processing some request when it went to touch an object it main-
tains, the result is a circular dependency. If the pager has only one thread handling re-
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quests for this memory object, it will deadlock. Even if it has multiple threads to
support this object, the pager is most likely holding internal locks on the page in ques-
tion when it tries to reference it, again leading to deadlock.

When multiple kernels are involved, the situation becomes even more involved.

Since the various kernels referencing a shared memory object, and the manager manag-
ing it, cannot directly share the memory, it is necessary for these components to interact
to implement their consistency policy.

One way to think about these interactions, in the specific case of full read–write consis-
tency, is to consider the various states of ownership of a page—which entities hold the
current (valid) page contents—and the transitions between these states.

The following sections discuss maintaining full read–write consistency between a manag-
er and a single kernel. Issues involved when there are multiple kernels are discussed at
the end of this chapter.

Page “Ownership”
The memory manager must deal with the state of a page in broad terms having to do with
the potential ownership of the page (that is, who holds a valid copy) and any operation
that the memory manager has requested upon the page (but is not yet known to have com-
pleted). (Actually, the situation can be even more complicated if the memory manager
has sent multiple requests to the kernel to manipulate a single page without waiting for
the kernel’s responses. This section takes the simplifying assumption that only one transi-
tion has been requested at a time.) These ownership states are shown in FIGURE 2 from
the point of view of the memory manager.

There are three general classes of ownership:

• The memory manager holds the only valid copy of the page. This copy may reside in
the address space of the manager, or be placed on some backing storage. The memory
manager is free to modify the page’s contents as it sees fit.

• Both the kernel and the memory manager hold valid copies of the page’s contents.
Neither one of them is allowed to modify the page.

• The kernel holds the only valid copy of the page because it (actually, clients referenc-
ing the virtual page) has the ability to modify the page. In these states it is not known
whether or not the kernel holds modified page contents, or whether the kernel holds
the page at all. (It may have discarded the page without modification.) What is known
is that the manager’s copy of the page may be stale. In these states, if the current con-
tents of the page are desired, it is necessary to interact with the kernel so that it can re-
turn its copy, or return the fact that it does not hold a copy (and therefore the
manager’s copy is valid).

This is also the state for precious pages that have been supplied to the kernel and for
which the manager has not kept a copy. In this case, it is known that the kernel holds
a copy, which may or may not be undergoing modification depending on the access
set. Interaction with the kernel is necessary for the manager to hold a current copy.
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Ownership Transitions
There are two operations a manager can invoke to affect the ownership of a page: memo-
ry_object_data_supply / memory_object_data_provided (or memory_object_da-
ta_unavailable) and memory_object_lock_request. 

• memory_object_data_supply / memory_object_data_provided must be consid-
ered to affect the ownership of the page as soon as the message is sent since it cannot
be known when the kernel will receive (and possibly allow modifications to) the page.

• memory_object_lock_request can cause a variety of ownership changes to occur.
This operation produces a reply for which the manager must be prepared. Whether or
not the ownership is viewed as changed when the message is sent or when the reply is
received depends on the operation being performed.

Sr—data supplied, read access
only, copy held
Sw—data supplied, write access
or precious (with no copy held)
U—lock request, give write access
C—lock request, clean, remove
write access
F—lock request, clean and flush,
remove write access
OK—lock completed received

FIGURE  2 Strict Consistency Page “Ownership” Transitions
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These operations affect merely the validity of the manager’s or the kernel’s page con-
tents. Other operations (such as controlling execute access) are omitted for simplicity
since they do not affect page ownership.

The various transitions in FIGURE 2 are detailed below. Pages start in the manager state;
that is, the manager holds the (only) valid copy. (If the page starts out with no data, mem-
ory_object_data_unavailable can be used instead to cause the kernel to generate an
empty page instead of the manager having to create an empty page to send in the memo-
ry_object_data_provided message, but this can be viewed as an optimization.)

• manager→kernel: This transition can be caused by two events:

• The manager sends a precious page via a memory_object_data_supply
message (in response to a previous memory_object_data_request message)
and the manager does not keep a copy of the page (which is the basic reason
why the page is supplied as precious). The kernel is viewed as holding the
only copy of the page as soon as it is sent. It does not matter whether the
page is given write access; the kernel will return this page to the manager,
modified or not, and interaction with the kernel is necessary if the manager
needs to see the page.

• The manager sends a memory_object_data_supply message (in response
to a previous memory_object_data_request message) that specifies write
access. The kernel must be viewed as holding the only current copy of the
page as soon as it is sent. The manager must always assume that the kernel
holds the current page contents, even though the kernel may discard them at
any time. Only via lock request interactions with the kernel can the manager
know whether the copy it saves is the current page contents.

• manager→both: The manager sends a memory_object_data_supply message (in re-
sponse to a previous memory_object_data_request message) that specifies only
read access. The manager keeps a copy of the page. The kernel must be viewed as
holding a copy of the page as soon as this message is sent. Both the manager and the
kernel hold current page contents, but neither is allowed to modify them since the
changes would not be reflected in the other’s copy.

• kernel→kernel-flushing→manager: The manager sends a memory_object_lock_-
request (flush) to the kernel. When (but not until) the kernel responds (possibly with
memory_object_data_return and ending with memory_object_lock_completed),
it is known that the manager has the sole copy of the page.

• kernel→kernel-cleaning→both: The manager sends a memory_object_lock_request
(clean) to the kernel. When (but not until) the kernel responds (possibly with memo-
ry_object_data_return and ending with memory_object_lock_completed), both
the manager and the kernel will have valid read-only copies. (Of course, the kernel
may discard its copy at any time.) Notice that this sequence races with the basic ker-
nel eviction mechanisms. That is, the kernel may have already sent the (modified)
page via memory_object_data_return before the manager even started this se-
quence. As such, when memory_object_lock_request are being used, it is not possi-
bly to distinguish between a memory_object_data_return that means that the kernel
is providing the current page contents but still keeping a copy versus giving up the
page all together. (memory_object_data_return does return that information, but the
kernel can discard its copy immediately afterward, unless the page is precious.) This
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is why memory_object_data_return is not shown as a meaningful ownership transi-
tion in FIGURE 2. It does follow, though, that the data returned via memory_object_-
data_return is more current than any data the manager holds. If no
memory_object_lock_request operations are ever performed by the manager, then
receiving a memory_object_data_return message does indeed signify transition
from kernel-owned to manager-owned. This observation doesn’t help much, though,
since it only applies to pages that are indeed modified by the kernel. Non-modified
(and non-precious) pages are simply discarded by the page eviction mechanisms, and
so memory_object_lock_request is the only way to be sure that the kernel does not
hold a copy of the page. Of course, if the manager doesn’t care what the ownership is
(the manager never examines the data itself), this is not a concern.

• both→both-flushing→manager: The manager sends a memory_object_lock_request
(flush) to the kernel. When (but not until) the kernel responds (possibly with memo-
ry_object_data_return and ending with memory_object_lock_completed) it is
known that the manager has the sole copy of the page.

• both→kernel-locking→kernel: The manager sends a memory_object_lock_request
(unlock) to the kernel. As soon as this is sent, the kernel must be viewed as being able
to modify the page, and therefore owns it. The memory_object_lock_completed
message merely confirms the action.

Preserving Operation Order During Lock Sequences
Some of these transitions require receiving a memory_object_lock_completed mes-
sage. If the memory manager must serialize its operations upon a given page (which it
typically must do), then it has to wait for this message, and defer processing other opera-
tions upon this page until it does receive the message. Once a memory_object_lock_-
request message has been sent to the kernel for a page, the following messages may be
subsequently received for that page:

• Direct client service requests. Of course, clients can always make direct requests of
the memory manager at any time.

• memory_object_data_request. It is possible that the kernel does not hold the page
in question (it discarded it previously) and now, by coincidence, it is requesting the
page to satisfy some client’s page fault. The kernel is clearly prepared to wait for this
page until the manager completes its lock processing. The manager must not forget
that the kernel is waiting for the page; the kernel never multiply issues page requests.

• memory_object_data_unlock. The kernel is requesting more access for the page.
This will have to wait until lock processing is completed. If the manager’s lock re-
quest involves cleaning, then the kernel will still need to be granted greater access
when the lock sequence is completed. If the manager’s lock request is a flush opera-
tion, though, the kernel will cease to hold the page and so granting greater access will
have no effect. Indeed, the kernel, after flushing the page, will proceed to request the
page back (with the greater access).

• memory_object_data_return. Either the kernel is supplying the requested page as a
result of our lock processing or it is randomly evicting the page. Either way, this sent
page is more current than any copy the manager holds.

• memory_object_terminate. The manager lost the race with the un-mapping of the
object by clients. It follows that any data to be returned from the kernel has been al-
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ready, so the manager has the latest page copy. Any lock processing is aborted since
the kernel clearly did not see the manager’s lock request.

Simple Memory Manager Example

The management of page consistency will be shown with a simple example of a memory
manager. This memory manager can be viewed as the basis for a network shared memory
manager: it supports paging operations to a kernel but it also supports direct requests
upon the memory requiring the use of direct cache management primitives.

Various simplifications are made for this manager:

• The manager supports a single memory object consisting of a single page.

• At most one kernel has the object mapped.

• The manager is single threaded.

• The message-based memory references access only one integer.

Overview
The netmem manager consists of the following files:

• Makefile—Build commands

• netmem_defs.h—Definitions exported to clients

• netmem_msg.defs—MIG definitions of client–server messages

• netmem_msg_reply.defs—MIG definitions of manager reply to client messages (dis-
cussed below)

• netmem_obj.h—Internal definitions

• netmem_pager.c—Memory manager code itself

There is also a simple test client program (netmem_client.c).

Most of the structure of the memory manager can be derived from the sections above.
The only real complication in this manager results from the direct client message inter-
face, resulting in the page consistency protocol described earlier. This protocol requires
that the pager be able to defer processing of some incoming requests to serialize all re-
quests for the page. A queue of pending operations is maintained.

External Definitions
/*

File: netmem_defs.h
Author: David L. Black

*/
External definitions for netmem_pager.

[1] #include <mach/error.h>
[2] #define NETMEM_NAME “netmem_pager”
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/*
Name of the pager for the

*/
nameservice.

/*

*/
Failure codes. Use user-reserved errors.

[3] #define NETMEM_BAD_OBJECT (err_local | err_sub (13)|1)
[4] #define NETMEM_BAD_OFFSET (err_local | err_sub (13)|2)
[5] #define NETMEM_FAILURE (err_local | err_sub (13)|3)

Client Request Definitions
Special MIG definitions are required for client messages because there can be incoming
requests that will not be processed and therefore will not have a reply before returning to
the server loop to obtain the next message.

The request definitions must explicitly specify sreplyport options for the reply port for
the message (lines [7] and [14]) so that the reply port becomes an explicit argument for
the call to the server routines. The server will need to save the reply port if it needs to de-
fer the request.

The requests consist of two simple requests: netmem_read and netmem_write which
each take an object offset and get or set, respectively, the integer at that offset.

/*
File: netmem_msg.defs
Author: David L. Black

*/
MIG interface for messages to simple netmemory server

[1] subsystem netmem_msg 417200;
[2] #include <mach/std_types.defs>
[3] #include <mach/mach_types.defs>
/*

*/
Read data from the object

[4] routine netmem_read
[5] (
[6] object : mach_port_t;
[7] sreplyport reply_to : mach_port_make_send_once_t;
[8] offset : vm_address_t;
[9] out value : int

[10] );
/*

*/
Write data to the object

[11] routine netmem_write
[12] (
[13] object : mach_port_t;
[14] sreplyport reply_to : mach_port_make_send_once_t;
[15] offset : vm_address_t;
[16] value : int
[17] );
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It is necessary to separately define the reply messages that will be explicitly generated
when these deferred requests are processed (lines [6] and [12]). Note that the subsystem
ID is 100 more than that in the request definitions which is Mach convention. In general,
most processing routines will perform their processing when called, returning an appro-
priate success or failure return to the MIG generated server stubs. However, when a re-
quest is to be deferred, MIG_NO_REPLY is returned to the stub which prevents a reply
from being sent. Replies are explicitly sent via these MIG generated reply stubs (lines
[73] and [81] in pending_op_execute).

/*
File: netmem_msg_reply.defs
Author: David L. Black

*/
MIG interface for reply messages from simple netmemory server

[1] subsystem netmem_msg_reply 417300;
[2] msgoption MACH_SEND_TIMEOUT;
/*

*/
Protect against full reply ports.

[3] #include <mach/std_types.defs>
[4] #include <mach/mach_types.defs>
[5] type reply_port_t = MACH_MSG_TYPE_MOVE_SEND_ONCE ctype: 

mach_port_t;
/*

Reply routine to complete a read operation. Return the result of the operation

*/
and the value read.

[6] simpleroutine netmem_read_reply
[7] (
[8] reply_port : reply_port_t;
[9] result : kern_return_t;

[10] value : int
[11] );

/*

*/
Reply routine to compete a write operation.

[12] simpleroutine netmem_write_reply
[13] (
[14] reply_port : reply_port_t;
[15] result : kern_return_t
[16] );

Internal Definitions
This file defines the internal memory object structure (line [21]). The object state con-
sists of the memory object cache port reference, a right count (discussed later) and a ref-
erence to the page data. Since the object consists of only one page, the page information
can be kept in the same structure (lines [26] and on). The page information consists of
the “backing store” for the page (space obtained from vm_allocate), the ownership state
and the queue of pending operations.

There are six states defined for the page as shown in FIGURE 3. Various simplifications
from FIGURE 2 are possible because of the nature of the manager.
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• NETMEM_OBJ_NONE—No memory exists for the object. This is the initial state.
As soon as any request for the page is made, a page of memory in the server will be
allocated. This extra state is added simply to allow the use of memory_object_da-
ta_unavailable when the page is first requested (line [214]).

• NETMEM_OBJ_READ—This corresponds to the both-reading state in FIGURE 2.

• NETMEM_OBJ_SERVER_WRITE—This corresponds to the manager-writing state
in FIGURE 2.

• NETMEM_OBJ_KERNEL_WRITE—This corresponds to the kernel-writing state in
FIGURE 2.

• NETMEM_OBJ_CLEANING—This corresponds to the kernel-cleaning state in FIG-
URE 2.

• NETMEM_OBJ_FLUSHING—This corresponds to either the both-flushing or the
kernel-flushing states in FIGURE 2. It is not necessary to differentiate between these
states in this example because no other operations will be performed upon the page
while it is in either state.

The kernel-locking state is not needed because the manager does not wait for (nor re-
quest) a reply from that lock request.

The only possible pending kernel operations are data unlock and data request. A data un-
lock will never follow a data request, so the structure need only remember one operation

FIGURE  3 Example Program Page State Transitions

Sr—data supplied, read access only
Sw—data supplied, write access
I—create page
U—lock request, give write access
C—lock request, clean, remove
write access
F—lock request, clean and flush,
remove write access
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(the last), line [30] (and the access so requested, line [29]). Client requests, however, can
stack up arbitrarily, so a queue is needed for them (line [28]). Client pending operations
(line [10]) must remember all of the parameters from the client’s message, including the
reply port.

/*
File: netmem_obj.h
Author: David L. Black

*/
Internal definitions for netmem_msg server.

[1] #include <mach.h>
/*

*/
Possible object states

[2] #define NETMEM_OBJ_NONE 1
/*

*/
No memory exists for the object

[3] #define NETMEM_OBJ_READ 2
/*

Server has read only copy, kernel

*/
may have read only copy

[4] #define NETMEM_OBJ_SERVER_WRITE 3
/*

Server has writable copy, no kernel

*/
copy

[5] #define NETMEM_OBJ_KERNEL_WRITE4
/*

Kernel may have writable copy,

*/
server has no-access copy

[6] #define NETMEM_OBJ_CLEANING 5
/*

Pending request to kernel to clean

*/
page and set read-only

[7] #define NETMEM_OBJ_FLUSHING 6
/*

Pending request to kernel to clean

*/
and flush page

/*

*/
Structure for a pending message operation

[8] #define PENDING_READ 1
[9] #define PENDING_WRITE 2

[10] struct pending_op
[11] {
[12] struct pending_op *next;
[13] int op;

/*

*/
read or write

[14] vm_address_t offset;
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[15] int value;
[16] mach_port_t reply_port;
[17] };
[18] typedef struct pending_op *pending_op_t;
[19] typedef struct pending_op pending_op_data_t;
[20] #define PENDING_OP_NULL ((pending_op_t) 0)

/*

*/
Object data structure

[21] struct netmem_obj
[22] {
[23] mach_port_t object_port;

/*

*/
represents object

[24] mach_port_t control_port;
/*

*/
kernel control port

[25] int send_rights;
/*

*/
control send right count

[26] int state;
/*

*/
who can access how

[27] vm_address_t data;
/*

*/
pointer to contents

/*

*/
Next three fields used only in cleaning and flushing states.

[28] pending_op_t pending_op_queue;
/*

*/
pending msg ops

[29] vm_prot_t pending_kernel_access;
/*

*/
pending kernel op

[30] int pending_kernel_type;
/*

*/
which kernel op

[31] #define PENDING_TYPE_LOCK 1
[32] #define PENDING_TYPE_DATA 2
[33] };
[34] typedef struct netmem_obj *netmem_obj_t;
[35] typedef struct netmem_obj netmem_obj_data_t;
[36] #define NETMEM_OBJ_NULL ((netmem_obj_t) 0)
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External Memory Manager
The source for the manager itself follows.

The one and only memory object is declared in line [11]. 

/*
File: netmem_pager.c
Author: David L. Black
The actual netmem_msg pager. This is a simple pager that provides one page of
memory, accessible either via mapping or a message based interface. It only

*/
works with one kernel.

[1] #include <mach.h>
[2] #include <mach_init.h>
[3] #include <mig_errors.h>
[4] #include <servers/netname.h>
[5] #include <stdio.h>
[6] #include <mach/message.h>
[7] #include “netmem_defs.h”
[8] #include “netmem_obj.h”
[9] #include “netmem_msg.h”

[10] #include “netmem_msg_reply.h”
[11] netmem_obj_data_t master_obj;

Initialization
The immediately following init  routine puts the object in the obvious initial state. Most
of the routine is concerned with logically creating the memory object and making its
presence known to the name server. Of course, the object isn’t really known to the kernel
until the memory_object_init sequence. Note in the memory_object_ready call (line
[175]) that the MEMORY_OBJECT_COPY_NONE strategy is used since the manager
does, at times, modify the object itself. (Refer to the discussion in the Kernel Principles
document.)

/*

*/
Initialization routine for the server.

[12] void init ( )
[13] {
[14] kern_return_t r;

/*

*/
Initialize the object. This had better work.

[15] r = mach_port_allocate (mach_task_self (), 
MACH_PORT_RIGHT_RECEIVE, 
&master_obj.object_port);

[16] if (r != KERN_SUCCESS)
[17] {
[18] printf (“Can’t allocate object/service port\n”);
[19] exit (–1);
[20] }
[21] master_obj.control_port = MACH_PORT_NULL;
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[22] master_obj.state = NETMEM_OBJ_NONE;
[23] master_obj.data = (vm_address_t) 0;
[24] master_obj.pending_op_queue = PENDING_OP_NULL;
[25] master_obj.pending_kernel_access = VM_PROT_NONE;

/*
Now check it into the name service. No signature port means this is

*/
unprotected.

[26] if (r != NETNAME_SUCCESS)
[27] {
[28] mach_error (“Check In:”, r);
[29] exit (–1);
[30] }
[31] }

Port Manipulation
netmem_lookup is a typical routine needed to translate between the abstract memory ob-
ject port over which messages come into the memory object control structure that de-
scribes that object. With only one object, this conversion is trivial here.

The routine netmem_control_cleanup is called whenever a message is received from
the kernel. Since all such messages carry a send right to the memory cache control port,
these accumulate. Instead of de-allocating them one at a time as they come in, they are
left to add up, and (almost all) deleted periodically.

/*
Conversion routine from port to object. Very simple because there’s only one

*/
object.

[32] netmem_obj_t netmem_lookup (memory_object_t port)
[33] {
[34] if (port != master_obj.object_port)
[35] {
[36] printf (“object mismatch\n”);
[37] return (NETMEM_OBJ_NULL); 

/*

*/
Can’t happen

[38] }
[39] return (&master_obj);
[40] }

/*
Routine for lazy discarding of send rights to control port. Add one more right to
the number we have. If over limit, get rid of all but one. We retain one right to

*/
ensure that the port’s name doesn’t change.

[41] #define SEND_RIGHT_MAX 10000
[42] void netmem_control_cleanup (netmem_obj_t obj)
[43] {
[44] obj→send_rights++;
[45] if (obj→send_rights > SEND_RIGHT_MAX)
[46] {
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[47] (void) mach_port_mod_refs (mach_task_self (), 
obj→control_port, 
MACH_PORT_RIGHT_SEND, –
(SEND_RIGHT_MAX));

[48] obj→send_rights –= SEND_RIGHT_MAX;
[49] }
[50] }

Deferred Operation Processing
/*

*/
Routines for handling pending operations.

[51] void pending_op_queue (netmem_obj_t obj, int op, vm_address_t offset, int 
value, mach_port_t reply_to)

[52] {
[53] pending_op_t pend, *pend_ptr;

/*

*/
Using malloc () here is not particularly efficient.

[54] pend = (pending_op_t) malloc (sizeof (pending_op_data_t));
/*

Initialize pending op and add to queue. This results in LIFO pending

*/
operation order.

[55] pend→op = op;
[56] pend→offset = offset;
[57] pend→value = value;
[58] pend→reply_port = reply_to;
[59] pend→next = obj→pending_op_queue;
[60] obj→pending_op_queue = pend;
[61] }

The routine pending_op_execute performs the processing deferred by pending_op_-
queue. It is called only when a memory_object_lock_completed message is received
from the kernel. As such, the page is either in the NETMEM_OBJ_READ or NET-
MEM_OBJ_SERVER_WRITE states, namely, the manager has a valid copy. This rou-
tine can then execute all pending read requests. It can also execute all pending write
requests if in the NETMEM_OBJ_SERVER_WRITE state. If not in this state, the manag-
er must start a new lock request sequence to enter this state, so the writes (and subse-
quent reads) must continue to be deferred.

/*
Execute operations from pending op queue. This routine checks the object state
to find out what is allowed, so any state transition must occur BEFORE calling
this routine. Processing stops when the queue is empty or a write is found that
can’t be executed because the server only has read permission. Caller is

*/
responsible for handling pending kernel access.

[62] void pending_op_execute (netmem_obj_t obj)
[63] {
[64] pending_op_t pend, new_pend;
[65] kern_return_t result;
[66] pend = obj→pending_op_queue;
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[67] while (pend != PENDING_OP_NULL)
[68] {
[69] if (pend→op == PENDING_READ)
[70] {

/*

*/
Can always do read. Must send reply ourselves.

[71] result = netmem_read (obj→object_port, 
MACH_PORT_NULL, pend→offset, 
&pend→value);

[72] printf (“read_reply\n”);
[73] result = netmem_read_reply (pend→reply_port, 

result, pend→value);
[74] }
[75] else
[76] {

/*

*/
Write case. Stop if read only.

[77] if (obj→state == NETMEM_OBJ_READ)
[78] break;
[79] result = netmem_write (obj→object_port, 

MACH_PORT_NULL, pend→offset, 
pend→value);

[80] printf (“write_reply\n”);
[81] result = netmem_write_reply (pend→reply_port, 

result);
[82] }

/*
Reply might fail if client died. INVALID_DEST is the only

*/
possible error.

[83] if (result == MACH_SEND_INVALID_DEST)
[84] mach_port_deallocate (mach_task_self (), 

pend→reply_port);
/*

*/
Onward to next pending operation.

[85] new_pend = pend→next;
[86] free (pend);
[87] pend = new_pend;
[88] }

/*
Reset pending op queue. This sets it to null if we ran it completely, else

*/
to the first write that stopped us.

[89] obj→pending_op_queue = pend;
[90] }

Client Request Processing
The netmem_read and netmem_write routines handle read and write requests from the
clients. The page state determines whether the operation can be done directly (lines [106]
or [135]) or must be deferred (lines [114] or [144]). If the operation is to be deferred but
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there is no outstanding request for the page (no lock request is pending), then a lock re-
quest is made.

/*

*/
Routines for handling messages from clients

[91] mach_error_t netmem_read (mach_port_t object, mach_port_t reply_to, 
vm_address_t offset, int *value)

[92] {
[93] netmem_obj_t my_obj;
[94] printf (“read\n”);

/*

*/
Check arguments.

[95] if ((my_obj = netmem_lookup (object)) == NETMEM_OBJ_NULL)
[96] return (NETMEM_BAD_OBJECT);
[97] if (offset < 0 || offset >= (vm_page_size / sizeof (int)))
[98] return (NETMEM_BAD_OFFSET);

/*

*/
Execute the read.

[99] switch (my_obj→state)
[100] {
[101] case NETMEM_OBJ_NONE:

/*
Need to initialize. Server has exclusive access (write) when

*/
we’re done.

[102] (void) vm_allocate (mach_task_self (), &my_obj→data, 
vm_page_size, TRUE);

[103] my_obj→state = NETMEM_OBJ_SERVER_WRITE;
/*

*/
Fall through...

[104] case NETMEM_OBJ_READ:
[105] case NETMEM_OBJ_SERVER_WRITE:

/*

*/
Read the value.

[106] *value = * (((int *) (my_obj→data)) + offset);
[107] return (ERR_SUCCESS);
[108] case NETMEM_OBJ_KERNEL_WRITE:

/*
Request kernel to give up write access to page. Ask for a

*/
reply when it’s finished.

[109] printf (“lock_request: clean, lock %d\n”, 
VM_PROT_WRITE);

[110] (void) memory_object_lock_request (my_obj→ 
control_port, (vm_address_t) 0, vm_page_size, 
TRUE, FALSE, VM_PROT_WRITE, 
my_obj→object_port);

[111] my_obj→state = NETMEM_OBJ_CLEANING;
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/*

*/
Fall through...

[112] case NETMEM_OBJ_CLEANING:
[113] case NETMEM_OBJ_FLUSHING:

/*
Wait for this change to complete. Enqueue this operation to be

*/
handled later.

[114] pending_op_queue (my_obj, PENDING_READ, offset, 0, 
reply_to);

/*

*/
Reply will happen when lock_request completes.

[115] return (MIG_NO_REPLY);
[116] default:
[117] printf (“Bad state %d\n”, my_obj→state);
[118] return (NETMEM_FAILURE); 
[119] }

/*

*/
NOTREACHED

[120] }
/*

*/
Write request.

[121] mach_error_t netmem_write (mach_port_t object, mach_port_t reply_to, 
vm_address_t offset, int value)

[122] {
[123] netmem_obj_t my_obj;
[124] printf (“write\n”);

/*

*/
Check arguments. 

[125] if ((my_obj = netmem_lookup (object)) == NETMEM_OBJ_NULL)
[126] return (NETMEM_BAD_OBJECT);
[127] if (offset < 0 || offset >= (vm_page_size / sizeof (int)))
[128] return (NETMEM_BAD_OFFSET); 

/*

*/
Execute the write.

[129] switch (my_obj→state)
[130] {
[131] case NETMEM_OBJ_NONE:

/*
Need to initialize. Server has exclusive access (write) when

*/
we’re done.

[132] (void) vm_allocate (mach_task_self (), &my_obj→data, 
vm_page_size, TRUE);

[133] my_obj→state = NETMEM_OBJ_SERVER_WRITE;
/*

*/
Fall through...

[134] case NETMEM_OBJ_SERVER_WRITE:



Mach 3 Server Writer’s Guide 111 

Simple Memory Manager Example

/*

*/
Write the value.

[135] * ((int *) (my_obj→data) + offset) = value;
[136] return (ERR_SUCCESS);
[137] case NETMEM_OBJ_READ:
[138] case NETMEM_OBJ_KERNEL_WRITE:

/*
Request kernel to give up all access to page. Ask for a reply

*/
when it’s finished.

[139] printf (“lock_request: clean, flush, lock %d\n”, 
VM_PROT_ALL);

[140] (void) memory_object_lock_request (my_obj→ 
control_port, (vm_address_t) 0, vm_page_size, 
TRUE, TRUE, VM_PROT_ALL, 
my_obj→object_port);

[141] my_obj→state = NETMEM_OBJ_FLUSHING;
/*

*/
Fall through...

[142] case NETMEM_OBJ_CLEANING:
[143] case NETMEM_OBJ_FLUSHING:

/*
Wait for this change to complete. Enqueue this operation to be

*/
handled later.

[144] pending_op_queue (my_obj, PENDING_WRITE, offset, 
value, reply_to);

/*

*/
Reply will happen when lock_request completes.

[145] return (MIG_NO_REPLY);
[146] default:
[147] printf (“Bad state %d\n”, my_obj→state);
[148] return (NETMEM_FAILURE); 
[149] }

/*

*/
NOTREACHED

[150] }

External Memory Management Protocol
The routines that follow handle the external memory management protocol itself.

/*

*/
Routines for handling paging messages from the kernel.

/*

*/
Kernel request to initialize object.

[151] kern_return_t memory_object_init (memory_object_t object, 
memory_object_control_t control, memory_object_name_t name, 
vm_size_t obj_page_size)
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[152] {
[153] netmem_obj_t my_obj;
[154] printf (“init\n”);

/*

*/
Check the object’s page size.

[155] if (obj_page_size != vm_page_size)
[156] {
[157] printf (“page size mismatch\n”);
[158] return (KERN_FAILURE);
[159] }

/*

*/
Check that it’s our object.

[160] if ((my_obj = netmem_lookup (object)) == NETMEM_OBJ_NULL)
[161] return (KERN_FAILURE);

/*
Set up control port. If it’s not NULL, we’ve just won an init/terminate
race. This code does not cope with that race. The right thing to do is
allocate a new data structure to represent the object. This race will be

*/
removed from future Mach kernels.

[162] if (my_obj→control_port != MACH_PORT_NULL)
[163] {
[164] printf (“init before terminate\n”);
[165] if (my_obj→control_port == control)
[166] {
[167] printf (“control port match: I’m confused\n”);
[168] return (KERN_FAILURE);
[169] }

/*

*/
Get rid of all the send rights on that port.

[170] (void) mach_port_mod_refs (mach_task_self (), 
my_obj→control_port, 
MACH_PORT_RIGHT_SEND, – 
(my_obj→send_rights));

[171] }
[172] my_obj→control_port = control;
[173] my_obj→send_rights = 1;

/*

*/
Reply: the object is ready. Not cacheable, no special copy strategy.

[174] printf (“ready\n”);
[175] (void) memory_object_ready (control, FALSE, 

MEMORY_OBJECT_COPY_NONE);
/*

Send right on control port is held by object data structure until
termination. Get rid of name port right. mach_port_deallocate could

*/
also be used here.

[176] (void) mach_port_mod_refs (mach_task_self (), name, 
MACH_PORT_RIGHT_SEND, –1);

[177] return (KERN_SUCCESS);
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[178] }
/*

*/
Kernel object termination.

[179] kern_return_t memory_object_terminate (memory_object_t object, 
memory_object_control_t control, memory_object_name_t name)

[180] {
[181] netmem_obj_t my_obj;
[182] printf (“terminate\n”);

/*

*/
Check that it’s our object.

[183] if ((my_obj = netmem_lookup (object)) == NETMEM_OBJ_NULL)
[184] return (KERN_FAILURE);

/*

*/
Clear control port, and remove any send rights we have.

[185] if (my_obj→control_port == control)
[186] {
[187] my_obj→control_port = MACH_PORT_NULL;
[188] (void) mach_port_mod_refs (mach_task_self (), control, 

MACH_PORT_RIGHT_SEND, – 
(my_obj→send_rights));

[189] my_obj→send_rights = 0;
[190] }

/*

*/
Reset object state: no kernel copy, so server write ok.

[191] my_obj→state = NETMEM_OBJ_SERVER_WRITE;
/*

*/
Now get rid of the receive rights that came in this message.

[192] (void) mach_port_mod_refs (mach_task_self (), control, 
MACH_PORT_RIGHT_RECEIVE,–1);

[193] (void) mach_port_mod_refs (mach_task_self (), name, 
MACH_PORT_RIGHT_RECEIVE,–1);

[194] return (KERN_SUCCESS);
[195] }

memory_object_data_request is fairly simple. The mere fact that we received this mes-
sage means that the kernel does not hold the page and wants it. We must clearly be hold-
ing the most recent copy and can supply it to the kernel directly, unless we are in the
midst of a lock request sequence, in which case the page request is deferred.

/*

*/
Page-in

[196] kern_return_t memory_object_data_request (memory_object_t object, 
memory_object_control_t control, vm_address_t offset, vm_size_t 
length, vm_prot_t access)

[197] {
[198] netmem_obj_t my_obj;
[199] vm_prot_t lock_value;
[200] printf (“data_request %d\n”, access);
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/*

*/
Check that it’s our object.

[201] if ((my_obj = netmem_lookup (object)) == NETMEM_OBJ_NULL)
[202] return (KERN_FAILURE);

/*

*/
Check offset and length arguments.

[203] if (offset > 0 || offset + length > vm_page_size)
[204] {

/*
Accessing this region of the object is an error. NOTE: This
code assumes that there will not be multi-page requests that
include both valid and invalid regions. Current kernels do not
make such requests. A request like that would be split into its

*/
components here.

[205] printf (“data_error\n”);
[206] (void) memory_object_data_error (control, offset, length, 

NETMEM_BAD_OFFSET);
[207] return (KERN_FAILURE);
[208] }

/*

*/
Now do something about it.

[209] switch (my_obj→state)
[210] {
[211] case NETMEM_OBJ_NONE:

/*
Need to initialize. Initialize kernel to zeros with

*/
data_unavailable. Kernel gets write access.

[212] (void) vm_allocate (mach_task_self (), &my_obj→data, 
vm_page_size, TRUE);

[213] printf (“data_unavailable\n”);
[214] (void) memory_object_data_unavailable (control, offset, 

length);
[215] my_obj→state = NETMEM_OBJ_KERNEL_WRITE;
[216] break;
[217] case NETMEM_OBJ_READ:
[218] case NETMEM_OBJ_SERVER_WRITE:
[219] case NETMEM_OBJ_KERNEL_WRITE:

/*
Kernel does not have a copy. Give it one. If write permission

*/
wasn’t requested, don’t grant it.

[220] if (access & VM_PROT_WRITE)
[221] {
[222] lock_value = VM_PROT_NONE;
[223] my_obj→state = 

NETMEM_OBJ_KERNEL_WRITE;
[224] }
[225] else
[226] {



Mach 3 Server Writer’s Guide 115 

Simple Memory Manager Example

[227] lock_value = VM_PROT_WRITE;
[228] my_obj→state = NETMEM_OBJ_READ;
[229] }
[230] printf (“data_supply: lock %d\n”, lock_value);
[231] (void) memory_object_data_supply (control, offset, 

my_obj→data, length, FALSE, lock_value, 
FALSE, MACH_PORT_NULL);

[232] break;
[233] case NETMEM_OBJ_CLEANING:
[234] case NETMEM_OBJ_FLUSHING:

/*

*/
This will be handled when the cleaning or flushing completes.

[235] my_obj→pending_kernel_access |= access;
[236] my_obj→pending_kernel_type = PENDING_TYPE_DATA;
[237] break;
[238] default:
[239] printf (“Bad state %d\n”, my_obj→state);
[240] break;
[241] }

/*

*/
Get rid of send right on control port.

[242] netmem_control_cleanup (my_obj);
[243] return (KERN_SUCCESS);
[244] }

For memory_object_data_unlock, it follows that the kernel holds the page, but wishes
more access. If not in the middle of a lock request sequence, we can grant it. Note (line
[257]) that no reply port is specified for the lock request that grants the access. Since the
page must be viewed as entering the NETMEM_OBJ_KERNEL_WRITE state as soon
as we send this request, there is no sense waiting for a reply.

/*

*/
Unlock request. The kernel has a read only page and wants to write.

[245] kern_return_t memory_object_data_unlock (memory_object_t object, 
memory_object_control_t control, vm_address_t offset, vm_size_t 
length, vm_prot_t access)

[246] {
[247] netmem_obj_t my_obj;
[248] vm_prot_t lock_value;
[249] printf (“data_unlock %d\n”, access);

/*

*/
Check that it’s our object.

[250] if ((my_obj = netmem_lookup (object)) == NETMEM_OBJ_NULL)
[251] return (KERN_FAILURE);

/*

*/
Check offset and length arguments.

[252] if (offset > 0 || offset + length > vm_page_size)
[253] return (KERN_FAILURE);
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/*

*/
Can handle in read state, otherwise mark as pending.

[254] if (my_obj→state == NETMEM_OBJ_READ)
[255] {

/*

*/
Drop the read page lock.

[256] printf (“lock_request: lock %d\n”, VM_PROT_NONE);
[257] (void) memory_object_lock_request (control, offset, length, 

FALSE, FALSE, VM_PROT_NONE, 
MACH_PORT_NULL);

[258] my_obj→state = NETMEM_OBJ_KERNEL_WRITE;
[259] }
[260] else if (my_obj→state == NETMEM_OBJ_CLEANING || 

my_obj→state == NETMEM_OBJ_FLUSHING)
[261] {
[262] my_obj→pending_kernel_access |= access;
[263] my_obj→pending_kernel_type = PENDING_TYPE_LOCK;
[264] }
[265] else
[266] printf (“Unexpected state %d\n”, my_obj→state);

/*

*/
Get rid of send right on control port.

[267] netmem_control_cleanup (my_obj);
[268] return (KERN_SUCCESS);
[269] }

memory_object_data_return gives the manager a fresh copy of the page. Since the
page was virtually copied as part of the data message, the manager uses this page, free-
ing the old (line [281]). If the manager knows that it is not in the middle of a lock request
sequence, it follows that this page-out means that the kernel is giving up its copy; other-
wise the manager cannot be sure.

/*

*/
Page-out

[270] kern_return_t memory_object_data_return (memory_object_t object, 
memory_object_control_t control, vm_address_t offset, pointer_t 
data, vm_size_t count, boolean_t dirty, boolean_t kernel_copy)

[271] {
[272] netmem_obj_t my_obj;
[273] printf (“data_return\n”);

/*

*/
Check that it’s our object.

[274] if ((my_obj = netmem_lookup (object)) == NETMEM_OBJ_NULL)
[275] return (KERN_FAILURE);

/*
Check offset and length arguments. Failure return causes

*/
mach_msg_server to de-allocate data for us.

[276] if (offset > 0 || offset + count > vm_page_size)
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[277] {
[278] printf (“wrong data\n”);
[279] return (KERN_FAILURE);
[280] }

/*

*/
Handle the write. Swap the data for our old copy.

[281] (void) vm_deallocate (mach_task_self (), my_obj→data, 
vm_page_size);

[282] my_obj→data = data;
/*

Either in kernel write state, or middle of a clean or flush. In latter case,

*/
state changes when that operation completes.

[283] if (my_obj→state == NETMEM_OBJ_KERNEL_WRITE)
[284] my_obj→state = NETMEM_OBJ_SERVER_WRITE;
[285] else if (my_obj→state != NETMEM_OBJ_CLEANING && 

my_obj→state != NETMEM_OBJ_FLUSHING)
[286] printf (“Unexpected state %d\n”, my_obj→state);

/*

*/
Get rid of send right on control port.

[287] netmem_control_cleanup (my_obj);
[288] return (KERN_SUCCESS);
[289] }

The memory_object_lock_completed routine exists mostly to perform deferred process-
ing. If the lock request was a clean operation, it follows that the kernel no longer has
write access (and all modified data has been received); if the lock request was a flush op-
eration, the kernel no longer holds the page at all. The interesting thing about this latter
condition (line [304]) is that, if there were a pending kernel request for more access to
the page, the kernel no longer simply wants more access, it wants the page back. The ker-
nel will send a page request (following its flushing of the page), so the manager discards
the access request. The lock completed routine uses pending_op_execute to execute all
pending client requests it can given the page state. If there is a pending write request and
the kernel still holds a copy, a new lock request sequence must be started. Once all pend-
ing requests are processed, any kernel data requests can be honored.

/*

*/
Completion of a clean or flush operation.

[290] kern_return_t memory_object_lock_completed (memory_object_t object, 
memory_object_control_t control, vm_address_t offset, vm_size_t 
length)

[291] {
[292] netmem_obj_t my_obj;
[293] vm_prot_t lock_value;
[294] printf (“lock_completed\n”);

/*

*/
Check that it’s our object.

[295] if ((my_obj = netmem_lookup (object)) == NETMEM_OBJ_NULL)
[296] return (KERN_FAILURE);
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/*

*/
Check offset and length arguments.

[297] if (offset > 0 || offset + length > vm_page_size)
[298] return (KERN_FAILURE);

/*
Action depends on what state we were in, but cleaning and flushing are

*/
similar.

[299] if (my_obj→state == NETMEM_OBJ_CLEANING)
/*

*/
Kernel may have read only copy of page.

[300] my_obj→state = NETMEM_OBJ_READ;
[301] else if (my_obj→state == NETMEM_OBJ_FLUSHING)
[302] {

/*

*/
Kernel no longer has page.

[303] my_obj→state = NETMEM_OBJ_SERVER_WRITE;
[304] if (my_obj→pending_kernel_type = 

PENDING_TYPE_LOCK)
[305] my_obj→pending_kernel_access = 

VM_PROT_NONE;
[306] }
[307] else
[308] {
[309] printf (“unexpected state: %d\n”, my_obj→state);
[310] return (KERN_FAILURE);
[311] }

/*

*/
Handle pending client message operations.

[312] pending_op_execute (my_obj);
/*

*/
Pending message write takes priority (cleaning state only).

[313] if (my_obj→pending_op_queue != PENDING_OP_NULL)
[314] {

/*
Request kernel to give up all access to page. Ask for a reply

*/
when it’s finished.

[315] printf (“lock_request: clean, flush, lock %d\n”, 
VM_PROT_ALL);

[316] (void) memory_object_lock_request (control, 
(vm_address_t) 0, vm_page_size, TRUE, 
TRUE, VM_PROT_ALL, my_obj→object_port);

[317] my_obj→state = NETMEM_OBJ_FLUSHING;
[318] }

/*

*/
Does the kernel want the page?

[319] else if (my_obj→pending_kernel_access != VM_PROT_NONE)
[320] {
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[321] if (my_obj→pending_kernel_access &VM_PROT_WRITE)
[322] {
[323] lock_value = VM_PROT_NONE;
[324] my_obj→state = 

NETMEM_OBJ_KERNEL_WRITE;
[325] }
[326] else
[327] {
[328] lock_value = VM_PROT_WRITE;
[329] my_obj→state = NETMEM_OBJ_READ;
[330] }
[331] my_obj→pending_kernel_access = VM_PROT_NONE;
[332] if (my_obj→pending_kernel_type == 

PENDING_TYPE_LOCK)
[333] {
[334] printf (“lock_request: lock %d\n”, lock_value);
[335] (void) memory_object_lock_request (control, 

(vm_address_t) 0, vm_page_size, 
FALSE, FALSE, lock_value, 
MACH_PORT_NULL);

[336] }
[337] else
[338] {
[339] printf (“data_supply: lock %d\n”, lock_value);
[340] (void) memory_object_data_supply (control, 

(vm_address_t) 0, my_obj→data, 
vm_page_size, FALSE, lock_value, 
FALSE, MACH_PORT_NULL);

[341] }
[342] }

/*

*/
Get rid of send right on control port.

[343] netmem_control_cleanup (my_obj);
[344] return (KERN_SUCCESS);
[345] }

Non-Used Stubs
/*

*/
Not used by this pager

[346] kern_return_t memory_object_copy (memory_object_t old_object, 
memory_object_control_t old_control, vm_address_t offset, 
vm_size_t length, memory_object_t new_object)

[347] {
[348] printf (“object_copy\n”);
[349] return (KERN_FAILURE);
[350] }
[351] kern_return_t memory_object_supply_completed (memory_object_t object, 

memory_object_control_t control, vm_address_t offset, vm_size_t 
length, kern_return_t result, vm_offset_t error_offset)
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[352] {
[353] printf (“supply_completed\n”);
[354] return (KERN_FAILURE);
[355] }
[356] kern_return_t memory_object_data_write (memory_object_t object, 

memory_object_control_t control, vm_address_t offset, pointer_t 
data)

[357] {
[358] printf (“data_write\n”);
[359] return (KERN_FAILURE);
[360] }
[361] kern_return_t memory_object_change_completed (memory_object_t object, 

boolean_t may_cache, boolean_t copy_strategy)
[362] {
[363] printf (“change_completed”);
[364] return (KERN_FAILURE);
[365] }

Server Loop and Main Program
/*

De-mux routine for mach_msg_server. This allows us to splice two interfaces

*/
into mach_msg_server ().

[366] boolean_t netmem_demux (mach_msg_header_t *inmsg, mach_msg_header_t 
*outmsg)

[367] {
[368] return (netmem_msg_server (inmsg, outmsg) || 

memory_object_server (inmsg, outmsg));
[369] }

/*
Size of max message we’re willing to receive or send. Have to allow enough
space for memory object messages from the kernel. This number is on the high

*/
side.

[370] #define NETMEM_MAX_MSG_SIZE 512
/*

Main routine: initialize and loop forever handling messages. Ignore error returns

*/
from mach_msg_server.

[371] main ()
[372] {
[373] (void) init  ();
[374] while (1)
[375] {
[376] (void) mach_msg_server (netmem_demux, 

NETMEM_MAX_MSG_SIZE, 
master_obj.object_port);

[377] }
[378] }
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Sample Client
/*

File: netmem_client.c
Author: David L. Black

*/
Simple client to demonstrate netmem server.

[1] #include <mach.h>
[2] #include <mach_init.h>
[3] #include <servers/netname.h>
[4] #include <stdio.h>
[5] #include “netmem_defs.h”
[6] main ()
[7] {
[8] kern_return_t r;
[9] mach_port_t server_port;

[10] vm_address_t netmem_address;
[11] r = netname_look_up (name_server_port, ““, NETMEM_NAME, 

&server_port);
[12] if (r != NETNAME_SUCCESS)
[13] {
[14] mach_error (“Server Look Up”, r);
[15] exit (–1);
[16] }

/*

*/
Deliberately map in an extra page to exercise error path.

[17] netmem_address = 0;
[18] r = vm_map (mach_task_self (), &netmem_address, 2 * 

vm_page_size, 0, TRUE, server_port, 0, FALSE, 
VM_PROT_ALL, VM_PROT_ALL, 
VM_INHERIT_NONE);

[19] if (r != KERN_SUCCESS)
[20] {
[21] mach_error (“Object vm_map”, r);
[22] exit (–1);
[23] }
[24] printf (“Mapped at 0x%x\n”, netmem_address);

/*
Simple command format:
Letter offset data
Letter: p[ut], g[et], r[ead], w[rite]

*/
put and get are messages, read and write are memory.

[25] printf (“Server contacted. pgrw = put/get/read/write x = exit\n”);
[26] for (;;)
[27] {
[28] char cmd;
[29] int c, offset, data;
[30] printf (“pgrw> ”);
[31] scanf (“%c %d”, &cmd, &offset);
[32] switch (cmd)
[33] {
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[34] case ‘p’:
[35] scanf (“%d”, &data);
[36] printf (“put %d = %d”, offset, data);
[37] r = netmem_write (server_port, offset, data);
[38] printf (“ result %d\n”, r);
[39] break;
[40] case ‘g’:
[41] printf (“get %d”, offset);
[42] r = netmem_read (server_port, offset, &data);
[43] printf (“ = %d result %d\n”, data, r);
[44] break;
[45] case ‘r’:
[46] data = * (((int *) netmem_address) + offset);
[47] printf (“read %d = %d\n”, offset, data);
[48] break;
[49] case ‘w’:
[50] scanf (“%d”, &data);
[51] * (((int *) netmem_address) + offset) = data;
[52] printf (“write %d = %d\n”, offset, data);
[53] break;
[54] case ‘x’:
[55] exit (1);
[56] default:
[57] printf (“???\n”);
[58] }
[59] while ((c = getc (stdin)) != ‘\n’);
[60] }

/*

*/
NOTREACHED

[61] }

Makefile
/*

File: Makefile
Author: David L. Black
Makefile for netmem example. Avoids use of make features for clarity. Make

*/
knows how to make foo.o from foo.c (cc –c).

[1] all: netmem_client netmem_pager
[2] netmem_pager: netmem_msg_server.o netmem_pager.o 

netmem_msg_reply_user.o
[3] cc –o netmem_pager netmem_msg_server.o 

netmem_msg_reply_user.o netmem_pager.o –lmach 
[4] netmem_pager.o: netmem_msg.h netmem_defs.h netmem_obj.h 

netmem_pager.c netmem_msg_reply.h
[5] cc –c netmem_pager.c
[6] netmem_client: netmem_msg_user.o netmem_client.o
[7] cc –o netmem_client netmem_msg_user.o netmem_client.o –lmach
[8] netmem_client.o: netmem_msg.h netmem_defs.h netmem_client.c
[9] cc –c netmem_client.c



Mach 3 Server Writer’s Guide 123 

Simple Memory Manager Example

[10] netmem_msg_server.c netmem_msg_user.c netmem_msg.h: 
netmem_msg.defs

[11] mig –server netmem_msg_server.c –user netmem_msg_user.c 
netmem_msg.defs

[12] netmem_msg_reply.h netmem_msg_reply_user.c: netmem_msg_reply.defs
[13] mig –user netmem_msg_reply_user.c –server /dev/null 

netmem_msg_reply.defs

Sample Output
Start the pager and the client. (The pager must be given time to register itself with the
name server, so it is started first.)

[1] > netmem_client > netmem_pager
[2] Mapped at 0x1d000 init
[3] ready
[4] Server contacted. pgrw = put/get/read/write x = exit

netmem_write. Page exists only in the manager.

[5] pgrw> p 0 10 write
[6] put 0 = 10 result 0

netmem_read. Page still only in the manager.

[7] pgrw> g 0 read
[8] get 0 = 10 result 0

Touch page. Kernel requests read-only copy of page. Manager provides page. Both ker-
nel and manager have current copy.

[9] pgrw> r 0 data_request 1
[10] data_supply: lock 2
[11] read 0 = 10

netmem_read. Manager can directly reply since it has a current copy.

[12] pgrw> g 0 read
[13] get 0 = 10 result 0

Modify page. Kernel asks manager for write access. Write access granted. Now only the
kernel has a current copy.

[14] pgrw> w 1 20 data_unlock 3
[15] lock_request: lock 0
[16] write 1 = 20

Touch page.

[17] pgrw> r 1
[18] read 1 = 20

netmem_read. Manager must ask kernel for current copy. Since the manager is only go-
ing to read the page, it does not ask the kernel to flush its copy, merely provide it and re-
move write access.
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[19] pgrw> g 1 read
[20] lock_request: clean, lock 2
[21] data_return
[22] lock_completed

Pending read done and reply generated.

[23] read
[24] read_reply
[25] get 1 = 20 result 0

netmem_write. Since the manager will modify the page, it must ask the kernel to no
longer have a copy.

[26] pgrw> p 2 30 write
[27] lock_request: clean, flush, lock 7
[28] lock_completed

Pending write done here and reply generated.

[29] write
[30] write_reply
[31] put 2 = 30 result 0

Modify page. Kernel asks manager for page with write access.

[32] pgrw> w 3 40 data_request 3
[33] data_supply: lock 0
[34] write 3 = 40

netmem_write. Since the manager will modify the page, it must ask the kernel to no
longer have a copy. Here a full flush is necessary.

[35] pgrw> p 4 50 write
[36] lock_request: clean, flush, lock 7
[37] data_return
[38] lock_completed

Pending write done here.

[39] write
[40] write_reply
[41] put 4 = 50 result 0

Exit client. This will also send memory_object_terminate to the manager.

[42] pgrw> x 0 terminate

Start client again.

[43] > netmem_client
[44] Mapped at 0x1d000 init
[45] ready
[46] Server contacted. pgrw = put/get/...
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netmem_read. Notice that the server preserved the page.

[47] pgrw> g 3 read
[48] get 3 = 40 result 0

Touch page. Kernel requests read-only copy.

[49] pgrw> r 4 data_request 1
[50] data_supply: lock 2
[51] read 4 = 50

Modify page. Kernel asks manager for write access.

[52] pgrw> w 5 60 data_unlock 3
[53] lock_request: lock 0
[54] write 5 = 60

Touch data within mapped window size but beyond memory object size. The kernel does
not know that this is an error. The manager replies with memory_object_data_error to
say that the page doesn’t exist.

[55] pgrw> r 1200 data_request 1
[56] data_error

The client takes a memory error as a result. Its termination un-maps the (only) window,
which sends a memory_object_terminate message to the manager.

[57] Bus error (core dumped) data_return
[58] terminate

Object Cache

The Mach kernel, through its memory cache object, maintains a physical memory cache
of pages for a given memory object. The contents of this cache varies over time, of
course, but the cache exists as long as does the memory object. This is normally until the
last user of the object un-maps it.

Various objects (such as executable files and files that are read as soon as they are writ-
ten) would benefit from being known to the kernel even though they (temporarily) are
not mapped by any task. This behavior can be achieved with the cacheability attribute set
via memory_object_change_attributes.

Objects marked as cacheable in this way are not affected during normal operation. How-
ever, when the last task un-maps then, they are kept in a (small) kernel cache of objects,
thereby preserving their physical cache contents (to the extent that their pages are not
evicted via normal system paging activity). When a task does map them again, no memo-
ry_object_init  message will be sent to the manager, since they were never terminated. If
not mapped, though, at some future time the object will be terminated, with the appropri-
ate message being sent to the manager.
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If an object is cacheable but not mapped, and the cacheable attribute is disabled (memo-
ry_object_change_attributes), the object will be terminated.

Precious Pages

Precious pages (described in the Kernel Principles document) create a variety of difficul-
ties in the page management protocols:

• The memory manager can send multiple precious pages with a single memory_ob-
ject_data_supply call. The kernel, however, may not accept them all for various rea-
sons (most likely because the kernel already has one or the kernel does not want one).
As such, the kernel may be faced with some pages it must return to the manager. It
will do so with memory_object_data_return calls. If the memory manager wants to
synchronize with this data return, it can do so by requesting a reply message from the
data supply call. This reply, memory_object_supply_completed indicates which
pages were accepted. The reply will follow all data return messages resulting from
the data supply, so the manager can use this reply message as the delimiter of the se-
quence.

• When the kernel evicts pages of the memory object, it must return to the manager
both modified pages (precious or otherwise) as well as precious pages (modified or
not). The memory_object_data_return message has information to allow the memo-
ry manager to be able to tell the difference between these cases.

• Given the asynchronous nature of the memory management messages, it is possible
that the memory object is terminated while the memory manager is trying to supply
(precious) data to it (by data supply messages to the memory cache control port). To
avoid discarding these precious pages, the kernel gives the receive right to the memo-
ry cache ports to the memory manager in the memory_object_terminate message.
The memory manager must drain this port to re-obtain all of its precious pages.

Synchronization with Multiple Objects, Kernels and 
Threads

The external memory management protocol consists of asynchronous interactions so that
the maximum degree of parallelism can be achieved. This places considerable burden
upon the memory manager to correctly synchronize activities upon its objects. Many of
the concerns involved in writing a multi-threaded pager are the same as those for writing
any other multi-threaded server.

Multiple Pages
First of all, the manager must track the state of each page. For each page, the manager
must track its ownership and location (which kernels hold a copy, whether the page is in
transit to backing store or other kernels) and any outstanding operations upon the page.
Also, the manager must not attempt multiple simultaneous page-in or access changes on
the same page.
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The manager is allowed to operate on a set of pages in a given interaction with the ker-
nel. However, multiple ranges must not overlap. If a request supplies pages 2, 3 and 4,
for example, a second request must not supply pages 4, 5 and 6.

It is an error to supply a page more than once, and the kernel does not guarantee that the
first request will be completely processed before the second. If a page is supplied that the
kernel still holds, the data supply is ignored. However, the following scenario will result
in page inconsistency:

• The manager supplies a writable page to the kernel which is subsequently modified.

• The kernel decides to evict the modified page.

• Not yet seeing the evicted page, the manager re-supplies the (old contents of the)
page.

• The kernel accepts this old page thereby effectively discarding the recent changes.

Multiple Objects
When the manager manages multiple objects, it is typical to create a port set that con-
tains the receive rights for the various abstract memory object ports to be used for the
server loop (mach_msg_server). The manager needs some translation table to translate
from port to memory object control structure. With care the manager can actually use the
memory object control structure address as the port name for the corresponding abstract
memory object port as discussed in CHAPTER 6.

Multiple Threads
To achieve greater parallelism in the memory manager, aside from the use of asynchro-
nous interactions, the manager would typically use multiple threads. A simple minded
use of multiple threads is to assign each memory object to one and only one thread (but
different objects or sets of objects to different threads) thereby preserving the operation
ordering described in the previous sections. However, this limits parallelism for any giv-
en object; the kernel is fully capable of supporting operations on multiple pages of a sin-
gle object at the same time. The use of multiple threads to handle paging operations for a
single object requires special care.

As an example of the synchronization problem, consider the following sequence of
events:

• The kernel decides to evict a modified page.

• The kernel subsequently decides to read the page again.

• Manager thread X receives the memory_object_data_return message and is pre-
empted before it can process the request.

• Manager thread Y receives the memory_object_data_request message. Not realiz-
ing that the page had been modified, it returns the old copy of backing store.

• Thread X gets to run again, updating backing store.

In this case, the kernel does not receive the correct (latest) page contents.
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Mach ports guarantee that the order that messages are en-queued onto a port (from a sin-
gle source) is the same order in which they will be de-queued. However, this is not neces-
sarily the same order in which a server will process them; that order is determined by
scheduling concerns. For a memory manager to correctly maintain any given page,
though, it must process these operations in order.

To maintain this order, Mach IPC assigns sequence numbers to messages. These numbers
provide the order in which messages are de-queued from a source. For a multi-threaded
manager to maintain operation order, it must synchronize against the memory object
structure. That is, the memory object structure maintains an operation sequence number
that is incremented whenever an operation is processed. If a thread (thread Y in the exam-
ple sequence above) finds that the sequence number in its message is not one more than
the sequence number reflected in the memory object structure, it knows that some other
thread has the intervening operation. The thread would then put its operation onto the
pending operation queue for that object.

Multiple Kernels
A manager that supports distributed memory spanning multiple kernels “simply” has to
track the state of each page on each kernel, revoking access and passing pages from ma-
chine to machine. Much of the mechanisms to support this have already been discussed.

Various additions would be necessary to FIGURE 2 to handle the multiple kernels. The
manager may well need to track which kernels hold the current page contents, not just
whether the (single) kernel does. Only a single kernel would hold the page if it has write
access. A page may be present with read access on multiple kernels, changing the both
state into a many state.

Additional transitions are meaningful:

• If the manager itself needs the page, it must clean or flush all kernels holding the page.

• A data request message from one of the kernels may find the page in any state:

• If in the manager state, the page would be provided to the requesting kernel
with appropriate access (read implying a many state, write implying the ker-
nel state).

• If in a kernel state (current contents on some kernel), it is necessary to clean
or flush that kernel as appropriate to get current contents and to permit the
access requested of this additional kernel.

• If in the many state (no kernel has write permission) the page can be sup-
plied to the new kernel; the other kernels need to be flushed only if the addi-
tional kernel requests write access.

Note that a data request message from a kernel only means that particular kernel no
longer holds the page—the other kernels may well still hold it.

• A data unlock request can only find the page in the many state. If a kernel has write
access to the page, it follows that no other kernel holds the page and so no unlock re-
quest is possible. However, multiple kernels may be holding a read-only copy when a
kernel requests write access. It is necessary to flush the page from the other kernels
before granting the write access.
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• It is meaningful to supply a read-only precious page to the kernel even for a memory
object that permits modification. This might be done if the page existed on other
nodes.

• It would be meaningful to clean a precious page. The manager might do this so as to
receive the current contents of the page to be provided to another kernel.

As it so happens it is more efficient to place a memory manager on each node that com-
municate with each other at a higher level than the external memory management proto-
col. For example, if kernel A holds a page that kernel B wants (and the central manager
is on neither A nor B), it is more efficient for the page to travel from A directly to B than
from A to the manager and then to B. For a discussion of this, see:

Forin, A., et al., “The Shared Memory Server,” in Proceedings of the Winter
1989 USENIX Conference.

Loose Consistency

This chapter has discussed the use of kernel mechanisms to maintain strict read–write
consistency for shared memory. Not all memory managers need to maintain such strict
consistency.

The consistency so far described is referred to as strict consistency because there is abso-
lutely no way that a client could detect any inconsistency. The manager revokes all ac-
cess to all other entities (clients and kernels) whenever any entity needs to write so that
these other entities will fault on their memory and re-fetch it, thereby receiving the abso-
lute latest changes. All accesses to a page are serialized; at any given time their are multi-
ple readers or a single writer. This brute force approach, however, is often overkill. Its
strict serialization reduces the parallelism with which the shared memory can be refer-
enced. Also, the use of the external memory management protocols to ensure consistency
requires the movement of whole pages where much smaller data movement may do (if
managed directly by the application).

The issue in loosening consistency constraints (that is, allowing multiple readers and one
or more writers) is whether, given a set of clients, one of them can see inconsistent mem-
ory values. That is, consider data values A and B kept in separate shared memory pages
where client X modifies A and then B. If client Y fetches B and sees the new value, it fol-
lows that Y should also see the new value for A since it was modified first. Without some
synchronization, it would be possible for client Y to see the old value of A. Of course,
this consistency is only meaningful to Y if it knows (or cares) that A is modified before
B.

One way to loosen the consistency constraints is for an application to take explicit con-
trol over when page images are updated on other nodes given its own knowledge of the
data dependencies. Another way is for the memory manager to track data references by
the various client (nodes). In this way, if the manager sends a new value of a page to a
node, it also sends new values (or invalidates old values) of any pages that it knows were
modified prior to the modification of the page it is sending. It is possible for a manager to
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track the order of modification of pages via kernel generated memory_object_unlock_-
request messages. For a more detailed discussion of this “causal ordered” memory, see:

Boyer, F., “A Causal Distributed Shared Memory Based on External Pagers,” in
Proceedings of the 1991 USENIX Mach Symposium.

A sample use of loosened consistency appears in servers that maintain multiple copies of
data that need only be recent. Note that strict read–write consistency required that only
one kernel hold the modified contents of a page at a time; this means that the failure of
that kernel damages the memory object. If a kernel evicts modified page A which is sub-
sequently modified on some other kernel without having evicted modified page B, the
old contents of page B no longer correspond to the new value of page A. Loosening con-
sistency allows multiple modified copies to be kept. Given a failure of a copy, the manag-
ers can reconstruct the latest values from recent values. It would be very difficult to do
this in general but various “blackboard” servers with limited semantics have been built
that provide this service.
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Server

The most typical use of an external memory manager is to provide shared memory be-
tween otherwise unrelated tasks. When this memory is to be shared between tasks on
multiple hosts, it is referred to as distributed shared memory or netmemory. Mach pro-
vides a standard external memory manager server to provide such memory, suitable for
sharing between tasks on a single host, or between multiple hosts. This server is the Net-
Memory server.

To share memory between tasks using the netmemory server, a task first creates a net-
memory object with the netmemory_create call. This netmemory object can be distribut-
ed to all interested tasks either directly by IPC between tasks or indirectly by using a
service such as the NetName server. 

Each task then find its local netmemory server, and calls netmemory_cache on the local
server with the netmemory object to obtain a local Mach memory object corresponding
to the netmemory object. The netmemory_cache call allows the netmemory servers to
use more efficient and more distributed protocols for maintaining object consistency than
the standard memory manager interface. 

Finally, the resulting memory object should be given to vm_map to map the object into
the caller's address space. Again, the netmemory object is only for use by netmemory_-
cache; it should not be handed directly to vm_map.

The netmemory object can be explicitly destroyed by calling netmemory_destroy on
the netmemory_control port. This call is not necessary with the current implementation
of the netmemoryserver which cleans up a netmemory object after the last kernel has un-
mapped the object.
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The current netmemory server is actually a compatibility front-end to the External Mem-
ory Manager library.

The following is a routine which demonstrates how to use the netmemory server.

/*

*/
Create and map a shared object of given size with netname object_name.

/*
One task (the “master”) should call this routine with hostname = 0; the routine
will then create a netmemory object and register it with the netname server
under the supplied object name. All other tasks (the “slaves”) call this routine

*/
with the hostname where the master lives.

[59] kern_return_t map_object (char* object_name, char* hostname, vm_offset_t* 
address, vm_size_t size, boolean_t anywhere)

[60] {
[61] kern_return_t kr;
[62] mach_port_t netmemory_server;
[63] mach_port_t memory_object;
[64] mach_port_t netmemory_object;
[65] mach_port_t netmemory_control;

/*
Find the local netmemory server. (If this routine is used a lot, this value

*/
can be cached.)

[66] kr = netname_look_up (name_server_port, “”, “netmemoryserver”,
[67]  &netmemory_server);
[68] if (kr)
[69] return kr;

/*
If a hostname is provided, then we are the slave and thus we simply
look up the netmemory object on the given host by using the object
name. If a hostname is not provided, then we are the master and thus
have the responsibility of creating a netmemory object and registering

*/
it with the netname service under the given object name.

[70] if (hostname)
[71] {
[72] kr = netname_look_up (name_server_port, hostname, 

object_name, &netmemory_object);
[73] if (kr)
[74] return kr;
[75] }
[76] else
[77] {
[78] kr = netmemory_create (netmemory_server, size, 

&netmemory_object, &netmemory_control);
[79] if (kr)
[80] return kr;
[81] kr = netname_check_in (name_server_port, object_name, 

MACH_PORT_NULL, netmemory_object);
[82] if (kr)
[83] {
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[84] netmemory_destroy (netmemory_control);
[85] return kr;
[86] }
[87] }

/*

*/
Cache the object locally. Note that even the master must do this.

[88] kr = netmemory_cache (netmemory_server, netmemory_object, 
&memory_object);

[89] if (kr)
[90] return kr;

/*

*/
Map the object, either anywhere or at the supplied address.

[91] if (anywhere)
[92] *address = 0;

/*

*/
must be set

[93] kr = vm_map (mach_task_self (), address, size, 0, anywhere, 
memory_object, 0, FALSE, VM_PROT_DEFAULT, 
VM_PROT_DEFAULT, VM_INHERIT_SHARE);

[94] if (kr)
[95] return kr;
[96] return KERN_SUCCESS;
[97] }
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APPENDIX A MIG Language 
Specification

The syntax of specification files is given semi-formally in what can be viewed as a slight-
ly extended context free grammar. 

Meta language description: The right hand side of a production rule is indented from its
left hand side (its heading). Terminal symbols are in plain font. Non-terminal symbols
are in bold font. Symbols in italics are non-terminal symbols not defined within the gram-
mar but that have obvious definitions:

• number - a string of digits from 0 to 9

• identifier - a name consisting of upper and lower case letters, digits 0 to 9 and under-
scores, with the first character being a letter or an underscore

• string - a string of letters, numbers, slashes, periods, underscores, dollar signs and
dashes

• quotedstring - a string of arbitrary characters (other than ” and new-line) surrounded
by quotes

• anglestring - a string of arbitrary characters (other than > and new-line) surrounded
by angle brackets (<>)

• filename - a quotedstring or an anglestring

The symbolε indicates an empty string.

Symbols within a single production are separated by blanks. Alternative productions are
listed on consecutive lines under a production rule heading. 

Comments may be included in “.defs” file if surrounded by “/*” and “*/”. They are
parsed and removed by cpp. 
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No attempt has been made to indicate in the grammar that types must be declared before
they are used. 

Statements

ε

Statements Statement

Statement

Subsystem;

WaitTime ;

MsgOption;

ServerPrefix;

UserPrefix;

ServerDemux;

TypeDecl;

RoutineDecl;

skip;

Import ;

RCSDecl;

;

Subsystem

subsystem SubsystemMods SubsystemName SubsystemBase

SubsystemMods

ε

SubsystemMods SubsystemMod
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SubsystemMod

kerneluser

kernelserver

SubsystemName

identifier 

SubsystemBase

number 

WaitTime

waittime string

nowaittime

MsgOption

msgoption string

ServerPrefix

serverprefix identifier

UserPrefix

userprefix identifier

ServerDemux

serverdemux identifier

Import

ImportIndicant  filename

ImportIndicant

import

uimport
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simport

RCSDecl

rcsid quotedstring

TypeDecl

type NamedTypeSpec

NamedTypeSpec

identifier = TransTypeSpec

TransTypeSpec

TypeSpec 

TransTypeSpec intran: identifier identifier (identifier)

TransTypeSpec outtran: identifier identifier (identifier)

TransTypeSpec destructor: identifier (identifier)

TransTypeSpec ctype: identifier

TransTypeSpec cusertype: identifier

TransTypeSpec cservertype: identifier

TypeSpec

BasicTypeSpec 

PrevTypeSpec 

VarArrayHead  TypeSpec

ArrayHead  TypeSpec

^ TypeSpec

StructHead TypeSpec

CStringSpec 
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BasicTypeSpec

IPCType 

(IPCType, IntExp IPCFlags)

IPCType

PrimIPCType  

PrimIPCType  | PrimIPCType

PrimIPCType

number 

polymorphic

MACH_MSG_TYPE_UNSTRUCTURED

MACH_MSG_TYPE_BIT

MACH_MSG_TYPE_BOOLEAN

MACH_MSG_TYPE_INTEGER_8

MACH_MSG_TYPE_INTEGER_16

MACH_MSG_TYPE_INTEGER_32

MACH_MSG_TYPE_CHAR

MACH_MSG_TYPE_BYTE

MACH_MSG_TYPE_REAL

MACH_MSG_TYPE_STRING

MACH_MSG_TYPE_STRING_C

MACH_MSG_TYPE_PORT_NAME

MACH_MSG_TYPE_POLYMORPHIC

MACH_MSG_TYPE_MOVE_RECEIVE

MACH_MSG_TYPE_COPY_SEND
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MACH_MSG_TYPE_MAKE_SEND

MACH_MSG_TYPE_MOVE_SEND

MACH_MSG_TYPE_MAKE_SEND_ONCE

MACH_MSG_TYPE_MOVE_SEND_ONCE

MACH_MSG_TYPE_PORT_RECEIVE

MACH_MSG_TYPE_PORT_SEND

MACH_MSG_TYPE_PORT_SEND_ONCE

IPCFlags

ε

IPCFlags, servercopy

IPCFlags, islong

IPCFlags, isnotlong

IPCFlags, notdealloc

IPCFlags, dealloc

IPCFlags, dealloc []

IPCFlags, countinout

PrevTypeSpec

identifier 

VarArrayHead

array [] of

array [*] of

array [*: IntExp ] of

ArrayHead

array [IntExp] of



Mach 3 Server Writer’s Guide 141 

StructHead

struct [IntExp] of

CStringSpec

c_string [IntExp]

c_string [*: IntExp]

IntExp

IntExp + IntExp

IntExp – IntExp

IntExp * IntExp

IntExp / IntExp

number 

(IntExp)

RoutineDecl

Routine

SimpleRoutine

Routine

routine identifier Arguments

SimpleRoutine

simpleroutine identifier Arguments

Arguments

()

(ArgumentList )
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ArgumentList

Argument 

Argument;  ArgumentList

Argument

Direction identifier ArgumentType IPCFlags

Direction

ε

in

out

inout

requestport

replyport

sreplyport

ureplyport

waittime

msgoption

msgseqno

ArgumentType

: identifier

: NamedTypeSpec
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APPENDIX B Standard MIG Types

This appendix provides the definition of the standard MIG data types.

IPC Typenames

MIG internally defines the following ipc-typenames in terms of their Mach IPC counter-
parts. These types are almost never directly used as the type in an argument specification
because their type names do not have corresponding named C data types.

type MACH_MSG_TYPE_BOOLEAN = 
(MACH_MSG_TYPE_BOOLEAN,32);

type MACH_MSG_TYPE_INTEGER_32 = 
(MACH_MSG_TYPE_INTEGER_32,32);

type MACH_MSG_TYPE_INTEGER_16 = 
(MACH_MSG_TYPE_INTEGER_16,16);

type MACH_MSG_TYPE_INTEGER_8 = 
(MACH_MSG_TYPE_INTEGER_8,8);

type MACH_MSG_TYPE_CHAR = (MACH_MSG_TYPE_CHAR,8);

type MACH_MSG_TYPE_BYTE = (MACH_MSG_TYPE_BYTE,8);

type MACH_MSG_TYPE_BIT = (MACH_MSG_TYPE_BIT,1);
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This next type does not define the passage of a port right, merely the name of a right.
That is, this defines a sufficiently large integer type to hold a port name.

type MACH_MSG_TYPE_PORT_NAME = 
(MACH_MSG_TYPE_PORT_NAME,32);

The following types do not have their length specified, and so must be used in their long
form (“(ipc-typename, size)”) in type or argument declarations.

type MACH_MSG_TYPE_REAL = (MACH_MSG_TYPE_REAL,0);

type MACH_MSG_TYPE_STRING = (MACH_MSG_TYPE_STRING,0);

type MACH_MSG_TYPE_STRING_C = 
(MACH_MSG_TYPE_STRING_C,0);

type MACH_MSG_TYPE_UNSTRUCTURED = 
(MACH_MSG_TYPE_UNSTRUCTURED,0);

type MACH_MSG_TYPE_POLYMORPHIC = 
(MACH_MSG_TYPE_POLYMORPHIC,0);

Note that the Mach IPC type for MACH_MSG_TYPE_STRING and MACH_MSG_-
TYPE_STRING_C are the same.

The following type differs from MACH_MSG_TYPE_POLYMORPHIC in that it speci-
fies a particular (hopefully useful) size.

type polymorphic = (MACH_MSG_TYPE_POLYMORPHIC, 32);

The following IPC types correspond to the standard treatment of port right passage.

type MACH_MSG_TYPE_MOVE_RECEIVE = 
(MACH_MSG_TYPE_MOVE_RECEIVE | 
MACH_MSG_TYPE_PORT_RECEIVE,32);

type MACH_MSG_TYPE_COPY_SEND = 
(MACH_MSG_TYPE_COPY_SEND | 
MACH_MSG_TYPE_PORT_SEND,32);

type MACH_MSG_TYPE_MAKE_SEND = 
(MACH_MSG_TYPE_MAKE_SEND | 
MACH_MSG_TYPE_PORT_SEND,32);

type MACH_MSG_TYPE_MOVE_SEND = 
(MACH_MSG_TYPE_MOVE_SEND | 
MACH_MSG_TYPE_PORT_SEND,32);
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type MACH_MSG_TYPE_MAKE_SEND_ONCE = 
(MACH_MSG_TYPE_MAKE_SEND_ONCE | 
MACH_MSG_TYPE_PORT_SEND_ONCE,32);

type MACH_MSG_TYPE_MOVE_SEND_ONCE = 
(MACH_MSG_TYPE_MOVE_SEND_ONCE | 
MACH_MSG_TYPE_PORT_SEND_ONCE,32);

Note that the receiver always sees a Mach IPC type of ..._PORT_... Mach IPC does not
indicate to the receiver whether the right was made or moved when sent. The sender, on
the other hand, must specify the behavior.

The following IPC types define the polymorphic right passage; that is, where the sender
must specify an additional parameter that provides the actual IPC type of the right being
sent.

type MACH_MSG_TYPE_PORT_RECEIVE = 
(MACH_MSG_TYPE_POLYMORPHIC | 
MACH_MSG_TYPE_PORT_RECEIVE,32);

type MACH_MSG_TYPE_PORT_SEND = 
(MACH_MSG_TYPE_POLYMORPHIC | 
MACH_MSG_TYPE_PORT_SEND,32);

type MACH_MSG_TYPE_PORT_SEND_ONCE = 
(MACH_MSG_TYPE_POLYMORPHIC | 
MACH_MSG_TYPE_PORT_SEND_ONCE,32);

Standard Defined Types

The following types are defined in <mach/std_types.defs>. These types are used in pref-
erence to MIG internally defined types because these types have corresponding C data
types, or have the corresponding C data type named explicitly.

Integer and Data Types

type char = MACH_MSG_TYPE_CHAR;

type short = MACH_MSG_TYPE_INTEGER_16;

type int = MACH_MSG_TYPE_INTEGER_32;

type boolean_t = MACH_MSG_TYPE_BOOLEAN;

type unsigned = MACH_MSG_TYPE_INTEGER_32;

type pointer_t = ^array[] of MACH_MSG_TYPE_BYTE;
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Port Right Types
The following types define actual port rights to be passed.

The next types define passage of specific rights. Note that mach_port_t defaults to a send
right copy.

type mach_port_t = MACH_MSG_TYPE_COPY_SEND;

type mach_port_array_t = array[] of mach_port_t;

type mach_port_move_receive_t = MACH_MSG_TYPE_MOVE_RECEIVE 
ctype: mach_port_t;

type mach_port_copy_send_t = MACH_MSG_TYPE_COPY_SEND ctype: 
mach_port_t;

type mach_port_make_send_t = MACH_MSG_TYPE_MAKE_SEND ctype: 
mach_port_t;

type mach_port_move_send_t = MACH_MSG_TYPE_MOVE_SEND ctype: 
mach_port_t;

type mach_port_make_send_once_t = 
MACH_MSG_TYPE_MAKE_SEND_ONCE ctype: mach_port_t;

type mach_port_move_send_once_t = 
MACH_MSG_TYPE_MOVE_SEND_ONCE ctype: mach_port_t;

The next types define the polymorphic rights passage—those requiring an additional ar-
gument to the MIG stub to specify the actual type of right being passed.

type mach_port_receive_t = MACH_MSG_TYPE_PORT_RECEIVE ctype: 
mach_port_t;

type mach_port_send_t = MACH_MSG_TYPE_PORT_SEND ctype: 
mach_port_t;

type mach_port_send_once_t = MACH_MSG_TYPE_PORT_SEND_ONCE 
ctype: mach_port_t;

This last port right type defines a port right that is polymorphic to both the sender and re-
ceiver:

type mach_port_poly_t = polymorphic ctype: mach_port_t;

IPC Data Values

type kern_return_t = int;
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type mach_port_right_t = unsigned;

type mach_port_type_t = unsigned;

type mach_port_type_array_t = array[] of mach_port_type_t;

type mach_port_urefs_t = unsigned;

type mach_port_delta_t = int;

type mach_port_seqno_t = unsigned;

type mach_port_mscount_t = unsigned;

type mach_port_msgcount_t = unsigned;

type mach_port_rights_t = unsigned;

type mach_msg_id_t = int;

type mach_msg_type_name_t = unsigned;

type mach_port_name_t = MACH_PORT_TYPE_PORT_NAME ctype: 
mach_port_t;

type mach_port_name_array_t = array[] of mach_port_name_t ctype: 
mach_port_array_t;
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APPENDIX C Service Server

Each task inherits a set of registered ports upon creation (mach_ports_register). These
are (send rights) for the name server, an environment server and the service server. All
tasks in the system are intended to share the same name server (that is the point of the
server) whereas different groups of tasks may have private environment servers. Al-
though an environment server has been written, it is not typically used (and is not part of
the standard distribution) so it is not discussed further. The name server was discussed in
CHAPTER 2. This appendix discusses the purpose and need for the service server.

All tasks need access to the (same) name server. Given a task whose registered name
server port names the name server, all tasks derived from that task will inherit the port
and share access to the name server. Unfortunately, being a task itself, the name server
initializes itself after certain other tasks (such as the init process, /etc/init) run. Thus,
most tasks, which derive indirectly from the init task will be missing the name server
(and environment server) port.

Because of this, the ports for the name and environment servers must be created (and reg-
ister with the init process) before the servers the ports name exist. This mechanism is pro-
vided by the service server.

The privileged service server (/mach_servers/mach_init) is run as the first process. It
creates the ports that will name the name and environment servers (as well as itself) and
forcibly registers them with its parent, thus placing these registered ports at the root of
the task derivation tree.

When the name or environment server is initialized, it registers itself with the service
server, making the port created by the service server its own. Only the name and environ-
ment server have need for the service server. It is important that these servers initialize
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before user tasks are created as the service server will check-in the correct (the first) serv-
ers to announce their desire to register.

Given the service server port (one of all task’s registered ports), service_server→ser-
vice_checkin registers a given server. The name server, for example, locates the port that
will name it (by finding the send right in its registered port set) and uses this port to
name itself to the service server. The service server then returns receive rights for that
port so that the name server can now respond to client name requests. (Up until this time,
the service server merely ignored requests on the name server port.) The service server
also requests a port destroyed notification so that the name server port never dies, and the
same port always names the name server, no matter what task is registered as the name
server at any given time.

The service server also provides a service_server→service_waitfor function that waits
until the named server is registered.


