The Berkeley Network — A Retrospectie

Eric Schmidt

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkelgy, California 94720

ABSTRACT

The Berleley Network connects a number oiNix® machines on the Beeley
campus. lItprovides facilities for file transfersending and reading mail, and remote
printing. Operatingn a batch mode, network requests are transferred one by one through
an inter-connected network until theeach their final destination.

This document describes the history and goals of this project, the design decisions
faced, discusses issues in portable softwavelolement in netwrks, and discusses the
future of this project.

Introduction

This document is intended for readers with an interest in networking who are familiar wibthew
documents about the networkd h Introduction to the Berdey Network’, and the ‘Network System
Manual’, by this authar It is not necessary to read this document to set up and maintain therinetw
although systems persons will benefit ifyttaee familiar with the concepts presented here.

The sections are presented as follows:

Principals

History

Overall System Description
Protocol Explanation
Portability

Security

Future Plans

Summary

The most important section is the last, which details a set of principles the author has learned during
this project.

Principals

This project was a collaboration of nyaimdividuals. Dr Robert S. Fabry participated in the initial
design and hasxerted the strongest influence on polishing the final prodBdt.Joy and Ed Gould pro-
vided valuable technical expertiseesy step of the ay, primarily about deeloping systems programs.
The support stébf the EECS Department and the Computer Center (Bob KridkeSdefeibman, ¥nce
Vaughan, Robyn Allsman, and Ricki Blau) wergdlved in setting up and administering this multi-domain



-2-

project. Thelowest-level concepts the author used came from experienc&rRax PARC, primarily from
discussions with David Boggs, one of #RERNETH designers.

History

The network project can be divided intootwlistinct phases. The first, from January 1978 to May
1978 (4% months) iolved designing and implementing the network facilities awailable. Thesecond,
from October 1978 to March 1979 (5 months)y she addition of may more machines to the nedvk
with emphasis on portabilitgecurity and minor design changes. The network has been in almost continu-
ous service to users since May 1, 1978.

First Phase

An initial design was wrked out with Dr Fabry in January 1978A suitable connection was made
between the Computer Cent#&™and “Q’’ machines (then called “D").

Development proceeded on oafronts — a set of daemons were written to transfer files, wsing
pipes for debgging. Thdowest-level protocols were designed and implemented of the terminal-type con-
nection between A and Q. These were debugged using simple programs to send angacets, and a
pair of programs to transfer a file from one to the otfidnis was the first experience with a digtitiéd
software deelopment — the Q machine is a DEC PDP-11/34 with no linepriatasn-standard tape @,
and terminal access only by telephone, so mos@ement had to proceed on the A machine.

During this phase the goals of the project increased in scdpeimplementor and only user had to
use the network to transfer network source ancked out simple ways to automate this (theetrc” file
is an example).

When it appeared usable by more than the implemehtconnection as changed to be between A
and the Computer Center “Ghachine:

Up until nav, the network had required an account on both machines. It became clear this was a
handicap since the A machine had too ynattounts and the password filasvimmense. Certaiffree”
commands were allowed, without an account.

The Cory machine was soon added to the network:

Cory A C

T “Ethernet: Distributed &cket Switching for Local Computer Netrks’, by Robert Metcalfe and véd
Boggs, CACM, July 1976.



-3-

This produced major changes in the design — initially we had assumed network users weuld ha
accounts on all machine§.his was unreasonably strict and a solution (kludge) wakes out where a
request was examined and famded through the queue(s) on the intermediate machine. Therketw
became table-dren to accomplish the routing, and distributed softwarestppment became more fidult
because of the increased number of machines. The implementor quicklyedisiconly one solution:
Always have a asignated source machine for all changEsthis day software changes are made only on
this “source’ machine, the others are guaranteed teeh@mpies. Thismakes remote updating (cging
new versions around the network) possible.

Documentation was written and senft tof about fifteen &culty, saff, and graduate student usess.
few bugs were fixed and the system frozen from the end of May to Octebérof Phase 1.

Second Phase

While the implementor as avay at a simmer job, the connection between the A and C machines
was switched to reduce the loading on the A machine:

Cory C A

Unknown to the implementothe network source & modified in diergent and incompatible ays,
and the commands were wad to a dfferent place.These changesvalidated certain assumptions about
full pathnames and some commands such as inter-machine mail stopped working.

The Computer Center had also made absolutely incompatible changes to some systehhisalls.
began a mth of software diergence that became very painful and is still not completely solved.

Fortunately the Computer Center placed Robyn Allsman in charge of maintaining therketw
their machines — to lighten that routine part of the load from the implementor.

The Computer Center acquired@’'* machine, and the EECS Division a DEC VAX 11/780, running
an experimental VersionNix system. Theémplementor decided to use the (at this point) unused VAX to
to do software deslopment and incorporate theekgion 7 changes into the network code. By this time, the
protocols were stable which made it possible to ruemsivh 7 network on the VAX connected to the old
Version 6 code on the existing network, to facilitateudgling. Becausef improved terminal aailability
and better machine response, snaew ways were used to de the network — using pipes, using TTY
lines wired together on the VAX anda the usual machine-to-machine lin&. file was added ‘(hitfile”)
which allowed quick reconfiguration of the daemons when system parameters were chategagdorary
connection between the VAX and C machines was arranged.

VAX

Cory C A



The network code had to be able to run on three different types of machines - the VAX tunxing
Version 7, the Cory machine running Version 6, and the anomalous Computer Center machinesaShere w
no comversion packagewalable at the time,T and the old network code had not usgdyatem header

files, so after a great deal ofperimentation, conditional compilation was used as much as possible and a
procedural interface was used to elide system differences.

The nev uNIx commandmake(l) was used with drmakefile” to organize this rgime. Theold net-
work code was used to bootstrap the D machine onto a network runningvthetaerk code exclusely.

VAX

Cory C A

Shortly thereafterover the Christmas break, the VAX and Cory connections went down for security

reasons (discussed in th®€ecurity” section). Afterseven weeks, thg reentered the network in ameon-
figuration.

Cory C D

VAX A

Shortly after that, thewere down agin because of a lightning steifor another week but tia been
operational since then. During the last time period the network was made leskgBsplecific and a cgp

T The “retrofit” library, by Bill Joy, is now available.



was run on the Rand Corporation UNIX machinddocumentation was rewritten and prepared for release.
The network queues were e@rted to send shortest-job firsExtensve nonitoring of system load, net-
work performance, and network use was addEae format of thenetqgcommand was changed to summa-
rize more information on output. The E machine, and then later theeySiesearch Center (SRC)
machine, were added.

A
Cory C D
VAX E SRC

Tuning was still important — seriousv@loading problems caused by sluggish response stopped the
network between Cory and C for a weeetwork parameters were tuned to help sdhis problem.The
compleity of software deelopment and maintenance became too great for unstructured chaegaens
on all the machines except the VAX were frozen for a month at a tirhe. protocols were almost
immutable. Peoplevere delgaed responsibility to obsesvend straighten out, if necessapyoblems with
the net queues.

As this is written, the software is stable and the-dseumentation is finished and being sold, and
there is hope of adding moweiix machines to the network.

Overall System Description

The Berleley network operates in a batch/ request mode, and is similar in concept to a line printer
gueue. ‘Requests’are queued up at the source, whergy/tare sent in shortest job first order through an
interconnected network of machines to their destinatisineach intermediate node, thare queued as if
they were originated locally.

The network consists of a set of useecuted commands, a queue of requests to be sent, and a con-
tinuously-running program called @aemonwhich transmits requests in the queue and listens fpr an
request being sent to it. There are gpnaatwork commands — one to send mail, one to read mail, one to
copy files, etc. They al use thenetcommand to access the netw. Thenetcommand takes a command,
assorted parameters, withyanput data, and puts a request in the queue. These requests are composed of a
headerthe command to bexecuted, and andata for input to the command.he header contains nedvk
information such as the destination machine, login name, andqrasswhisrequest is stored in the queue
as a normal ASCII file, owned by thevgker. This wayuNix commands can be used to examine the file.



-6-

The daemonamines the queue to see if there is anything to send. If so, it begins sending to a
remote daemon, using a protocol to establish this dialeglving retransmissions and timeout3he
remote daemon accepts the requests, parses the header informationesrsdytdiita for the command
and puts it in a file. The main loop of the daemon then returns to a waiting state.

The command»ecution is done by ‘forking’ a series of processes. One of these is the logar’
shell, which is gien the command toxecute. Anotheiis a process which waits for the command to be
executed, then examines the output of the command. The output is typically sent back to, tie aset
command, gecuted by the daemon.

In the reverse transmission, the command is calletrite””, and it is routed and handledaztly as
in the forward mode, except no password is required. Therite”’ command is xecuted on the original
machine with input data which is a gogf the output of the remote command. The user is eitlvatten”
or “mailed” to, depending on certain options. ‘iifitten”, the users <reen is filled with the outputt of
the command>ecuted remotelyjust as if he hadxecuted it locally Otherwise, it is in his mailbox, as
mail from the remote account he used. The sgerminal must be write-able (see tinesg(l) option), the
originating user must still be logged in, and he must nat legged of and on again.

The output from the command is preceded by a line of information listing the command, the time it
was £nt, and the time elapsed.

Our design then tries to simulate localix commands as much as possibWith defaults set cer
rectlyt the user in principle need only precede the command kecigieg with the commandet.

Copying Remote Files

The most frequent use of the network is file-transfer usingetepcommand. Theetcpcommand
is based on thep (I) command. Its tw arguments are a source and destination file, optionally with remote
machine names prepended:

netcp from-file to—file

where the names are local or remote. Since
Cory:/usr/pascall/sh

is a file on the Cory machine,
% netcp junk Cory:/usr/pascal/sh

will transfer the file “junk’ to the named file on the Cory machinei.
The way the transfer is accomplished depends on the type of file copy:

1. Coyy local file to remote file —
On the remote machinecat (I) command is xecuted on the remote file with the local file as stan-
dard input.

2. Coyy remote file to local file -
A cat command is xecuted on the remote machine from the remote file to standard oUtpigt.
standard output is sent back to the local machine ines@onse fileinstead of being written or
mailed to the user.

3. Coypy remote file to another remote file -
If both are on the same machinegpgcommand is sent. Otherwisenatcpcommand is sent to the
remote machine where tifrem—file exists, to cop that file to theo—file's machine.

This last case isxperimental. Unfortunatelthe system is structured only to carry one login name
and password to a remote machine. Since the last optioivéis three machines, the second remote
machine is handled imperfectly at best.

T Sandard output and standard error files.
T With a “.netrc’ file, see belw.
T For more examples, see th&n Introduction to the BerkeyeNetwork” document.



Sending Mail

The mail (I) command on the netwk machines has been modified to examine the names of the
recipients of a particular message. If their name® laaemote prefixmail executes an internal command
“ sendmail, which in turn &ecutes anet command. Thimet command sends a mail command to the
remote machine, with the message as input. Since the recipient waulw lkowv which machine the
message came from, a simple progranmmail”’ is executed to insert a pseudo-header indicating the real
source of the mail. The net command logs in as usetwork”, so remote mail does not require an
account on the destination machine. This facility hasqorinvduable.

Reading Malil

The netmailcommand uses thegetcommand to send a command to read mail for a specified user on
a remote machine. Since the existing mail programs on different machangsnvtheir options, it as
decided the only thing that would work on bathix Version 6 and 7 systems was to gdpe mail from
the remote to the local machin#.the user subsequently logs in on the remote machine, his mail will be
there, as if it were unread. An internal progrgonmail’ is used to cop the users mail back to the local
machine. Iknows the location of the mailboxes and the ss@me.

The mail programs at Begley are being modified to search a database to see whether aagdr w
like to receve dl his mail on another machine and automatically forward it. This will diminish the need for
the netmailcommand.

Printing on remote lineprinters

The netlpr command takes a list of arguments as files to be printed on a remote linepirftatu-
nately there can only be one standard input file for the remote command, so each file is seicama
mand e&ecuting the commanipr.

Other System Components

The “.netrc’ file.

A user must specify daftilts for frequently repeated options on a per-machine basis. This is done in
a file “.netrc” in the uses login directory and is fully described in théAn Introduction to the Beldey
Network”.

Thenetqgcommand.

To se the network queue, the user must typendtgcommand. Hists the queue for each directly-
connected machine, in the order requests will be sent. Each request is listed, one per line, giving the local
and remote machines, the destination machine, the time sent, and the comman@doted. ecCommands
which are internal to the network are called “respongeshe netglisting.

Thenetrmcommand.

Requests may be rewanl from the send queue using thetrmcommand. Sincéhe originator of
the file owns the queue file, a simple user-id check suffices to validate permissifurtunately this
notion breaks den for queue files of requests on intermediate machines. On such a machine an appropri-
ate user does not exist, and the files are ownetdnt’*. Thereis an option tanetrmto remae dl the
users queue files, to makeetrmeasier to use.

Thenetlogcommand and other information.

A number of log files are kept by the netk. Usersmay eecute anetlogcommand which prints
the last fev entries of a log of commands sent and reegi Alsolisted is the useithe time of the entry
and the return code of the command.

A more unreadable logdfile is ‘/usr/net/plogfile?’. This log file has all the informatiowttdy, in a
more cryptic form, along with trace information about net errors. The beginning and ending of sending and
receiving are noted. This way the exact state of the network can be determined.



-8-

Hourly and daily statistics in a file ‘/usr/net/netstatPhe number of bytes transmitted, the number
of commands, and a breakdown of their type, and system load is recdtdsdnformation is recorded in
both hourly and daily form to track the performance of the network under different system loads.

Every hour a netq command is xecuted and the number of queue entries is recorded in a file
‘lusr/net/netgstats’. Thigives an stimate of the queue length.

Finally, the login names of each local user are recorded in a file ‘/usr/net/usern&@agedically,
these names are sorted and duplicates vemoThisgives a @mplete listing of network users, useful for
sending network-specific mail and for general interest.

Protocol Explanation

The network uses three distincvéls of protocol. The highest teel of protocol (the ‘command”
protocol) refers to the ganization of the information sent to the remote machine. An intermediade le
splits such a stream into distinct numbered ptchkvith a small header in each petckThelowest level
refers to the appearance of these packets on the hardware connection. At the present, this is a modified
6-bit ASCII code. Each of these layers is distinct, and presents the interface through procedure calls.

The Command Protocol

Each machine sends a request using a precise command protobohgna headerthe command,
and am associated data.
length header =~ command ..data...

All but the length field is formatted by threet command before the file is queued for transmissibme
length is used to detect abnormally short, and poorly-formed, requéstsheader includes all the infor
mation to route and verify the request. It includes

a) theorigin and destination machines,

b)  thelogin names on both machines,

c) aversion stamp for this command protocol,

d) thetime sent,

e) informationabout the originating terminal, and
f) the pseudo-command.

The pseudo-command is read fgtg, and instead of printing the actual command bexegwed,
prints something more appropriate. All the commands whicmete.g. netcp)use the pseudo-command
to list themselves rather than the commang #ne executing on the remote machine.

In order to be able to print the data on a noranak terminal for debugging, the fields within the
header are variable-length ASCII, separated by colons {f)is forces the daemon to parse the header
information and requires that literal colons (e.g. in the command being sent) be properly escaped within the
protocol, but | felt the alternats of using byte counts or fixed-length fields were too difficult toudeb
The shortest header is approximately 85 byfestunately this means the shortest command will fit into a
single packet.t

The Packet Protocol

The abee information is comeyed to each machine as a stream. This is done using subroutine calls
to read and write data of arbitrary lengtrercthe link. The write procedure breaks the information into a
set of numbered packets, with a length and exatei check-sum in a header:

length seqnum type chksum ... data...

T (less than 100 bytes, see below).



-O-

The length, type and checksum are one byte each, and the sequence nuntbbytesstwSincehe
paclets are variable length the checksum is in the header rather than at the end of the peokkth® a
extra computation required to access it.

Each packet is transmitteda a link to a listener Normally an acknowledgement packet is sent
back. Ifthere is an errpnothing is sent back, and the sending end will retransmit after a certain number of
seconds.

There are no windowing or piggyback acknowledgements forréasons: 1) this scheme isry
simple to implement and 2) the error rate if each ekalere not acknowledged would be high because of
the hardware wolved. If the future, | hope that both hardware amdnlel device dviers will allow this
improvement.

The so-called‘fendezvous’ protocol, whereby tw daemons agree to communicate, is a simple
“ contention” scheme. Whemne daemon wants to transmit, it sends a special paelsst’ to the possi-
ble recever, then transmits his first pagk Normallya daemon able to reo listens for a‘teset’. If it
receves me, it enters a section of code designed to vecaileader command, and data, and ultimately
will execute it. If not, after a prescribed time interval is checks to see if there arequests to send.
Should both send at once, the characters may be garbled, or both may Esms at the same timén
each case tlyeboth will retransmit. Each has a randomizing factor to bregkias which might declop.

In retrospect, this protocol is very primigéi Now that the network is in production use, thera
acknavledgements and separateset’ are too epensve. A redesign would modify the protocol to trans-
mit more than one packet before acknowledging it (ACKs), ugdine ACKs to indicate immediately that
an error has occurred, and eliminate the separate “resstely.

The ‘rendezvous’ protocol consumes aair amount of time when both daemons choose to send
paclets. Thealternatie d constantly sending status packets when the daemons would be idlewsias ne
seriously considered because @sifelt that the daemon shouldvbas light a system load as possible; it
seems nw the daemons areuby most of the time and thus the initial connection tradeoffs shoud ha
been studied more closely.

The Low-Level Protocol

The network transmitsver TTY lines through terminal intetes and system ders which behee
as if the characters coming from another machine are from a terrilmalmode was chosen because it is
absolutely the simplest, cheapest interconnection scheme podsititatunately the unix terminal drvers
cannot accept 8-bit bytes unlessytlaee inraw mode. Thiswas judged to be a high system load, so the
TTY lines operate irtookedthe reverse ofraw, mode. Inthis mode certain bit combinations, e.g. ASCII
newline and escape, do not transmit through the termineérdio the users program but rather are inter
preted as control information.

After much eperimentation, the following transmission method was chosen. Each 3 byte triple is
viewed as 24 bits, and broken into 4 6-bit grouRach 6-bit number is in the range 0-63, and is added to a
constant representing the lowest acceptable character code (a blank) in the ASCII sethisrisesent as
an ASCII character to a regef who gathers 4 bytes, subtracts the increment, and shifts the 4 6-bit groups
into 3 bytes. This represents a 3 to 4 expansion of all charaetethe link, or a 33% loss of bandwidth.

In retrospect, thisxpansion has a considerable cost. The most scarce resource in the network is the
actual hardware speed of the links. The alteveafi using rav mode was neer seriously considered.

The implementos hope is that better harcre will male better middle- and ler-level protocols
easier Until then, the difficulties of using TTY lines figfiently male further protocol impreements
unlikely to yield big increases in speed.

A Note About Features this Protocol Lacks

In UNIX a process may only read or write one I/Qvide at a time.A daemon approach requires a
single process reading and writing on a link to another machinis. process must decide who will raaei
this paclet. |judged (correctly) that this decision was hard to schedule usingpipes and signals, and
only allov one kind of communication between daemons. This also makes it almost impossibleatal forw



-10-

paclets through intermediate machines. Thus intermediate machingsvbope requests before sending
them again.

If the design specification required a simple packet-orientgdrdvithin the system, thenix kernel
could decide which of seral special files this was destined to, andvallouch more intermixing of trét
than before.l did not realize the importance of this and, in retrospectjlagvhare chosen the other of the
two goproaches.

Portability

The acquisition of VAX/UNIX (\érsion 7) and the dérgence of the Computer Center and Cory Hall
Version 6 systems made the portability of the network source code impddatitthen, the source code
on all machines was identicakortunately the uNix implementors encountered these same problems and
developed a number of facilities the networkwases.

Since may system calls use machine anersion dependent data fields, so-calletiude” files are
awailable to hide the system differences and help standardize the systeat@tdrheconditional compi-
lation feature of the C language was used to select which kinds of code to generate, wherhudhe’ *
files were not stiicient. Roughlythe following command included at the beginning of each C module:

# include <whoami.h>

would define which system, by name, the codes wn on.For example, the ab@ cefines “VAX' ' on the
VA X machine, and then lines such as

# ifdef VAX

# endif
control the code generated. In the network, sequences such as this in turn define other sequences, such as

# ifdef CORY

# defineFuiD

# defineoLDTTY
# definePASSWDF
# endif

defines the unusual features of the Cory machine: the combined user-id and group-id returned by the
getuid() system call, that it uses the old 1-character terminal names, and that it has a splitdofiesior

security reasonsEach of these symbols, e.gFUID"’, is tested in order to compile the correct code for

that feature.

To help in isolating the changes, attempts were made to create a procedural interface to hide
machines dferences. Thesgrocedures are all in one file. Only one ootemses exist of conditional sec-
tions of code not in “mach.cor ‘‘mach.h”, its header file.

One problem these features pose is testing changes — the conditional sections hide errors in inapplica-
ble code.A regmen was adopted: Testingaw first done on the VAX (Version 7), then, after it was stable
for a fav days, meed to Cory, where typically there was some Version 6-dependent, eamdrafter that
was fixed and stable, it was mad to the Computer Center machineBhis notion of a‘testing” machine
is very important — the VAX alays has an up-to-date cppf the network source,ven though other
machines may lag in impvements.

There is nw a “retrofit library” that simulates manof the features'mach.c’ provides. Itwas rot
stable enough when the network wasweoted to Version 7, otherwise | would\eawsed it.

At this point, when the entire source for the software for the network is transferred between machines
only the first fie lines of the “makefilé’need be changed.



-11-

Security

Over Christmas vacation of 1978, a 15-year old high school student repeatedynboothe Com-
puter Center and Cory machines. He was able to use the network to gain accedigdedfiles on the
VA X, and the fear of protection “holegaused the sthfo take the network down for sen weeks.

There were tw security problems posed by the network:
1. Thethreat to the “root’account on another system.
2. Thethreat to a uses’remote accounts.

1. Threat to “root”

Originally the network would alle a user logged in asrbot’” on one machine toxecute ay com-
mand as'toot’” on another network machine. As far as we knthis feature was wer used to break into
a y/stem. Havever, the network has been changed tovpné a user from logging in agdot” on another
machine, rgardless of the passwd. Thischeck is performed on the sending machine. Sinset” could
concevably circumvent this check by altering the command, the receiving end of a command checks the
userid of all commands beingxecuted. Ifit is zero (i.e.‘root”) only a set of fie mommands is alleed,
all needed by the network internalind believed “safe”.

We telieve tis makes the networksafer” than mag local machine features such as the use of dial-
up lines.

2. Threat to users remote accounts.

If a user places remote passds in his “netrc” file, an illicit superuser could get the password to
all the uses remote accountsEven if the user does not care, system managersalibik because the
illicit superuser could n@ use a lgd account on another system to break into it.

We haveno good solutions to this. Users arevnwarned of this danger in the documentation, and a
“.netrc’ file with passwords must be readable only by the owner of the file.

Various solutions hae been proposed:

a) Disallav passwords in “.netrcfiles.
Unfortunately heavy network users would V&t repeatedly type their password.

b)  Encryptthe “.netrc’ file.
A program would hee o exist to decrypt the file. A superuser could get access to whate
key technique that program used, if it were on the local machineublic-key encryption
scheme would makthis option possibleWe decided it vas too much work to implement this.

c) Once-a-sessigmasswords.
In this scheme, a user would register his pasdwhen he logged in, then use the rekwv
without needing to type in a passid. Whenhe logged df the password would be renea.
We dscarded this because we could not guarantee the gaksswould disappear unless we
wrote a daemon, which itself could be compromis€le best solution along this line uses the
“ alias’ feature of the C shellEach net command is aliased with itself and-the-p options.
When the user logs in, he sets a shell variable to his pecsswWhenhe logs off, his shell dies
and the passwords are forgotten.

| believe the current alternatés are sufficient for a conscientious user to protect himself and still
have a1 easy-to-use network interface.

Futur e Fans



-12-

1. Hardware

The net has suffered withviospeed hardare. Short-ternplans include speeding up the current ter
minal interface hardware from 1200 Baud to 9600 Baud and writingver lor the deice to bypass the
internal UNIX character queuesThis driver will improve the reliability of transmission and decrease the
character interruptwv@rhead. Thespeedup from 1200 Baud to 9600 Baud mesrload the systems due to
the number of hardware interrupts it causes.

In the longer term, the EECS Department is considering acquiring direct-memory-access (DMA)
devices such as the Logical Network Interé (LNI) or the Digital Corp. DMC-11 links for high-speed
transmission. Thesdevices are capable ofver 1-megabit speeds, and would increase the speed of the cur
rent network by factors of hundreds.

2. Adding Mor e Machines to the Network

The INGRES Research group and various other research units within the EECS departieent ha
expressed interest in being added to the network.

3. RemoteUse of the Typesetter Facilities

The Computer Center A machine has a Graphics Systems phototypesetter aAX tReséarch
machine has a Versatec 36bt-matrix plotter with aroff simulator Software nev being debugged will
allow remote use of the typesetter by running tileéf program locally and sending the typesetteriake
codes to the remote machine.

This will distribute the typesetting load and helgedoading on the A and VAX machines. It will
also allav the use ofroff macro packages onlyailable on some machines.

4. RemoteMail Forwarding

The unix mail programs will be modified to forward mail to another account on another machine,
allowing a user with accounts on nyanachines to read it all on one designated machine.

Summary Points

The author would lik to gress these points about his experience:

1. Success$n building networking software depends on having ready access to the correcareardw
The minimum is tw terminals connected to twusable machines with ttvmagnetic tape dvies o
some other existing means of software transfer.

2. Designin portability and securityMore careful attention to machine dependence and security in the
first phase would h& saved much later re-programming.

3. Develop good local debugging techniques. Tiself-loop” trick for network debugging depends on
the accurag of that simulation.uNIx pipes, for example, were not fafent to simulate TTY lines
because TTY lines are 7-bits with a restricted ASCII range.

4, Encourageisers to use the system. Their feed back is importdoivever, it is necessary to hva an
unused network link for meprotocol deelopment, etc.

5. Thereis a fine line between support of an existing network and research. In the best of all possible
worlds, support of researchad#oped software would be the responsibility of the systems fataf
the machines it runs on. This is seldom the case.

6. Theconcept of layers of networks was very helpful in this project. There appear to bethisse le



-13-

user interface
queues and daemons
command protocol
packet protocol
transmission protocol

teletype lines

These lgels are quite distinct. If a me better network not wolving queues is tlt, the transfer of
files could still be bynetcp. If state-of-the-art link hardware is used, perhaps all of thasldelav
the command protocol could be discarded.

Thechief virtue of the current system is its extreme flexibility amd dtart-up costs. No modifica-
tions to theuNix kernel are required and all local features are conditionally specified in a header file.

Networks are hard to build because
a) The invdve mutually-cooperating copies of software on (usually) differing computers.

b)  Mary options are not practical because of compatibility considerationsv-negworks need
drivers in unchangeable systems, and peotocols hae © accept the old protocols until the
old protocols are extinct.



