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CHAPTER 1 Introduction

This book documents the user visible architecture of the Mach 3 kernel. It is assumed
that the reader is familiar with the basic ideas of Mach as are found in:

Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid,
Avadis Tevanian, Michael Young, “Mach: A New Kernel Foundation for UNIX
Development,” in Proceedings of the Summer 1986 USENIX Conference, Atlan-
ta, GA.

The notion of operating system functionality provided via a Mach user space server can
be found in:

David Golub, Randall Dean, Alessandro Forin, Richard Rashid, “UNIX as an
Application Program,” in Proceedings of the Summer 1990 USENIX Confer-
ence, Anaheim, CA.

Mach was originally developed as a variant of BSD that provided users with enhanced
memory management, multiple points of control (threads) and an extensive process
(task) to process communication facility (IPC). The goals of Mach include:

• Exploiting parallelism in both operating system and user applications.

• Supporting large, potentially sparse address spaces with flexible memory sharing.

• Allowing transparent network resource access.

• Compatibility with existing software environments (BSD).

• Portability.

The Mach 3 kernel is a kernel that provides only the Mach related features, along with
any features needed to provide support for higher system layers. As such, the kernel no
longer provides BSD functionality; indeed, it does not provide the functionality of any
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traditional operating system. Instead, it provides the base upon which operating systems
can be built. The Mach kernel subscribes to the philosophy of:

• A simple, extensible communication kernel.

• An object basis with communication channels as object references.

• A client / server programming model, using synchronous and asynchronous inter-pro-
cess communication.

• User mode tasks performing many traditional operating system functions (e.g. file sys-
tem, network access).

The fundamental idea is that of a simple, extensible communication kernel. It is a goal of
the Mach project to move more and more functionality out of the kernel, until everything
is done by user mode tasks communicating via the kernel. Of course, even in the ex-
treme, the kernel must provide other support besides task to task communication, in par-
ticular:

• Management of points of control (threads).

• Resource assignment (tasks).

• Support of address spaces for tasks.

• Management of physical resources (physical memory, processors, device channels).

Even here, though, the goal is to move functionality outside the kernel. User mode tasks
implement the policies regarding resource usage; the kernel simply provides mechanisms
to enforce those policies.

Kernel Abstractions

Although it is a goal of the Mach kernel to minimize abstractions provided by the kernel,
it is not a goal to be minimal in the semantics associated with those abstractions. As
such, each of the abstractions provided has a rich set of semantics associated with it, and
a complex set of interactions with the other abstractions. Although this makes it difficult
to identify key ideas, the main kernel abstractions are considered to be the following:

• Task — The unit of resource allocation: large address space, port rights.

• Thread — The unit of CPU utilization, lightweight (low overhead).

• Port — Communication channel, accessible only via send / receive capabilities
(rights).

• Message — Typed collection of data objects.

• Memory object — Internal unit of memory management.

The kernel provides some memory management, of course. Memory is associated with
tasks. Memory objects are the means by which tasks take control over memory manage-
ment.
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Tasks and Threads
The Mach kernel does not provide the traditional notion of the process. This is for two
main reasons:

• Any given operating system environment has considerable semantics associated with
a process (such as user ID, signal state, etc.). It is not the purpose of the Mach kernel
to understand or provide these extended semantics.

• Many systems (BSD, for example) equate a process with an execution point of con-
trol. Some systems (AOS, for example) do not. Mach wishes to support multiple
points of control in a way separate from any given operating system environment’s no-
tion of process.

Instead, Mach provides two notions: the task and the thread. A thread is Mach’s notion
of the point of control. A task exists to provide resources for its containing threads. This
split is made to provide for parallelism and resource sharing.

A thread:

• Is a point of control flow in a task.

• Has access to all of the elements of the containing task.

• Potentially executes in parallel with other threads, even threads within the same task.

• Has minimal state for low overhead.

A task:

• Is a collection of system resources. These resources, with the exception of the address
space, are referenced by ports. These resources may be shared with other tasks if
rights to the ports are so distributed.

• Provides a large, potentially sparse address space, referenced by machine address.
Portions of this space may be shared through inheritance or external memory manage-
ment.

• Contains some number of threads.

Note that a task has no life of its own; only threads execute instructions. When it is said
“a task Y does X” what is really meant is that “a thread contained within task Y does X”.

A task is a fairly expensive entity. It exists to be a collection of resources. All of the
threads in a task share everything. Two tasks share nothing without explicit action (al-
though the action is often simple) and some resources cannot be shared between two
tasks at all (such as port receive rights).

A thread is a fairly light-weight entity. It is fairly cheap to create and has low overhead to
operate. This is true because a thread has little state (mostly its register state); its owning
task bears the burden of resource management. On a multiprocessor it is possible for mul-
tiple threads in a task to execute in parallel. Even when parallelism is not the goal, multi-
ple threads have an advantage in that each thread can use a synchronous programming
style, instead of attempting asynchronous programming with a single thread attempting
to provide multiple services.
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Memory Management
The Mach kernel provides the mechanisms to support large, potentially sparse virtual ad-
dress spaces. Each task has an associated address map (maintained by the kernel) which
controls the translation of virtual address in the task’s address space into physical ad-
dresses. As is true in virtual memory systems, the contents of the entire address space of
any given task is most likely not completely resident in physical memory at any given
time, and mechanisms must exist to use physical memory as a cache for the virtual ad-
dress spaces of tasks. Unlike traditional virtual memory designs, the Mach kernel does
not implement all of this caching itself; it endeavors to allow user mode tasks the ability
to participate in these mechanisms.

Unlike all other resources in the Mach system, virtual memory is not referenced via
ports. Memory can be referenced only by using virtual addresses as indices into a particu-
lar task’s address space. The memory (and the associated address map) that defines a
task’s address space can be partially shared with other tasks.

A task can allocate new ranges of memory within its address space, de-allocate them,
and change protections on them. It can also specify inheritance properties for the ranges.
A new task is created by specifying an existing task as a base from which to construct the
address space for the new task. The inheritance attribute of each range of the memory of
the existing task determines whether the new task has that range defined and whether that
range is virtually copied or shared with the existing task.

Within Mach, most virtual copy operations for memory are actually achieved through
copy-on-write optimizations. A copy-on-write optimization is accomplished by not di-
rectly copying the range, but by protected sharing. The two tasks both share the memory
to be copied, but with read-only access. When either task attempts to modify a portion of
the range, that portion is copied at that time. This lazy evaluation of memory copies is an
important performance optimization performed by the Mach kernel, and important to the
communication / memory philosophy of Mach.

Any given region of memory is backed by a memory object. A memory manager task pro-
vides the policy governing the relationship between the image of a set of pages while
cached in memory (the physical memory contents of a memory region) and the image of
that set of pages when not so cached (the abstract memory object). The Mach kernel
comes with a default memory manager that provides basic non-persistent memory ob-
jects that are zero filled initially and paged against system paging space.

Task to Task Communication
Communication between tasks is a very important element of the Mach philosophy.
Mach believes in a a client / server system structure in which tasks (clients) access servic-
es by making requests of other tasks (servers) via messages sent over a communication
channel. Since the Mach kernel provides very few services of its own (in particular, it
provides no file service), a Mach task will need to communicate with a potentially great
many other tasks that do provide these services. These communication channels in Mach
are called ports. A port is a unidirectional channel consisting of a (fixed length) queue
that holds messages. A message is a typed collection of data. A port is named by port
rights held by tasks. A task can manipulate a port only if it holds the appropriate port
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rights. Only one task can hold the receive right for a port. This one task is allowed to re-
ceive (read) messages from the port queue. Multiple tasks can hold send rights to the
port that allow them to send (write) messages into the queue. A task communicates with
another task by building a data structure that contains a set of typed data elements, and
then performing a message-send operation on a port for which it holds send rights. At
some later time, the task with receive rights to that port will perform a message-receive
operation. Note that this message transfer is an asynchronous operation. The message is
logically copied into the receiving task (possibly with copy-on-write optimizations). Mul-
tiple threads within the receiving task can be attempting to receive messages from a giv-
en port, but only one thread will receive any given message.

The Mach kernel does not understand distribution at all (unless configured with the ex-
perimental multicomputer support, which provides distributed shared memory and IPC
within a collection of Mach nodes). However, the Mach IPC facility is designed so that a
server task (the Net Message server) can transparently forward messages over a network.

Structure of this Document

The next chapter of this document provides a brief, non-formal model of the system ar-
chitecture supported by the Mach kernel. This attempts to discuss each feature of the ker-
nel in an isolated way, building to an understanding of the programming model
supported, without suggesting any particular method of use.

The remaining chapters of this document discuss each feature in turn, so as to allow pro-
grammers to better understand how to use these features in a reasonably consistent man-
ner.
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CHAPTER 2 Architectural Model

Like all systems, the Mach system has, as its primary responsibility, the provision of
points of control that execute instructions within some framework. In Mach, these points
of control are called threads. Threads execute in a virtual environment. The virtual envi-
ronment.provided by the Mach kernel consists of a virtual processor that executes all of
the user space accessible hardware instructions, augmented by emulated instructions (sys-
tem traps) provided by the kernel; the virtual processor accesses a set of (virtualized) reg-
isters and some virtual memory that otherwise responds as does the machine’s physical
memory; all other hardware resources are accessible only via special combinations of
memory accesses and emulated instructions. Note that all resources provided by the
Mach kernel are virtualized. This chapter describes, at top level, the elements of the virtu-
al environment seen by Mach threads.

Elements

The Mach kernel provides an environment consisting of the following elements:

• thread — An execution point of control. A thread is a light-weight entity; most of the
state pertinent to a thread is associated with its containing task.

• task — A container to hold references to resources in the form of a port name space,
a virtual address space and a set of threads.

• port — A unidirectional communication channel between tasks.

• port set — A set of ports which can be treated as a single unit when receiving a mes-
sage.

• port right —A capability allowing particular rights to access a port.

• port name space — An indexed collection of port names each of which names a par-
ticular port right.
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• message — A typed collection of data passed between two tasks.

• message queue — A queue of messages associated with a single port.

• virtual address space — A sparsely populated indexed set of memory pages that may
be referenced by the threads within a task. Ranges of pages may have arbitrary at-
tributes and semantics associated with them via mechanisms implemented by the ker-
nel and external memory managers.

• abstract memory object — An abstract object that represents the non-resident state of
the memory ranges backed by this object. The task that implements this object is
called a memory manager.

• memory cache object — A kernel object that contains the resident state of the memo-
ry ranges backed by an abstract memory object.

• processor — A physical processor capable of executing threads

• processor set — A set of processors, each of which can be used to execute the threads
assigned to the processor set.

• node — An individual multiprocessor within a multicomputer.

• host — The multiprocessor/multicomputer as a whole.

• device — Physical device accessible by user mode tasks.

• event — A kernel device maintained signalling event count.

Each of these notions will be discussed in detail. However, since some of their defini-
tions depend on the definitions of others, some of the key notions will be discussed in
simplified form so that a full discussion can be understood.

A thread is the basic computational entity. A thread belongs to one and only one task that
defines its virtual address space. To affect the structure of the address space, or to refer-
ence any resource other than the address space, the thread must execute a special trap in-
struction which causes the kernel to perform operations on behalf of the thread, or to
send a message to some agent on behalf of the thread. In general, these traps manipulate
resources associated with the task containing the thread. The resources provided by the
Mach kernel that can be directly manipulated are:

• threads

• tasks (and associated virtual address spaces and port name spaces)

• processors and processor sets

• hosts (and, in some cases, nodes)

• devices and events

These entities are resources in the sense that the kernel provides them, and requests can
be made of the kernel to manipulate these entities: to create them, delete them and affect
their state.

The kernel is just one manager that can provide resources (those listed above) and pro-
vide services. Tasks may also provide services, and implement abstract resources them-
selves. The kernel provides communications methods that allow a client task to request
that a server task (actually, a thread executing within it) provide a service. In this way, a
task has a dual identity; one identity is that of a resource managed by the kernel, whose
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resource manager executes within the kernel; the second is that of a supplier of resources
for whom the resource manager is the task itself.

With the exception of the task’s virtual address space, all other system resources are ac-
cessed through a level of indirection known as a port. A port is a unidirectional communi-
cation channel between a client who requests a service and a server who provides the
service. (If a reply is to be provided to such a service request, a second port must be
used.) The service to be provided is determined by the manager that receives the message
sent over the port. It follows that the receiver for ports associated with kernel provided
entities is the kernel and the receiver for ports associated with task provided entities is
the task providing that entity. For ports that name task provided entities, it is possible to
change the receiver of messages for that port to be a different task. A single task may
have multiple ports that refer to resources it supports. For that matter, any given entity
can have multiple ports that represent it, each implying different sets of permissible oper-
ations. For example, many entities have a name port and a control port (sometimes called
the privileged port). Access to the control port allows the entity to be manipulated; ac-
cess to the name port simply names the entity, for example, to return statistics.

There is no system-wide name space for ports. A thread can access only the ports known
to its containing task. A task holds a set of port rights, each of which names a (not neces-
sarily distinct) port and which specifies the rights permitted for that port. Port rights can
be transmitted in messages; this is how a task gets port rights. A port right is named with
a port name, which is an integer chosen by the kernel that is meaningful only within the
context (port name space) of the task holding that right.

Most operations in the system consist of sending a message to a port that names some
manager for the object being manipulated. In this document, this will be shown in the
form:

object → function

which means that the function is to be invoked (by sending an appropriate message) to a
port that names the object. Since a message must be sent to some port (right), this opera-
tion has an object basis. However, not all entities are named by ports and so this is not a
pure object model. The two main non-port right named entities are port names/rights
themselves, and ranges of memory. (Event objects are also named by task local IDs.) To
manipulate a memory range, a message is sent to the containing virtual address space
(named by the owning task). To manipulate a port name/right (and, often, the associated
port), a message is sent to the containing port name space (named by the owning task). A
subscript notation,

object [id] → function

is here used to show that an id is required as a parameter in the message to indicate
which range or element of object is to be manipulated. This form is also used for a hand-
ful of operations in which a privileged port (the host control port) must be supplied as
well as the object to be manipulated for the sake of verifying privilege for the operation.
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Threads

A thread is the basic computational entity. A thread belongs to one and only one task that
defines its virtual address space. A thread has the following state:

• Its machine state (registers and the like), which change as the thread executes and
which can also be changed by a holder of the kernel thread port.

• A (small) set of thread specific port rights, identifying the thread’s kernel port and a
port used to send exception messages on behalf of the thread.

• A suspend count, non-zero if the thread is not to execute instructions.

• Resource (scheduling) parameters.

• Various statistics, including statistical PC samples.

A thread operates by executing instructions in the usual way. Various special instructions
trap to the kernel, to perform operations on behalf of the thread. The most important of
these kernel traps is the mach_msg_trap, which allows the thread to send messages to
kernel and other servers to operate upon resources for it. (This trap is almost never direct-
ly called; it is invoked via the mach_msg library routine.)

Exceptional conditions arising during the thread’s execution (floating point overflow,
page not resident, etc.) are handled by sending messages to some port. The port used de-
pends on the nature of the condition. The outcome of the exceptional condition depends
on setting the thread’s state and/or responding to the exception message.

The operations that can be performed upon a thread are:

• Creation and destruction.

• Suspension and resumption (manipulating the suspend count).

• Machine state manipulation.

• Special port manipulation.

• Resource (scheduling) control.

• Statistical PC sampling.

Tasks

A task can be viewed as a container that holds a set of threads. It contains default values
to be applied to its containing threads. Most importantly, it contains those elements that
its containing threads need to execute, namely, a port name space and a virtual address
space. The state associated with a task is:

• The set of contained threads.

• The associated virtual address space.

• The associated port name space, naming a set of port rights, and a related set of port
notification requests.
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• A (small) set of task specific ports, identifying the task’s kernel port, a default port to
use for exception handling for contained threads and bootstrap ports to name other
services.

• Emulation library addresses for routines that gain control upon the attempted execu-
tion of certain system call instructions.

• A suspend count, non-zero if no contained threads are to execute instructions.

• Default scheduling parameters for threads.

• Various statistics, including statistical PC samples.

Tasks are created by specifying a prototype task which specifies the host on which the
new task is created, and which can supply (by inheritance) various portions of its address
space.

The operations that can be performed upon a task are:

• Creation and destruction.

• Suspension and resumption.

• Special port manipulation.

• Manipulation of contained threads.

• Statistical PC sampling of the contained threads.

Ports

A port is a unidirectional communication channel between a client who requests a ser-
vice and a server who provides the service. A port has a single receiver and (potentially)
multiple senders.

The major state associated with a port is its associated message queue. A port also main-
tains a count of references (rights) to it.

Kernel services exist to allocate ports. Every system entity (other than virtual memory
ranges) is named by a port, so ports are also created implicitly when these entities are cre-
ated.

The kernel will provide notification messages upon the death of a port upon request.

Messages

A message is a typed collection of data passed between two entities. A message is not a
system object in its own right. However, since messages are queued, they are significant
because they can hold state between the time a message is sent and when it is received.
This state consists not only of pure data; it also consists of virtual copy memory ranges
and port rights.
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Message Queues

A port basically consists of a queue of messages. This queue is manipulated only via
message operations (mach_msg) that transmit messages. The state associated with a
queue is the ordered set of messages queued, and a settable limit on the number of mes-
sages.

Port Rights

A port can only be accessed via a port right. A port right is an entity that indicates the
right to access a specific port in a specific way. In this context, there are three types of
port rights:

• receive right — Allows the holder to receive messages from the associated port.

• send right — Allows the holder to send messages to the associated port.

• send-once right — Allows the holder to send a single message to the associated port.
The right self-destructs after the message is sent.

Port rights can be copied and moved between tasks via various options in the mach_msg
call, and also by explicit command. Other than message operations, port rights can be ma-
nipulated only as members of a port name space.

Port rights are created implicitly when any other system entity is created and explicitly
via explicit port creation.

The kernel will, upon request, provide notification (to a port of one’s choosing) when
there are no more send rights to a port. The destruction of a send-once right (other than
by using it to send a message) generates a send-once notification sent to the correspond-
ing port.

Port Name Space

Ports and port rights do not have system-wide names that allow arbitrary ports or rights
to be manipulated directly. Ports can be manipulated only via port rights, and port rights
can be manipulated only when they are contained within a port name space. A port right
is specified by a port name which is an index into a port name space. Each task has asso-
ciated with it a single port name space.

An entry in a port name space can have four possible values:

• MACH_PORT_NULL — No associated port right.

• MACH_PORT_DEAD — A right was associated with this name, but the port to
which the right referred has been destroyed.

• a port right — A send-once, send or receive right for a port.

• a port set name — A name which acts like a receive right, but that allows receiving
from multiple ports.
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Acquiring a new right in a task generates a new port name. As port rights are manipulat-
ed (by referring to their port names) the port names are sometimes themselves manipulat-
ed. All send and receive rights to a given port in a given port name space will have the
same port name. Each send-once right to a given port will have a different port name
from each other and from the port name used for any send or receive rights held.

Operations supported for port names include:

• Creation (via creation of a right) and deletion.

• Query of the associated type.

• Rename.

The kernel will provide notification of a name becoming unusable upon request.

Since port name spaces are bound to tasks, they are created and destroyed with their own-
ing task.

Port Sets

A port set is a set of ports which can be treated as a single unit when receiving a mes-
sage. A mach_msg receive operation is allowed against a port name that either names a
receive right, or a port set. A port set contains a collection of receive rights. When a re-
ceive operation is performed against a port set, a message will be received from one of
the ports in the set. The received message will indicate from which member port it was
received. It is not allowed to directly receive a message from a port that is a member of a
port set. There is no notion of priority for the ports in a port set; there is no control pro-
vided over the kernel’s choice of the port within the port set from which any given mes-
sage is received.

Operations supported for port sets include:

• Creation and deletion.

• Membership changes and membership queries.

Virtual Address Spaces

A virtual address space defines the set of valid virtual addresses that a thread executing
within the task owning the virtual address space is allowed to reference. A virtual ad-
dress space is named by its owning task.

A virtual address space consists of a sparsely populated indexed set of pages. The at-
tributes of individual pages may be set at will. For efficiency, the kernel groups virtually
contiguous sets of pages that have the same attributes into internal memory regions. The
kernel is free to split or merge memory regions at will. System mechanisms are sensitive
to the identities of memory regions, but most user accesses are not so affected, and can
span memory regions freely.



14 Mach 3 Kernel Principles

Architectural Model

A given memory range can have distinct semantics associated with it through the actions
of a memory manager. When a new memory range is established in a virtual address
space, an abstract memory object is specified (possibly by default) that represents the se-
mantics of the memory range, by being associated with a task (a memory manager) that
provides those semantics.

A virtual address space is created when a task is created, and destroyed when the task is
destroyed. The initial contents of the address space is determined from various options to
the task_create call, as well as the inheritance properties of the memory ranges of the
prototype task used in that call.

Most operations upon a virtual address space name a memory range within the address
space. These operations include:

• Creating (allocating) and de-allocating a range.

• Copying a range.

• Setting special attributes, including “wiring” the page into physical memory to pre-
vent eviction.

• Setting memory protection attributes.

• Setting inheritance properties.

• Directly reading and writing ranges.

Abstract Memory Objects

The Mach kernel allows user mode tasks to provide the semantics associated with refer-
encing portions of a virtual address space. It does this by allowing the specification of an
abstract memory object that represents the non-resident state of the memory ranges
backed by this memory object. The task that implements this memory object (that re-
sponds to messages sent to the port that names the memory object) is called a memory
manager.

The kernel should be viewed as using main memory as a (directly accessible) cache for
the contents of the various memory objects. The kernel is involved in an asynchronous di-
alog with the various memory managers to maintain this cache, filling and flushing this
cache as the kernel sees fit, by sending messages to the abstract memory object ports.

The operations upon abstract memory objects include:

• Initialization.

• Page reads.

• Page writes.

• Requests for permission to access pages.

• Page copies.

• Termination.
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Memory Cache Objects

The portion of the kernel’s main memory cache that contains the resident pages associat-
ed with a given abstract memory object is referred to as the memory cache object. The
memory manager for a memory object holds send rights to the kernel’s memory cache
object. The memory manager is involved in an asynchronous dialog with the kernel to
provide the abstraction of its abstract memory object by sending messages to the associat-
ed memory cache object.

The operations upon memory cache objects include:

• Set attributes (including initialized state).

• Return attributes.

• Supply pages to the kernel.

• Indicate that pages requested by the kernel are not available.

• Indicate that pages requested by the kernel should be filled by the kernel’s default
rules.

• Restrict access to memory pages.

• Termination.

Processors

Each physical processor (that is capable of executing threads) is named by a processor
control port. Although significant in that they perform the real work, processors are not
very significant in the Mach scheme of things other than as members of a processor set.
It is a processor set that forms the basis for the pool of processors used to schedule a set
of threads, and that has scheduling attributes associated with it.

The operations supported for processors include:

• Assignment to a processor set.

• Machine control, such as start and stop.

Processor Sets

Processors are grouped into processor sets. A processor set forms a pool of processors
used to schedule the threads assigned to that processor set. A processor set exists as a ba-
sis to uniformly control the schedulability of a set of threads. The notion also provides a
way to perform coarse allocation of processors to given activities in the system.

The operations supported upon processor sets include:

• Creation and deletion.

• Assignment of processors.

• Assignment of threads and tasks.

• Scheduling control.
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Nodes

In general, the Mach kernel executes on a single machine, possibly a multiprocessor.
Multiple such machines may be connected together in various ways, but this is the prov-
ince of user space tasks. However, optional (and experimental) support is provided with-
in the kernel for multicomputers, “machines” consisting of multiple multiprocessors
(without shared memory between multiprocessors). Each uniprocessor or multiprocessor
in such a multicomputer is called a node and referenced by a node ID (a number). The
multicomputer as a whole is a Mach host.

Mach’s multicomputer support provides transparently distributed shared memory be-
tween nodes and transparently distributed Mach IPC between nodes. The only direct op-
erations supported by nodes are the setting and retrieving of a small set of node specific
ports.

Hosts

Each machine (uni-processor or multi-processor) in a networked Mach system runs its
own instantiation of the Mach kernel. The host multiprocessor is not generally manipulat-
ed by client tasks. But, since each host does carry its own Mach kernel, each with its own
port space, physical memory and other resources, the executing host is visible and some-
times manipulated directly. Also, each host generates its own statistics.

Hosts are named by a name port which is freely distributed and which can be used to ob-
tain information about the host and a control port which is closely held and which can be
used to manipulate the host. Operations supported by hosts include:

• Clock manipulation.

• Statistics gathering.

• Re-boot.

• Set the default memory manager.

• Obtain lists of processors and processor sets.

Devices

The Mach kernel exports a very simple interface to its devices. When initialized, the
Mach kernel builds an internal table that lists each device. It exports a single port, the de-
vice master port, which is responsible for allocating devices. A task that holds send
rights to the device master port may request the kernel to open a device, returning a port
that provides access to that device. Operations on that port then manipulate the device,
until it is closed.

Operations on devices include:

• Read and write.

• Status return and setting.
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• Special purpose operations.

• Mapping a shared memory window between a user space task and the device / device
driver.

Events

In support of user space device drivers, kernel device drivers may provide event objects
that count significant events of a certain type and signal (make running) a thread waiting
for such an event. The set of events is chosen by the device driver (possibly as a result of
instructions given to the driver); there is no general (explicit) way to create or delete
event objects. Event objects are named by an event ID local to the accessing task, as cho-
sen by the driver and communicated to the task in a driver specific way. The only support-
ed operation for event objects is to wait for an event to occur. The event object maintains
a count of outstanding events so that events are not lost.

Note that event objects and their interface are very preliminary and highly subject to
change.
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CHAPTER 3 Threads and Tasks

Threads are the active entities in a Mach system. They act as points of control within a
task, which provides them with a virtual address space and a port name space with which
other resources are accessed.

This chapter discusses the user visible view of threads and tasks.

It is common practice to discuss scheduling issues when discussing threads. However,
the issue of scheduling is only marginally related to the semantics of threads. Issues di-
rectly involved in the actual scheduling of threads on processors (processor sets and the
like) are discussed in the chapter on physical resources.

Threads

A thread is the basic computational entity. A thread belongs to one and only one task that
defines its virtual address space. A thread is a light-weight entity with a minimum of
state. A thread executes in the way dictated by the hardware; fetching instructions from
its task’s address space based on the thread’s register values. The only actions a thread
can take directly are to execute instructions that manipulate its registers and read and
write into its memory space. An attempt to execute privileged machine instructions,
though, causes an exception (discussed later). To affect the structure of the address space,
or to reference any resource other than the address space, the thread must execute a spe-
cial trap instruction which causes the kernel to perform operations on behalf of the
thread, or to send a message to some agent on behalf of the thread. Also, faults or other il-
legal instruction behavior cause the kernel to invoke its exception processing.

FIGURE 1 shows the client visible structure associated with a thread. The thread object
is the receiver for messages sent to the kernel thread port. Aside from any random task
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that may hold send rights to this thread port, the thread port is also accessible via the
thread’s thread self port, the containing task or the containing processor set.

Actions by Threads
This section describes the details of the actions that a thread can take directly. Of course,
a thread can do anything if it can gain access to the correct port rights and send messages
to them; the various things it can do are discussed under the sections describing the ob-
ject manipulated.

Scheduling Support Traps
The Mach kernel preemptively schedules threads. The way in which this is done is relat-
ed to various factors. For now, it is sufficient to say that threads have scheduling priority
associated with them which is used to select which threads should execute within a given
processor set (discussed as part of physical resources).

thread_switch causes a context switch with various options. It is provided for cases
(such as software lock routines) that want to give up the processor so that other threads
can make progress. The options mostly have to do with selecting the appropriate new
thread to run, when this information is available.

FIGURE  1 Thread Structures
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One of the options to thread_switch causes the scheduling priority of the thread to be de-
pressed to the lowest possible value so that other threads will run, thereby (it is hoped)
completing work that blocks this depressed thread. This priority depression is canceled
when the given time expires, the thread is next run regardless of the depression, thread
→thread_abort is called or thread →thread_depress_abort is called.

Two additional traps, swtch, which attempts to context switch to a different thread, and
swtch_pri, which switches and also sets the current thread’s scheduling priority, are be-
ing phased out in favor of thread_switch.

The evc_wait trap causes the invoking thread to wait for a kernel (device) defined event.
This is described along with device_map. (Note that this feature is subject to change.)

Identity Traps
Other than the few traps mentioned in this chapter, all other requests for services require
a port right. Even requests upon the kernel that manipulate the current thread or task
need a port right (naming the current thread or task). To bootstrap this process, a thread
needs a way, without any port right, to get the port right for itself and its task. These
rights are obtained through the mach_thread_self and mach_task_self traps, respective-
ly.

The port rights returned are actually the THREAD_KERNEL_PORT and TASK_KER-
NEL_PORT special ports last set through the thread → thread_set_special_port and
task → task_set_special_port message calls. The default values for these special ports
are the actual kernel thread and task ports, respectively. The creator of a task or thread
can set these special port values before starting the thread or task so that the thread or
task does not have access to its own kernel ports, but instead invokes some intermediate
port when requesting services to be done to itself.

The kernel also provides a trap, mach_host_self, which return a (send) right to the host’s
name port.

Bootstrap Reply Port Trap
The mach_reply_port trap is also used for bootstrap purposes. As mentioned earlier, if a
service request is to return a reply, a second port is needed. This trap is used to create an
initial reply port (a receive right) that can then be used for all other port related calls.

Message Send and Receive Trap
The final, and most important trap, is mach_msg_trap (the trap invoked by the
mach_msg library routine). This is the trap that provides access to all other system ser-
vices. It sends and/or receives a message to/from a port named by a given right. The se-
mantics of this call are very involved, and described in detail in the Kernel Interface
document, and also in various chapters in this document.

Exception Processing
A thread has an exception port associated with it. When an exception occurs in a thread
(these exceptions are listed under catch_exception_raise in the Kernel Interface docu-
ment), the thread, executing in kernel context, sends a message whose contents describe
the exception to its exception port. A successful reply to this message causes the thread
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to continue (in a state possibly altered by thread_set_state). If the reply message has a
non-success return value, or the thread’s exception port is not defined, the kernel will try
sending the exception message to the task’s exception port. As before, a successful reply
causes the thread to continue. If this message receives a non-success reply, or the task’s
exception port is not defined, the thread is terminated.

Not every exceptional condition that a thread encounters is handled in this way.

For example, a page not resident fault does not send a message to the exception port; in-
stead, a message is sent to the external memory manager associated with the memory
page in which the faulting address lies (this is discussed as part of virtual memory).

The general exception rule does not apply to the system call instruction(s). First of all,
several of the possible system call numbers are subsumed for Mach kernel calls. The re-
mainder are initially undefined. An attempt to execute them results in an exception as de-
fined above. At the granularity of a task, an indirection can be supplied separately for
each system call number. This is done via task → task_set_emulation or task → task_-
set_emulation_vector (and examined with task → task_get_emulation_vector). When
a thread attempts to execute a system call whose number has been redirected, the system
call is effectively translated into a type of subroutine call to the address specified with the
task_set_emulation call. This allows a task to establish an emulation library within its
address space to be used by threads emulating an existing operating system.

Actions on Threads
This section lists the various things that can be done to a thread, given a send right to the
kernel’s thread port.

Life and Death
A thread is created via task → thread_create and destroyed via thread → thread_termi-
nate. Since a thread belongs to a given task, thread creation is actually an operation per-
formed upon a task. The result is a send right to the kernel’s thread port for the new
thread. A list of the kernel thread ports for all of the threads in a given task can be ob-
tained with task → task_threads.

A newly created thread is in the suspended state. This is the same as if thread →
thread_suspend had been called upon it prior to its executing its first instruction. A sus-
pended thread does not execute. A thread is created in the suspended state so that its ma-
chine state can be properly set before it is started. To remove a thread from the
suspended state (actually, to decrement its suspend count), thread → thread_resume is
used.

Thread State
A thread has two main sets of state, its machine state and a set of special ports.

The machine state for a thread is obtained via thread → thread_get_state and set via
thread → thread_set_state.
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The result of setting a thread’s state at a random point is undefined. Various steps are
needed to obtain a deterministic result.

• thread → thread_suspend is used to stop the thread. This, and the following step, are
unnecessary if the thread has just been created and has yet to run. They are needed,
though, for exception processing or for asynchronous interruption (such as signal de-
livery).

• thread → thread_abort is called. This causes any system call (really, mach_msg or
any related message call, such as exception or page missing messages) to be aborted.
Aborting a message call sets the thread’s state to be at the point after the system call,
with a return value indicating interruption of the call. Aborting a page fault or excep-
tion leaves the thread at the point of the page fault or exception; resuming the thread
will cause it to retake the page fault or exception.

• thread → thread_set_state can then be safely used. (Note: Some hardware allows
page faults or exceptions to occur mid-instruction. This mid-instruction state may or
may not be permitted to be manipulated.)

• thread → thread_resume restarts the thread.

A thread has two special ports associated with it. The first is the value for the thread to
use to request operations upon itself. This is normally the same as the kernel thread port,
but can be different if so set (most likely by the creator of the thread). The second is the
port used by the thread, within the kernel, when it is processing exceptions on behalf of
itself. These two ports are returned by thread → thread_get_special_port and set by
thread → thread_set_special_port.

Various random pieces of kernel thread state, such as the suspend count and scheduling
information, can be obtained via thread → thread_info.

Scheduling Control
The following functions affect the scheduling of a thread. They are described under pro-
cessor sets.

• thread → thread_assign

• thread → thread_assign_default

• thread → thread_get_assignment

• thread → thread_max_priority

• thread → thread_policy

• thread → thread_priority

• host_control (thread)→ thread_wire

The thread_wire call marks the thread as “wired”—privileged with respect to kernel re-
source management. A “wired” thread is always eligible to be scheduled and can con-
sume memory even when free memory is scarce. This property is assigned to threads
within the default page-out path. Threads not in the default page-out path should not
have this property to prevent the kernel’s free list of pages from being exhausted.

task (thread) → mach_sample_thread provides support for the Posix profil  system call.
(The call requires both a thread parameter and a task parameter on the same host.) After
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being called, the kernel will start sampling the program counter (PC) of the specified
thread periodically (whenever it is running when a clock interrupt occurs). Buffers of
these PC values will be sent when full to a port specified in the sample call.

Tasks

A task can be viewed as a container that holds a set of threads. It contains default values
to be applied to its containing threads. Most importantly, it contains those elements that
its containing threads need to execute, namely, a port name space and a virtual address
space.

FIGURE 2 shows the client visible task structures. The task object is the receiver for mes-
sages sent to the kernel task port. Aside from any random task that may hold send rights
to this task port, the task port is also accessible via the task’s task self port, the contained
threads or the containing processor set. 

Life and Death
A new task is created with task → task_create. Note that task creation is an operation re-
quested of an existing (“prototype”) task. The result is a new task located on the same
machine as the prototype task (not that of the task making this invocation). The new task
can either be created with an empty virtual address space, or one inherited from the proto-
type task. The new task’s port name space is empty. The new task inherits the parent
task’s PC sampling state.

A task is destroyed with task → task_terminate. This operation is requested of the task
to be destroyed, not the parent specified in its creation. The task’s virtual address space
and port name space are destroyed.

Various random statistics about the task can be obtained with task → task_info.

Special Ports
Aside from its associated port name space, a task also has a small set of special ports.
These are the so-called “special” ports and the “registered” ports.

A task has three “special” ports associated with it. The first is the value for the task to
use to request operations upon itself. This is normally the same as the kernel task port,
but can be different if so set (most likely by the creator of the task). The second is the
port used by a thread, within the kernel, when it is processing exceptions on behalf of it-
self (when it has not set a thread specific exception port). The third is a bootstrap port,
which can be used for anything, but which is intended as the initial port a task holds to
something other than itself, for use in locating other services. These ports are returned by
task → task_get_special_port and set by task → task_set_special_port. The value of
these ports in a new task are inherited from the task that was the target of the task_cre-
ate call (with the obvious exception of the task self port).
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A task also has a small array of “registered” ports, which also inherit from the task used
in the task_create call. These ports can be set with task → mach_ports_register and re-
turned by task → mach_ports_lookup. Although these ports can have any use, their ex-
pected uses are to refer to the Network Name server, the Environment server and the
“Service” server.

Thread Management
A thread belongs to one and only one task. Threads are created with task → thread_cre-
ate. The set of threads present in a task can be found with task → task_threads.

Although a task does not itself execute, some execution properties can be set for a task
which will then apply to its contained threads. All of the threads in a task can be suspend-

FIGURE  2 Task Structures
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ed or resumed en masse by task → task_suspend and task → task_resume. These opera-
tions do not affect the threads’ suspend counts; they affect the task’s suspend count. A
thread can execute only if both its and its task’s suspend counts are zero.

As mentioned under exception processing for threads, a thread that executes a system
call instruction can have that system call redirected back into user space. This is accom-
plished by setting an emulation routine address (for the task as a whole) with task →
task_set_emulation or task → task_set_emulation_vector. The emulation vector can
be examined with task → task_get_emulation_vector.

The default scheduling properties for threads can be set with the following:

• task → task_assign

• task → task_assign_default

• task → task_get_assignment

• task → task_priority

task(task) → mach_sample_task provides support for the Posix profil  system call. (The
call requires both the task port and a reference task on the same host.) After being called,
the kernel will start sampling the program counter (PC) of all threads within the task peri-
odically (whenever one is running when a clock interrupt occurs). Buffers of these PC
values will be sent when full to a port specified in the sample call. Since a single port is
specified for this call, all PC samples for all threads will be randomly mixed in the buff-
ers sent to that port.
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CHAPTER 4 Ports, Rights and Messages

With the exception of its shared memory, a Mach task interacts with its environment
purely by sending messages and (hopefully) receiving replies. These messages are sent
via ports, communication channels with multiple senders and single receivers. A task
holds rights to these ports that specify its ability to send or receive messages.

Ports

A port is a unidirectional communication channel between a client who requests a ser-
vice and a server who provides the service.

A port has a single receiver and (potentially) multiple senders. A port that represents a
kernel supported resource has the kernel as the receiver; this receivership cannot change.
A port that names a service provided by a task has that task as the port’s receiver; this re-
ceivership can change if desired, as discussed under port rights.

The major state associated with a port is its associated message queue. A port also main-
tains a count of references (rights) to it.

FIGURE 3 shows a typical port, illustrating a series of extant send rights and the single
receive right. The associated message queue has a series of ordered messages. One of the
messages is shown in detail, showing its destination port, reply port reference, a send and
a receive right being passed in the message, as well as some out-of-line (virtual copy)
memory.

Few operations affect the port itself; most operations affect port rights or a port name
space containing those rights, or affect the message queue.
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Ports are created implicitly when any other system entity (threads, tasks, processors, pro-
cessor sets, hosts or devices) is created. Also, mach_reply_port creates a port. Ports are
created explicitly by port_name_space → mach_port_allocate and port_name_space
[port_name]→ mach_port_allocate_name. A port cannot be explicitly destroyed. It is
destroyed only when the receive right is destroyed.

The existence of ports is of obvious importance to all involved. As such, many tasks us-
ing a port may well wish to be notified, through a message, when they die. Such notifica-
tions are requested with options to mach_msg, as well as with port_name_space
[port_name]→ mach_port_request_notification. The way in which this destruction be-
comes evident depends on the viewer (and is dictated by the method in which the notifi-
cation was requested). The possibilities are:

FIGURE  3 Port Structures
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• dead name notification — A port has been destroyed. The message indicates the
task’s name for the now dead port. (This is discussed under port name spaces.) A noti-
fication of this form can be requested with port_name_space [port_name]→ mach_-
port_request_notification or with the MACH_RCV_NOTIFY option to mach_msg.

• port destroyed notification — A port was to be destroyed. The message carries the re-
ceive right, thereby saving the port. A notification of this form can be requested
(port_name_space [port_name]→ mach_port_request_notification), given the re-
ceive right. The movement (to another task) of the receive right does not affect any ex-
isting port destroyed notification requests. (This feature is currently planned to be
deleted from the kernel interface.)

Messages

A message is a typed collection of data passed between two entities. A message is not a
manipulable system object in its own right. However, since messages are queued, they
are significant because they can hold state between the time a message is sent and the
time when it is received.

Besides pure data, a message can also contain port rights. This is very significant. It is in
this way (in general) that a task obtains new rights, by receiving them in a message. The
ways in which this is possible are too numerous to discuss here; refer to the description
of mach_msg in the Kernel Interface document.

A message consists of a fixed sized header (mach_msg_header_t) followed by the data
items contained in the message. The header specifies a port name for the port to which
the message is sent, a port name for the port to which a reply is to be sent (if a reply is re-
quested), the message size and operation code fields.

The data items follow the header. Each consists of a data descriptor (mach_msg_type_t
or mach_msg_type_long_t) followed by the data. The type descriptor specifies the type
of the data, as well as a count of the number of data items of this type.

A message can contain references to “out-of-line” memory, as indicated by its data de-
scriptors. Like the other parts of the message, it is virtually copied from the sender to the
receiver. The kernel uses significant copy-on-write virtual memory optimizations to
make the passing of large data efficient. For our-of-line data, the data descriptor is fol-
lowed by the virtual address of the data, instead of the data itself. When a message is re-
ceived that contains out-of-line memory, this memory will appear as newly allocated
memory (as if by vm_map), using the same memory manager as the sender’s memory
used.

Each type descriptor includes an optional deallocate flag, which is meaningful only for
port rights and out-of-line memory. (The use of the appropriate IPC port types that specif-
ic the disposition of ports is preferred to the use of the deallocate flag for port rights.) If
set, the act of queueing the message will de-allocate the port rights and/or memory range
from the sending task.
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Message Queues

A port basically consists of a queue of messages. This queue is manipulated only via
message operations (mach_msg) that transmit messages.

The only controllable state for a message queue is its size. This can be set with port_nam-
e_space [port_name] → mach_port_set_qlimit given the receive right for the associated
port. If a message queue is full, no more messages can be queued (callers will block).
However, mach_msg provides an option allowing one message to be left waiting to be
queued. In this case, when the queue is no longer full, the message is then queued, and a
notification is sent.

Messages sent to a port are delivered reliably (messages may not be lost) and are re-
ceived in the order in which they were sent by any given thread.

Port Rights

A port can only be accessed via a port right. A port right is an entity that indicates the
right to access a specific port in a specific way. In this context, their are three types of
port rights:

• receive right — Allows the holder to receive messages from the associated port.

• send right — Allows the holder to send messages to the associated port.

• send-once right — Allows the holder to send a single message to the associated port.
The right self-destructs after the message is sent.

Port rights are a secure, location independent way of identifying ports. These rights are
kernel protected entities; clients manipulate port rights only via port names they have to
these rights.

mach_msg is one of the principal ways that rights are manipulated. Port rights can be
moved between tasks (deleted from the sender and added to the receiver) in messages.
Also, option flags in a message will cause mach_msg to make a copy of an existing send
right, or to generate a send or a send-once right from a receive right. Rights can also be
forcefully copied or moved by port_name_space [port_name]→ mach_port_extrac-
t_right (the equivalent of the target sending the right in a message) and port_nam-
e_space [port_name]→ mach_port_insert_right (the equivalent of the target receiving
the right in a message).

Other than message operations, port rights can be manipulated only as members of a port
name space.

FIGURE 4 shows a series of port rights, some contained in a port name space and some
in transit in a message. Also shown in the port name space is a port set.

Port rights are created implicitly when any other system entity is created. Also, mach_re-
ply_port  creates a port right. Port rights are created explicitly by port_name_space →
mach_port_allocate and port_name_space [port_name]→ mach_port_allocate_name.
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A port right is destroyed by port_name_space [port_name]→ mach_port_deallocate
and port_name_space [port_name]→ mach_port_destroy. Destruction can also be a by-
product of port name space manipulations, such as by port_name_space [port_name]→
mach_port_mod_refs.

Some status information can be obtained, given a receive right, with port_name_space
[port_name]→ mach_port_get_receive_status.

The system maintains a (system-wide) count of the number of send (and send-once)
rights for each port (this includes rights in transit in messages, including the destination
and reply port rights). The receiver of a port may well be interested if there are no more
send rights for the port, indicating that the port may no longer have value. A notification

FIGURE  4 Port Right Structures
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of this form can be requested (port_name_space [port_name]→ mach_port_request_no-
tification ). This notification depends on the notion of a make-send count, discussed as a
part of port name spaces. The movement (to another task) of the receive right does not
currently affect any existing no-more-senders notification requests. (A planned change is
to cancel outstanding no-more-senders notification requests, and to send a send-once noti-
fication to indicate this cancelation.)

A send-once right allows a single message to be sent via it. These rights are generated
only from the receive right. A send-once right has the property that it guarantees that a
message will result from it. In the normal case, a send-once right is consumed by using it
as the destination port in a message; the right is (silently) destroyed when the message is
received. The send-once right can be moved from task to task (other than being used as a
destination right) until such time as it is consumed. If the right is destroyed in any way
other than by using it to send a message, a send-once notification is sent to the port in-
stead.

Most of the ways in which a send-once right can be destroyed (other than by using it to
send a message) are fairly obvious. There are several obscure cases:

• The send-once right was specified as the target for a no-senders notification and the
port for which the no-senders notification was requested is deleted. Since there will
be no forth coming no-senders notification, a send-once notification is generated in-
stead.

• The send-once right was specified as the target for a message-accepted notification
and the port for which the message was waiting to be accepted is deleted. No mes-
sage-accepted notification is generated in this case; a send-once notification is gener-
ated instead.

• In the process of performing a non-atomic message receive, the task gives away its re-
ceive right after the message is de-queued from the port but prior to its being returned
to the task. A send-once notification is sent to the destination port signifying the lost
association between the message sent via the send-once right and the port.

The complete rules for manipulation of port rights are too complicated to be described
here; refer to the Kernel Interface document.

Port Name Space

Ports, themselves, are not named. It is the port rights that are. A port right can only be
named by being contained within a port name space. A port is specified by a port name
which is an index into a port name space. Each task has associated with it a port name
space.

An entry in a port name space can have four possible values:

• MACH_PORT_NULL — No associated port right.

• MACH_PORT_DEAD — A right was associated with this name, but the port to
which the right referred is now dead. The port name is kept in this state until explicit
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action is taken to avoid reusing this name before the client task understands what hap-
pened.

• a port right — A send-once, send or receive right for a port.

• a port set name — A name which acts like a receive right, but that allows receiving
from multiple ports. This is discussed in the next section.

Each distinct right that a port name space contains does not necessarily have a distinct
name in the port name space. Send-once rights always consume a separate name for each
distinct right. Receive and send rights, though, to the same port coalesce. That is, if a
port name space holds three send rights for some port, it will have a single name for all
three rights. A port name has an associated reference count for each type of right (send-
once, send, receive, port set and dead name) associated with the name. If the port name
space also holds the receive right, that receive right will have the same name as the send
right.

A name becomes dead when its associated port is destroyed. (It follows that a task hold-
ing a dead name cannot be holding a receive right under that name as well.) The dead
name only has a non-zero reference count for the number of send or send-once referenc-
es previously held by that name. A task can be notified (a message sent to it) when one
of its names becomes dead via port_name_space [port_name]→ mach_port_request_-
notification. Receiving this notification message increments the reference count for the
dead name, to avoid a race with any threads manipulating the name.

Whenever a task acquires a right (by whatever means) it is assigned a port name subject
to the above rules. Acquiring a right increments the name’s reference count for the type
of that right. The reference count can be obtained with port_name_space [port_name]→
mach_port_get_refs.

Although a port name can be explicitly destroyed (port_name_space [port_name]→
mach_port_destroy) thereby removing all references, port names are typically manipu-
lated by modifying the user reference count. port_name_space [port_name]→ mach_-
port_mod_refs modifies the reference count for a specified right type associated with a
name. port_name_space [port_name]→ mach_port_deallocate is similar to mach_-
port_mod_refs, but it always decrements the count by 1, and it will only decrement the
send (or send-once) reference count. This routine is useful for manipulating the reference
count for a port name that may have become dead since the decision was made to modify
the name. Options to mach_msg that actually move a right (and also port_name_space
[port_name]→ mach_port_extract_right) can cause the name’s reference count to be
decremented. Port names are freed when all the reference counts go to zero.

If a port name is freed and a dead-name notification is in effect for the name, a port-delet-
ed notification is generated. As such, a name with a dead-name notification in effect can
be in only one of three states:

• naming a valid right

• MACH_PORT_DEAD, with a dead-name notification having been sent when the
name became dead

• MACH_PORT_NULL, with a port-deleted notification having been sent when the
name became null
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Information about a name, in particular, the type of the name, can be obtained with port_-
name_space [port_name]→ mach_port_type. The list of assigned names is obtained
with port_name_space [port_name]→ mach_port_names. The name by which a right is
known can be changed with port_name_space [port_name]→ mach_port_rename.

Some status information can be obtained, given a receive right name, with port_nam-
e_space [port_name]→ mach_port_get_receive_status.

Port names that name receive rights have an associated make-send count, used for no-
more-sender notification processing. The make-send count is the kernel’s count of the
number of times a send right was made from the receive right (with a message element
that is a port right specifying the MACH_MSG_TYPE_MAKE_SEND type descriptor
for mach_msg). This make-send count is set to zero when a port is created, and reset to
zero whenever the receive right is transmitted in a message. It can also be changed with
port_name_space [port_name]→ mach_port_set_mscount. The make-send count is in-
cluded in the no-more-senders notification message. Note that a no-senders notification
indicates the lack of extant send rights; there may still be outstanding send-once rights. A
task can easily keep track of the send-once rights since every send-once right guarantees
a message or send-once notification.

Received messages are stamped with a sequence number, taken from the port from which
the message was received. (Messages received from a port set are stamped with a se-
quence number from the appropriate member port.) Sequence numbers placed into sent
messages are overwritten. Newly created ports start with a zero sequence number, and
the sequence number is reset to zero whenever the port's receive right is moved. It can
also be set explicitly with port_name_space [port_name]→ mach_port_set_seqno.
When a message is de-queued from the port, it is stamped with the port's sequence num-
ber and the port's sequence number is then incremented. The de-queue and increment op-
erations are atomic, so that multiple threads receiving messages from a port can use the
msgh_seqno field to reconstruct the original order of the messages. 

Since port name spaces are bound to tasks, they are created and destroyed with their own-
ing task.

Port Sets

A port set is a set of ports which can be treated as a single unit when receiving a mes-
sage. A mach_msg receive operation is allowed against a port name that either names a
receive right, or a port set. A port set contains a collection of receive rights. When a re-
ceive operation is performed against a port set, a message will be received at random
from one of the ports in the set (the first to have a message, if only one port has a mes-
sage queued). Each of the receive rights in the set has its own name, and the set has its
own name. A receive against a port set reports the name of the receive right whose port
provided the message. A receive right can belong to only one port set. A task may not di-
rectly receive from a receive right that is in a port set.

A port set is created with port_name_space [port_name]→ mach_port_allocate or
port_name_space [port_name]→ mach_port_allocate_name. It is destroyed by port_-
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name_space [port_name]→ mach_port_destroy or port_name_space [port_name]→
mach_port_deallocate.

Manipulations of port sets is done with port_name_space [port_name]→ mach_port_-
move_member. This call can add a member to a set, remove it from a set, or move it
from one set to another.

The membership of a port set can be found with port_name_space [port_name]→
mach_port_get_set_status.

Message Transmission

The mach_msg system call sends and receives Mach messages.

The send operation queues a message to a port. The caller blocks until the message can
be queued, unless one of the following happens:

• The message was being sent to a send-once right. These messages always forcibly
queue.

• The queue was full and the caller specified the MACH_SEND_NOTIFY option. This
option will force the destination port to accept a single message (returning an appro-
priate status), and send the caller a notification when the message is actually queued.

• The mach_msg operation was aborted (thread_abort). Note that, by default, the
mach_msg library routine retries operations that are interrupted.

• The send operation exceeded its time-out value.

• The port was destroyed.

The message carries a copy of the caller’s data. (Data specified as out-of-line in the mes-
sage is passed as a virtual copy.) After the send, the caller can freely modify the message
buffer or the out-of-line memory ranges and the message contents will remain unchanged. 

Aside from the obvious sending failures (invalid port rights or data formats, for exam-
ple), a message may also fail to be queued because the send time-out value is exceeded
or an interrupt (thread_abort) occurred. In these situations, the kernel tries to return the
message contents to the caller with a pseudo-receive operation. This prevents the loss of
port rights or memory which only exist in the message, for example, a receive right
which was moved into the message, or out-of-line memory sent with the de-allocate bit. 

The pseudo-receive operation is very similar to a normal receive operation. The pseudo-
receive handles the port rights in the message header as if they were in the message body.
After the pseudo-receive, the message is ready to be resent. If the message is not resent,
note that out-of-line memory ranges may have moved and some port rights may have
changed names. 

The receive operation de-queues a message from a port. The receiving task acquires the
port rights and out-of-line memory ranges carried in the message. The caller must supply
a buffer into which the header (and any in-line data) is to be copied. If the message does
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not fit, it is normally destroyed. An option (MACH_RCV_LARGE), though, allows the
caller to receive an error, along with the buffer size that would be needed, so that another
receive operation can be attempted with an appropriate sized buffer.

A received message can contain port rights and out-of-line memory. Received port rights
and memory should be consumed or de-allocated in some fashion. Resource shortages
that prevent the reception of a port right or out-of-line memory destroy that entity.

The receive operation can also specify a time-out value. It may also be aborted (thread_-
abort). These situations do not affect the message that would have been received.

There are two notifications that can be requested as a result of a mach_msg call. The
first is the msg-accepted notification, sent when a message is successfully queued after
being forcibly sent with the MACH_SEND_NOTIFY option. The other notification is
not generated by mach_msg, but is requested by the MACH_RCV_NOTIFY option.
This option causes the reply port right that is received to automatically have a dead name
notification requested for it (as if by mach_port_request_notification). This latter op-
tion is an optimization for a certain class of RPC interactions. The dead name notifica-
tion on the reply port name allows the receiver of the message to be informed in a timely
manner of the death of the requesting client. However, since the reply right is typically a
send-once right, sending the reply will destroy the right and generate a port-deleted notifi-
cation instead. An optimization to cancel this notification is provided by the MACH_-
SEND_CANCEL option to mach_msg.

Message operations are only atomic with respect to the manipulation of the port rights in
message headers.
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Mach is well known for its virtual memory design, one that cleanly layers the virtual
memory system into a machine dependent and a machine independent portion. The ma-
chine dependent portion provides a simple interface for validating, invalidating and set-
ting the access rights for pages of virtual memory (maintaining the hardware address
maps). The machine independent portion provides support for logical address maps (map-
ping a virtual address space), memory ranges within this map, and the interface to the
backing storage (memory objects) for these ranges via the external memory management
interface.

The virtual memory system is designed for uniprocessors and shared memory multi-pro-
cessors of a moderate number of processors. It has been ported to non-uniform access
memory architectures, although optimal support for these architectures, as well as more
complex mapped hardware (such as virtually addressed caches) is still being investigated.

High performance is a feature of the Mach virtual memory design. Much of this results
from its efficient support of large, sparse address spaces, shared memory, and virtual
copy memory optimizations.

Finally, the virtual memory system allows clients to provide the backing storage for mem-
ory ranges, thereby defining the semantics that apply to such ranges.

Virtual Address Spaces

A virtual address space defines the set of valid virtual addresses that a thread executing
within the task owning the virtual address space is allowed to reference. A virtual ad-
dress space is named by its owning task.



38 Mach 3 Kernel Principles

Virtual Memory Management

A virtual address space consists of a sparsely populated indexed set of memory pages.
The kernel internally groups virtually contiguous sets of pages that all have the same at-
tributes (backing abstract memory object, inheritance, protection and other properties)
into internal entities called memory regions. Memory regions are named only by their vir-
tual address ranges within their containing address space. Various operations and system
mechanisms are sensitive to the identities of memory regions, but most user accesses are
not so affected, and can span memory regions freely. The kernel is free to split and merge
memory regions as it sees fit; the client view of its address space is as a set of pages. The
only call that is sensitive to memory regions is virtual_address_space [memory_address]
→ vm_region. This call locates the region “near” a given address, and returns informa-
tion about that memory region. Since memory regions are purely a kernel internal notion
(but affected by vm_map calls, as well as by changing protection and inheritance at-
tributes), the result of this call can change from invocation to invocation.

A virtual address space is created when a task is created, and destroyed when the task is
destroyed. When a new task is created (ignoring inheritance), its address space is empty
and must be built through manipulations of the virtual address space before the task can
have threads set into execution. An option, though, to the task_create call allows for the
new task to “inherit” ranges of memory from the prototype task used in the create call.
The kernel function virtual_address_space [memory_range] → vm_inherit  can change
the inheritance properties for a memory range, to allow or disallow inheritance. The pos-
sibilities for inheritance are:

• VM_INHERIT_NONE — The range is left undefined in the new task.

• VM_INHERIT_COPY — The range is copied (with copy optimizations) into the new
task at the time of task creation.

• VM_INHERIT_SHARE — The new and old tasks share access to the memory range.

A range of memory can have distinct semantics associated with it through the actions of
a memory manager. When a new memory range is established in a virtual address space,
an abstract memory object is specified (possibly by default) that represents the semantics
of the memory range, by being associated with a task (a memory manager) that provides
those semantics. No kernel calls exist for a task to directly affect the semantics associat-
ed with its memory ranges. A task has such control only by virtue of choosing memory
managers that provide the functionality desired, or by sending messages directly to its
memory managers to direct their actions.

virtual_address_space [memory_range] → vm_map is the basic call to establish a new
range of virtual memory. This call specifies the details of the memory range (placement,
size, protection, inheritance, object offset). The significant parameter to this call is a port
naming an abstract memory object that backs the storage for the range. A null port speci-
fies that the system’s default memory manager is to be used. The default memory manger
provides initially zero-filled storage that is paged against the system’s paging space and
which will not persist between system boot-loads. virtual_address_space [memory_r-
ange] → vm_allocate can be viewed as a simplified form of the vm_map call when the
default memory manager is desired.

Random ranges of memory space can be made invalid with virtual_address_space [mem-
ory_range] → vm_deallocate.
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FIGURE 5 shows the client visible virtual memory structures. Shown are three memory
ranges (sets of pages), two of which have the same backing abstract memory object but
possibly differing inheritance or protection attributes. One of the memory cache / ab-
stract memory object pairs is shown in detail with the associated memory manager task.

Aside from the obvious hardware memory accesses allowed (as given by the range of val-
id addresses and the protection attributes for those ranges), the kernel also supports ex-
plicit memory manipulations. The operations supported against a span of a virtual
address space are the following:

• virtual_address_space [memory_range] → vm_copy — Copy a memory range from
one place in an virtual address space to another.

• virtual_address_space [memory_range] → vm_machine_attribute — Set machine
specific hardware properties for the memory range.

FIGURE  5 Virtual Memory Structures
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• virtual_address_space [memory_range] → vm_protect — Set the allowed accesses
for a memory range. Each memory range has a current and a maximum protection
mask. The memory manager for a range can specify the maximum protections for all
users of a range of pages; each task then has its own private maximum protection val-
ue to further restrict the allowed permissions, as well as its current protection mask.

• virtual_address_space [memory_range] → vm_read — Copy out a memory range.

• host_control (virtual_address_space [memory_range]) → vm_wire — “Wire” (force
to be and stay resident) a range of memory. The ability to set the pageability of memo-
ry is a privileged operation and so it requires the host control port.

• virtual_address_space [memory_range] → vm_write — Copy in a memory range.

Memory Objects

The Mach kernel allows user mode tasks to provide the semantics associated with the act
of referencing portions of a virtual address space. It does this by allowing the specifica-
tion of an abstract memory object that represents the non-resident state of the memory
ranges backed by this memory object. The task that implements this memory object (that
responds to messages sent to the port that names the memory object) is called a memory
manager.

Basic Manipulation
Manipulation of a virtual address space by a user mode task takes the following basic
form:

• A task establishes a new memory range, specifying a port to name the memory object
that backs that range (virtual_address_space [memory_range] → vm_map).

• The task attempts to reference a portion of this memory range (most likely simply by
touching it). Since that portion does not yet exist in memory, the referencing task
takes a page not resident fault. The kernel sends a message to the range’s abstract
memory object requesting the missing data. The reply from the abstract memory ob-
ject resolves the requesting task’s page fault.

• Eventually, the resident pages of the memory range, with values possibly modified by
client tasks, are evicted from memory. Pages are sent in messages to the range’s ab-
stract memory object for their disposition.

• The client task de-establishes the memory range (virtual_address_space [memory_r-
ange] → vm_deallocate). When all mappings of this memory object are gone, the ab-
stract memory object is terminated.

The kernel should be viewed as using main memory as a (directly accessible) cache for
the contents of the various memory objects. The portion of this cache that contains resi-
dent pages for a memory object is referred to as the memory cache object. The kernel is
involved in a dialog with the various memory managers to maintain this cache, filling
and flushing this cache as the kernel sees fit. This dialog consists, in general, of asynchro-
nous messages, as the kernel cannot be stalled by a memory manager, and memory man-
agers wish the maximum possible concurrency in their operations. The messages sent by
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the kernel are sent via routines labeled as “Server Interfaces” in the Kernel Interface doc-
ument; messages sent by the memory managers are labelled as normal message functions.

The abstract memory object port specified in the client’s vm_map call names a memory
manager task that implements the abstract memory object. Each abstract memory object
has an associated resident kernel memory cache object that represents the cache of resi-
dent pages for that memory object. This memory cache object has an associated control
port which is supplied to the memory manager so that it may control the memory cache
object (mostly to respond to kernel requests on behalf of the object). The kernel also gen-
erates a name port for this memory cache object for use by client tasks to refer to the
memory cache object. It is this name port that is returned by virtual_address_space
[memory_address] → vm_region. If an abstract memory object is mapped by tasks on
more than one host, there will be that many control and name ports, one for the memory
cache object on each host.

Each page in the memory cache object represents some offset within the abstract memo-
ry object. This memory object offset is the object offset specified by the client in the
vm_map call plus an integral multiple of the length of a page. Note that a client can spec-
ify an arbitrary offset to vm_map. Thus, a memory object may have multiple copies of
its data in memory, for different offset values specified by its clients. (It is planned that
this feature be removed, restricting the client’s offsets to page boundaries.)

New and Old Memory Managers
Mach provides backward compatibility for “old form” memory managers that do not sup-
port certain mechanisms that have since been added. An old form memory manager does
not have support for:

• Multi-page operations

• “Precious” pages (discussed below)

• Message replies from data supply and attribute changes

Because of these differences in level of support, old memory managers use different inter-
faces and receive different messages from the kernel than do new memory managers. The
kernel differentiates between new and old memory managers on the basis of the form of
the “I’m ready” message sent to the kernel as a response to the kernel’s memory_objec-
t_init  message (discussed below). New form memory managers reply with memory_ob-
ject_ready; old form managers reply with memory_object_set_attributes.

Memory Management Initialization
When an abstract memory object is mapped on a given host for the first time, the kernel
sends a message to its abstract memory object (abstract_memory_object → memory_ob-
ject_init ). This message informs the memory manager that the object is being mapped
on a new host. The message carries the names of the kernel generated memory cache ob-
ject control port and the memory object name port.

If the memory manager responds with memory_cache_object_control → memory_objec-
t_ready, this indicates to the kernel that this is a “new form” memory manager. The
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memory_object_ready call also allows the specification of the “object cache” attribute
and the copy strategy (discussed below). These attributes may later be changed with
memory_cache_object_control → memory_object_change_attributes and examined
with memory_cache_object_control → memory_object_get_attributes. 

Alternately, the memory manager can respond with the old call memory_cache_object_-
control → memory_object_set_attributes, which can also set the “object cache” and
copy strategy attributes. This call also allows a “ready” attribute to be set; doing so has
the same effect as memory_object_ready but indicates to the kernel that this is an “old
form” memory manager.

These calls inform the kernel that the memory manager is now ready to respond to re-
quests on behalf of this memory object.

Basic Page Manipulation
The kernel requests data for memory with abstract_memory_object → memory_object_-
data_request. It will only request single pages from old form memory managers but
may request multiple pages from a new form manager. (It has been proposed to add a
new attribute (to memory_object_set_attributes) that would allow an old form manager
to request the kernel to send multi-page requests.)

The memory manager supplies the requested data with memory_cache_object_control →
memory_object_data_supply (new form) or memory_cache_object_control → memo-
ry_object_data_provided (old form). These calls also supply the maximum allowed ac-
cesses for the data. If the memory manager cannot supply the data because of some error,
it responds with memory_cache_object_control → memory_object_data_error. This
causes the kernel to cause any threads waiting for this data to take memory failure excep-
tions. The memory manager can alternately reply with memory_cache_object_control →
memory_object_data_unavailable. In this case, the kernel supplies the missing data, ei-
ther zeroes, or a copy of data in the case where the kernel was performing an object copy
(discussed below).

When the kernel decides to flush some memory pages belonging to this memory object,
the modified pages are sent as out-of-line data in a message to the memory manager via
abstract_memory_object → memory_object_data_return (new form) or abstract_mem-
ory_object → memory_object_data_write (old form). In this process, the kernel con-
verts the physical memory pages from being resident pages associated with the memory
object to being “normal” pages associated with the default memory manager. In this way,
if the memory manager cannot move these pages to their destination in a reasonable
time, the kernel can evict these “normal” pages using the default memory manager
(which will page them to paging storage) while still allowing the memory manager ac-
cess to them. Normally, though, the memory manager will copy these pages somewhere
(probably send them to some device or file system) and then use vm_deallocate to free
them from its address space, as one would any out-of-line memory received.
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Memory Object Termination
When all tasks remove their mappings for the memory object, the kernel informs the
memory manager with abstract_memory_object → memory_object_terminate (c.f. ob-
ject cacheability below). The kernel evicts all pages of the object (unless the object has a
copy strategy of MEMORY_OBJECT_COPY_TEMPORARY) prior to actually terminat-
ing the memory cache object (and sending the terminate message).

Alternatively, the memory manager can call memory_cache_object_control → memory_-
object_destroy to explicitly shut down the memory object. All resident pages are dis-
carded and no more activity will be allowed for the memory object. The kernel will
respond with abstract_memory_object → memory_object_terminate. De-allocating the
abstract memory object port also has this effect (although, obviously, no terminate mes-
sage can be sent in this case). In either case, the kernel discards all pages.

One of the object attributes set when the memory object is initialized by memory_objec-
t_ready or memory_object_set_attributes, or thereafter altered by memory_ob-
ject_change_attributes or memory_object_set_attributes, is the “object cache”
attribute. With this attribute set, instead of terminating a memory object when all map-
pings are removed (thereby evicting all cache pages), the memory object is entered into a
(small) kernel object cache. If some task maps the object during this time, the object
stays alive (with no additional memory_object_init message). If no task maps the object
before the object leaves the object cache, it is then terminated. If the object cache at-
tribute is cleared while the memory object is in this un-mapped state, the memory object
will be promptly terminated. Since this attribute change can have this effect, memory_-
object_change_attributes can optionally return a reply (reply_port → memory_ob-
ject_change_completed) which can be used for synchronization.

Precious Pages
In the basic data management protocol, the kernel only returns to the memory manager
pages that have been modified while in the physical memory cache. When evicted, pure
(un-modified) pages are discarded on the assumption that the memory manager holds a
copy. For the example of a mapped file memory manager that uses disk (files) as backing
store and for which space is always allocated on backing storage for each page, this is
the most reasonable approach. However, for managers that use virtual memory as back-
ing store (as does the network shared memory server or other specialized servers), this is
inefficient; both the manager and the kernel hold the page while it is in use. By specify-
ing a page as “precious” when supplying it to the kernel, the memory manager need not
hold a copy; the kernel commits to returning the page when evicted. This ability to speci-
fy pages as precious is made available to new form memory managers as an option to the
memory_object_data_supply call. The memory manager can be informed of the accep-
tance of these pages by requesting a reply from the data supply call. This reply, reply_to
→ memory_object_supply_completed indicates which pages were accepted. The reply
will follow all data return messages resulting from rejected supplied pages. The memo-
ry_object_data_return messages will return both modified pages as well as precious
pages (with a flag indicating the case).
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Direct Cache Manipulation
Sometimes the memory manager needs to force flush pages, or to alter protections or the
like. This is done with the memory_cache_object_control → memory_object_lock_-
request call. This call informs the kernel of the operations to be performed. When com-
pleted, the kernel replies with reply_port → memory_object_lock_completed (using a
reply port named in the memory_object_lock_request call).

The main purpose of memory_object_lock_request is to support memory management
protocols that involve setting and revoking access to pages (such as distributed memory
servers, or transaction protected memory). If a thread attempts to access a page in a way
not currently permitted (as established by the permissions set with memory_object_-
data_provided or memory_object_data_supply), the kernel sends a message to the
memory manager with abstract_memory_object → memory_object_data_unlock. If
the memory manager honors this request, it responds with memory_object_lock_-
request to specify the new allowed permissions. With a single client, the memory manag-
er can refuse the request by having the kernel flush the range (with
memory_object_lock_request) and then, when the kernel re-fetches the data, the memo-
ry manager can respond with memory_object_data_error.

A memory_object_lock_request sequence can also be started on the memory manager’s
initiative. The call can require the kernel to return all modified (or precious) pages to the
manager (most likely also requiring the kernel to revoke write permission) when the man-
ager needs the most recent copy of the pages. The memory manager can also require the
kernel to flush the pages altogether from its memory cache.

Summary of Page Manipulations
The various page manipulations can be summarized in the following set of figures.

A page starts in the e state (empty—not in memory). The only allowed actions on the
page in this state are for a thread to attempt an access of the page to read (“peek”) or to
write (“poke”). Either action causes the kernel to request the page. The kernel will make
no other request of the manager until the manager responds to the data request message.
Once in memory, there are many transitions that can be caused by both the client and the
manager. The page may be evicted from any state (unless the page is wired).

Once a page is in memory, there are five state variables that determine its disposition.

• If the page is wired, it will not be evicted. Since eviction is only kernel-initiated, the
presence of the wired bit can be viewed as if the kernel was not inclined to evict the
page anyway and so is not reflected in the state diagrams.

• Precious pages affect the process of cleaning and evicting pages. This state does not
affect the transitions, only the actions taken by the transitions and so is not reflected
in the transition diagrams.

• The page may be modified (m).

• The page permits some type of access (n (none), r (read) or w (read/write)).

• The page wants more access than it currently has.
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Aside from the page-in states, the various states are labeled with a triple <modified, cur-
rent access, desired access>.

FIGURE 6 shows the various states and transitions associated with the page-in path. The
transitions are as follows:

• 1—Some thread “peeks” at the page. The kernel sends a memory_object_data_re-
quest (read access) message to the manager.

• 2—Alternately, some thread “pokes” at the page. The kernel sends a memory_ob-
ject_data_request (write access) message to the manager.

• 3—After requesting a page with read access but before receiving one, some thread
“pokes” the page. The kernel does not send a new data request message, nor an un-
lock request at this time. The state of the page when the page is supplied, though, will
be affected (as to what access is desired).

• 4—The manager supplies the page (memory_object_data_supply or memory_ob-
ject_data_provided) specifying no access. The kernel will send a memory_object_-
data_unlock message requesting read access.

• 5—The manager supplies the page with read access. The kernel simply accepts it.

• 6a—The manager responds with memory_object_data_unavailable. The kernel gen-
erates a writable page.

• 6b—The manager supplies the page with write access. The kernel accepts the page,
marking it as writable.

FIGURE  6 Page-in Transitions
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• 7—The manager supplies the page with read access. The kernel will send a memo-
ry_object_data_unlock message requesting write access.

• 8a—The manager responds with memory_object_data_unavailable. The kernel gen-
erates a writable page.

• 8b—The manager supplies the page with write access. The kernel simply accepts it.

• 9—The manager supplies the page with no access. The kernel will send a memory_-
object_data_unlock message requesting write access.

• 10 and 11—The manager responds with memory_object_data_error. All threads
waiting for the page take memory access exceptions.

The following figures show the state transitions for lock (change allowed accesses) and/
or clean (return clean page copies) operations. (Flush operations always transition to
state e.)

FIGURE 7 shows the manager initiated lock and/or clean transitions (memory_object_-
lock_request) when the page is in an un-modified state. FIGURE 8 shows the corre-
sponding transitions for initially modified states.

A lock request causes the kernel to forget what accesses it had before (or had requested);
the threads currently taking advantage of the old access and those waiting for more ac-
cess will again attempt to access the page, possibly causing new unlock messages to be
generated. As such, some of the transitions here are short-lived; for example, the transi-

FIGURE  7 Lock, Clean Transitions—un-modified states
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FIGURE  8 Lock, no clean (upper); Clean (lower) Transitions—modified states
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tion from <m,r,w> to <m,n,n> will probably be followed by a thread “poke”, changing
to state <m,n,w>. The lock request itself will receive a memory_object_lock_complet-
ed message. The clean transitions are very much similar to the simple lock requests. The
big difference is that (copies of) modified (and possibly precious pages) will be returned
to the manager (memory_object_data_return or memory_object_data_write) prior to
the memory_object_lock_completed message. Note that the clean operation removes
the modified flag from the page.

FIGURE 9 shows the various kernel-initiated transitions resulting from “peek” or “poke”
operations by clients. The dotted lines show kernel and manager initiated flush (evict) op-
erations.

• 1—Some thread “pokes” the page. This is the only transition that sets the modify flag
(the page must have write access). Note, though, that access may be revoked from the
page later, creating a modified page with less than write access.

• 2 and 5—Some thread “peeks” at the page with no access. The kernel sends a memo-
ry_object_data_unlock message requesting read access.

• 3 and 6—Some thread “pokes” the page with no access. The kernel sends a memo-
ry_object_data_unlock message requesting write access.

• 4 and 7—Some thread “pokes” the page with no access while the kernel is waiting for
read access. The kernel sends a new memory_object_data_unlock message request-
ing write access.

FIGURE  9 Peek, Poke, Evict and Flush Transitions
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• 8 and 9—Some thread “pokes” the page with only read access. The kernel sends a
memory_object_data_unlock message requesting write access.

A page may be evicted from any in-memory state (those other than e, wait-r  and wait-w)
as long as the page isn’t wired. The action of evicting the page transitions it to the e state;
the (possibly modified) page will be returned to the manager in a memory_object_dat-
a_return (or memory_object_data_write) message if it is precious or modified.

The flush option to the memory_object_lock_request also transitions from all resident
states to the e state. The kernel will return the page as if it had been evicted if the clean
option is also specified and if the page is modified or precious, followed by a memory_-
object_lock_completed message.

Virtual Copy Optimizations
There are two situations in the Mach system in which a range of memory is logically cop-
ied.

• When a memory range has the VM_INHERIT_COPY inheritance attribute and a new
task is created from this task.

• When a memory range is passed out-of-line in a Mach message. (This includes vm_-
read, vm_write and vm_copy operations.)

Each of these situations occurs frequently. Copy inherited memory is used to support the
POSIX fork  semantics for new process creation. Out-of-line memory, although uncom-
mon in the normal message case, is very important to supporting external memory man-
agers, file systems in particular, and the device interface to be specific.

It is reasonable for these operations to be defined as logical copies (instead of direct shar-
ing, for instance) because the Mach virtual memory provides virtual copy optimizations.
With these optimizations, the memory is not copied outright; memory is copied in a lazi-
ly evaluated way, only when data needs to be copied. Data copying can be deferred for a
variety of reasons:

• Some of the data is not actually referenced.

• Neither task modifies some of the data, so they can effectively share the same memo-
ry image of the un-modified data.

• The task requesting the data copy deletes its mapping, thereby allowing the kernel to
consider the copy a move, which can be optimized into page re-mappings (“page
stealing”), instead of page copies. A related possibility is that the “receiver” of the
data copies it again (and deletes its mappings) without even looking at the data.

On the one hand, these optimizations are purely internal, and therefore not part of the
Mach kernel semantics that this document describes. However, as a practical matter, the
presence of these optimizations is well known, and an integral part of the utility of many
of the interfaces (the device and external memory manager interfaces, especially). Also,
the fact that the kernel uses the virtual memory system for out-of-line data allows the var-
ious kernel primitives that return lists to do so by returning out-of-line data, which is ac-
tually accomplished by internal vm_allocate operations. As such, these optimizations
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form an important part of the specification of the interfaces, namely, the performance
characteristics.

Virtual Copy Dialog
When a range of memory is to be copied, the kernel creates a new memory cache object
to represent the virtually copied pages. This new memory cache object (the copy destina-
tion) may well share actual physical memory pages with the old memory cache object
(the copy source), assuming that these pages are not actually modified. The old object is
never affected by this virtual copy. It will continue to be associated with the same ab-
stract memory object and the same associated memory manager. Its pages are its own, to
use as it sees fit.

Although the new memory object receives virtual copies of all of the pages in the copied
range of the old memory object, the visible mechanics of this operation are not so sim-
ple, and are controlled by the value of the copy strategy (set by memory_object_ready
or memory_object_set_attributes when the object is initialized, or by memory_ob-
ject_change_attributes or memory_object_set_attributes thereafter) for the old memo-
ry object, as discussed below. Changing the copy strategy for a memory object can cause
a dramatic flurry of activity as the kernel adjusts to the requirements of the new strategy.
For this reason, memory_object_change_attributes can optionally return a reply (re-
ply_port → memory_object_change_completed) which can be used for synchroniza-
tion.

The typical memory object has the property that its pages can only be modified by virtue
of being mapped into some task’s address space and being manipulated by direct memo-
ry references by that task. If this can only happen on one host, then all modifications to
the pages of a memory object will occur on that one host, and be completely visible to
the kernel as it maintains its memory cache objects. In this case, the memory manager
would set the memory object’s copy strategy to MEMORY_OBJECT_COPY_DELAY,
the standard copy-on-write optimization. This causes the new memory object to be built
as a temporary object managed by the default memory manager. The behavior of the old
and the new objects is as follows:

• Both the new and the old memory objects share pages currently in memory.

• If a page of the new object is referenced that is not memory resident (and not yet
“pushed” as below), a message is sent to the old abstract memory object for the data.
This request cannot be distinguished by the memory manager from a reference to the
old memory object. This fetched page will be shared by the old and the new memory
object.

• Whenever a page of the old object is to be modified (by an attempted modify refer-
ence to either the old or to the new object (since they are currently sharing physical
memory pages)), the kernel first “pushes” the un-modified value of the page into the
new object, so that the new object does indeed see a copy of the original data of that
page. 

• “Pushed” pages are managed by the default memory manager.

The MEMORY_OBJECT_COPY_TEMPORARY strategy also has this effect. This ob-
ject attribute (temporary) has the additional (unrelated) property that, when terminated as
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the result of no extant mappings of the object, the kernel discards any cached pages in-
stead of returning them to the memory manager.

If the old memory object can be modified in a way not visible to the kernel on a single
host (network shared memory, for example, or direct access by the memory manager),
then alternate copy strategies are needed. To see this, consider the following scenario:

• A virtual copy is requested. Some page of the range, however, is not in memory on
the copying host.

• The non-resident page of the range, resident on some other host, is modified.

• The new (copy) memory object on the copying host makes a request for the page. It
receives the new value, not the value the page would have had at the time of the virtu-
al copy.

To gain control over the semantics in these cases, the kernel provides two alternate copy
strategies, MEMORY_OBJECT_COPY_NONE and MEMORY_OBJECT_COPY_-
CALL.

MEMORY_OBJECT_COPY_NONE is used when the memory manager is not capable
of implementing the correct semantics in an intelligent way. In this case, at the time of
the virtual copy, the kernel constructs the new memory object as a default memory man-
ager managed temporary object with its contents explicitly copied (at this time) from the
old memory object (thus requesting all pages at this time from the memory manager).

If the memory manager can perform intelligent copy semantics, MEMORY_OBJECT_-
COPY_CALL is used. (Important note: This feature is scheduled for replacement. It is
un-tested and believed not to work.). This strategy differs from the other two copy strate-
gies in that the new memory cache object, instead of having an associated abstract memo-
ry object managed by the default memory manager, has an associated abstract memory
object maintained by the same memory manager as that which manages the old memory
object. This is done as follows:

• The kernel creates a port to represent the new abstract memory object. The receive
right for this port is sent via old_abstract_memory_object → memory_object_copy.,
which informs the memory manager of the existence of a new abstract memory object
which is to be a virtual copy of the specified old abstract memory object. This call
also includes the associated old memory cache control port.

• The kernel performs a new_abstract_memory_object → memory_object_init call to
initialize the new memory object. This informs the memory manager of the name and
control ports for the memory cache object associated with the new memory object.
The memory manager responds in the usual way.

The memory objects are then maintained as follows:

• Both the new and the old memory objects share pages currently resident in memory.

• Whenever a page of the old object is to be modified (by an attempted modify refer-
ence to either the old or to the new object (since they are currently sharing physical
memory pages)), the kernel first “pushes” the un-modified value of the page into the
new object, so that the new object does indeed see a copy of the original data of that
page.
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• If a page of the old object is referenced that is not memory resident, a message is sent
to the old abstract memory object for the data. This fetched page will appear only in
the old memory object.

• If a page of the new object is referenced that is not memory resident (or “pushed”), a
message is sent to the new abstract memory object for the data. This fetched page will
be “pushed” onto the new memory object, and will not appear in the old memory ob-
ject. If the memory manager decides that the value of the old memory object’s page
can be used, the memory manager may respond with memory_object_data_unavail-
able, which then sends a message to the old abstract memory object, or uses its page
if resident.

• “Pushed” pages are not managed by the memory manager; that is, no memory_ob-
ject_data_write or memory_object_data_return messages will be sent to the new
abstract memory object. (It is not known whether this works correctly or not.)

Default Memory Manager
The default memory manager is, in most regards, simply an external memory manager. It
provides backing storage for anonymous memory (vm_allocate, copy memory...). A
very significant property of the default memory manager is that it is the memory manag-
er of last resort, one which cannot fail. Since no memory manager can provide paging for
it, its data writing path is completely wired in memory, and all memory passed to it is
wired as well. This memory manager must promptly deal with its memory, and discard it
when paged out to backing storage since it is effectively wired.

The default memory manager for a host is set by host_control → vm_set_default_mem-
ory_manager. This is initially the kernel’s internal memory manager.

Memory backed by the default memory manager can be created in a variety of ways.
These creations do not involve the default memory manager directly, so the kernel must
inform the default memory manager explicitly about new default memory objects. This is
done with abstract_memory_object → memory_object_create. A memory object to be
managed by the default pager can be created by the privileged abstract_memory_object
→ default_pager_object_create.

The default memory manager provides backing storage for temporary memory objects
created by the kernel to represent virtual copy ranges. These temporary objects (except in
the case of the MEMORY_OBJECT_COPY_CALL strategy, which does not work cor-
rectly) have an additional operation applied to them. When a page from the original ob-
ject is “pushed” onto them, this pushed data is supplied to the default memory manager
with abstract_memory_object → memory_object_data_initialize. The reason for this
additional primitive is that the kernel does not completely track the extent to which it
pushes pages onto the copy. (If the copy page is paged-out, a subsequent modification of
the original object will push the modified original page again.) As such, it is possible for
the default memory manager to receive more than one “push” message (memory_ob-
ject_data_initialize) for a page. The manager must ignore all but the first of these. Note
that memory_object_data_initialize is called only when a page is pushed onto the copy;
if the copy’s pages are themselves modified, the modified pages will be sent to the man-
ager with memory_object_data_write or memory_object_data_return.
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It can happen that the default memory manager will be asked for a page of a copy that
has never been “pushed” to it. The manager’s response in this case, as it would be for not-
yet-existing pages, is to call memory_object_data_unavailable. Instead of creating a
zero page, this call, in such a case, will copy the appropriate page from the original ob-
ject (it follows that the original page has not been modified since no initialize message
has been seen).

The default memory manager maintains various (disk) partitions as backing storage. The
extent of the default partition (currently the only one) can be found with abstract_memo-
ry_object → default_pager_info (using a default pager object port).

Miscellaneous Operations
A service related to memory objects and memory managers is provided by device_map,
which allows a portion of a task’s address space to represent a physical device. This is
discussed under Devices.
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The Mach kernel virtualizes the various resources it maintains. None the less, it is still
true that everything depends on the underlying physical resources of the system, and cli-
ents are often aware of this, not only to the extent that resource shortages occur, but also
to the extent that clients have some direct influence over physical resources.

Physical Memory

Needless to say, the Mach kernel itself uses physical memory. The various kernel objects
and associated data structures occupy physical memory. It is a hardware and implementa-
tion issue as to which of these structures can be swapped or paged out of memory. Cur-
rently, clients have no control over this memory, except to the extent that they create
kernel managed entities.

The majority of the physical memory of the system forms a single paging pool. This pool
of pages forms a cache for the virtual memory system. The set of pages that reside in
physical memory at any given time is decided by the page replacement algorithm, imple-
mented in the kernel. With the exception of the privileged vm_wire call, clients have no
control over this algorithm. Even external memory managers have no influence; if they
do not respond fast enough to a request to write a page, the default memory manager will
be used to move the page from physical memory to system paging storage.

When a memory object is no longer referenced, the kernel normally frees all of its physi-
cal memory pages. A memory manager can mark an object’s pages as cacheable, mean-
ing that the object’s pages will be moved to a free list, but not destroyed. This would tend
to be specified for memory objects that persist.
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Processors

Each physical processor that is part of a host (and capable of executing threads) is named
by a processor port. Although significant in that they perform the real work, processors
are not very significant in the Mach scheme of things other than as members of a proces-
sor set. It is a processor set that forms the basis for the pool of processors used to sched-
ule a set of threads, and that has scheduling attributes associated with it.

Significant operations on processors are to affect their processor set membership, and to
physically control the processor. The list of processor ports for a given host is obtained
by host_control → host_processors.

FIGURE 10 shows the client visible processor and processor set structures. The proces-
sor set control port provides access to the contained tasks, threads and processors (only
one shown here). The set of all processors is also found via the host control port.

The following operations exist:

host

processor port

processor set name port

processor
processor set

task port

thread port

task

thread

send right receive right

FIGURE  10 Processor Structures

processor set control port
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• processor → processor_assign — Assign a processor to a processor set

• processor → processor_control — Perform machine specific control operations

• processor → processor_exit — Stop a processor

• processor → processor_get_assignment — Return the name port for the processor
set containing the processor

• processor → processor_info — Return machine properties

• processor → processor_start — Start a processor

Processor Sets

Processors are grouped into processor sets. A given processor belongs to at most one pro-
cessor set. A processor set forms a pool of processors used to schedule the threads as-
signed to that processor set. A thread is assigned to only one processor set. A processor
set exists as a basis to uniformly control the schedulability of a set of threads. The notion
also provides a way to provide coarse allocation of processors to given activities in the
system.

Set Maintenance
A host possesses a set of processor sets. There is always a default processor set, which is
automatically created when a host is initialized. The name port for this default processor
set can be obtained by host_name → processor_set_default. The list of name ports for
all of the processor sets can be obtained with host_name → host_processor_sets.

A control port for a processor set can be obtained only via the creation of a processor set,
or via the privileged host_control → host_processor_set_priv call, which translates a
processor set name port into its control port.

All other processor sets must be created explicitly, with host_name → processor_set_-
create. This call returns both the name and control ports for the new processor set. A
new set is empty. The set is destroyed with processor_set_control → processor_set_de-
stroy. Any processors currently assigned to this set will be re-assigned to the default pro-
cessor set.

A processor is added to a processor set with processor → processor_assign. This re-
moves the processor from its current set. The current assignment of a processor (its pro-
cessor set name port) is obtained with processor → processor_get_assignment.

Information (such as scheduling parameters) for the processor set are obtained with pro-
cessor_set_name → processor_set_info.

Task and Thread Assignment
By default, a task is assigned to the default processor set. Assigning a task to a processor
set means that, by default, any new threads in that task will be assigned to that processor
set. Being assigned to a processor set means that the thread will only execute on proces-
sors within that set.
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A task is assigned to a processor set with task → task_assign, a thread with thread →
thread_assign. These calls require a control port to the processor set, which most tasks
do not hold. For simple assignment to the default processor set, there is task → task_as-
sign_default and thread → thread_assign_default, which need no such port. The cur-
rent assignment can be found with task → task_get_assignment and thread →
thread_get_assignment, both of which return a processor set name port.

The current set of tasks / threads assigned to a processor set is found with processor_set_-
control → processor_set_tasks / processor_set_control → processor_set_threads.

Kernel Threads and Tasks
For the sake of its own operation, the kernel creates kernel threads that execute purely
within kernel context to provide various support functions. For example, page eviction
(the “page-out daemon”), asynchronous I/O post-processing, thread reclamation and
scheduler priority computations are performed by dedicated threads rather than being ex-
ecuted in interrupt (or software interrupt) context. Users of the system (including privi-
leged ones) have no direct control over these internal threads. For the sake of giving
these threads a task context, the kernel constructs a kernel task to contain them. This ker-
nel task has no user address space.

The default pager forms its own kernel task with its own set of kernel threads to perform
the processing. (The page-out thread is part of the main kernel task, not the default pager
task.)

These two kernel internal tasks are under kernel control. However, since the contained
threads must be scheduled as are any other threads, they are linked into the processor set
lists, initially assigned to the default processor set. Thus, the result from processor_set_-
tasks will list these two tasks as the first tasks in the list (by convention) and proces-
sor_set_threads will list the kernel internal threads (in no determinate order).

Since these kernel entities have no user context, most operations against their task or
thread ports will fail. They can be assigned different scheduling priorities and assigned to
different processor sets. Attempting to terminate or suspend these threads is undefined
(but likely to cause system failure).

Scheduling Control
Processor sets achieve two goals: they provide for coarse allocation of processors to a set
of tasks (an application); they also provide the handle for dictating scheduling policies.

Any given thread has associated with it a scheduling policy to use, and various parame-
ters that influence that policy, the priority being the most obvious.

Any given processor set supports the scheduling of its threads according to the schedul-
ing policies allowed for that processor set. The set of policies enabled for a processor set
are controlled by processor_set_control → processor_set_policy_disable and proces-
sor_set_control → processor_set_policy_enable. The currently enabled set can be
found with processor_set_control → processor_set_info.
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Tasks do not have a scheduling policy associated with them. Threads have a scheduling
policy set via thread → thread_policy. When a thread is assigned to a processor set, it
maintains its policy unless the processor set does not have it enabled, in which case the
thread’s policy is set to time-sharing. However, disabling a policy for a processor set
does not affect any threads currently in that set (unless an option to the processor_set_-
policy_disable call is used).

Threads have three priorities associated with them by the system:

• A priority value which can be set by the thread to any value up to a maximum priori-
ty. Newly created threads obtain their priority from their task. This is set by task →
task_priority. This value can be affected by thread → thread_priority .

• A maximum priority value which can be raised only via privileged operation so that
users may not unfairly compete with other users in their processor set. Newly created
threads obtain their maximum priority from that of their assigned processor set. The
maximum priority for a processor set is set by processor_set_control → proces-
sor_set_max_priority. A “privileged” thread may raise its maximum priority if it
holds the processor set control port with thread → thread_max_priority .

• A scheduled priority value which is used to make scheduling decisions for the thread.
This value is determined on the basis of the user priority value by the scheduling poli-
cy (for timesharing, this means adding an increment derived from CPU usage). This
value can be affected by thread → thread_priority .

Nodes

The individual uniprocessor or multiprocessor nodes in a Mach multicomputer system
are generally maintained in a transparent fashion. As such, there are very few operations
defined for specific nodes.

Each node is allowed a small set of node specific ports. A few are set aside for client use
(such as a node specific name server port). The kernel implements three node specific
ports:

• A “host” control port, useful for deriving processor set and other ports which are asso-
ciated with specific nodes but which can only be obtained from operations requiring a
host control port.

• A corresponding “host” name port.

• A device master port, used to obtain node specific devices.

A node special port is obtained with host_control [node] → norma_get_special_port
and set with host_control [node]→ norma_set_special_port. 

The only other node visibility is the location of tasks. Currently, a task is created on a
node and will not migrate from that node. By default, a task is created on the same node
as the task used as the parent in the task_create call. This default can be changed with
task → task_set_child_node; this call specifies the target node for future children. A
task may also be created explicitly on a given node with task → norma_task_create.



60 Mach 3 Kernel Principles

Physical Resource Management

task (port) → norma_port_location_hint provides a guess of a port’s current location.
For port’s whose receive right never moves this will return the correct node, otherwise it
returns either the correct node or a node at which the port once was.

Hosts

Each multiprocessor (or sets of multiprocessors in a multicomputer) within a networked
Mach system runs its own instantiation of the Mach kernel. The host machine is not gen-
erally manipulated by client tasks. But, since each host does carry its own Mach kernel,
each with its own port space, physical memory and other resources, the executing host is
visible and sometimes manipulated directly. Also, each host generates its own statistics.

The most likely way in which a task may be aware of the presence of multiple Mach ker-
nel instantiations is in external memory managers. Each kernel sends its own messages
to a given external memory manager that is trying to manage memory mapped on more
than one host.

Each host has its own physical memory pool, set of devices, default memory manager,
set of processor sets (and, therefore, assigned threads and tasks) and time.

The name port to the host on which a thread is executing (on which its containing task
was created) is returned by the mach_host_self trap.

Each host also has a control port used for its manipulation. For historic reasons, the con-
trol port for the host is called its privileged host port. No primitive returns this port. This
port is supplied to the bootstrap task as described below.

FIGURE 11 shows the client visible host structures. Access to the host control port al-
lows access to the processor set and processor ports.

The following host specific calls are provided:

• host_control → vm_set_default_memory_manager — Set the default memory man-
ager.

• task → vm_statistics — Return host-wide memory usage statistics. (Note that these
statistics are returned given any task port on the host.)

• host_control → host_adjust_time — Make a clock adjustment.

• host_control → host_get_boot_info — Return operator supplied boot-time informa-
tion.

• host_name → host_get_time — Return the current time.

• host_name → host_info — Return host information.

• host_name → host_kernel_version — Return the kernel version.

• host_control → host_reboot — Re-boot, with options.

• host_control → host_set_time — Set the current time.

• host_name → host_processor_sets — Return name ports to the defined processor
sets.
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• host_control → host_processors — Return control ports for the host’s processors.

• host_control → host_processor_set_priv — Convert a processor set name port to a
control port.

Devices

The Mach kernel exports a very simple interface to its devices. When initialized, the
Mach kernel builds an internal table that lists each device. It exports a single port, the de-
vice master port, which is responsible for allocating devices. A task that holds send
rights to the device master port may request the kernel to open a device, returning a port
that provides access to that device. Operations on that port then manipulate the device,
until it is closed.

FIGURE  11 Host Structures
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In as much as that Mach messaging semantics are asynchronous, the device interface is
asynchronous. A client sends a message to a device; a reply message indicates status or
data returned. There exist, though, MIG generated stubs that use a message send/receive
pair to provide a synchronous interface. In keeping with the style of this document
(which is to list the synchronous RPC interfaces when they exist), the synchronous ver-
sions are shown here.

Given access to the device master port, the port controlling a named device is returned by
device_master → device_open. (Normally, only some device mastering task would hold
the device master port.) The device is freed from use by device → device_close.

There is no primitive that returns the device master port. This port is provided to the boot-
strap task as described below.

FIGURE 12 shows the client visible device structures. Access to the device master port
provides access to all devices.

Each device is modeled as a set of records of some indeterminate size. Each device de-
fines these notions for itself. There is a read and a write interface, both in two forms: one
which uses out-of-line virtual memory managed space, and one that transmits data “in-

FIGURE  12 Device Structures
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line” (inband) in the message (efficient for small transfers). These calls are device → de-
vice_read, device → device_read_inband, device → device_write and device → de-
vice_write_inband.

Each device also defines some status information, read by device → device_get_status
and set by device → device_set_status.

There are two very device specific functions defined by the kernel for special purpose de-
vices.

• device → device_set_filter — This call establishes an input filter for all data that ap-
pears upon the device. The filter is expressed as a small “program” for a simple stack
machine implemented by the driver. This is used to filter incoming network packets,
sending asynchronous messages carrying the packets that pass the filter to the proto-
col server task specifying this filter for this device. Multiple packet filters can be spec-
ified (possibly by multiple tasks) and each packet may well be sent to multiple
recipients.

• device → device_map — This call is similar to vm_map. It introduces a new memo-
ry range in the task’s virtual address space. The external memory manager for this
range is the device driver, which can provide any illusion of the device. The typical
use of this call is to map a workstation’s frame buffer into the display server’s memo-
ry.

A “mapped” device (one associated with a shared memory window established by de-
vice_map) provides support for user space device drivers. The shared memory window
can provide some limited access to device hardware registers to allow for direct user
space manipulation of the device or perhaps direct interaction with the kernel device driv-
er so that each I/O operation does not require a Mach IPC message (and the associated
costs, especially the copy of data). Mapped devices provide an interrupt service via the
evc_wait system trap and device driver defined event counts.

The event count service exists for two reasons:

• A device driver interrupt routine cannot call Mach IPC to send a message indicating
the interrupt.

• The use of event counts is considerably cheaper than IPC messages.

The event count service defines one or more event objects, named by task local event
IDs. Each of these event objects has an associated event count, initially zero. Whenever
the associated event occurs (typically a device interrupt), the event count is incremented.
If this count is zero when evc_wait is called, the calling thread waits for the next event to
occur. Only one thread may be waiting for the event to occur. If the count is non-zero
when evc_wait is called, the count is simply decremented without causing the thread to
wait. The event count guarantees that no events are lost.

When a device interrupt occurs, the kernel device driver would place device status in the
shared memory window and signal the associated event. The user space device driver
would normally be waiting with evc_wait. The user thread wakes, processes the device
status, typically interacting with the device via its shared memory window, then waits for
the next interrupt.
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Access to Privileged Ports

The holder of the host control port can obtain send rights to any port on the system (with
the exception of device ports), including “privileged” ones, such as the processor set con-
trol ports. The basic privilege mechanism provided by the kernel is the restriction of priv-
ileged operations to tasks holding control ports, with the various control ports being
derivable only from the host control port.

Likewise, the holder of the device master port can obtain any device port, and these ports
can only be derived from the master device port.

The integrity of the system depends on the close holding of these two ports. There is no
kernel operation that returns these ports. Only the bootstrap task (the first task) is sup-
plied with these ports (although that task may subsequently give them out) in the manner
described below.

When the bootstrap task is created, its bootstrap port is set to be a special kernel port
(one whose receiver is the kernel). This bootstrap port will respond to one and only one
request for service. One of the first things that the bootstrap task is to do when it starts is
to send a message to this port (the message ID doesn’t matter but 999999 is the conven-
tion). The reply from this request will contain simply two port rights, the host control
port and the device master port (in that order).

(Implementation detail: It is important for the bootstrap task to make this request, not
only so that it will function, but also because the kernel thread waiting for the request is
the one that becomes the initial default pager thread.)


