MACH Kernel Interface Manual

Robert V. Baron
David Black
William Bolosky
Jonathan Chew
Richard P. Draves
David B. Golub
Richard F. Rashid
Avadis Tevanian, Jr.
Michael Wayne Young

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213
Version of:

23 August 1990
Abstract

MACH is an operating system kernel under development at Carnegie-Mellon University to support
distributed and parallel computation. MACH is designed to support computing environments consisting of
networks of uniprocessors and multiprocessors. This manual describes the interface to the MACH kernel
in detail. The MACH system currently runs on a wide variety of uniprocessor and multiprocessor
architectures.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 4864, monitored by the Space and Naval Warfare Systems Command under contract
N00039-84-C-0467.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or of the U.S. Government.

1. Introduction
MACH is a communication-oriented operating system kernel providing:

» multiple tasks, each with a large, paged virtual memory space,

» multiple threads of execution within each task, with a flexible scheduling facility,
« flexible sharing of memory between tasks,

» message-based interprocess communication,

« transparent network extensibility, and

« a flexible capability-based approach to security and protection.

MACH supports multiprocessor scheduling and is currently in use on both general purpose
multiprocessor and uniprocessor systems. MACH is currently supported at CMU on the DEC VAX 8650,
8600, 11/785, 11/780, 11/750 and MicroVAX I, the IBM RT/PC and the SUN 3. It also will run as a
shared memory multiprocessor system on the four processor VAX 11/784 and two processor VAX
11/782, the two processor VAX 8300, the VAX 8200 with one or more CPUs, the 20 processor Encore
MultiMax and the 30 processor Sequent Balance 21000. Ports of MACH to other computers are in
progress.

1.1. Overall system organization
As a working environment for developing application programs, MACH can be viewed as being split into
two components:

* a small, extensible system kernel which provides scheduling, virtual memory and
interprocess communications and

* several, possibly parallel, operating system support environments which provide the following
two items: 1) distributed file access and remote execution 2) emulation for established
operating system environments such as UNIX.

The extensibility of the basic MAcH kernel facilitates the incorporation of new operating system
functions; user-state programs can simply be added to the existing kernel without the need to modify the
underlying kernel base. The basic kernel abstractions have been designed in such a way as to provide
for completely transparent network extensibility of all kernel functions.

MACH is 4.3bsd UNIX binary compatible on VAX architecture machines. In addition, the MACH
environment includes an internal kernel debugger, transparent network interprocess communication,
remote execution facilities, a transparent remote UNIX file system and support for graphics workstations.

1.2. Basic kernel functionality
The MACH kernel supports the following basic abstractions:

* A task is an execution environment and is the basic unit of resource allocation. A task
includes a paged virtual address space (potentially sparse) and protected access to system
resources (such as processors, port capabilities and virtual memory).

« A thread is the basic unit of execution. It consists of all processor state (e.g.hardware
registers) necessary for independent execution. A thread executes in the virtual memory and
port rights context of a single task. The conventional notion of a process is, in MACH,
represented by a task with a single thread of control.

MACH 23 August 1990 MACH

» A port is a simplex communication channel -- implemented as a message queue managed
and protected by the kernel. A port is also the basic object reference mechanism in MACH.
Ports are used to refer to objects; operations on objects are requested by sending messages
to the ports which represent them.

« A port set is a group of ports, implemented as a queue combining the message queues of
the constituent ports. A thread may use a port set to receive a message sent to any of
several ports.

* A message is a typed collection of data objects used in communication between threads.
Messages may be of any size and may contain inline data, pointers to data, and capabilities
for ports.

* A memory object is a secondary storage object that is mapped into a task’s virtual memory.
Memory objects are commonly files managed by a file server, but as far as the MACH kernel
is concerned, a memory object may be implemented by any object (i.e. port) that can handle
requests to read and write data.

Message-passing is the primary means of communication both among tasks, and between tasks and
the operating system kernel itself. The only functions implemented by system traps are those directly
concerned with message communication; all the rest are implemented by messages to a task’s
task_port.

The MACH kernel functions can be divided into the following catagories:

* basic message primitives and support facilities,

« port and port set management facilities,

« task and thread creation and management facilities,
« virtual memory management functions,
 operations on memory objects.

MACH and other server interfaces are defined in a high-level remote procedure call language called
MIG; from that definition, interfaces for C are generated. In the future, MIG may generate interfaces in
other languages. In this manual, calls are shown in the C language.

All macH kernel procedures return a value indicating the success or reason for failure of that request.
The errors unique to each function are described with those functions; however, since all requests involve
primitive message operations, errors described in that section may also apply.

1.3. User operating system environments

In addition to the facilities provided directly by the kernel, MACH also provides for complete emulation of
all 4.3bsd functions as described in the 4.3bsd manual. This emulation is completely transparent to user
programs and requires no special libraries or other utilities. On all VAX hardware MACH is binary
compatible with 4.3bsd.

This manual does not reproduce descriptions of the UNIX system calls. Programmers wishing to use
the functions provided within these environments should consult the relevant UNIX system manuals.

MACH 23 August 1990 MACH

2. Message primitives

2.1. Basic terms
MACH message primitives manipulate three distinct objects:

1. ports - protected kernel objects to which messages may be sent and logically queued until
reception,

2. port sets - protected kernel objects which combine multiple port queues and from which
messages may be dequeued, and

3. messages - ordered collections of typed data consisting of a fixed size message header
and a variable size message body.

2.2. Ports

Access rights to a port consist of the ability to send to, receive from, or own that port. A task may
hold just send rights or any combination of receive and ownership rights plus send rights. Threads within
a task may only refer to ports to which that task has been given access. When a new port is created
within a task, that task is given all three access rights to that port.

The port access rights are operationally defined as follows:

Send access to a port implies that a message can be sent to that port. Should the port be
destroyed during the time a task has send access, a message will be sent to
that task by the kernel indicating that the port has disappeared.

Receive access to a port allows a message to be dequeued from that port. Only one task
may have receive access for a given port at a time; however, more than one
thread within that task may concurrently attempt to receive messages from a
given port. Receive access implies send rights.

Ownership of a port implies that, should the task with receive access to that port
relinquish its receive access, the receive access to the port will be sent to the
owner task. Likewise, should ownership be relinquished, the ownership
rights are sent by the kernel to the receiving task. The name ownership is
somewhat misleading as all it really means is that the task is a backup
reciever if the current receiver gives up its rights. As with receive access,
only one task may hold ownership access to any given port. Ownership
implies send rights. NOTE: the ownership abstraction is considered obsolete
and has been replaced with the use of a backup port. This is a port
associated with a primary port, to which the receive rights of the primary port
will be sent in the event of an attempted destruction of the primary port.
Current versions of MACH implement both mechanisms, but the ownership
rights may disappear in future releases.

Port access rights can be passed in messages. They are interpreted by the kernel and transferred
from the sender to the kernel upon message transmission and to the receiver upon message reception.
Send rights are kept by the original task as well as being transmitted to the receiver task, but receive
rights and ownership rights are removed from the orignal task at the time of the send, and appear in the
user task when the receive is done. During the time between a send and receive, the kernel holds the
rights and any messages sent to the port will be queued awaiting a new task to receive on the port. If the
task that was intended to receive the rights dies before it does the receive, the rights are handled as
though the receive had been done before the task died; that is receive rights are transferred to the owner

MACH 23 August 1990 MACH

or ownership is transferred to the receiver. If the receiver and owner are both dead, the port is destroyed.

The message queue associated with a port is of finite length and thus may become full. Threads may
exercise several options for handling the case of message transmission to a full queue (see nsg_send
below). Unless a specific option is set, nsg_send will block until the message can be queued.

2.3. Port sets

Conceptually, a port set is a bag holding zero or more receive rights. A port set allows a thread to
block waiting for a message sent to any of several ports. A port may be a member of at most one port set
at any time.

A task’s port set right, created by port _set _al | ocat e, allows the task to receive a message from
the port set with msg_r ecei ve and manipulate the port set with port _set add, port _set _renove,
port set status, and port_set deal | ocate. Unlike port rights, a port set right may not be
passed in messages.

2.4. Port names

Every task has its own port name space, used for port and port set names. For example, one task with
receive and ownership rights for a port may know the port by the name 13, while another task with send
rights for the same port may know it by the name 17. A task only has one name for a port, so if the task
with send rights named 17 receives another message carrying send rights for the same port, the arriving
rights will also be named 17.

Typically these names are small integers, but that is implementation dependent. When a task receives
a message carrying rights for a new port, the MACH kernel is free to choose any unused name. The
port _r ename call can be used to change a task’s name for a port.

2.5. Port types

There are several type defintions for ports used in this manual and defined in <mach/ port. h>. The
type port _nane_t is used to refer to a port to which the task may have no rights. When this type is used
in a message definition no port rights are sent in the message and the kernel does no mapping of ports.
The type port _set _nanme_t is used to refer to a port set and does not imply any rights to the set. Only
port set names can be passed in messages. In order to pass the rights to a port set, a task must pass
each port separately and the receiving port must then define a new port set with consisting of those ports.
The types port _t, port_rcv_t andport_all t are used to imply a port to which the task has the
specified rights. Typically port _t is used for a port with any rights. One of these types must be used in
the message definition if ports rights are to be sent in the message. All of these types are defined to be
the same basic C types, so that they can be used interchangeably in calls to primitives.

Most of the MACH calls take a t ask or t hr ead as their first argument where this agrument is said to be
the target task/thread. In most cases the task or thread is the one doing the call. In those cases any
port _nane_t arguments represent ports to which the task has or receives rights. But in the case where
t ask is not the caller, then the target task gets the rights but doesn’'t know the name, and the caller gets
the name but does not have any rights to the port.

MACH 23 August 1990 MACH

2.6. Messages

A message consists of a fixed header, followed by a variable amount of data.

the message header is as follows:

typedef struct {
i nt

i nt
i nt
port t
port t
i nt

The C type definition for

24,

nsg_sinple : 8;
nsg_si ze;
nmsg_type;

nsg | ocal port;
nsg_renote_port;
nsg_id;

} nmsg_header t;

The msg_I| ocal _port and nsg_renot e_port fields are used to name the ports on which a message
is to be received or sent. In the case of nsg_r ecei ve this may be either a port or a port set. The
neg_si ze field is used to describe the size of the message to be sent, or the maximum size of the
message which can be received. The size includes the header and inline data and is given in bytes. The
nmsg_si npl e field is used to indicate that no ports or out-of-line data are contained in the body. The
nsg_id field may be used by user programs to identify the meaning of this message to the intended
recipient.

The variable data part of a message consists of an array of descriptors and data. Each data descriptor
is of the form:

typedef struct {
unsi gned int nmsg_type_name : 8,
/* \What kind of data */
nmsg_type_size : 8,
/* How many bits is each item*/
nsg_type_nunber : 12,
/* How many itens are there */
nsg type_inline : 1,
/[* |If true, actual data follows;
* else a pointer to the data */
nsg _type_longform: 1,

/* Nane, size, nunber follow */
nsg _type_deal | ocate : 1;
/* Deallocate port rights or nenory */

} meg_type_t;

nsg_type_nanme describes the basic type of data comprising this object. There are several system-

defined data types, including:

« Ports, including combinations of send, receive, and ownership rights,

< Port and port set names. This is the same language data type as port
rights, but the message only carries a task’s name for a port and doesn’t
cause any transferal of rights.

« Simple data types, such as integers, characters, and floating point
values.

nsg_type_size

nsg_type_nunber
indicates the number of items of the basic data type present after the type descriptor.

indicates the size in bits of the basic object named in the nsg_t ype nane field.

msg_type_inline
indicates that the actual data is included after the type descriptor; otherwise, the word
following the descriptor is a pointer to the data to be sent.

MACH 23 August 1990 MACH

msg_type_deal | ocate
indicates that the port rights and/or data pointed to in this object are to be deallocated
after the queueing of this message. Receive and ownership rights may not be
deallocated with nsg_t ype_deal | ocat e.

nsg_type_l ongform
indicates that the name, size, and number fields were too long to fit in the structure
described above. Instead, the data type descriptor is described by the following

structure:
typedef struct {
msg_type_t msg_t ype_header;
short msg_type_l ong_narme;
short msg_type_l ong_si ze;
i nt msg_type_| ong_nunber;

} msg_type_long_t;
A data item or a pointer to data follows each data descriptor.

All the C types and constants needed to use the message functions are defined in
<mach/ message. h>. The declarations in this section are taken from this file.

MACH 23 August 1990 MACH

msg_send
#i ncl ude <mach/ nessage. h>

nsg return_t nsg_send(header, option, tineout)
nsg_header _t *header ;
nsg_option_t option;
nsg_ti meout _t ti meout;

Arguments

header The address of the message to be sent. A message consists of a fixed sized
header followed by a variable number of data descriptors and data items.
See <mach/ message. h> for a definition of the message structure.

ti meout In the event that the destination port is full and the SEND_TI MEQUT option
has been specified, this value specifies the maximum wait time (in
milliseconds).

option The failure conditions under which nsg_send should terminate; the value of
this parameter is an or'ed combination of the following two options. Unless
one of the two following values for the opti on parameter is explicitly
specified, msg_send does not return until the message is successfully
gueued for the intended receiver.

SEND TI MEQUT specifies that the nsg_send request should terminate after the timeout
period has elapsed, even if the kernel has been unable to queue the
message.

SEND_NOTI FY allows the sender to give exactly one message to the operating system
without being suspended should the destination port be full. When another
message can be forced to the receiving port’s queue using SEND_NOTIFY,
the sending task receives a NOTIFY_MSG_ACCEPTED notification. A
second attempt to send a message with the notify option before the
notification arrives results in an error. If SEND_TI MEQUT is also specified,
nmsg_send will wait until the specified timeout has elapsed before invoking
the SEND_NOTI FY option.

SEND | NTERRUPT Specifies that nsg_send should return if a software interrupt occurs in this
thread.

MSG_OPTI ON_NONE
A constant defined as zero which may be used to specify that neither of the
previous options are wanted.

Description
nsg_send transmits a message from the current task to the remote port specified in the message

header field (msg_r enot e_port). The message consists of its header, followed by a variable number of
data descriptors and data items. (See the introduction to this section for details on message formatting.)

If the meg_I| ocal port field is not set to PORT_NULL, send rights to that port will be passed to the
receiver of this message. The receiver task may use that port to send a reply to this message.

If the SEND_NOTI FY option is used and this call returns a SEND_W LL_NOTI FY code, then the user
can expect to receive a notify message from the kernel. This message will either be a
NOTI FY_MSG_ACCEPTED or a NOTI FY_PORT_DELETED message depending on what happened to the
gueued message. The first and only data item in these messages is the port to which the original
message was sent. The ids and formats for these messages are defined in <mach/ noti fy. h>.

MACH 23 August 1990 MACH

Returns

SEND SUCCESS The message has been queued for the destination port.

SEND_| NVALI D_MEMORY
The message header or body was not readable by the calling task, or the
message body specified out-of-line data which was not readable.

SEND | NVALI D_PORT
The message refers to a name for which the current task does not have
access, or to which access was explicitly removed from the current task (see
port _deal | ocat €) while waiting for the message to be posted, or a
nsg_t ype_nane field in the message specifies rights that the name doesn’t
denote in the task (eg, specifying MSG _TYPE_SEND and supplying a port
set’'s name).

SEND _TI MED _QOUT The message was not sent since the destination port was still full after
t i meout milliseconds.

SEND W LL_NOTI FY
The destination port was full but the SEND_NOTI FY option was specified. A
notification message will be sent when the message can be posted.

SEND_NOTI FY_I N_PROGRESS
The SEND_NOTI FY option was specified but a notification request is already
outstanding for this thread and given destination port.

See Also
nMsg_receive, nsg_rpc

MACH

23 August 1990 MACH

msg_receive

#i ncl ude <mach/ nessage. h>
#i ncl ude <mach/ port. h>

nsg_return_t nsg_receive(header, option, tinmeout)
nsg_header _t *header ; /* in/fout */
nsg_option_t option;
nsg timeout t ti meout ;

Arguments

header The address of a buffer in which the message is to be received. Two fields
of the message header must be set before the call is made:
nsg | ocal port is set to the name of the port or port set from which the
message is to be received and nmsg_si ze must be set to the maximum size
of the message that may be received. It must be less than or equal to the
size of the buffer.

ti meout If RCV_TI MEQUT is specified this value is the maximum time in milliseconds
to wait for a message before giving up.

option The failure conditions under which nsg_r ecei ve should terminate; the
value of this parameter is a bit or'd combination the following two options.
Unless one of the two following values for the opt i on parameter is explicitly
specified, msg_r ecei ve does not return until a message has been received.

RCV_TI MEQUT Specifies that msg_recei ve should return when the specified timeout
elapses, if a message has not arrived by that time; if not specified, the
timeout will be ignored (i.e. infinite).

RCV_NO_SENDERS Specifies that msg_r ecei ve should return if the receiver and owner tasks
have the only access rights to the port specified in the message header. (Not
implemented yet)

RCV_I NTERRUPT Specifies that msg_r ecei ve should return when a software interrupt has
occurred in this thread.

MSG_OPTI ON_NONE
Specifies that none of the above options are desired.

Description

neg_recei ve retrieves the next message from a port or port set specified in the nsg_I| ocal _port
field of the specified message header. If a port is specified, the port may not be a member of a port set.
The msg_| ocal _port field will be set to the specific port on which the message was found.

If a port set is specified, the nsg_recei ve will retrieve messages sent to any of the set's member
ports. It is not an error for the port set to have no members, or for members to be added and removed
from a port set while a nsg_r ecei ve on the port set is in progress.

The message consists of its header, followed by a variable amount of data; the message header
supplied to nsg_r ecei ve must specify the maximum size of the message which can be received into the
buffer provided. (See the introduction to this section for details on message formatting).

If no messages are present on the port(s) in question, msg_r ecei ve will wait until a message arrives,
or until one of the specified termination conditions is met (see above for discussion of the opti on
parameter).

MACH 23 August 1990 MACH

10

If the received messages contains out-of-line data (i.e. for which the nsg_t ype_i nl i ne attribute was
specified as FALSE), the data will be returned in a newly-allocated region of memory; the message body
will contain a pointer to that new region. (See vm al | ocat e call for a description of the state of newly-
allocated memory.) The user may wish to deallocte this memory when the data is no longer needed.

Returns

RCV_SUCCESS The message has been received.
RCV_I NVALI D_MEMORY

The message specified was not writable by the calling task.

RCV_| NVALI D_PORT

An attempt was made to receive on a port to which the calling task does not
have the proper access, or which was deallocated (see port deal | ocat e)
while waiting for a message.

RCV_TOO LARGE The message header and body combined are larger than the size specified

by nsg_si ze.

RCV_NOT_ENOUGH_MENMORY

The message to be received contains more out-of-line data than can be
allocated in the receiving task.

RCV_TI MED_QUT The message was not received after t i neout milliseconds.
RCV_ONLY_SENDER

An attempt was made to receive on a port to which only the receive and/or
owner have access, and the RCV_NO_SENDERS option was specified.

RCV_| NTERRUPTED

A software interrupt occurred.

RCV_PORT_CHANGE

See Also
msg_rpc,

MACH

The port specified was moved into a port set during the duration of the
nmsg_recei ve call.

nmsg_send

23 August 1990 MACH

11

msg_rpc

#i ncl ude <mach/ nessage. h>
#i ncl ude <mach/ port. h>

nsg return_t nsg_rpc(header, option, rcv_size,
send_tinmeout, rcv_tinmeout)

nsg_header _t *header ; /[* in/fout */
nsg_option_t option;
neg_si ze_t rcv_size;

nsg_ti meout _t send_ti meout ;
nsg_ti meout _t rcv_timeout;

Arguments

header Address of a message buffer which will be used for both nsg_send and
nsg_receive. This buffer contains a message header followed by the
data for the message to be sent. The nsg_renot e_port field specifies the
port to which the message is to be sent. The nsg_| ocal _port field
specifies the port on which a message is then to be received; if this port is
the special value PORT_DEFAULT, it will be replaced by the value
PORT_NULL for the purposes of the nsg_send operation.

option A union of the opti on parameters for the component operations. (see
nmsg_send and nsg_r ecei ve)

rcv_size The maximum size allowed for the received message; this must be less than
or equal to the size of the message buffer. The nsg_si ze field in the
header specifies the size of the message to be sent.

send_tinmeout;rcv_ti meout
The timeout values to be applied to the component operations. These are
only used if the options SEND_TI MEQUT and/or RCV_TI MEQUT are specified.
Description

nsg_rpc is a hybrid call which performs a nsg_send followed by a msg_r ecei ve, using the same
message buffer.

Returns
RPC_SUCCESS message was successfully sent and a reply was recived.
FAI LURES are the same as those for nsg_send and nsg_r ecei ve; any error during
the msg_send portion will terminate the call.
See Also

nsg_receive, nsg_send

MACH 23 August 1990 MACH

12

3. Port and port set primitives

MACH 23 August 1990 MACH

13

0]0) rt_n ames
#i ncl ude <mach. h>

kern_return_t port_nanes(task,
portnames, portnanesCnt,
port_types, port_typesCnt)

task t task;
port_nane_array_t *portnanes; /* out array */
unsi gned int *portnanesCnt; /* out */
port type_ array_ t *port_types; [/* out array */
unsi gned int *port_typesCnt; /[* out */
Arguments
t ask The task whose port name space is queried.
port nanes The names of the ports and port sets in the task’s port name space, in no

particular order.
port namesCnt The number of names returned.

port _types The type of each corresponding name. Indicates what kind of right the task
holds for the port or port set.

port_typesCnt Should be the same as porthamesCnt.

Description

port _nanes returns the currently valid ports and port set names of t ask. For each name, it also
returns what type of rights t ask holds. port names and port _t ypes are arrays that are automatically
allocated when the reply message is received. The user may wish to vm deal | ocat e them when the
data is no longer needed.

Returns

KERN_SUCCESS The call succeeded.

KERN_| NVALI D_ARGUMENT
t ask was invalid.

See Also
port_type,port_status,port_set_status

MACH 23 August 1990 MACH

14

port_type
#i ncl ude <mach. h>

kern_return_t port_type(task, port_nanme, port_type)

task t task;
port_nane_t port_nane;
port type_ t *port_type; /* out */
Arguments
t ask The task whose port name space is queried.
port_nane The name being queried.
port_type The type of the name. Indicates what kind of right the task holds for the port
or port set.
Description

port _type returns information about t ask’s rights for a specific name in its port name space.
Returns

KERN_SUCCESS The call succeeded.

KERN_| NVALI D_ARGUVMENT
t ask was invalid or t ask did not have any rights named port _nane.

See Also
port nanes,port_status,port_set status

MACH 23 August 1990 MACH

15

port_rename
#i ncl ude <mach. h>

kern_return_t port_renane(task, old_nane, new nane)
task t task;
port_nane_t ol d_nane;
port_nane_t new_nane;

Arguments
t ask The task whose port name space is changed.
ol d_nane The name being changed.
new_narme The new value for ol d_nane.

Description

port _rename changes the name by which a port or port set is known to t ask. new_name must not
already be in use, and it can’t be a distinguished value like PORT _NULL.

Returns

KERN_SUCCESS The call succeeded.

KERN_NAME_EXI STS
t ask already has a right named new_nane.

KERN_| NVALI D_ARGUVENT
task was invalid or t ask did not have any rights named ol d_nane or
new_nane was an invalid name.

See Also
port _nanes

MACH 23 August 1990 MACH

16

port_allocate
#i ncl ude <mach. h>

kern return_t port_allocate(task, port_nane)

task t task;
port _nane_t *port_nane; /* out */
Arguments
task The task in which the new port is created.
port_nane The task’s name for the new port.
Description

port _all ocate causes a port to be created for the specified task; the resulting port's name is
returned in port _nanme. The target task initially has all three access rights to the port. If the caller is not
the task specified by t ask, then it does not have any rights to the port. The new port is not a member of
any port set.

Returns

KERN_SUCCESS The call succeeded.

KERN_| NVALI D_ARGUMENT
t ask was invalid.

KERN_RESOURCE_SHORTAGE
The kernel ran out of memory.

See Also
port _deal |l ocate

MACH 23 August 1990 MACH

17

port_deallocate
#i ncl ude <mach. h>

kern_return_t port_deal | ocate(task, port_nane)
task t task;
port_nane_t port_nane;

Arguments
task The task from which to remove the port rights.
port_nane t ask’s name for the rights to be removed.
Description

port deal | ocat e requests that the target task’s rights for a port be removed.

If t ask has receive rights for the port, and the port is a member of a port set, the port is removed from
the port set.

If the target task is both the receiver and owner for the port, then the port is destroyed and all other
tasks with send access are notified of the port’s destruction. If the task is only the receiver for the port,
receive rights are sent to the owner. If the task is only the owner of the port, ownership rights are sent to
the receiver.

Returns

KERN_SUCCESS The call succeeded.

KERN_| NVALI D_ARGUMENT
t ask was invalid or por t _name does not name a valid port.

See Also
port_allocate

MACH 23 August 1990 MACH

18

port_status
#i ncl ude <mach. h>

kern_return_t port_status(task, port_nane, enabl ed,

num nmsgs, backl og, owner, receiver)
task t task;
port_nane_t port_nane;
port _set nanme_t *enabl ed; /* out */
int *num_nsgs; /* out */
i nt *backl og; [* out */
bool ean_t *owner; /* out */
bool ean_t *receiver; /* out */
Arguments
t ask The task owning the port right in question.
port_nane t ask’s name for the port right.
enabl ed Returns t ask’s name for the port set which the named port belongs to, or
PORT_NULL ifitisn'tin a set.
num negs The number of messages queued on this port.
backl og The number of messages which may be queued to this port without causing
the sender to block.
owner Returned as true iff the t ask is the owner of the port.
receiver Returned as true iff the t ask is the receive of the port.
Description

port _status returns the current status associated with t ask’s port right named port _nane.

If

recei ver isn't true, then the enabl ed, num nsg, and backl og arguments don't return anything

meaningful.
Returns

KERN_SUCCESS The call succeeded.
KERN_| NVALI D_ARGUMENT

t ask was invalid or por t _name does not name a valid port.

See Also
port_set backl og,port_set status

MACH 23 August 1990

MACH

19

port_set_backlog
#i ncl ude <mach. h>

kern_return_t port_set backl og(task, port_nane, backl og)

task t task;
port_nane_t port_naneg;
i nt backl og;
Arguments
t ask The task owning the named port right.
port_nane t ask’s name for the port right.
backl og The new backlog to be set.
Description

The port’s backlog value is the number of unreceived messages that are allowed in its message queue
before the kernel will refuse to accept any more sends to that port. port _set backl og changes the
backlog value on the specified port.

t ask must have receive rights for the named port.

The file <mach/ mach_par am h> exports the system default value for a port’s backlog as the constant
PORT_BACKLOG DEFAULT and the maximum backlog value as the constant PORT_BACKLOG_MAX.

Returns

KERN_SUCCESS The call succeeded.

KERN_NOT_RECEI VER
port _nane doesn’'t name receive rights in t ask.

KERN_| NVALI D_ARGUMENT
t ask was invalid or port _nane does not name a valid port or the desired
backlog was non-positive or the desired backlog was greater than
PORT_BACKLOG_MAX.
See Also

nsg_send, port_status

MACH 23 August 1990 MACH

20

port_set _backup
#i ncl ude <mach. h>

kern_return_t port_set backup(task, prinary, backup, previous)
task t task;
port _nane_t prinary,;
port t backup;

port t *previous; /* out */
Arguments
t ask The task owning the named port right.
primary t ask’ s name for the primary port.
backup The new backup port to be set.
previ ous The previous backup port.
Description

A backup port provides a automatic mechanism to transfer port receive rights to another task or thread
in the event of a primary port’s attempted death. To be more precise, if a primary port has a backup port,
and the primary would have been destroyed by the deallocation of its receive rights, then instead the
receive right for the primary port is sent in a notify message (NOTI FY_PORT_DESTROYED) to the backup
port.

A newly allocated port does not have a backup port. The port _set backup call changes the backup
of the pri mary port. The target t ask must hold receive rights for the pri mary port. The caller supplies
send rights for the new backup port to which notification will be sent. The caller receives send rights for
the previ ous backup port or PORT_NULL if the target did not have a backup. port_set backup
works atomically, so that if one backup port is exchanged for another, the primary port is never left without
a backup.

When the primary port is sent in a notify message to the backup port, the primary port is left without a
backup port. When the task receives the notification and the receive rights to the primary port, it may
wish to use port _set backup to reestablish the same or a different backup port. If the backup port is
destroyed before the primary, then the primary port is left without a backup. (A subsequent
port_set backup call would return PORT_NULL).

Returns

KERN_SUCCESS The call succeeded.

KERN_NOT_RECEI VER
pri mary doesn’t name receive rights in t ask.

KERN_| NVALI D_ARGUVMENT
t ask was invalid or pri mary or backup do not name a valid port.

See Also
port _deal | ocate

MACH 23 August 1990 MACH

21

port_set_allocate
#i ncl ude <mach. h>

kern_ return_t port_set _allocate(task, set_nane)

task t task;
port_set nanme_t *set_nane; /* out */
Arguments
task The task in which the new port set is created.
set _nane The task’s name for the new port set.
Description

port_set all ocat e causes a port set to be created for the specified task; the resulting set's name

is returned in set _nane. The new port set is empty.

Returns

KERN_SUCCESS The call succeeded.

KERN_| NVALI D_ARGUMENT
t ask was invalid.

KERN_RESOURCE_SHORTAGE
The kernel ran out of memory.

See Also
port_set _deal | ocate

MACH 23 August 1990

MACH

22

port_set_deallocate
#i ncl ude <mach. h>

kern_return_t port_set deal |l ocate(task, set_ nane)
task t task;
port_set_name_t set_nane;

Arguments
t ask The task owning the port set to be destroyed.
set _nane t ask’s name for the doomed port set.
Description

port_set deal | ocat e requests that the target task’s port set be destroyed.

If the port set is non-empty, any members are first removed.

Returns

KERN_SUCCESS The call succeeded.

KERN_FAI LURE set_nane is task’s port set used for implementing the obsolete
port _enabl e and port _di sabl e calls.

KERN_| NVALI D_ARGUVMENT
t ask was invalid or set _nane does not name a valid port set.

See Also
port_set allocate

MACH 23 August 1990 MACH

23

port_set_add
#i ncl ude <mach. h>

kern_ return_t port_set add(task, set_nane, port_nane)
task t task;
port_set_name_t set_nane;
port_nane_t port_nane;

Arguments
t ask The task owning the port set and port right.
set _nane t ask’s name for the port set.
port_nane t ask’s name for the port.

Description

port _set _add moves the named port into the named port set. t ask must have receive rights for the
port.

If the port is already a member of another port set, it is removed from that set first.
Returns

KERN_SUCCESS The call succeeded.

KERN_NOT_RECEI VER
port nane doesn’'t name receive rights in t ask.

KERN_| NVALI D_ARGUVENT
task was invalid or set _name does not name a valid port set or
port _nane does not name a valid port.

See Also
port _set_renove

MACH 23 August 1990 MACH

24

port_set_remove
#i ncl ude <mach. h>

kern_ return_t port_set renove(task, port_nane)
task t task;
port_nane_t port_nane;

Arguments
task The task owning the receive rights and port set.
port_nane t ask’s name for the receive rights to be removed.
Description

port_set renove removes the named port from a port set. t ask must have receive rights for the
port, and the port must be a member of a port set.

Returns

KERN_SUCCESS The call succeeded.

KERN_NOT_RECEI VER
port _nane doesn’'t name receive rights in t ask.

KERN_NOT_I N_SET
The port isn’t a member of a set.

KERN | NVALI D_ARGUVENT
t ask was invalid or port _nanme does not name a valid port.

See Also
port_set add

MACH 23 August 1990 MACH

25

port_set_status
#i ncl ude <mach. h>

kern return_t port_set status(task, set_name, nenbers, nenbersCnt)

task t task;
port_set_name_t set_nane;
port _nane_array_t *menbers; /* out array */
unsi gned int *menbersCnt; /* out */
Arguments
t ask The task whose port set is queried.
set _nane t ask’s name for the port set.
menber s t ask’s names for the port set’'s members.
nmenmber sCnt The number of port names returned.
Description

port_set _status returns the members of a port set. nmenbers is an array that is automatically
allocated when the reply message is received. The user may wish to vm deal | ocat e it when the data is
no longer needed.

Returns

KERN_SUCCESS The call succeeded.

KERN_| NVALI D_ARGUMENT
t ask was invalid or set _nane does not name a valid port set.

See Also
port_status

MACH 23 August 1990 MACH

26

port_insert
#i ncl ude <mach. h>

kern_return_t port_insert_send(task, my_port, his_nane)
task t task;

port_t ny_port;
port _nane_t his_nane;

kern return_t port_insert _receive(task, my_port, his_nane)
task t task;

port_t ny_port;
port_nane_t his_nane;

Arguments

t ask The task getting the new rights.

nmy_port Rights supplied by the caller.

hi s_nane The name by which t ask will know the new rights.
Description

port_insert_send and port _i nsert _recei ve give a task rights with a specific name. If t ask
already has rights named hi s_nane, or has some other name for my_por t, then the operation will fail.
hi s_name can'’t be a distinguished value like PORT_NULL.

port _insert_send inserts send rights, and port _i nsert _r ecei ve inserts receive and ownership
rights.

Returns

KERN SUCCESS The call succeeded.

KERN_NAME_EXI STS
t ask already has a right named hi s_nane.

KERN_FAI LURE task already has rights to ny_port.

KERN_| NVALI D_ARGUVMENT
t ask was invalid or new_nane was an invalid name.

Notes
There is no way to insert just receive rights or just ownership rights.

See Also
port_extract_send, port_extract _receive

MACH 23 August 1990 MACH

27

0]0) rt_extract
#i ncl ude <mach. h>

kern_return_t port_extract_send(task, his_nane, his_port)

task t task;
port_nane_t his_nane;
port t *his_port; /* out */
kern return_t port_extract_receive(task, his_nane, his_port)
task t task;
port_nane_t his_nane;
port t *his_port; /* out */
Arguments
t ask The task whose rights the caller takes.
hi s _nane The name by which t ask knows the rights.
his_port Rights returned to the caller.
Description

port_extract_send and port _extract _recei ve remove t ask’s rights for a port and return the
rights to the caller. t ask is left with no rights for the port.

port_extract send extracts send rights; t ask can't have receive or ownership rights for the named
port. port_extract _recei ve extracts receive/ownership rights, both of which t ask must hold.

Returns

KERN_SUCCESS The call succeeded.

KERN_| NVALI D_ARGUVENT
t ask was invalid or hi s_name does not name a port for which t ask has the
required rights.

Notes
There is no way to extract just receive rights or just ownership rights.

See Also
port _insert_send, port_insert_receive

MACH 23 August 1990 MACH

28

4. Task and thread primitives

4.1. Basic terms
The MACH system separates the traditional notion of a process into two subconcepts:

» Tasks contain the capabilities, namely the port rights, resource limits, and address space of
a running entity. Tasks perform no computation; they are a framework for running threads.

» Threads contain the minimal processing state associated with a computation, e.g. a program
counter, a stack pointer, and a set of registers. A thread exists within exactly one task;
however, one task may contain many threads.

Tasks are the basic unit of protection. All threads within a task have access to all of that task’s
capabilities, and are thus not protected from each other.

Threads are the basic unit of scheduling. On a multiprocessor host, multiple threads from one task
may be executing simultaneously (within the task’s one address space). A thread may be in a
suspended state (prevented from running), or in a runnable state (may be running or be scheduled to
run). There is a non-negative suspend count associated with each thread. The suspend count is zero
for runnable threads and positive for suspended threads.

Tasks may be suspended or resumed as a whole. A thread may only execute when both it and its task
are runnable. Resuming a task does not cause all component threads to begin executing, but only those
threads which are not suspended.

Both tasks and threads are represented by ports. These ports are called the task kernel port and the
thread kernel port. These are the handles that are used in the task and thread kernel calls to identify to
the kernel which task or thread is to be affected by the call. The two primitives t ask_sel f () and
t hread_sel f () return the task and thread ports of the currently executing thread. Tasks may have
access to the task and thread ports of other tasks and threads. For example, a task that creates another
task or thread gets access to the new task or thread port. Also any thread may pass access to these
ports in a message to another thread in the same or different task. Having access to a task or thread port
enables the possessor to perform kernel calls on behalf of that task or thread. Access to a task’s kernel
port indirectly permits access to all threads within that task via the t ask_t hr eads call; however, access
to a thread’s kernel port does not currently imply access to its task port.

In addition to their kernel ports, tasks and threads have a number of special ports associated with
them. In general these are ports that the kernel must know about in order to communicate with the task or
thread in a structured manner.

There are three ports associated with a task in addition to its kernel port:

» The notify port, on which the task should attempt to receive notification of such kernel
events as the destruction of a port to which it has send rights. The task has receive rights to
this port and can get its value from the primitive t ask_noti fy() .

» The exception port, to which the kernel sends messages when an exception occurs.
Exceptions are synchronous interuptions to the normal flow of program control caused by
the program itself. They include illegal memory accesses, protection violations, arithmetic
exceptions, and hardware instructions intended to support emulation, debugging and/or error
detection. Some of these exceptions are handled transparently by the operating system but

MACH 23 August 1990 MACH

29

some must be reported to the user program. A default exception port is inherited from the
parent at task creation time. This port can be changed by the task or any one of its threads in
order to take an active role in handling exceptions.

» The bootstrap port, to which a new task can send a message that will return any other
system service ports that the task needs, for example a port to the Network Nameserver or
the Environment Manager. Send rights to this port are inherited from the parent at task
creation. This is the one port that the kernel does not actually use, it just makes it available
to a new task.

There are two ports associated with a thread in addition to its kernel port:

» The thread reply port, which may be used for initial messages from a parent or for early
remote procedure calls. The t hr ead_r epl y() primitive returns receive rights to this port.

e The thread exception port, to which kernel sends exceptions occuring in this thread. This
port is set to PORT_NULL at thread creation and can be set subsequently by the call
thread_set _exception_port. As long as the thread exception port is PORT_NULL the
task exception port will be used instead.

4.2. Access to Tasks: Terminology

In this and following sections, calls are described which may manipulate the state of a task. Although
some of the descriptions may refer to tasks as performing these calls, it is in fact some thread within a
task which makes any call.

Furthermore, any thread within any task which holds access rights to that task (i.e. task kernel port)
may perform calls which take a task as an argument. Customarily, only threads within a task will
manipulate that task’s state, but this custom is not enforced by the MACH kernel. Debugger tasks are a
notable exception to this rule. Similarly, access to a thread is controlled by access to its thread kernel
port.

MACH 23 August 1990 MACH

30

task_create
#i ncl ude <mach. h>

kern_return_t task create(parent _task, inherit_nenory,

chil d_task)
task_t parent _t ask
bool ean_t i nherit_menory;
task t *chil d_t ask; /* out */
Arguments
target _task The task from which the child’s capabilities are drawn.

i nherit_menory If set, the child task’s address space is built from the parent task according to
its memory inheritance values; otherwise, the child task is given an empty
address space.

child_task The new task.

Description

task_creat e creates a new task from par ent _t ask; the resulting task (chi | d_t ask) acquires
shared or copied parts of the parent’s address space (see vm_ i nheri t). The child task initially contains
no threads.

The child task gets the four special ports created or copied for it at task creation. The
task_kernel _port is created and send rights for it are given to the child and returned to the caller. The
task_notify_port is created and receive, ownership and send rights for it are given to the child. The
caller has no access to it. The t ask_boot strap_port and the t ask_excepti on_port are inherited
from the parent task. The new task can get send rights to these ports with the call
task_get special _port.

Returns

KERN SUCCESS A new task has been created.

KERN_| NVALI D_ARGUVMENT
par ent _task is not a valid task port.

KERN RESOURCE SHORTACE
Some critical kernel resource is unavailable.

See Also
task _term nate, task suspend, task resune, task special _ports, task threads,
thread_create, thread resunme, vminherit

Notes
Not implemented yet. Use f or k.

MACH 23 August 1990 MACH

31

task_terminate
#i ncl ude <mach. h>

kern return_t task_ term nate(target task)
task t target task;

Arguments
target _task The task to be destroyed.
Description
t ask_t er m nat e destroys the task specified by t ar get _t ask and all its threads. All resources that

are used only by this task are freed. Any port to which this task has receive and ownership rights is
destroyed.

Returns

KERN_SUCCESS The task has been killed.

KERN_| NVALI D_ARGUVMENT
t ar get _t ask is not a task.

See Also
task_create, task_suspend, task resune, thread_termninate, thread_suspend

Notes
Not implemented yet.

MACH 23 August 1990 MACH

32

task_suspend
#i ncl ude <mach. h>

kern_return_t task_suspend(target task)

task t target task;
Arguments
target _task The task to be suspended.
Description

Increments the task’s suspend count and stops all threads in the task. As long as the suspend count is
positive newly created threads will not run. This call does not return until all threads are suspended.

The count may become greater than one, with the effect that it will take more than one resume call to
restart the task.

Returns

KERN_SUCCESS The task has been suspended.

KERN_| NVALI D_ARGUVMENT
t ar get _t ask is not a task.

See Also
task _create, task term nate, task resume, task_ info, thread_suspend

MACH 23 August 1990 MACH

33

task_resume
#i ncl ude <mach. h>

kern_return_t task_resune(target task)
task t target task;

Description
Decrements the task’s suspend count. If it becomes zero, all threads with zero suspend counts in the
task are resumed. The count may not become negative.

Arguments
target _task The task to be resumed.
Returns

KERN _SUCCESS The task has been resumed.
KERN_FAI LURE The suspend count is already at zero.
KERN_| NVALI D_ARGUVENT

t ar get _t ask is not a task.

See Also
task create, task _term nate, task_suspend, task_info, thread_suspend,
thread_resunme, thread_ info

MACH 23 August 1990 MACH

34

task_special_ports
#i ncl ude <mach. h>

kern return_t task _get special _port(task, which_port, special port)

task t t ask;
i nt whi ch_port;
port t *special _port; [/* out */

kern return_t task _set special _port(task, which_port, special port)

task t t ask;
i nt whi ch_port;
port t speci al _port;

task_t task_self()

port _t task_notify()

Arguments
t ask The task for which to get the port
whi ch_port the port that is requested. Is one of TASK NOTIFY_PORT,

TASK_BOOTSTRAP_PORT, TASK_EXCEPTI ON_PORT.
speci al _port the value of the port that is being requested or being set.

Description
get _speci al _port returns send rights to one of a set of special ports for the task specified by t ask.
In the case of the task’'s own t ask_noti fy_port, the task also gets receive and ownership rights.

set _speci al _port sets one of a set of special ports for the task specified by t ask.

task_sel f returns the port to which kernel calls for the currently executing thread should be directed.
Currently, t ask_sel f returns the task kernel port which is a port for which the kernel has receive rights
and which it uses to identify a task. In the future it may be possible for one task to interpose a port as
another’s task’s kernel port. At that time, t ask_sel f will still return the port to which the executing thread
should direct kernel calls, but it may no longer be a port on which the kernel has receive rights.

If one task, the controller, has send access to the kernel port of another task, the subject task, then the
controller task can perform kernel operations for the subject task. Normally only the task itself and the
task that created it will have access to the task kernel port, but any task may pass rights to its kernel port
to any other task.

task_noti fy returns receive, ownership and send rights to the notify port associated with the task
to which the executing thread belongs. The notify port is a port on which the task should receive
notification of such kernel events of the destruction of a port to which it has send rights.

The other special ports associated with a task are the bootstrap port and the exception port. The
bootstrap port is a port to which a thread may send a message requesting other system service ports.
This port is not used by the kernel. The task’s exception port is the port to which messages are sent by

MACH 23 August 1990 MACH

35

the kernel when an exception occurs and the thread causing the exception has no exception port of its
own.

Within the C environment, t ask_sel f and t ask_not i f y are implemented as macros which execute
the system traps the first time and thereafter return a cached value for the ports. Thus it is unnecessary
for a programmer to cache these variables himself and such caching may interfere with the future
implementation of port interposition.

The following macros to call task_set/get _speci al _port for a specific port are defined in
<mach/task_speci al ports. h>: task get notify port, task _set notify port,
task_get _exception_port, task_set_exception_port, task_get_bootstrap_port and
task_set bootstrap_port.

Returns

KERN_SUCCESS The port was returned or set.

KERN_| NVALI D_ARGUMENT
t ask is not a task or whi ch_port is an invalid port selector.

See Also
t hread_speci al _ports, mach_init,task_create

Notes
The call on the bootstrap port to get system service ports has not been implemented yet.

TASK_KERNEL_PORT may be added to the set of ports that t ask_set _speci al _port accepts.

MACH 23 August 1990 MACH

36

task_info
#i ncl ude <mach. h>

/* the definition of task_info_t frommach.h - mach/task_info.h is */
t ypedef int *task info t; /* variable length array of int */
/* currently the only interpretation of info is */

struct task_basic_info {

i nt suspend_count; /* suspend count for task */

i nt base priority; [/* base scheduling priority */
vm si ze_t virtual _si ze; /* nunber of virtual pages */
vm si ze_t resident _size; [/* nunber of resident pages */
time_val ue_t user _tine; /* total user run time for

term nated threads */
time_val ue_t systemti ne; /* total systemrun time for
term nated threads */
b

typedef struct task _basic_info *task _basic_info t;

kern return_t task info(target task, flavor, task info, task_infoCnt)

task _t target task;
i nt flavor;
task _info_t task_info; /* in and out */
unsi gned int *task _infoCnt; /* in and out */
Arguments
target _task The task to be affected.
flavor The type of statistics that are wanted. Currently only TASK_BASI C | NFOis
implemented.
task_info Statistics about the task specified by t ar get _t ask.
task_i nf oCnt Size of the info structure. Currently only TASK BASI C_| NFO_COUNT is
implemented.
Description

Returns the selected information array for a task, as specified by f | avor. t ask_i nf o is an array of
integers that is supplied by the caller, and filled with specified information. t ask_i nf oCnt is supplied as
the maximum number of integers in t ask_i nf 0. On return, it contains the actual number of integers in
task_info.

Currently there is only one flavor of information which is defined by TASK BASI C | NFQO. Its size is
defined by TASK_BASI C_| NFO_COUNT.

Returns

KERN_SUCCESS The call succeeded.

KERN_| NVALI D_ARGUVMENT
target _task is notataskorfl avor is not recognized.

M G_ARRAY_TOO LARGE
Returned info array is too large fort ask_i nf 0.t ask_i nf o is filled as much
as possible. task_i nf oCnt is set to the number of elements that would be
returned if there were enough room.

MACH 23 August 1990 MACH

37

See Also
task_speci al _ports, task_threads, thread_info, thread_state

MACH 23 August 1990 MACH

38

task_threads
#i ncl ude <mach. h>

kern return_t task threads(target task, thread |ist, thread count)

task t target task;
thread_array t *thread |ist; /* out, ptr to array */
i nt *thread count; [/* out */
Arguments
target _task The task to be affected.
thread_li st The set of threads contained within t ar get _t ask; no particular ordering is
guaranteed.

t hr ead_count The number of threads inthe t hread_1I i st.

Description

task_t hreads gets send rights to the kernel port for each thread contained in target task.
thread_| i st is an array that is created as a result of this call. The caller may wish to vm deal | ocat e
this array when the data is no longer needed.

Returns

KERN_SUCCESS The call succeeded.

KERN | NVALI D_ARGUVMENT
t arget _t ask is not a task.

See Also
thread create, thread term nate, thread_suspend

MACH 23 August 1990 MACH

39

thread create
#i ncl ude <mach. h>

kern_return_t thread create(parent_task, child_thread)

task t par ent _task;
t hread_t *child thread; /* out */
Description

t hread_cr eat e creates a new thread within the task specified by parent t ask. The new thread
has no processor state, and has a suspend count of 1. To get a new thread to run, firstt hr ead_creat e
is called to get the new thread'’s identifier,(chi | d_t hr ead). Then t hread_set st at e is called to set a
processor state, and finally t hr ead_r esune is called to get the thread scheduled to execute.

When the thread is created send rights to its thread kernel port are given to it and returned to the caller
inchi | d_t hread. The new thread’s exception port is set to PORT_NULL.

Arguments

par ent _task The task which is to contain the new thread.
child thread The new thread.

Returns

KERN_SUCCESS A new thread has been created.

KERN_I NVALI D_ARGUMENT
par ent _t ask is not a valid task.

KERN RESOURCE SHORTAGE
Some critical kernel resource is not available.

See Also
task_create, task_ threads, thread_termi nate, thread_suspend, thread_resune,
t hread_special _ports, thread set_state

MACH 23 August 1990 MACH

40

thread terminate
#i ncl ude <mach. h>

kern_ return_t thread_terni nate(target _thread)
t hread_t target thread;

Arguments
target _thread The thread to be destroyed.
Description
t hr ead_t er mi nat e destroys the thread specified by t ar get _t hr ead.
Returns

KERN_SUCCESS The thread has been killed.

KERN_| NVALI D_ARGUMENT
t arget _t hr ead is not a thread.

See Also
task term nate, task threads, thread create, thread_resune, thread_suspend

MACH 23 August 1990 MACH

41

thread_suspend
#i ncl ude <mach. h>

kern_ return_t thread_suspend(target thread);
t hread_t target thread;

Arguments
target _thread The thread to be suspended.

Description

Increments the thread’s suspend count and prevents the thread from executing any more user level
instructions. In this context a user level instruction is either a machine instruction executed in user mode
or a system trap instruction including page faults. Thus if a thread is currently executing within a system
trap the kernel code may continue to execute until it reaches the system return code or it may supend
within the kernel code. In either case, when the thread is resumed the system trap will return. This could
cause unpredictible results if the user did a suspend and then altered the user state of the thread in order
to change its direction upon a resume. The call t hr ead_abort is provided to allow the user to abort any
system call that is in progress in a predictable way.

The suspend count may become greater than one with the effect that it will take more than one resume
call to restart the thread.

Returns

KERN_SUCCESS The thread has been suspended.

KERN_I NVALI D_ARGUMENT
target _t hread is not a thread.

See Also
task_suspend, task_resune, t hread_i nfo, thread_state, t hread_r esune,
thread_term nate, thread_abort

MACH 23 August 1990 MACH

42

thread resume
#i ncl ude <mach. h>

kern_return_t thread_resunme(target thread)
t hread_t target thread;

Arguments
target _thread The thread to be resumed.
Description

Decrements the threads’s suspend count. If the count becomes zero the thread is resumed. If it is still
positive, the thread is left suspended. The suspend count may not become negative.

Returns

KERN_SUCCESS The thread has been resumed.
KERN_FAI LURE The suspend count is already zero.
KERN_| NVALI D_ARGUVENT

t arget _t hr ead is not a thread.

See Also
task_suspend, task resume thread_ info, thread create, t hread_t erm nate,
t hr ead_suspend

MACH 23 August 1990 MACH

43

thread _abort
#i ncl ude <mach. h>

kern_return_t thread_abort(target _thread)
t hread_t target thread;

Arguments
target _thread The thread to be interrupted.

Description

t hread_abort aborts the kernel primitives: nsg_send, nsg _receive and nsg_rpc and page-
faults, making the call return a code indicating that it was interrupted. The call is interrupted whether or
not the thread (or task containing it) is currently suspended. If it is supsended, the thread receives the
interupt when it is resumed. This call also aborts any priority depression caused by the DEPRESS option
tot hread_swi tch.

A thread will retry an aborted page-fault if its state is not modified before it is resumed. Msg_send
returns SEND | NTERRUPTED; nsg_recei ve returns RCV_| NTERRUPTED; nsg_rpc returns either
SEND _| NTERRUPTED or RCV_| NTERRUPTED, depending on which half of the RPC was interrupted.

The main reason for this primitive is to allow one thread to cleanly stop another thread in a manner that
will allow the future execution of the target thread to be controlled in a predictable way.
t hr ead_suspend keeps the target thread from executing any further instructions at the user level,
including the return from a system call. t hr ead_get / set _st at e allows the examination or modification
of the user state of a target thread. However, if a suspended thread was executing within a system call, it
also has associated with it a kernel state. This kernel state can not be modified by t hr ead_set _state
with the result that when the thread is resumed the system call may return changing the user state and
possibly user memory. thread_abort aborts the kernel call from the target thread’s point of view by
resetting the kernel state so that the thread will resume execution at the system call return with the return
code value set to one of the interrupted codes. The system call itself will either be entirely completed or
entirely aborted, depending on the precise moment at which the abort was received. Thus if the thread'’s
user state has been changed by t hr ead_set _st at e, it will not be modified by any unexpected system
call side effects.

For example to simulate a Unix signal, the following sequence of calls may be used:
t hr ead_suspend Stops the thread

t hr ead_abort Interrupts any system call in progress, setting the return value to 'interrupted’. Since
the thread is stopped, it will not return to user code.

t hread_set st at e Alters thread’s state to simulate a procedure call to the signal handler

t hread_r esune Resumes execution at the signal handler. If the thread’s stack has been correctly
set up, the thread may return to the interrupted system call.

(of course, the code to push an extra stack frame and change the registers is VERY machine-

MACH 23 August 1990 MACH

44

dependent.)

Calling t hread_abort on a non-suspended thread is pretty risky, since it is very difficult to know
exactly what system trap, if any, the thread might be executing and whether an interrupt return would
cause the thread to do something useful.

Returns

KERN_SUCCESS The thread received an interrupt

KERN_| NVALI D_ARGUMENT
target _t hread is not a thread.

See Also
thread_info, thread_state, thread_term nate, thread_suspend, thread_sw tch

MACH 23 August 1990 MACH

45

thread_special_ports
#i ncl ude <mach. h>

kern_return_t thread _get special port(thread, which _port, special _port)

t hread_t t hr ead;
i nt whi ch_port;
port t *speci al _port;

kern return_t thread_set special port(thread, which _port, special _port)

t hread_t t hr ead;
i nt whi ch_port;
port t speci al _port;

thread_t thread_self()

port _t thread_reply()

Arguments
t hr ead The thread for which to get the port
whi ch_port the port that is requested. Is one of THREAD REPLY PORT or

THREAD_EXCEPTI ON_PORT.
speci al _port the value of the port that is being requested or being set.

Description

get _speci al _port returns send rights to one of a set of special ports for the thread specified by
t hr ead. In the case of getting the thread’s own t hr ead_r epl y_por t, receive and ownership rights are
also given to the thread.

set _speci al _port sets one of a set of special ports for the thread specified by t hr ead.

t hread_sel f returns the port to which kernel calls for the currently executing thread should be
directed. Currently, t hr ead_sel f returns the thread kernel port which is a port for which the kernel
has receive rights and which it uses to identify a thread. In the future it may be possible for one thread to
interpose a port as another’s thread’s kernel port. At that time, t hr ead_sel f will still return the port to
which the executing thread should direct kernel calls, but it may no longer be a port on which the kernel
has receive rights.

If one thread, the controller, has send access to the kernel port of another thread, the subject thread,
then the controller thread can perform kernel operations for the subject thread. Normally only the thread
itself and its parent task will have access to the thread kernel port, but any thread may pass rights to its
kernel port to any other thread.

t hread_r epl y returns receive, ownership and send rights to the reply port of the calling thread. The
reply port is a port to which the thread has receive rights. It is used to receive any initialization messages
and as a reply port for early remote procedure calls.

The following macros to call t hread_get/set speci al _port for a specific port are defined in
<mach/t hread_speci al _ports.h> thread_get _reply port, thread_set_reply_port,
t hread_get exception_port andthread_set exception_port.

MACH 23 August 1990 MACH

46

A thread also has access to its task’s special ports.
Returns

KERN_SUCCESS The port was returned or set.

KERN_| NVALI D_ARGUVENT
t hr ead is not a thread or whi ch_port is an invalid port selector.

See Also
task_special _ports,thread _create

Notes
THREAD KERNEL_PORT may be added to the set of ports that t hr ead_set _speci al _port accepts.

MACH 23 August 1990 MACH

thread _info
#i ncl ude <mach. h>

/* the definition of

t ypedef i nt

/* only current

struct thread_basi
time_val ue_t
time_val ue_t

i nt

nt

nt

nt

nt

nt

| ong

s

47

thread_info_data_t frommach.h - nmach/thread_info.h is */

thread_info_t; / variable length array of int */

interpretation of thread_info */

c_info {
user _tine; user run tine */
system ti ne; systemrun time */
cpu_usage; scal ed cpu usage percentage */

base priority;
cur_priority;
run_state;

fl ags;
suspend_count ;
sl eep_ti ne;

base scheduling priority */
current scheduling priority */
run state (see below) */
various flags (see below */
suspend count for thread */
nunber of seconds that thread
has been sl eeping */

~ e e Y Y e
* %k F kX X 3k Xk

typedef struct thread basic_info

*thread _basic_info t;

The possible values of the run_state field are:
TH _STATE RUNNI NG, thread is running normally
TH _STATE _STOPPED, thread is suspended
TH STATE WAITING thread is waiting normally
TH_STATE_UNI NTERRUPTI BLE, thread is in an uninterruptible wait
TH STATE HALTED, thread is halted at a clean point

The possible values of the flags field are:

TH_FLAGS_SWAPPED,
TH_FLAGS_I DLE,

kern_return_t thread_

t hread_t

i nt

thread info_t
unsi gned int

Arguments

target thread
flavor

thread_info
t hread_i nf oCnt

Description

thread i s swapped out
thread is an idle thread

info(target_thread, flavor,
t hread_i nf oCnt)
target _thread;
flavor;
thread_info
*t hread_i nfoCnt;

t hread_i nf o,

[* */

in and out

in and out

[* */

The thread to be affected.

The type of statistics that are wanted. Currently only THREAD BASI C_| NFO
is implemented.

Statistics about the thread specified by t ar get _t hr ead.

Size of the info structure. Currently only THREAD BASI C | NFO_COUNT is
implemented.

Returns the selected information array for a thread, as specified by f| avor . t hr ead_i nf o is an array
of integers that is supplied by the caller and returned filled with specified information. t hr ead_i nf oCnt
is supplied as the maximum number of integers in t hread_i nfo. On return, it contains the actual
number of integers int hr ead_i nf o.

MACH

23 August 1990 MACH

48

Currently there is only one flavor of information which is defined by THREAD_BASI C_| NFO. Its size is
defined by THREAD_BASI C_| NFO_COUNT.

Returns

KERN_SUCCESS The call succeeded.

KERN_| NVALI D_ARGUVMENT
target _t hread is not a thread or f | avor is not recognized.

M G_ARRAY_TOO LARGE
Returned info array is too large for t hr ead_i nf o. t hr ead_i nf o is filled as
much as possible. t hread_i nf oCnt is set to the number of elements that
would have been returned if there were enough room.

See Also
t hread_special _ports, task_threads, task_info, thread_state

MACH 23 August 1990 MACH

thread_state
#i ncl ude <mach. h>

49

kern return_t thread get state(target thread, flavor, old_state,

ol d_stateCnt)

t hread_t target _thread;

i nt flavor;

thread state data_t ol d_state; /* in and out */
unsi gned i nt *old_stateCnt; /* in and out */

kern_return_t thread_set _state(target_thread, flavor, new state,

new st at eCnt)

t hread_t target _thread,;
i nt flavor;
thread_state data_t new_ st at e;

unsi gned int

Arguments

target _thread
flavor

new state
old_state
new_st at eCnt

ol d_st at eCnt

Description

new st at eCnt ;

thread to get or set the state for.

The type of state that is to be manipulated. Currently must be one of the
following values: VAX_THREAD_STATE, ROVP_THREAD_STATE,
SUN_THREAD_ STATE_REGS, SUN_THREAD_ STATE_FPA

an array of state information
an array of state information

the size of the state information array. Currently must be one of the following
values: VAX_THREAD_STATE_COUNT, ROWP_THREAD_ STATE_COUNT,
SUN_THREAD_STATE_REGS_COUNT, SUN_THREAD_STATE_FPA_COUNT

same as new_st at eCnt

t hr ead_get _st at e returns the state component (e.g. the machine registers) of t ar get _t hread as
specified by f I avor. The ol d_st at e is an array of integers that is provided by the caller and returned
filled with the specified information. ol d_st at eCnt is input set to the maximum number of integers in
ol d_st at e and returned equal to the actual number of integers in ol d_st at e.

t hread_set _st at e sets the state component (e.g. the machine registers) of t arget _t hread as
specified by flavor. The new state is an array of integers. new st at eCnt is the number of
elements in new state. The entire set of registers is reset. This will do unpredictable things if
t ar get _t hr ead is not suspended.

target _thread may notbethread_sel f for either of these calls.

The definition of the state structures can be found in <machine/thread_status.h>

Returns
KERN_SUCCESS

The state has been set or returned

M G_ARRAY_TOO LARGE

MACH

Returned state is too large for the new_st at e array. new_st at e is filled in
as much as possible and new_st at eCnt is set to the number of elements
that would be returned if there were enough room.

23 August 1990 MACH

50

KERN_| NVALI D_ARGUVENT
target _thread is not a thread or is thread self or flavor is
unrecogized for this machine.

See Also
task _info, thread info

MACH 23 August 1990 MACH

51

5. Virtual memory primitives

5.1. Basic terms

Each MACH task has a large virtual address space within which its threads execute. A virtual address
space is divided into fixed size pages. The size of a virtual page is set at system initialization and may
differ on different machines. A virtual address space may be sparse, that is, there may be ranges of
addresses which are not allocated followed by ranges that are allocated.

A task may allocate virtual memory in its address space; physical memory will be acquired only when
necessary, and seldom-used memory may be paged to backing storage.

A region of an address space is that memory associated with a continuous range of addresses; that is,
a start address and an end address. The MACH kernel will extend regions to include entire virtual memory
pages containing the first and last address in a specified range. Regions consist of pages which have
different protection or inheritance characteristics.

A task may protect the virtual pages of its address space to allow/prevent access to that memory. The
current protection is used to determine the access rights of an executing thread. In addition, a
maximum protection value limits the current protection.

A task may specify that pages of its address space be inherited by child tasks in one of three ways:
shared, copied, or absent. Inheritance may be changed at any time; only at the time of task creation is
inheritance information used. The only way two MACH tasks can share the same physical memory is for
one of the tasks to inherit shared access to memory from a parent. When a child task inherits memory
from a parent, it gets the same protection on that memory that its parent had.

Protection and inheritance is attached to a task’s address space, not the physical memory contained in
that address space. Tasks which share memory may specify different protection or inheritance for their
shared regions.

Physical pages in an address space have paging objects associated with them. These objects identify
the backing storage to be used when a page is to be read in as the result of a reference or written to in
order to free physical memory. A paging object is identified outside of the kernel by an unforgeable
identifier (implemented as a port which is only used for identification and not message transmission), and
inside the kernel by a data transmission port, that will respond to get and put page calls.

In addition to memory explicitly allocated using vm al | ocat e, memory may appear in a task’s
address space as the result of a nsg_r ecei ve operation.

MACH 23 August 1990 MACH

vm_allocate
#i ncl ude <mach. h>

52

kern return_t vmallocate(target task, address, size, anywhere)

vm task_t
vm addr ess_t
vm si ze_t
bool ean_t

Arguments

target _task
addr ess

si ze

anywher e

Description

target task;

addr ess; / in/out */
si ze;

anywher e;

Task whose virtual address space is to be affected.

Starting address. If the anywher e option is false, an attempt is made to
allocate virtual memory starting at this virtual address. If this address is not at
the beginning of a virtual page, it will be rounded down to one. If there is not
enough space at this address, no memory will be allocated. If the anywhere
option is true, the input value of this address will be ignored, and the space
will be allocated wherever it is available. In either case, the address at which
memory was actually allocated will be returned in addr ess.

Number of bytes to allocate (rounded by the system in a machine dependent
way to an integral number of virtual pages).

If true, the kernel should find and allocate any region of the specified size,
and return the address of the resulting region in addr ess. If false, virtual
memory will be allocated starting at addr ess, rounded to a virtual page
boundary if there is sufficient space.

vm al | ocat e allocates a region of virtual memory, placing it in the specified task’s address space.
The physical memory is not actually allocated until the new virtual memory is referenced. By default, the
kernel rounds all addresses down to the nearest page boundary and all memory sizes up to the nearest
page size. The global variable vm page_si ze contains the page size. t ask_sel f _ returns the value
of the current task port which should be used as the t ar get _t ask argument in order to allocate memory
in the caller's address space. For languages other than C, these values can be obtained by the calls
vm statistics andtask_sel f. Initially, the pages of allocated memory will be protected to allow all
forms of access, and will be inherited in child tasks as a copy. Subsequent calls to vm pr ot ect i on and
vm_ i nher it ance may be used to change these properties. The allocated region is always zero-filled.

Returns
KERN_SUCCESS

Memory allocated.

KERN_I NVALI D_ADDRESS

KERN_NO_SPACE
See Also

lllegal address specified.
Not enough space left to satisfy this request

vm deal | ocate, vm.inherit, vmprotect, vmregions, vmstatistics, task_self_

MACH

23 August 1990 MACH

53

vm_deallocate
#i ncl ude <mach. h>

kern_return_t vmdeal | ocate(target task, address, size)

vm task_t target task;
vm addr ess_t addr ess;
vm si ze_t si ze;
Arguments
target _task Task whose virtual memory is to be affected.
addr ess Starting address (will be rounded down to a page boundary).
si ze Number of bytes to deallocate (will be rounded up to give a page boundary).
Description

vm deal | ocat e relinquishes access to a region of a task’s address space, causing further access to
that memory to fail. This address range will be available for reallocation. Note, that because of the
rounding to virtual page boundaries, more than si ze bytes may be deallocated. Use vm page_si ze or
vm st ati sti cs to find out the current virtual page size.

This call may be used to deallocte memory that was passed to a task in a message (via out of line
data). In that case, the rounding should cause no trouble, since the region of memory was allocated as a
set of pages.

The vm deal | ocat e call affects only the task specified by the t ar get _t ask. Other tasks which
may have access to this memory may continue to reference it.

Returns

KERN_SUCCESS Memory deallocated.

KERN_| NVALI D_ADDRESS
lllegal or non-allocated address specified.

See Also
vm al l ocate, vmstatistics, nsg_receive

MACH 23 August 1990 MACH

54

vm_read
#i ncl ude <mach. h>

kern return_t vmread(target task, address, size, data, data_count)

vm task_t target _task
vm addr ess_t addr ess;
vm si ze_t si ze;
poi nter t *dat a; /* out */
i nt *dat a_count; /* out */
Arguments
target _task Task whose memory is to be read.
addr ess The first address to be read (must be on a page boundary).
si ze The number of bytes of data to be read (must be an integral number of
pages)
dat a The array of data copied from the given task.
dat a_count The size of the dat a array in bytes. (will be an integral number of pages).
Description

vm r ead allows one task’s virtual memory to be read by another task. Note that the data array is
returned in a newly allocated region; the task reading the data should vm deal | ocat e this region when
it is done with the data.

Returns

KERN_SUCCESS Memory read.

KERN_| NVALI D_ARGUMENT
Either the address does not start on a page boundary or the size is not an
integral number of pages.

KERN_NO SPACE There is not enough room in the callers virtual memory to allocate space for
the data to be returned.

KERN_PROTECTI ON_FAI LURE
The address region in the target task is protected against reading.

KERN_| NVALI D_ADDRESS
lllegal or non-allocated address specified, or there was not si ze bytes of
data following that address.

See Also
vmread, vmwite, vmcopy, vmdeallocate

MACH 23 August 1990 MACH

55

vm_write
#i ncl ude <mach. h>

kern_ return_t vmwite(target task, address, data, data_count)

vm task_t target task;
vm addr ess_t addr ess;
poi nter _t dat a;
i nt dat a_count;
Arguments
target _task Task whose memory is to be written.
addr ess Starting address in task to be affected (must be a page boundary).
dat a An array of bytes to be written.
dat a_count The size of the dat a array (must be an integral number of pages).
Description

vmwite allows a task’s virtual memory to be written by another task. Use vm page_si ze or
vm st ati stics to find out the virtual page size.

Returns

KERN_SUCCESS Memory written.

KERN_| NVALI D_ARGUVMENT
Either the address does not start on a page boundary or the size is not an
integral number of pages.

KERN_PROTECTI ON_FAI LURE
The address region in the target task is protected against writing.

KERN | NVALI D_ADDRESS
lllegal or non_allocated address specified or there is not data_count of
allocated memory starting at addr ess.

See Also
vm copy, vmprotect, vmread, vmstatistics

MACH 23 August 1990 MACH

56

vm_copy
#i ncl ude <mach. h>

kern_ return_t vmcopy (target _task, source_address, count, dest_address)

vm task_t target task;
vm addr ess_t sour ce_address;
vm si ze_t count;
vm addr ess_t dest _address;
Arguments
target _task Task whose virtual memory is to be affected.
sour ce_addr ess Address int ar get _t ask of the start of the source range (must be a page
boundary).
count Number of bytes to copy (must be an integral number of pages).

dest _address Address in t arget _t ask of the start of the destination range (must be a
page boundary).

Description

vm _copy causes the source memory range to be copied to the destination address; the destination
region may not overlap the source region. The destination address range must already be allocated and
writable; the source range must be readable.

Returns

KERN_SUCCESS Memory copied.

KERN_| NVALI D_ARGUVENT
Either the address does not start on a page boundary or the size is not an
integral number of pages.

KERN_PROTECTI ON_FAI LURE
Either the destination region was not not writable, or the source region was
not readable.

KERN_| NVALI D_ADDRESS
lllegal or non-allocated address specified or insufficient memory allocated at
one of the addresses.

See Also
vm protect, vmwite, vmstatistics

MACH 23 August 1990 MACH

57

vm_region
#i ncl ude <mach. h>
kern_ return_t vmregion(target _task, address, size, protection

max_protection, inheritance, shared,
obj ect _nane, offset)

vm task t target task;
vm address_t *addr ess; /* in/fout */
vm si ze_t *si ze; /* out */
vm prot _t *protection; [* out */
vm prot _t *max_prot ection; /[* out */
vm.i nherit _t *inheritance; /* out */
bool ean_t *shar ed; /* out */
port _t *obj ect _nane; /[* out */
vm of f set _t *of f set; /[* out */
Arguments

target task The task for which an address space description is requested.

addr ess The address at which to start looking for a region.

si ze The size (in bytes) of the located region.

protection The current protection of the region.

max_prot ecti on The maximum allowable protection for this region.

i nheritance The inheritance attribute for this region.

shar ed Is this region shared or not.

obj ect _nane The port identifying the memory object associated with this region. (See

pager _init.)
of f set The offset into the pager object that this region begins at.

Description

vm_ r egi on returns a description of the specified region of the target task’s virtual address space.
vm r egi on begins at addr ess and looks forward thru memory until it comes to an allocated region. (If
address is within a region, then that region is used.) Various bits of information about the region are
returned. If addr ess was not within a region, then addr ess is set to the start of the first region which
follows the incoming value. In this way an entire address space can be scanned.

Returns

KERN_SUCCESS Region located and information returned.
KERN_NO SPACE There is no region at or above addr ess in the specified task.

See Also
vm al |l ocate, vm deall ocate, vmprotect, vm.inherit

MACH 23 August 1990 MACH

58
vm_protect
#i ncl ude <mach. h>

kern_ return_t vmprotect(target _task, address, size, set_naxinmum
new _protection)

vm task_t target task;
vm addr ess_t addr ess;
vm si ze_t si ze;
bool ean_t set _maxi mum
vm prot t new _protection;
Arguments

target _task Task whose virtual memory is to be affected.

addr ess Starting address (will be rounded down to a page boundary).

si ze Size in bytes of the region for which protection is to change (will be rounded

up to give a page boundary).

set _maxi mum If set, make the protection change apply to the maximum protection
associated with this address range; otherwise, the current protection on this
range is changed. If the maximum protection is reduced below the current
protection, both will be changed to reflect the new maximum.

new protection A new protection value for this region; a set of: VM PROT_READ,
VM PROT_WRI TE, VM PROT _EXECUTE.
Description
vm pr ot ect sets the virtual memory access privileges for a range of allocated addresses in a task’s

virtual address space. The protection argument describes a combination of read, write, and execute
accesses that should be permitted.

The enforcement of virtual memory protection is machine-dependent. Some combinations of access
rights may not be supported. In particular, the kernel interface allows any of the following: write
permission may imply read permission; read permission may imply execute permission; or, execute
permission may imply read permission.

All architectures must support the following access combinations: all (read, write, and execute) access;
write-protected (read and execute) access; no access.

For the Vax, RT/PC, and Sun3, all three of the reductions stated above apply. That is:
VM PROT_WRI TE allows read, execute and write access, VM _PROT_READ or VM PROT_EXECUTE allows
read and execute access, but not write access.

Returns

KERN_SUCCESS Memory protected.

KERN_PROTECTI ON_FAI LURE
An attempt was made to increase the current or maximum protection beyond
the existing maximum protection value.

KERN_| NVALI D_ADDRESS
lllegal or non-allocated address specified.

MACH 23 August 1990 MACH

59

vm_inherit
#i ncl ude <mach. h>

kern_return_t vminherit(target _task, address, size, new_inheritance)

vm task_t target task;
vm addr ess_t addr ess;
vm si ze_t si ze;
vm.i nherit _t new_i nheritance;
Arguments

target _task Task whose virtual memory is to be affected.

addr ess Starting address (will be rounded down to a page boundary).

si ze Size in bytes of the region for which inheritance is to change (will be rounded

up to give a page boundary).

new_i nheritance
How this memory is to be inherited in child tasks. Inheritance is specified by
using one of these following three values:

VM _| NHERI T_SHARE
Child tasks will share this memory with this task.

VM_| NHERI T_COPY
Child tasks will receive a copy of this region.

VM_| NHERI T_NONE
This region will be absent from child tasks.
Description
vm i nherit specifies how a region of a task’s address space is to be passed to child tasks at the
time of task creation. Inheritance is an attribute of virtual pages, thus the addresses and size of memory
to be set will be rounded out to refer to whole pages.

Setting vm_ i nherit to VM | NHERI T_SHARE and forking a child task is the only way two Mach tasks
can share physical memory. Remember that all the theads of a given task share all the same memory.

Returns

KERN_SUCCESS Memory protected.

KERN_I NVALI D_ADDRESS
lllegal address specified.

See Also
task _create, vmregions

MACH 23 August 1990 MACH

60

vm_statistics
#i ncl ude <mach. h>

struct vmstatistics {

| ong pagesi ze; /* page size in bytes */
| ong free_count; [* # of pages free */
| ong active_count; /* # of pages active */
| ong i nactive_count; [* # of pages inactive */
| ong Wi re_count; [* # of pages wired down */
| ong zero_fill_count; [* # of zero fill pages */
| ong reactivations; /* # of pages reactivated */
| ong pagei ns; /* # of pageins */
| ong pageouts; [* # of pageouts */
| ong faults; [* # of faults */
| ong cow faults; /* # of copy-on-wites */
| ong | ookups; /* object cache | ookups */
| ong hits; /* object cache hits */

b

typedef struct vmstatistics vm statistics_data_t;

kern_return_t vmstatistics(target_task, vmstats)

task t target task;
vm statistics _data t *vm stats; /* out */
Arguments
target _task Task which is requesting statistics.
vm stats The structure that will receive the statistics.
Description

vm st ati stics returns the statistics about the kernel's use of virtual memory since the kernel was
booted. pagesi ze can also be found as a global variable vm page_si ze which is set at task
initialization and remains constant for the life of the task.

Returns
KERN_SUCCESS

MACH 23 August 1990 MACH

61

vm_machine_attribute
#i ncl ude <mach. h>

kern return_t vmmachine_attribute (task, address, size, attribute, value)

task t t ask;
vm addr ess_t addr ess;
vm si ze_t si ze;
vm machi ne_attri bute_t attribute;
vm nmachi ne_attribute_val _t *val ue;
Arguments
t ask The task whose memory is to be affected
addr ess Starting address of the memory segment.
si ze Size of the memory segment
attribute Attribute type
val ue Pointer to the attribute’s value
Description

vm nmachi ne_at tri but e specifies machine-specific attributes for a VM mapping, such as cachability,
migrability, replicability. This is used on machines that allow the user control over the cache (this is the
case for MIPS architectures) or placement of memory pages as in NUMA architectures (Non-Uniform
Memory Access time) such as the IBM ACE multiprocessor.

Machine-specific attributes can be consider additions to the machine-independent ones such as
protection and inheritance, but they are not guaranteed to be supported by any given machine.
Moreover, implementations of Mach on new architectures might find the need for new attribute types and
or values besides the ones defined in the initial implementation.

The types currently defined are

MATTR_CACHE Controls caching of memory pages

MATTR_M GRATE Controls migrability of memory pages

MATTR_REPLI CATE Controls replication of memory pages

Corresponding values, and meaning of a specific call to vm nmachi ne_attri bute

MATTR_VAL_ON Enables the attribute. Being enabled is the default value for any applicable attribute.

MATTR_VAL_OFF Disables the attribute, making memory non-cached, or non-migratable, or non-
replicatable.

MATTR_VAL_GET Returns the current value of the attribute for the memory segment. If the attribute

does not apply uniformly to the given range the value returned applies to the initial portion of the segment
only.

MATTR_VAL_CACHE_FLUSH Flush the memory pages from the Cache. The si ze value in this case

MACH 23 August 1990 MACH

62

might be meaningful even if not a multiple of the page size, depending on the implementation.
MATTR_VAL | CACHE FLUSH Same as above, applied to the Instruction Cache alone.

MATTR_VAL_DCACHE_FLUSH Same as above, applied to the Data Cache alone.
Returns

KERN_SUCCESS The call succeeded.

KERN_| NVALI D_ARGUVMENT
t ask is not a task, or address and si ze do not define a valid address
range in task, or attribute is not a valid attribute type, or it is not
implemented, or val ue is not a permissible value for attri but e.
Notes

The initial implementation (for MIPS) does not provide for inheritance of machine attributes. This might
change if/when the IBM ACE code will be merged in the mainline.

MACH 23 August 1990 MACH

63

6. Ancillary primitives

MACH 23 August 1990 MACH

64

mach_ports
#i ncl ude <mach. h>

kern return_t mach_ports register(target task,
init_port_set, init_port_array_count)

task t target task;
port _array_t init_port_set; [* array */
i nt init_port_array_count;

kern return_t mach_ports_| ookup(target task,
init_port_set, init_port_array_count)

task _t target _task;
port_array_t *init_port_set; /* out array */
i nt *init_port_array_count; /* out */
Arguments
target _task Task to be affected.

init_port_set An array of system ports to be registered, or returned. Although the array
size is given as variable, the MACH kernel will only accept a limited number of
ports.

init_port_array_count
The number of ports returned ini ni t _port _set.

Description

mach_ports_regi st er registers an array of well-known system ports with the kernel on behalf of a
specific task. Currently the ports to be registered are: the port to the Network Name Server, the port to
the Environment Manager, and a port to the Service server. These port values must be placed in specific
slots in the init_port_set. The slot numbers are given by the global constants defined in
mach_i nit. h: NAME_SERVER SLOT, ENVI RONMENT_SLOT, and SERVI CE_SLOT. These ports may
later be retrieved with mach_port s_I ookup.

When a new task is created (see t ask_cr eat e), the child task will be given access to these ports.
Only port send rights may be registered. Furthermore, the number of ports which may be registered is
fixed and given by the global constant MACH PORT_SLOTS USED. Attempts to register too many ports
will fail.

It is intended that this mechanism be used only for task initialization, and then only by runtime support
modules. A parent task has three choices in passing these system ports to a child task. Most commonly it
can do nothing and its child will inherit access to the same i nit _port_set that the parent has; or a
parent task may register a set of ports it wishes to have passed to all of its children by calling
mach_ports_regi st er using its task port; or it may make necessary modifications to the set of ports it
wishes its child to see, and then register those ports using the child’s task port prior to starting the child’s
thread(s). The nmach_ports_| ookup call which is done by mach_i ni t in the child task will acquire
these initial ports for the child.

Tasks other than the Network Name Server and the Environment Mangager should not need access to
the Service port. The Network Name Server port is the same for all tasks on a given machine. The
Environment port is the only port likely to have different values for different tasks.

MACH 23 August 1990 MACH

65

Since the number of ports which may be registered is limited, ports other than those used by the
runtime system to initialize a task should be passed to children either through an initial message, or
through the Network Name Server for public ports, or the Environment Manager for private ports.

Returns

KERN_SUCCESS Memory allocated.

KERN_| NVALI D_ARGUVMENT
An attempt was made to register more ports than the current kernel
implementation allows.

See Also
mach_init, netnanme, env_ngr, service

MACH 23 August 1990 MACH

66
host_ipc_statistics
#i ncl ude <mach. h>

kern_return_t host ipc_statistics(task, statistics)
task _t target task;

i pc_statistics t *statistics; /* inout */
Arguments
task Task running on the kernel whose statistics are desired.
statistics The returned statistics.
Description

host i pc_statistics returns the statistics about mMAcH IPC, since the kernel was booted.
statistics is a fixed length array provided by the user. See <kern/ipc_statistics. h> for a
description of what is returned.

Returns
KERN SUCCESS The call succeeded.

Notes
Only kernels compiled with MACH | PCSTATS enabled support this call.

The first argument should be a host port of some kind.

The meaning of the statistics varies; not all fields are used.

MACH 23 August 1990 MACH

67

7. External memory management primitives

7.1. Memory Managers

The MACH kernel allows users to provide memory managment (i.e. paging) services outside the kernel.
A server that provides such functions is called a memory manager. There is a default memory
manager that is part of the kernel and is normally used to handle paging to both files and temporary
memory objects. Users may provide additional memory managers to handle special kinds of objects,
such as fault-tolerant objects, objects whose backing store is across a network link, or objects whose
backing store is on devices for which the kernel does not provide drivers.

The protocol defined in this section consists of messages that the kernel will send to memory
managers and the primitives that the kernel provides for the use of memory managers. Use of these
primitives involves increased responsibility. A memory manager is expected to respond in a timely fashion
to all the requests that the kernel makes of it, otherwise threads within the kernel are left hanging and the
client task that is attempting to reference the memory object is also left hanging.

It is also possible for a privileged user to replace the default memory manager. This involves increased
reliability and responsibility as now all the users of the system will be dependent on the new server.

7.1.1. Memory objects: definitions and basics

In MACH, physical memory is used as a cache of the contents of secondary storage objects called
memory objects. The virtual address space of a task is represented as a series of mappings from
contiguous virtual address ranges to such memory objects. For each memory object the kernel keeps
track of those pages that are currently in the physical memory cache and it allows tasks mapped to that
memory to use those physical pages.

When a virtual memory request occurs that cannot be resolved through the use of a previously cached
physical page, the kernel must make a request of the memory object for the required data. As the
physical page cache becomes full, the kernel must replace pages from the cache, writing the contents of
modified pages back to the corresponding memory objects.

When a task uses the vm al | ocat e call, the kernel allocates a memory object that provides zero-
filled memory on reference; this memory object is managed by a default memory manager.

Alternatively, a task may map a specific memory object into its address space by issuing a vm map
call. Included in this call is the memory object, represented by a port, that is to manage the data in the
allocated region. The kernel will use the memory object port to make requests for data, or to request that
data be written back to the object. The memory manager must act as a server for these requests. The
memory manager server interface differs from other servers only in that the kernel does not
synchronously await replies.

A given memory object may be mapped into an arbitrary number of tasks, at any addresses available in
those tasks. When a vm map call is issued, the MACH kernel will recognize the memory object if it has
been mapped before; any physical memory pages from this memory object already cached from previous
uses may be shared by later mappings as well. A single MACH kernel keeps the physical memory cache
consistent across all uses of the same memory object at similar page alignments on that host.

MACH 23 August 1990 MACH

68

Furthermore, a single memory object may be mapped into tasks created on different hosts (and
therefore be cached by different MACH kernels). In this case, the memory manager is responsible for
maintaining any desired consistency among the various hosts on which its data resides.

7.1.2. Initialization and termination

The memory manager must define a protocol for giving out memory object ports. This could take the
form of the memory manager registering a general service port somewhere that clients could find and
exporting an object create or object lookup call that will return a memory object port. This is the port that
is passed to the kernel in the vm _map call.

Upon processing the first vm map call for a given memory object, the MACH kernel will make a
menory_obj ect _i nit call, providing the memory manager with two ports: a control port, and a name
port. The memory manager may use the memory object control port to supply the kernel with data for it
to cache, or to perform other cache management functions. These requests will be covered in the next
section.

The memory object name, a port, will only be used by the kernel in the results from a vm r egi on call
to describe the source of data for a given region. Since this port is not to be used for requests for data,
the memory manager may wish to provide this port to clients to identify memory which it supplies.

The initialization call also includes the system page size for the host on which the mapping took place.
This allows the memory manager to provide data to the kernel in whole pages, and to detect mappings at
inconsistent page alignments.

In order to indicate its readiness to accept requests, the memory manager must respond to the
initialization call by making a nmenory_obj ect _set _attributes call, asserting the readiness
parameter.

Normally, when a memory object is no longer referenced by any virtual address space, the MACH kernel
will deallocate its port rights to that memory object after sending all port rights for the control and name
ports in an menory_obj ect _t erni nat e call. To enhance performance, a memory manager may allow
a MACH kernel to maintain its memory cache for a memory object after all virtual address space
references to it are gone, by asserting the caching parameter to the
menory_obj ect _set_attributes call. However, allowing caching does not prevent the kernel from
terminating an object.

In the event that a memory manager destroys a memory object port that is currently mapped into one
or more virtual address spaces, future page faults on addresses mapped to this object (for which data is
not available in the cache) will result in a memory exception.

7.1.3. Kernel-created memory objects

As noted earlier, memory created using vm al | ocat e results in the creation of a memory object; this
object is created by the kernel, and is passed to the default memory manager, using the
nmenory_obj ect _creat e call. Since the memory object is initially zero-filled, it only contains data that
has been modified.

The nenory_obj ect _cr eat e request will only be made of the default memory manager. The default

MACH 23 August 1990 MACH

69

memory manager must not allow any memory object passed in a menory_obj ect _creat e call to be
used in any other task, as the kernel may make assumptions about such an object that could adversely
affect external consistency.

7.2. Kernel calls supporting memory managers

MACH 23 August 1990 MACH

70

vm_map
#i ncl ude <mach. h>

kern_ return_t vmmap(target task, address, size, nmask, anywhere,
nmenory_obj ect, offset, copy,
cur_protection, max_protection,
i nheritance)

task t target task;

vm of f set _t *addr ess; /* in/fout */

vm si ze_t si ze;

vm of f set _t mask;

bool ean_t anywher e;

menory_obj ect _t nmenory_obj ect;

vm of f set _t of f set;

bool ean_t copy;

vm prot t cur _protection;

vm prot _t max_protection;

vm.inherit t i nheritance;
Description

vm_map maps a region of virtual memory at the specified address, for which data is to be supplied by
the given memory object, starting at the given offset within that object. In addition to the arguments used
invm al | ocat e, the vm_nap call allows the specification of an address alignment parameter, and of the
initial protection and inheritance values. [See the descriptions of vm al | ocat e, vm prot ect, and
vm i nherit.]

If the memory object in question is not currently in use, the MAcH kernel will perform a
nmenory_obj ect _i nit call at this time. If the copy parameter is asserted, the specified region of the
memory object will be copied to this address space; changes made to this object by other tasks will not be
visible in this mapping, and changes made in this mapping will not be visible to others (or returned to the
memory object).

The vm map call returns once the mapping is established. Completion of the call does not require any
action on the part of the memory manager.

Warning: Only memory objects that are provided by bona fide memory managers should be used in
the vm map call. A memory manager must implement the memory object interface described elsewhere
in this manual. If other ports are used, a thread that accesses the mapped virtual memory may become
permanently hung or may receive a memory exception.

Arguments
target task Task to be affected.
addr ess Starting address. If the anywhere option is used, this address is ignored.
The address actually allocated will be returned in addr ess.
si ze Number of bytes to allocate (rounded by the system in a machine dependent
way).
mask Alignment restriction. Bits asserted in this mask must not be asserted in the

address returned.

anywher e If set, the kernel should find and allocate any region of the specified size, and
return the address of the resulting region in addr ess.

MACH 23 August 1990 MACH

71

menory_obj ect Port that represents the memory object: used by user tasks in vm nap; used
by the MACH kernel to make requests for data or other management actions.
If this port is MEMORY_OBJECT_NULL, then zero-filled memory is allocated

instead.
of f set An offset within a memory object, in bytes. This must be page aligned.
copy If set, the range of the memory object should be copied to the target task,

rather than mapped read-write.

Returns

KERN_SUCCESS The object is mapped.

KERN_NO_SPACE No unused region of the task’s virtual address space that meets the address,
size, and alignment criteria could be found.

KERN_I NVALI D_ARGUMENT
An illegal argument was provided.

See Also
menory_obj ect _server, vmallocate

MACH 23 August 1990 MACH

72

memory_object_set_attributes
#i ncl ude <mach. h>

kern_return_t nmenory_object set_attributes(nmenory_control,
obj ect _ready, may_cache_obj ect,
copy_strategy)
menory_obj ect _control _t
menory_control;
bool ean_t obj ect _ready;
bool ean_t may_cache_obj ect;
menory_obj ect _copy_strategy_t
copy_strat egy;

Description

menory_obj ect _set _attri butes controls how the MACH kernel uses the memory object. The
kernel will only make data or unlock requests when the ready attribute is asserted. If the caching attribute
is asserted, the kernel is permitted (and encouraged) to maintain cached data for this memory object
even after no virtual address space contains this data.

There are three possible caching strategies: MEMORY_OBJECT COPY_NONE which specifies that
nothing special should be done when data in the object is copied; MEMORY_OBJECT _COPY_CALL which
specifies that the memory manager should be notified via a menory_obj ect _copy call before any part
of the object is copied; and MEMORY_COBJECT_COPY_DELAY which guarantees that the memory manager
does not externally modify the data so that the kernel can use its normal copy-on-write algorithms.
MEMORY_OBJECT_COPRPY_DELAY is the strategy most commonly used.

Arguments

menory_cont rol The port, provided by the kernel in a menory_obj ect i nit call, to which
cache management requests may be issued.

obj ect _ready When set, the kernel may issue new data and unlock requests on the
associated memory object.

may_cache_obj ect
If set, the kernel may keep data associated with this memory object, even
after virtual memory references to it are gone.

copy_strategy How the kernel should copy regions of the associated memory object.

Returns

KERN_SUCCESS This routine does not receive a reply message (and consequently has no
return value), so only message transmission errors apply.

See Also
nmenory_object_init, menory_object_copy, nenory_object_attributes

MACH 23 August 1990 MACH

73

memory_object_get_attributes
#i ncl ude <mach. h>

kern_return_t nmenory_object get _attributes(nmenory_control,
obj ect _ready, may_cache_obj ect,
copy_strategy)
menory_obj ect _control _t
menory_control;
bool ean_t *obj ect _ready;
bool ean_t *may_cache_obj ect;
menory_obj ect _copy_strategy_t
*copy_strat egy;

Description
menory_obj ect _get _attributes retrieves the current attributes associated with the memory
object.

Arguments

menory_cont rol The port, provided by the kernel in a menory_obj ect i nit call, to which
cache management requests may be issued.

obj ect _ready When set, the kernel may issue new data and unlock requests on the
associated memory object.

may_cache_obj ect
If set, the kernel may keep data associated with this memory object, even
after virtual memory references to it are gone.

copy_strategy How the kernel should copy regions of the associated memory object.

Returns

KERN_SUCCESS This routine does not receive a reply message (and consequently has no
return value), so only message transmission errors apply.

See Also
menory_obj ect _set_attributes, nenory_object_copy

MACH 23 August 1990 MACH

74

memory_object_lock _request
#i ncl ude <mach. h>

kern_return_t nmenory_obj ect | ock_request (nmenory_control,
of fset, size, should_clean
shoul d_flush, lock value, reply to)
menory_obj ect _control _t
menory_control;

vm of f set _t of f set;
vm si ze_t si ze;
bool ean_t shoul d_cl ean;
bool ean_t shoul d_f 1 ush;
vm prot _t | ock_val ue;
port_t reply_to;
Description
menory_obj ect | ock_request allows a memory manager to make cache management requests.
As specified in arguments to the call, the kernel will: clean (i.e., write back using

menory_obj ect _data_wite) any cached data which has been modified since the last time it was
written; flush (i.e., remove any uses of) that data from memory; lock (i.e., prohibit the specified uses of)
the cached data. Locks applied to cached data are not cumulative; new lock values override previous
ones. Thus, data may also be unlocked using this primitive. The lock values must be one or more of the
following values: VM PROT_NONE, VM PROT_READ, VM PROT_WRI TE, VM PROT_EXECUTE and
VM _PROT_ALL as defined in <mach/ vm pr ot . h>.

Only data which is cached at the time of this call is affected. When a running thread requires a
prohibited access to cached data, the MACH kernel will issue a menory_obj ect _dat a_unl ock call
specifying the forms of access required. Once all of the actions requested by this call have been
completed, the MACH kernel will issue a nenory_obj ect | ock_conpl et ed call on the specified reply
port.

Arguments

menory_cont rol The port, provided by the kernel in a menory_obj ect i nit call, to which
cache management requests may be issued.

of f set An offset within a memory object, in bytes. This must be page aligned.

si ze The amount of cached data (starting at of f set) to be handled, must be an
integral multiple of the memory object page size.

shoul d_cl ean If set, modified data should be written back to the memory manager.

shoul d_f 1 ush If set, the specified cached data should be invalidated, and all uses of that
data should be revoked.

| ock_val ue A protection value indicating those forms of access that should not be
permitted to the specified cached data.

reply to A port on which a nenory_obj ect | ock_conpl eted call should be
issued, or PORT_NULL if no acknowledgement is desired.

Returns

KERN_SUCCESS This routine does not receive a reply message (and consequently has no
return value), so only message transmission errors apply.

MACH 23 August 1990 MACH

75

See Also
menory_obj ect _| ock_conpl et ed, nmenory_obj ect _data_unl ock

MACH 23 August 1990 MACH

76

memory_object_data_provided
#i ncl ude <mach. h>

kern_return_t nenory_object data_provi ded(nenory_control,
of fset, data, data_count, |ock val ue)
menory_obj ect _control _t
menory_control;

vm of f set _t of f set;

poi nter _t dat a;

i nt dat a_count;

vm prot _t | ock_val ue;
Description

menory_obj ect _dat a_provi ded supplies the kernel with data for the specified memory object.
Ordinarily, memory managers should only provide data in reponse to nenory_obj ect _dat a_r equest
calls from the kernel. The | ock_val ue specifies what type of access will not be allowed to the data
range. The lock values must be one or more of the set: VM PROT_NONE, VM PROT_READ,
VM PROT_VWRI TE, VM PROT_EXECUTE and VM PROT_ALL as defined in <mach/ vm pr ot . h>.

Arguments

menory_cont rol The port, provided by the kernel in a menory_obj ect i nit call, to which
cache management requests may be issued.

of f set An offset within a memory object, in bytes. This must be page aligned.

dat a Data that is being provided to the kernel. This is a pointer to the data.

dat a_count The amount of data to be provided. Must be an integral number of memory
object pages.

| ock_val ue A protection value indicating those forms of access that should not be

permitted to the specified cached data.

Returns

KERN_SUCCESS This routine does not receive a reply message (and consequently has no
return value), so only message transmission errors apply.

See Also
menory_obj ect _dat a_r equest, menory_obj ect _data_error,
menory_obj ect | ock_request

MACH 23 August 1990 MACH

77

memory_object_data_unavailable
#i ncl ude <mach. h>

kern_return_t nmenory_object data unavail abl e(nmenory_control,
of fset, size);
menory_obj ect _control _t
menory_control;

vm of f set _t of f set;
vm si ze_t si ze;
Description

menory_obj ect _dat a_unavai | abl e indicates that the memory object does not have data for the
given region and that the kernel should provide the data for this range. The memory manager may use
this call in three different situations. 1) The object was created by nenory_obj ect _create and the
kernel has not yet provided data for this range (either via a menory_obj ect _data initialize ora
nmenory_obj ect _dat a_wr i te. In this case the kernel should supply zero-filled pages for the object. 2)
The object was created by an nenory_obj ect _dat a_copy and the kernel should copy this region from
the original memory object. 3) The object is a normal user-created memory object and the kernel should
supply unlocked zero-filled pages for the range.

Arguments

nmenory_cont rol The port, provided by the kernel in a menory_obj ect _i nit call, to which
cache management requests may be issued.

of f set An offset within a memory object, in bytes. This must be page aligned.

si ze The amount of cached data (starting at of f set) to be handled. This must be
an integral multiple of the memory object page size.

Returns

KERN_SUCCESS This routine does not receive a reply message (and consequently has no
return value), so only message transmission errors apply.

See Also
menory_obj ect _create, nmenory_object _data_request, menory_object _data_error

MACH 23 August 1990 MACH

78

memory_object_data_error
#i ncl ude <mach. h>

kern_return_t nmenory_object _data_error(nenory_control,
of fset, size, reason);
menory_obj ect _control _t
menory_control;
vm of f set _t of f set;
vm si ze_t si ze;
kern_return_t reason;

Description

menor y_obj ect _dat a_er r or indicates that the memory manager cannot return the data requested
for the given region, specifying a reason for the error. This is typically used when a hardware error is
encountered.

Arguments

menory_cont rol The port, provided by the kernel in a menory_obj ect _i nit call, to which
cache management requests may be issued.

of f set An offset within a memory object, in bytes. This must be page aligned.
si ze The amount of cached data (starting at of f set) to be handled. This must
be an integral multiple of the memory object page size.
reason Could be a Unix error code for a hardware error.
Returns

KERN_SUCCESS This routine does not receive a reply message (and consequently has no
return value), so only message transmission errors apply.

See Also
menory_obj ect _data_request, nenory_object _data_ provided

Notes
The error code is currently ignored.

MACH 23 August 1990 MACH

79

memory_object_destroy
#i ncl ude <mach. h>

kern_return_t nenory_object destroy(nenory _control, reason);
menory_obj ect _control _t
menory_control ;
kern_return_t reason;

Description

menory_obj ect _destroy tells the kernel to shut down the memory object. As a result of this call
the kernel will no longer support paging activity or any memory_object calls on this object, and all rights to
the memory object port, the memory control port and the memory name port will be returned to the
memory manager in a menory_obj ect _t er m nat e call. If the memory manager is concerned that any
modified cached data be returned to it before the object is terminated, it should call
menory_obj ect | ock_request with shoul d_f I ush set and a lock value of VM PROT_WRI TE before
making this call.

Arguments

menory_cont rol The port, provided by the kernel in a menory_obj ect _i nit call, to which
cache management requests may be issued.

reason An error code indicating when the object must be destroyed.
Returns

KERN_SUCCESS This routine does not receive a reply message (and consequently has no
return value), so only message transmission errors apply.

See Also
menory_obj ect _term nate, nenory_object | ock request

Notes
The error code is currently ingnored.

MACH 23 August 1990 MACH

80

vm_set_default_memory_manager
#i ncl ude <mach. h>

routine vm set default_nenory_manager (host, def aul t _manager)

task t host ;
nmenory_obj ect t default_nanager; /[* in/fout */
Description

vm set _default _nenory_nanager sets the kernel's default memory manager. It sets the port to
which newly-created temporary memory objects are delivered by menory_obj ect _cr eat e to the host .
The old memory manager port is returned. If def aul t _nanager is PORT_NULL then this routine just
returns the current default manager port without changing it.

Arguments

host A task port to the kernel whose default memory manager is to be changed.

def aul t _rmanager
Input as the port that the new memory manager is listening on for
nmenory_obj ect _create calls. Returned as the old default memory
manager’s port.

Returns

KERN_SUCCESS The new memory manager is installed.

KERN_| NVALI D_ARGUVMENT
This task does not have the privileges required for this call.

See Also
vm al | ocate, nenory_object_create, nmenory_object _data_initialize

Notes
There is no way for the user task to acquire the appropriate privilege to make this call.

<<

MACH 23 August 1990 MACH

81

7.3. Memory Manager calls

This section describes calls made by the MACH kernelon a memory object that has previously been
mapped by some task (see vm map). A task that manages a memory object (called a memory
manager) must act as a server for this interface.

In order to isolate the memory manager from the specifics of message formatting, the remote
procedure call generator, MIG, produces a procedure, menor y_obj ect _server, to handle a received
messag This function does all necessary argument handling, and calls one of the interface functions
described below.

The procedures described in this section are the calls that the kernel may make to a memory manager
either as a result of a user action on a memory object or as part of the kernel's physical memory
management. To be useful a memory manager must define a least a couple more protocols. It must make
a service port available to potential clients and it must provide a way for clients to get a memory object
port to hand to the vm map call. It may also wish to provide calls for clients to get or pass information
about a specific memory object. The memory object name port can be used for this purpose.

The kernel includes a default memory manager which handles those memory objects that it needs to
create or are created by a user with the call vm al | ocat e. The user may substitute a new default
memory manager if he wishes with the privileged call vm set _defaul t _nmenory_manager. The final
two calls in the section are only made to the default memory manager. Other memory managers need not
provide these calls.

These calls are the result of an asynchronous message sent by the kernel, i.e., the kernel does not
wait for a reply to the message. Thus the error returned from these calls are ignored; however, most
require some action on the part of the memory manager. These response actions need not necessarily
be done in the order requested, but should be done as soon as practical.

The calls that are made by the kernel to all memory managers are:
e memory_object_init
* memory_object_data_request
e memory_object_data_write
* memory_object_data_unlock
* memory_object_lock_completed
* memory_object_copy

* memory_object_terminate

The following two calls must also be provided by the default memory manager.

* memory_object_create

* memory_object_data_initialize

MACH 23 August 1990 MACH

82

memory_object_server
#i ncl ude <mach. h>

bool ean_t nenory_obj ect _server(in_nsg, out_mnsQ)

nsg_header _t *in_msg;
nsg_header _t *out _mnsg;
Description

A memory manager is a server task that responds to specific messages from the kernel in order to
handle memory management functions for the kernel.

In order to isolate the memory manager from the specifics of message formatting, the remote
procedure call generator produces a procedure, menory_obj ect server, to handle a received
message. This function does all necessary argument handling, and actually calls one of the following
functions: menory_object _init, menory_obj ect _data wite,
nmenory_obj ect _data_request, nmenory_obj ect dat a_unl ock,
nmenory_obj ect _| ock_conpl eted, nmenory_object_copy, menory_object_terninate. A
default memory manager may get two additional requests from the kernel: menory_obj ect _create
and nenory_obj ect _data_initialize.

The return value from the menory_obj ect _server function indicates that the message was
appropriate to the memory management interface (returning TRUE), or that it could not handle this
message (returning FALSE).

Arguments
i n_nsg The message that has been received from the kernel.
out _nsg A reply message. Not used for this server
Returns
TRUE From nenory_obj ect _server, indicates that the message in question
was applicable to this interface, and that the appropriate routine was called to
interpret the message.
FALSE From nenory_obj ect _server, indicates that the message did not apply to
this interface, and that no other action was taken.
See Also

menory_object _init, menory_object data request, nenory_obj ect _dat a_unl ock,
menory_obj ect _data_wite, menory_obj ect_copy, nenory_obj ect _term nate,
nmenory_obj ect | ock_conpl et ed, menory_object _data_initialize,
menory_obj ect _create

MACH 23 August 1990 MACH

83

memory_object_init
#i ncl ude <mach. h>

kern_return_t nmenory_object _init(nmenory_object, nmenory_control,
nmenory_obj ect _name, nenory_obj ect page_si ze)
menory_object _t menory_object;
menory_obj ect _control _t
menory_control;
menory_obj ect _name_t
menory_obj ect _nane;
vm si ze_t menory_obj ect _page_si ze;

Description

menory_obj ect i nit serves as a notification that a MACH kernel has been asked to map the given
memory object into a task’s virtual address space. Additionally, it provides a port on which the memory
manager may issue cache management requests, and a port which the kernel will use to name this data
region. In the event that different MACH kernels are asked to map the same memory object, each will
perform a menory_obj ect _i nit call with new request and name ports. The virtual page size that is
used by the calling kernel is included for planning purposes.

When the memory manager is prepared to accept requests for data for this object, it should call
menory_obj ect _set _attri bute with the attribute r eady set. Othewise the kernel will not process
requests on this object.

Arguments

menory_obj ect The port that represents the memory object data, as supplied to the kernel in
avm nap call.

menory_control The request port to which a response is requested. [In the event that a
memory object has been supplied to more than one MACH kernel, this
argument identifies the kernel that has made the request.]

menory_obj ect _name
A port used by the kernel to refer to the memory object data in reponse to
vm r egi on calls.

menory_obj ect _page_si ze
The page size to be used by this kernel. All data sizes in calls involving this
kernel must be an integral multiple of the page size. [Note that different
kernels, indicated by different menory_cont r ol s may have different page
sizes.]

Returns

KERN_SUCCESS Since this routine is called by the kernel, which does not wait for a reply
message, this value is ignored.

See Also
menory_obj ect _set_attributes

MACH 23 August 1990 MACH

84

memory_object_data request

#i ncl ude <mach. h>

kern_return_t nmenory_

obj ect _data_request (nenory_obj ect, nenory_control,
of fset, length, desired _access)

nmenory_object _t menory_object;
menory_obj ect _control _t

vm of f set _t
vm si ze_t
vm prot _t

Description

nmenory_contr ol
of f set;

| engt h;
desired_access;

menory_obj ect _dat a_request is a request for data from the specified memory object, for at least
the access specified. The memory manager is expected to return at least the specified data, with as
much access as it can allow, using menory_obj ect _data_provi ded. If the memory manager is
unable to provide the data (for example, because of a hardware error), it may use the
menory_obj ect _data_error call. nenory_obj ect_data_unavai |l abl e call may be used to tell
the kernel to supply zero-filled memory for this region.

Arguments

menory_obj ect

menory_contr ol

of f set
I ength

desired_access

Returns
KERN_SUCCESS

See Also

menory_obj ect _data_

The port that represents the memory object data, as supplied to the kernel in
avm map call.

The request port to which a response is requested. [In the event that a
memory object has been supplied to more than one MACH kernel, this
argument identifies the kernel that has made the request.]

The offset within a memaory object to which this call refers. This will be page
aligned.

The number of bytes of data, starting at of f set, to which this call refers.
This will be an integral number of memory object pages.

A protection value describing the memory access modes which must be
permitted on the specified cached data. One or more of: VM PROT_READ,
VM_PROT_WRI TE or VM_PROT_EXECUTE.

Since this routine is called by the kernel, which does not wait for a reply
message, this value is ignored.

provi ded, menory_obj ect _data_error,

menory_obj ect _data_unavail abl e

MACH

23 August 1990 MACH

85

memory_object_data_write

#i ncl ude <mach. h>

kern_return_t nmenory_object _data wite(nmenory_object, nmenory control,

of fset, data, data_count)

nmenory_object _t menory_object;
menory_obj ect _control _t

vm of f set _t
poi nter _t

unsi gned i nt

Description

menory_control;
of f set;

dat a;

dat a_count;

menory_obj ect _data_wite provides the memory manager with data that has been modified while
cached in physical memory. Once the memory manager no longer needs this data (e.g., it has been
written to another storage medium), it should be deallocated using vm deal | ocat e.

Arguments

menory_obj ect

menory_contr ol

of f set

dat a
dat a_count

Returns
KERN_SUCCESS

See Also
vm deal | ocat e

MACH

The port that represents the memory object data, as supplied to the kernel in
avm nap call.

The request port to which a response is requested. [In the event that a
memory object has been supplied to more than one MACH kernel, this
argument identifies the kernel that has made the request.]

The offset within a memory object to which this call refers. This will be page
aligned.

Data which has been modified while cached in physical memory.

The amount of data to be written, in bytes. This will be an integral number of
memory object pages.

Since this routine is called by the kernel, which does not wait for a reply
message, this value is ignored.

23 August 1990 MACH

86

memory_object_data_unlock

#i ncl ude <mach. h>

kern_return_t nmenory_

obj ect _data_unl ock(menory_obj ect, nenory_control,
of fset, length, desired _access)

nmenory_object _t menory_object;
menory_obj ect _control _t

vm of f set _t
vm si ze_t
vm prot _t

Description

nmenory_contr ol
of f set;

| engt h;
desired_access;

nmenor y_obj ect _dat a_unl ock is a request that the memory manager permit at least the desired
access to the specified data cached by the kernel. A call to nenory_obj ect | ock_request is

expected in response.
Arguments

menory_obj ect

menory_contr ol

of f set
| ength

desired_access

Returns
KERN_SUCCESS

See Also

menory_obj ect | ock_

MACH

The port that represents the memory object data, as supplied to the kernel in
avm nmap call.

The request port to which a response is requested. [In the event that a
memory object has been supplied to more than one MACH kernel, this
argument identifies the kernel that has made the request.]

The offset within a memory object to which this call refers. This will be page
aligned.

The number of bytes of data, starting at of f set, to which this call refers.
This will be an integral number of memory object pages.

A protection value describing the memory access modes which must be
permitted on the specified cached data. One or more of: VM PROT_READ,
VM PROT_WRI TE or VM _PROT_EXECUTE.

Since this routine is called by the kernel, which does not wait for a reply
message, this value is ignored.

request, menory_obj ect | ock_conpl et ed

23 August 1990 MACH

87

memory_object_copy
#i ncl ude <mach. h>

kern_return_t nenory_object copy(old_menory object, old nenory control,
of fset, length, new nenory_object)

nmenory_obj ect _t ol d_nenory_obj ect;

menory_obj ect _control _t ol d _nemory _control;

vm of f set _t of f set;

vm si ze_t | engt h;

menory_obj ect _t new_menory_obj ect;
Description

menory_obj ect _copy indicates that a copy has been made of the specified range of the given
original memory object. This call includes only the new memory object itself; a menory_obj ect _ini t
call will be made on the new memory object after the currently cached pages of the original object are
prepared. After the memory manager receives the init call, it should reply with the
menory_obj ect _set _attributes call to assert the "ready" attribute. The kernel will use the new
memory object, contol and name ports to refer to the new copy.

This call is made when the original memory object had the caching parameter set to
MEMORY_OBJECT_COPY_CALL and a user of the object has asked the kernel to copy it.

Cached pages from the original memory object at the time of the copy operation are handled as
follows: Readable pages may be silently copied to the new memory object (with all access permissions).
Pages not copied are locked to prevent write access.

The new memory object is temporary, meaning that the memory manager should not change its
contents or allow the memory object to be mapped in another client. The memory manager may use the
nmenory_obj ect _dat a_unavai | abl e call to indicate that the appropriate pages of the original memory
object may be used to fulfill the data request.

Arguments

ol d_nenory_obj ect
The port that represents the old memory object date.

ol d_nenory_cont ol
The kernel control port for the old object.

of f set The offset within a memory object to which this call refers. This will be page
aligned.
| ength The number of bytes of data, starting at of f set, to which this call refers.

This will be an integral number of memory object pages.

new _nenory_obj ect
A new memory object created by the kernel; see synopsis for further
description. Note that all port rights (including receive rights) are included for
the new memory object.

MACH 23 August 1990 MACH

88

Returns

KERN_SUCCESS Since this routine is called by the kernel, which does not wait for a reply
message, this value is ignored.

See Also
menory_object _init, menory_obj ect _set_attributes,
menory_obj ect _dat a_unavai |l abl e

MACH 23 August 1990 MACH

89

memory_object_terminate
#i ncl ude <mach. h>

kern_return_t nmenory_object term nate(nmenory_object, nmenory_control,
menory_obj ect _nane)
nmenory_object _t menory_object;
menory_obj ect _control _t
menory_control;
menory_obj ect _name_t
menory_obj ect _nane;

Description

menory_obj ect _term nat e indicates that the MACH kernel has completed its use of the given
memory object. All rights to the memory object control and name ports are included, so that the memory
manager can destroy them (using port _deal | ocat e) after doing appropriate bookkeeping. The kernel
will terminate a memory object only after all address space mappings of that memory object have been
deallocated, or upon explicit request by the memory manager.

Arguments

menory_obj ect The port that represents the memory object data, as supplied to the kernel in
avm nmap call.

menory_control The request port to which a response is requested. [In the event that a
memory object has been supplied to more than one MACH kernel, this
argument identifies the kernel that has made the request.]

menory_obj ect _name
A port used by the kernel to refer to the memory object data in reponse to
vm r egi on calls.

Returns

KERN_SUCCESS Since this routine is called by the kernel, which does not wait for a reply
message, this value is ignored.

See Also
menory_obj ect _destroy, port_deal |l ocate

MACH 23 August 1990 MACH

90

memory_object_create
#i ncl ude <mach. h>

kern_return_t nenory_object create(ol d _nenory_object, new nenory_obj ect,
new obj ect _size, new control,
new_name, new _page_si ze)
nmenory_object _t ol d _nenory_object;
menory_obj ect _t
new_menory_obj ect;
vm si ze_t new_obj ect _si ze;
menory_obj ect _control _t
new _control;
menory_obj ect _name_t
new_narne;
vm si ze_t new_page_si ze;

Description

menory_obj ect _creat e is a request that the given memory manager accept responsibility for the
given memory object created by the kernel. This call will only be made to the system default memory
manager. The memory object in question initially consists of zero-filled memory; only memory pages that
are actually written will ever be provided to the memory manager. When processing
menory_obj ect _dat a_r equest calls, the default memory manager must use
menory_obj ect _dat a_unavai | abl e for any pages that have not previously been written.

No reply is expected after this call. Since this call is directed to the default memory manager, the kernel
assumes that it will be ready to handle data requests to this object and does not need the confirmation of
amenory_object_set _attributes call

Arguments

ol d_nenory_obj ect
A memory object provided by the default memory manager on which the
kernel can make nenory_obj ect _cr eat e calls.

new _nenory_obj ect
A new memory object created by the kernel; see synopsis for further
description. Note that all port rights (including receive rights) are included for
the new memory object.

new_obj ect _si ze
Maximum size of the new object.

new_cont r ol A port, created by the kernel, on which a memory manager may issue cache
management requests for the new object.

new_namne A port used by the kernel to refer to the new memory object data in response
tovm regi on calls.

new_page_si ze The page size to be used by this kernel. All data sizes in calls involving this
kernel must be an integral multiple of the page size. [Note that different
kernels, indicated by different menory_cont rol s may have different page
sizes.]

MACH 23 August 1990 MACH

91

Returns

KERN_SUCCESS Since this routine is called by the kernel, which does not wait for a reply
message, this value is ignored.

See Also
menory_obj ect _data_initialize

MACH 23 August 1990 MACH

92

memory_object_data initialize
#i ncl ude <mach. h>

kern return_t nmenory_object data initialize(nenory_object, menory_control,
of fset, data, data_count)
nmenory_object _t menory_object;
menory_obj ect _control _t
menory_control;

vm of f set _t of f set;

poi nter _t dat a;

unsi gned i nt dat a_count;
Description

menory_obj ect _data_initialize provides the memory manager with initial data for a kernel-
created memory object. If the memory manager already has been supplied data (by a previous
menory_object _data_initialize or nenory_obj ect _data write), then this data should be
ignored. Otherwise, this call behaves exactly as does nenory_obj ect _data_w i te. This call will only
be made on memory objects created by the kernel via menory_obj ect _cr eat e and thus will only be
made to default memory managers. This call will not be made on objects created via
menory_obj ect _copy.

Arguments

menory_obj ect The port that represents the memory object data, as supplied by the kernel in
amenory_obj ect _create call.

menory_control The request port to which a response is requested. [In the event that a
memory object has been supplied to more than one MACH kernel, this
argument identifies the kernel that has made the request.]

of f set The offset within a memory object to which this call refers. This will be page
aligned.

dat a Data which has been modified while cached in physical memory.

dat a_count The amount of data to be written, in bytes. This will be an integral number of

memory object pages.
Returns

KERN_SUCCESS Since this routine is called by the kernel, which does not wait for a reply
message, this value is ignored.

See Also
menory_obj ect _data_wite, nenory_object_create

MACH 23 August 1990 MACH

I. Summary of Kernel Calls

The following is a summary of calls to the MACH kernel.

93

described appears within square brackets.

[7] msg_return_t nsg_send(header, option, timeout)

nmsg_header _t
nmsg_option_t
msg_ti meout _t

*header ;
option;
ti meout ;

[9] nsg _return_t nsg_receive(header, option, tineout)

nsg_header _t
nsg_option_t
nsg_ti meout t

[11] nmsg_return_t msg_rpc(header, option

nsg_header _t
nsg_option_t
neg_si ze_t

nmsg_ti meout _t
msg_ti meout _t

header ; / in/lout */
option;
ti meout ;

rcv_size
send_timeout, rcv_timeout)
header; [in/fout */
option;

rcv_size

send_ti nmeout ;

rcv_tinmeout;

[13] kern_return_t port_names(task,

task _t task;

port_nane_array_t *portnanes;
*por t namesCnt ;
port _type_array_t *port_types;
*port _typesCnt;

unsi gned int

unsi gned int

[14] kern_return_t port_type(task,

task_t task;

port nanes,
port _types,

port nanmesCnt ,
port typesCnt)

/* out array */
/* out */
/* out array */
/* out */

port_nane, port_type)

port_nane_t port_nane;
port type_t *port_type; /[* out */

[15] kern_return_t port_rename(task, old_nane,

task t task;

new_nane)

port_nane_t ol d_nane;
port _nane_t new_narne;

[16] kern_return_t port_allocate(task,

task t task;

MACH

port nane)

23 August 1990

The page on which the operation is fully

94

port _nane_t *port_nane; /* out */

[17] kern_return_t port_deall ocate(task, port_nane)
task t task;
port_nane_t port_nane;

[18] kern_return_t port_status(task, port_name, enabl ed,
num nmsgs, backl og, owner, receiver)
task t task;
port_nane_t port_nane;

port _set nanme_t *enabl ed; /* out */
i nt *num nsgs; /* out */
i nt *backl og; /[* out */
bool ean_t *owner; /[* out */
bool ean_t *receiver; /* out */

[19] kern_return_t port_set backl og(task, port_nanme, backl og)
task_t task;
port_nane_t port_nane;
i nt backl og;

[20] kern_return_t port_set backup(task, primary, backup, previous)
task t task;
port _nane_t prinary;
port t backup;
port _t *previous; /* out */

[21] kern_return_t port_set _allocate(task, set_namne)
task t task;
port_set name_t *set_ nane; /* out */

[22] kern_return_t port_set_deal |l ocate(task, set_nane)
task_t task;
port_set_name_t set_nane;

[23] kern_return_t port_set add(task, set_nane, port_name)
task t task;
port_set_name_t set_nane;
port_nane_t port_nane;

MACH 23 August 1990 MACH

[24]

[25]

[26]

[26]

[27]

[27]

[30]

[31]

MACH

95

kern_return_t port_set_renove(task, port_namne)

task t task;
port _nane_t port_nane;

kern return_t port_set status(task, set_name, nenbers, nenbersCnt)

task t task;

port_set_name_t set_nane;

port _nane_array_t *nenbers; /* out array */
unsi gned int *menbersCnt; /* out */

kern_return_t port _insert_send(task, my_port, his_nane)

task_t task;

port_t ny_port;
port_nane_t his_nane;

kern_return_t port_insert_receive(task, my_port, his_name)

task t task;

port _t my_port;
port_nane_t his_nane;

kern_return_t port_extract_send(task, his_nane, his_port)

task t task;
port_nane_t his_nang;
port t *his_port; /* out */

kern return_t port_extract _receive(task, his_nane, his_port)

task t task;
port_nane_t his_nane;
port t *his_port; /[* out */

kern_return_t task_create(parent_task, inherit_nenory,

chi |l d_t ask)
task_t par ent _task
bool ean_t i nherit_menory;
task_t *chi |l d_t ask; /* out */

kern return_t task_term nate(target task)

task t target task;

23 August 1990 MACH

[32]

[33]

[34]

[34]

[34]

[34]

[36]

[38]

[39]

MACH

96

kern_return_t task_suspend(target_task)
task_t target _t ask;

kern return_t task_resune(target task)
task _t target task;

kern return_t task _get special _port(task, which_port, special _port)

task t t ask;
i nt whi ch_port;
port t *special _port; [/* out */

kern_return_t task_set _special _port(task, which_port, special _port)

task t t ask;
i nt whi ch_port;
port_t speci al _port;

task_t task_self()

port t task_notify()

kern return_t task info(target task, flavor, task info, task infoCnt)

task _t target _task;

i nt flavor;

task _info_t task_info; /* in and out */
unsi gned i nt *task_infoCnt; /* in and out */

kern_return_t task_threads(target_task, thread_list, thread_count)

task_t t arget _t ask;
thread_array t *thread_list; /* out, ptr to array */
i nt *thread _count; /* out */

kern_return_t thread create(parent_task, child_thread)
task t par ent _task;
t hread_t *child_ thread; /* out */

23 August 1990 MACH

[40]

[41]

[42]

[43]

[45]

[45]

[45]

[45]

[47]

[49]

MACH

97

kern_return_t thread_term nate(target_thread)
t hread_t target _t hread;

kern_return_t thread_suspend(target thread);
t hread_t target thread;

kern_ return_t thread_resunme(target thread)
t hread_t target thread;

kern_return_t thread_abort(target _thread)
t hread_t target _thread,;

kern_return_t thread_get_special _port(thread, which_port, special _port)

thread_t t hr ead;
i nt whi ch_port;
port _t *speci al _port;

kern return_t thread_set special port(thread, which _port, special _port)

t hread_t t hr ead;
i nt whi ch_port;
port t speci al _port;

thread_t thread_self()

port _t thread_reply()

kern_return_t thread_info(target _thread, flavor, thread_info,
t hread_i nf oCnt)

t hread_t target _t hread,;

i nt flavor;

thread_info_t t hread_i nf o; /* in and out */
unsi gned int *thread infoCnt; /* in and out */

kern return_t thread get state(target thread, flavor, old_state,
ol d_stateCnt)
t hread_t target _thread;

23 August 1990 MACH

98

i nt flavor;
thread _state data t ol d_state; /* in and out */
unsi gned int *old_stateCnt; /* in and out */

[49] kern_return_t thread set state(target thread, flavor, new state,
new st at eCnt)

t hread_t target _thread;
i nt flavor;
thread_state data_t new st at e;
unsi gned int new st at eCnt;

[52] kern_return_t vmallocate(target_task, address, size, anywhere)

vm task_t target _task;

vm addr ess_t *addr ess; [* in/fout */
vm si ze_t si ze;

bool ean_t anywher e;

[53] kern_return_t vmdeall ocate(target_task, address, size)

vm task t target _t ask;
vm addr ess_t addr ess;
vm si ze_t si ze;

[54] kern_return_t vmread(target task, address, size, data, data_count)

vm task_t target _task

vm addr ess_t addr ess;

vm si ze_t si ze;

poi nter _t *dat a; /* out */
i nt *dat a_count; /* out */

[55] kern_return_t vmwite(target task, address, data, data_count)

vm task_t t arget _t ask;
vm addr ess_t addr ess;

poi nter _t dat a;

i nt data_count;

[56] kern_return_t vmcopy (target_task, source_address, count, dest_address)

vm task_t target task;
vm addr ess_t sour ce_address;
vm si ze t count ;

vm addr ess_t dest _address;

[57] kern_return_t vmregion(target task, address, size, protection

MACH 23 August 1990 MACH

[58]

[59]

[60]

[61]

[64]

[64]

MACH

vm task t

vm addr ess_t
vm si ze_t

vm prot _t

vm prot _t
vm.inherit _t
bool ean_t
port _t

vm of f set _t

99

max_protection, inheritance, shared,

obj ect _nane, offset)
t arget _t ask;
*addr ess;
*si ze;
*protection;
*nmax_protection;
*inheritance;
*shar ed;
*obj ect _nane;
*of f set;

¥ % 3k ok X X X F

A e e

i n/ out

out
out
out
out
out
out
out

*/
*/
*/
*/
*/
*/
*/

kern return_t vmprotect(target task, address, size, set_naxinmum

vm task_t
vm addr ess_t
vm si ze_t
bool ean_t
vm prot _t

new _protection)
target _task;
addr ess;
si ze;
set _maxi mum
new _protection;

kern_return_t vm.inherit(target_task, address, size, new_inheritance)

vm task t
vm addr ess_t
vm si ze_t
vm.inherit _t

target _t ask;
addr ess;

si ze;

new_i nheritance;

kern_return_t vm statistics(target_task, vmstats)

task t

target task;

vm statistics _data_t *vm st ats; /* out */

kern_return_t vmmachine_attribute (task, address, size, attribute,

task_t t ask;

vm addr ess_t addr ess;
vm si ze_t si ze

vm nmachi ne_attribute_t attribute;
vm nmachi ne_attribute_val _t *val ue;

kern_return_t mach_ports_register(target_task,
init_port_set, init_port_array_count)

task_t
port _array_t
i nt

target task;
init_port_set; /[* array */
init_port_array_count;

kern_ return_t mach_ports_| ookup(target task,
init_port_set, init_port_array_count)

23 August 1990

val u

MACH

[66]

[70]

[72]

[73]

[74]

MACH

task_t
port _array_t
i nt

100

t arget _t ask;

*init_port_set;
*init_port_array_count;

/* out array */
/* out */

kern_return_t host ipc_statistics(task, statistics)
task _t target task;
statistics; / inout */

i pc_statistics_t

kern_return_t vm map(target task, address, size, nmask, anywhere,

task _t

vm of f set _t
vm si ze_t

vm of f set _t
bool ean_t
menory_obj ect _t
vm of fset _t
bool ean_t

vm prot _t

vm prot _t
vm.inherit _t

menory_obj ect, offset, copy,
cur_protection, max_protection
i nheritance)

target _task;
addr ess; / in/out */

si ze;
mask;

anywher e;
menor y_obj ect;

of f set;
copy;

cur_protection;
max_protection;
i nheritance;

kern_return_t nmenory_object _set _attributes(menory_control

menory_obj ect _control _t

bool ean_t
bool ean_t

obj ect _ready, may_cache_obj ect,
copy_strategy)

menory_contr ol
obj ect _ready;
may_cache_obj ect;
menory_obj ect _copy_strategy_t
copy_strat egy;

kern_return_t menory_object _get _attributes(menory_control

menory_obj ect _control _t

obj ect _ready, may_cache_obj ect,
copy_strategy)

menory_contr ol
bool ean_t *0obj ect _ready;

bool ean_t *may_cache_obj ect;

menory_obj ect _copy_strategy_t
*copy_strategy;

kern_return_t nmenory_obj ect | ock_request (nmenory_control

of f set,

shoul d_flush, |ock _value, reply_to)

23 August 1990

si ze,

shoul d_cl ean

MACH

101

menory_obj ect _control _t
menory_contr ol

vm of f set _t of f set;

vm si ze_t si ze;

bool ean_t shoul d_cl ean
bool ean_t shoul d_f | ush;
vm prot _t | ock_val ue;
port _t reply_ to;

[76] kern_return_t nenory_object data_ provi ded(nmenory_control
of fset, data, data_count, |ock val ue)
menory_obj ect _control _t
menory_control

vm of f set _t of f set;

poi nter _t dat a;

i nt dat a_count;
vm prot _t | ock_val ue;

[77] kern_return_t nenory_object_data_unavail abl e(menory_control
of fset, size);
menory_obj ect _control _t
menory_contr ol
vm of f set _t of f set;
vm si ze t si ze;

[78] kern_return_t nenory_object _data error(nmenory_control
of fset, size, reason);
menory_obj ect _control _t
menory_contr ol
vm of f set _t of f set;
vm si ze_t si ze;
kern_return_t reason

[79] kern_return_t nenory_object_destroy(menory_control, reason);
menory_obj ect _control _t
menory_contr ol
kern_return_t reason;

[80] routine vmset default _nenory nanager (host, def aul t _nanager)
task t host ;
nmenory_obj ect t default_nanager; /* in/fout */

MACH 23 August 1990 MACH

102

ll. Summary of External Memory Management Calls

The following is a summary of calls that the MACH kernel makes on an external memory management
server. The page on which the operation is fully described appears within square brackets.

[82] boolean_t menory_object_server(in_nmsg, out_nsg)
nmsg_header _t *in_mnsg;
nmsg_header _t *out _msg;

[83] kern_return_t nenory_object _init(nenory_object, nmenory_control
menory_obj ect _nanme, nenory_obj ect page_si ze)
nmenory_object _t menory_object;
menory_obj ect _control _t
menory_contr ol
menory_obj ect _name_t
menory_obj ect _nane;
vm si ze_t nmenory_obj ect page_si ze;

[84] kern_return_t nenory_object_data_request(nenory_object, menory_control
of fset, |ength, desired_access)
menory_obj ect _t nmenory_obj ect;
menory_obj ect _control _t
menory_contr ol

vm of f set _t of f set;
vm si ze_t | engt h;
vm prot _t desi red_access;

[85] kern_return_t nmenory_object _data wite(nmenory_object, nmenory_control
of fset, data, data_count)
nmenory_object _t menory_object;
menory_obj ect _control _t
menory_contr ol

vm of f set _t of fset;
poi nter _t dat a;
unsi gned i nt dat a_count;

[86] kern_return_t nenory_object_data_unl ock(menory_object, menory_control
of fset, |ength, desired_access)
menory_obj ect _t nmenory_obj ect;
menory_obj ect _control _t
menory_contr ol

vm of fset _t of f set;
vm si ze_t | engt h;
vm prot _t desi red_access;

[87] kern_return_t nenory_object _copy(old nmenory object, old nenory _control
of fset, length, new nenory_object)

MACH 23 August 1990 MACH

103

menory_obj ect _t ol d_nenory_obj ect;
menory_obj ect _control _t ol d_nenory_control
vm of f set _t of f set;
vm si ze_t | engt h;
menory_obj ect _t new_menory_obj ect;

[89] kern_return_t nenory_object _term nate(nenory_object, nmenory_control
nmenory_obj ect _nane)
nmenory_object _t menory_object;
menory_obj ect _control _t
menory_contr ol
nmenory_obj ect _name_t
menory_obj ect _nane;

[90] kern_return_t nenory_object_create(ol d_nmenory_obj ect, new _nenory_obj ect,
new _obj ect _size, new control
new_name, new_page_si ze)

menory_obj ect _t ol d_nenory_obj ect;
menory_obj ect _t
new_menory_obj ect ;
vm si ze_t new_obj ect _si ze;
menory_obj ect _control _t
new_contr ol
menory_obj ect _nane_t
new_nare;
vm si ze t new_page_si ze;

[92] kern_return_t nenory _object _data initialize(nmenory_object, menory_control
of fset, data, data_count)
nmenory_object _t menory_object;
menory_obj ect _control _t
menory_control

vm of f set _t of f set;
poi nter _t dat a;
unsi gned i nt dat a_count;

MACH 23 August 1990 MACH

~N O

Table of Contents

. Introduction

1.1. Overall system organization
1.2. Basic kernel functionality
1.3. User operating system environments

. Message primitives

2.1. Basic terms
2.2. Ports

2.3. Port sets
2.4. Port names
2.5. Port types
2.6. Messages

. Port and port set primitives
. Task and thread primitives

4.1. Basic terms
4.2. Access to Tasks: Terminology

. Virtual memory primitives

5.1. Basic terms

. Ancillary primitives
. External memory management primitives

7.1. Memory Managers
7.1.1. Memory objects: definitions and basics
7.1.2. Initialization and termination
7.1.3. Kernel-created memory objects
7.2. Kernel calls supporting memory managers
7.3. Memory Manager calls

I. Summary of Kernel Calls

MACH

Summary of External Memory Management Calls

23 August 1990

ORRRMPMNWWWNRRERPE

MACH

