

I n s i d e M a c O S X

 UNIX Porting Guide
An Overview of How to Bring UNIX Applications to Mac OS X
June 2002

 Apple Computer, Inc.
© 2002 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer
for personal use only and to print
copies of documentation for personal
use provided that the documentation
contains Apple’s copyright notice.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for Apple-labeled or
Apple-licensed computers.
Every effort has been made to ensure
that the information in this document
is accurate. Apple is not responsible
for typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, AppleScript,
Cocoa, ColorSync, Finder, Mac,
Macintosh, and QuickTime are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
Carbon and Quartz are trademarks of
Apple Computer, Inc.

NeXT, NextStep, and OpenStep are
trademarks of NeXT Software, Inc.,
registered in the U.S. and other
countries.
Java and all Java-based trademarks
are trademarks or registered
trademarks of Sun Microsystems, Inc.
in the U.S, and other countries.
OpenGL is a registered trademark of
Silicon Graphics, Inc.
PostScript is a trademark of Adobe
Systems Incorporated.
Simultaneously published in the
United States and Canada.
Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights which
vary from state to state.

Contents

Figures, Listings, and Tables 7

Chapter 1 Introduction 9

Who Should Read This Document? 10
How to Use This Document 10
Finding More Information 11

Chapter 2 What You Need To Know About Mac OS X 13

The Family Tree 13
BSD 13
Mach 14
NEXTSTEP 14
Earlier Version of the Mac OS 14

Mac OS X and Darwin 15
What Macintosh Users Expect 16

Benefits 17
Responsibilities 17

Chapter 3 The Basic Port 19

Preparation 19
Installing Open Source Development Tools 19
The Mac OS X Developer Tools 20
Building Legacy Projects With Project Builder 21
Windowing Environment Considerations 22

Compiling Your Code 23
GNU Autoconf 23
Compiler Flags 23
3
  Apple Computer, Inc. June 2002

C O N T E N T S

Executable Format 25
Dynamic Libraries and Plug-ins 25
Bundles 26

Application Bundles 26
Frameworks 26

Chapter 4 Porting the User Interface 27

Choosing a Graphical Environment 27
What Kind of Application Are You Porting? 27
How Well Does It Need to Integrate With Mac OS X? 28
Does Your Application Require Cross-Platform Functionality? 28

Cocoa, Java, and Carbon 30
Cocoa 31

Benefits of Cocoa Development 31
Drawbacks of Cocoa Development 31
Example: Calling C or C++ Code With Cocoa 32

Java 35
Benefits of Java Development 36
Drawbacks of Java Development 36

Carbon 36
Benefits of Carbon Development 36
Drawbacks of Carbon Development 36

Lower-Level Graphics Technologies 37
Quartz 37

Benefits of using Quartz 38
Drawbacks to using Quartz 38

OpenGL 38
Benefits of using OpenGL 38
Drawbacks to using OpenGL 39

QuickTime 39
Benefits of using QuickTime 39
Drawbacks to using QuickTime 39

Traditional UNIX Graphical Environments 39
X11R6 40

Benefits of X11R6 Development 40
Drawbacks of X11R6 Development 40
4
  Apple Computer, Inc. June 2002

C O N T E N T S

Tcl/Tk 40
Benefits of Tk Development 41
Drawbacks of Tk Development 41

Qt 41
Benefits of Qt Development 41
Drawbacks in Qt Development 41

Chapter 5 Additional Features 43

Audio Architecture 43
Boot Sequence 44
Configuration Files 46
Device Drivers 46
The File System 47

File-System Structure 47
Supported File-System Types 48

The Kernel 48
NetInfo 50

Example: Adding a User From the Command-Line 50
Role-Based Authentication 51
Scripting Languages 52
Security Services 53

Chapter 6 Distributing Your Application 55

Package It 55
Disk Copy 56

Tell the World About It 58

Glossary 59

Index 61
5
  Apple Computer, Inc. June 2002

C O N T E N T S
6
  Apple Computer, Inc. June 2002

Figures, Listings, and Tables

Chapter 2 What You Need To Know About Mac OS X 13

Figure 2-1 Darwin’s relation to Mac OS X 15

Chapter 4 Porting the User Interface 27

Figure 4-1 Graphical environments 29
Figure 4-2 30
Figure 4-3 Low-level graphics technologies 37
Listing 4-1 main.m 32
Listing 4-2 HelloController.m 32
Listing 4-3 HelloController.h 33
Listing 4-4 SayHello.mm 33
Listing 4-5 SayHello.h 34
Listing 4-6 FooClass.cpp 35
Listing 4-7 FooClass.h 35
Table 4-1 Platforms of cross-platform technologies 29

Chapter 5 Additional Features 43

Figure 5-1 XNU personalities 49
Listing 5-1 A startup item’s StartupParamaters.plist file 45

Chapter 6 Distributing Your Application 55

Figure 6-1 Disk Copy options 57
7
  Apple Computer, Inc. June 2002

F I G U R E S , L I S T I N G S , A N D T A B L E S
8
  Apple Computer, Inc. June 2002

C H A P T E R 1

1 Introduction
Mac OS X is a modern operating system that combines the power and stability of
UNIX-based operating systems with the simplicity and elegance of the Macintosh.
For years, power users and developers have recognized the strengths of UNIX and
its offshoots. While UNIX-based operating systems are indispensable to developers
and power users, consumers have rarely been able to enjoy their benefits because of
the perceived complexity. Instead consumers have lived with a generation of
desktop computers that could only hope to achieve the strengths that UNIX-based
operating systems have had from the beginning.

The introduction of UNIX-like operating systems such as FreeBSD and GNU/Linux
for personal computers was a great step in bringing the power and stability of UNIX
to the mass market. Generally though, these projects were driven by power users
and developers for their own use, without making design decisions that would
make UNIX palatable to consumers. Mac OS X on the other hand, was designed
with end users in mind from the beginning. With this operating system, Apple
builds its well-known strengths in simplicity and elegance of design on a
UNIX-based foundation. Rather than reinventing what has already been done well,
Apple is reconciling their strengths with the strengths brought about by many years
of advancement by the UNIX community. Power, stability, simplicity, and elegance
can all be spoken together in describing a single operating system. The time is ripe
for Mac OS X as the next step in the evolution of UNIX-based operating systems.

This document helps to guide developers in bringing applications written for
UNIX-based operating systems to Mac OS X. It provides the background needed to
understand the operating system. It touches on some of the design decisions, and it
provides a listing and discussion of some of the main areas that you should be
concerned with in bringing UNIX applications to Mac OS X. It also points out some
of the advanced features of Mac OS X not available in traditional UNIX applications
9
  Apple Computer, Inc. June 2002

C H A P T E R 1

Introduction

that you can add to your ported applications. This document is an overview, not a
tutorial. In many regards it is a companion to the more extensive Inside Mac OS X:
System Overview, but with a bias toward the UNIX developer.

Who Should Read This Document?

This document is designed to be read by developers bringing a UNIX application to
Mac OS X. More specifically, it is targeted to UNIX developers who have not
traditionally been Macintosh developers. It helps to answer broad questions about
the platform as a whole as well as specific questions pertinent to bringing a UNIX
application onto the Mac OS X platform. It assumes that you are comfortable with
the details of programming from coding to using traditional UNIX development
tools and techniques.

This document is not designed for pure Java developers. Mac OS X has a full and
robust Java 2 Platform, Standard Edition (J2SE) implementation. If you have a pure
Java application already it should just work in Mac OS X. More information on Java
development can be found at http://developer.apple.com/techpubs/java/.

How to Use This Document

This document is a first stop for UNIX developers coming to Mac OS X. It contains
many links to more extensive documentation. Specific details of implementation are
covered here only in cases where it is not adequately covered in other places in the
documentation set.

To use this document most effectively, first read Chapter 2, “What You Need To
Know About Mac OS X” (page 13), to find out the basics about the Mac OS X
platform and to get some of the high-level information you need to begin your port.
If you already have an application that builds on other UNIX-based platforms,
Chapter 3, “The Basic Port” (page 19), will help you find out how to compile your
code on Mac OS X.
10 Who Should Read This Document?
  Apple Computer, Inc. June 2002

http://developer.apple.com/techpubs/java/

C H A P T E R 1

Introduction

This is where the majority of the work comes in on your side. You will need to make
decisions concerning which, if any, Graphical User Interface to implement with
your application. Chapter 4, “Porting the User Interface” (page 27), and more
specifically “Choosing a Graphical Environment” (page 27) helps you with this.

If you want to refactor your application to take advantage of the rich feature set of
Mac OS X, see Chapter 5, “Additional Features” (page 43), for examples of features
available in Mac OS X.

Once you have a complete application, read Chapter 6, “Distributing Your
Application” (page 55), for information on getting your application to your users.

Finding More Information

Developer documentation can be found at Apple’s developer documentation
website at http://developer.apple.com/techpubs/. This site contains reference,
conceptual, and tutorial material for the many facets of development on Mac OS X.
The Mac OS X Developer Tools CD includes a snapshot of the developer
documentation, which is installed in /Developer/Documentation. The man(1)
pages are also included with the The Mac OS X Developer Tools.

 Apple Developer Connection (ADC) hosts a website full of information useful to
UNIX developers targeting Mac OS X, http://developer.apple.com/unix. ADC
also offers a variety of membership levels to help you in your development. These
range from free memberships that give you access to developer software, to paid
memberships that provide support incidents as well as the possibility of software
seeds. More information on memberships is available at http://
developer.apple.com/membership/.

Once a year in May, Apple hosts the Worldwide Developers Conference (WWDC)
in San Jose, California. This is an extremely valuable resource for developers trying
to get an overall picture of Mac OS X in general as well as specific implementation
details of individual technologies. Information on WWDC is available on the ADC
website.
Finding More Information 11
  Apple Computer, Inc. June 2002

http://developer.apple.com/techpubs/
http://developer.apple.com/unix
http://developer.apple.com/membership/
http://developer.apple.com/membership/

C H A P T E R 1

Introduction

Apple hosts an extensive array of public mailing lists. These are available for public
subscription and searching at http://lists.apple.com. The unix-porting list is highly
recommended. The darwin-development and darwinos-users lists also offer much
help but less specific to the task of porting.

In addition to Apple’s own resources, many external resources exist. Two
recommended websites are O’Reilly’s Mac DevCenter, http://
www.oreillynet.com/mac/, and http://www.stepwise.com.
12 Finding More Information
  Apple Computer, Inc. June 2002

http://lists.apple.com
http://www.oreillynet.com/mac/
http://www.oreillynet.com/mac/
http://www.stepwise.com

C H A P T E R 2

2 What You Need To Know About
Mac OS X
The purpose of this chapter is to give you background information about Mac OS
X. It starts with a brief discussion of its lineage and then explains the distinction
between Darwin and Mac OS X. It concludes with a discussion of the benefits and
responsibilities in bringing your applications to Mac OS X.

The Family Tree

 Although this document covers the basic concepts in bringing UNIX applications
to Mac OS X, it is by no means comprehensive. This section is provided to give you
a hint on where to look for additional documentation by outlining how Mac OS X
came to be. Knowing a little about the lineage of Mac OS X will help you to find
more resources as the need arises.

BSD
Part of the history of Mac OS X goes back to Berkeley Software Distributions (BSD)
UNIX of the early seventies. Specifically, it is based in part on BSD 4.4 Lite. On a
system level, many of the design decisions are made to align with BSD-style UNIX
systems. Many of the libraries are derived from NetBSD (http://www.netbsd.org/
), while many of the utilities are from FreeBSD (http://www.freebsd.org/). For
future development, Mac OS X has adopted FreeBSD as a reference code base for
BSD technology. Work is ongoing to more closely synchronize all BSD tools and
libraries with the FreeBSD-stable branch.
The Family Tree 13
  Apple Computer, Inc. June 2002

http://www.netbsd.org/
http://www.freebsd.org/

C H A P T E R 2

What You Need To Know About Mac OS X

Mach
Although Mac OS X must credit BSD for most of the underlying levels of the
operating system, Mac OS X also owes a major debt to Mach. The kernel is heavily
influenced in its design philosophy by Carnegie Mellon’s Mach project. The kernel
is not a pure microkernel implementation though since the address space is shared
with BSD processes. For more information on the kernel and the distinctions
between Mach and BSD, see “The Kernel” (page 48).

NEXTSTEP
In figuring out what makes Mac OS X tick, it is important to recognize the influences
of NEXTSTEP and OPENSTEP in its lineage. Apple’s acquisition of NeXT in 1997
was a major key in bringing Mac OS X from the drawing board into reality. Many
of the parts of Mac OS X of interest to UNIX developers are enhancements and
offshoots of the technology present in NEXTSTEP. From the “The File System”
(page 47) to the “Executable Format” (page 25), and from the high-level “Cocoa”
(page 31) APIs to “The Kernel” (page 48) itself, the lineage of Mac OS X as a
descendant of NEXTSTEP is very evident.

Earlier Version of the Mac OS
Although it shares its name with earlier versions of the Mac OS, Mac OS X is a
fundamentally new operating system. This does not mean that all that went before
has been left out. Mac OS X still includes many of the features that Mac OS 9 and
earlier had. Although your initial port to Mac OS X may not use any of the features
inherited from the Mac OS 9, as you enhance the application, you might take
advantage of some of the features provided by technologies like ColorSync or
the Carbon APIs. Mac OS 9 is also the source of much of the terminology used in
Mac OS X.
14 The Family Tree
  Apple Computer, Inc. June 2002

C H A P T E R 2

What You Need To Know About Mac OS X

Mac OS X and Darwin

The word Darwin is often used to refer to Mac OS X. In fact, in some circles Mac OS
X itself is rarely mentioned at all. It is important to understand the distinction
between the two–how they are related and how they differ.

Darwin is the core of the Mac OS X operating system. Although it could stand alone
as an independent operating system, it includes only a subset of the features
available in Mac OS X as a whole. Figure 2-1 shows how Darwin is related to Mac
OS X as a whole.

Figure 2-1 Darwin’s relation to Mac OS X

It is an open source project whose source code is available at http://
www.opensource.apple.com/. This allows you as a developer access to the
foundation of Mac OS X. Its openness also allows you to submit changes that you
think should be reflected in Mac OS X as a whole. Darwin has been released as a
separate project that runs on PowerPC-based Macintosh computers as well as
x86-compatible computers. Although it could be considered a standalone operating
system in its own right, many of the fundamental design decisions of Darwin are
governed by its being embedded inside within Mac OS X. In bringing you
applications to the platform, you should target Mac OS X version 10.1 (Darwin 5.1)
or later.

AppleScript

Cocoa CarbonJava

Aqua

Quartz QuickTimeOpenGL

Darwin
Mac OS X and Darwin 15
  Apple Computer, Inc. June 2002

http://www.opensource.apple.com/
http://www.opensource.apple.com/

C H A P T E R 2

What You Need To Know About Mac OS X

Mac OS X as a whole is not an open source project. As can be seen from Figure 2-1,
there are many parts of Mac OS X that are not included in the open source Darwin
components. This brings to light the need for you to decide where your application
will fit into Mac OS X. If your tool is a command-line tool (or has a useful subset that
is a command-line tool), you can, of course, simply port your application as a
command-line tool or service, which is usually not that complicated. By doing this
you gain a small benefit, in that it is now available to Mac OS X users. You will not
be able to market it to Mac OS X users as a whole though, since many users do not
even know how to access the command line on their computers. It is important to
remember that a port to the command line is just a first step to bringing your
application to fully take advantage of Mac OS X. The next step would be to provide
a graphical user interface (GUI). “Porting the User Interface” (page 27) gives you
more information on how to decide which of the many available APIs to write to.

 If you are adding a new graphical user interface to a command line application and
want to take advantage of the greatest strengths of Mac OS X, you will probably
want to use the Cocoa API’s. In some cases, you may want to use a different API for
reasons such as cross platform compatibility. If you decide to use a nonnative API,
like X11R6, to provide a user interface for your Mac OS X application, it is important
to remember that users and developers with a UNIX background might be perfectly
content to just have the application running on Mac OS X. Traditional Macintosh
users, however, will pass up an application with a traditional UNIX interface for a
more integrated and modern interface. Whether you target a straight port to the
Darwin layer or a more robust transformation of your application to take advantage
of other Mac OS X technologies, like the Cocoa frameworks, is your decision.

What Macintosh Users Expect

In bringing your UNIX application to Mac OS X, you are entering a world where
great emphasis is placed on user interactions. This brings many opportunities and
benefits to you as a developer, but also some responsibilities.
16 What Macintosh Users Expect
  Apple Computer, Inc. June 2002

C H A P T E R 2

What You Need To Know About Mac OS X

Benefits
Macintosh users are known for their loyalty, but that loyalty is not blind. It is based
on years of trust developed between Macintosh developers and the users. They are
willing to spend their money on great applications because they know that Apple
strives to give them a high-quality user environment. Apple developers are known
for providing great applications for that environment. Bringing UNIX applications
to Mac OS X can be very profitable if done correctly, both in pride and in business
investment. Well-designed Macintosh applications of years past are the standards
of today. PowerPoint, PhotoShop, Illustrator, and Excel are all applications that first
made their name on the Macintosh. Now is the time to win the hearts of Macintosh
users with the next great application. In a word, millions of possibly loyal users!

It is not all about business though. Apple has for years been known for its
commitment to education. Mac OS X targets the education market for developers
and is an ideal platform for learning for students. With its standards-based
technologies as well as home-grown technologies, you have a platform ripe for use
in educational application deployment and development.

Mac OS X also provides benefits in a development environment. Apple strives for
standards first, then it adds that little bit that makes it better on a Mac. You have
access to many of the development tools and environments that you have on other
platforms, like Java, OpenGL, POSIX libraries, and the BSD TCP/IP stack, but you
also have built-in benefits like the Apache Web server on every computer, the Cocoa
object-oriented development environment, a PDF-based display system, Quartz,
Kerberos compatibility, QuickTime, a dynamic core audio implementation, and a
suite of world-class developer tools. By adding a native Mac OS X front end to your
application, you can achieve a cost-effective new deployment platform with
minimal additional development effort.

Mac OS X adds tremendous value both to you and your customers on a
standards-based operating system.

Responsibilities
Along with benefits come responsibilities. If you have decided to make a
full-featured Mac OS X application, here are a couple of simple but key guidelines
to keep in mind.
What Macintosh Users Expect 17
  Apple Computer, Inc. June 2002

C H A P T E R 2

What You Need To Know About Mac OS X

A Mac OS X user should never have to resort to the command line to perform any
task in an application with graphical user interface. This is especially important to
remember since the BSD user environment may not even be installed on a user’s
system. The libraries and kernel environment are of course there by default, but the
tools may not be.

If you are making graphical design decisions, you need to become familiar with the
Inside Mac OS X: Aqua Human Interface Guidelines that are available from the Apple
developer website. These are the standards that Macintosh users expect their
applications to live up to. Well-behaved applications from Apple and third-party
developers give the Macintosh its reputation as the most usable interface on the
planet.

The responsibilities boil down to striving for an excellent product from a users
perspective. Mac OS X gives you the tools to make your applications shine.
18 What Macintosh Users Expect
  Apple Computer, Inc. June 2002

C H A P T E R 3

3 The Basic Port
A seasoned UNIX developer recognizes that no matter how similar two
UNIX-based operating systems may be, there are always details that set one apart
from another. This chapter highlights some of the key areas that you should be
aware of when it comes to compiling your code base for Mac OS X. It notes details
about compiler flags that are important to you, as well as giving you some insight
into how to link different parts of your code in Mac OS X. Many of these topics are
covered more extensively in other resources as noted.

Preparation

Before beginning bringing the basic port of your code to Mac OS X you need to
make sure that you have the requisite tools for the task. You also need to be aware
of what is available and isn’t available to you by default.

Installing Open Source Development Tools
Because Mac OS X has a BSD core, you have access to the numerous open source
tools, like the GNU tools, that you are already familiar with. Apple provides a basic
selection of the most common tools with Mac OS X as an optional installation, so
before using Mac OS X as a development platform you need to make sure that the
Preparation 19
  Apple Computer, Inc. June 2002

C H A P T E R 3

The Basic Port

BSD Subsystem is installed. You can check for this by looking for the BSD package
receipt, BSD.pkg, in /Library/Receipts. If it is not present on your system or if you
are installing Mac OS X for the first time, make sure that this package is installed:

1. Insert your Mac OS X CD.

2. Double-click the Install Mac OS X application in the Welcome to Mac OS X
folder.

3. In the window that opens, click the Restart button.

4. When your computer has restarted, follow the prompts until you get to the
Installation Type phase. (This is indicated on the left side of the Install Mac OS
X window.)

5. Click the Customize button.

6. Select the BSD Subsytem.

7. Proceed with the installation by following the prompts.

With the BSD subsystem installed, a look through /bin and /usr/bin should reveal
a very familiar environment.

The Mac OS X Developer Tools package provides additional tools that you will
need to install to round out your development environment. See “The Mac OS X
Developer Tools” (page 20). These are not part of the default installation, but are
essential to you since they contain some of the most important tools like the
compiler (gcc) and debugger (gdb).

The Mac OS X Developer Tools
Apple provides a free, first class suite of Mac OS X–specific development tools with
the operating system. Although they may not already be installed on your
computer, they are usually distributed with the Mac OS X CDs. They are also
available online from the Apple Developer Connection (ADC) Website, http://
connect.apple.com. You will need an ADC account to download the Developer
Tools. Free accounts are available for those who just need access to the tools. It is a
good idea to check the ADC website for the most current version of the Mac OS X
Developer Tools since updates are posted there.
20 Preparation
  Apple Computer, Inc. June 2002

http://connect.apple.com
http://connect.apple.com

C H A P T E R 3

The Basic Port

After installing the Mac OS X Developer Tools you will have a selection of new tools
for you to take advantage of:

� Inside /Developer/Tools are many Mac OS X–specific development tools.
Documentation is provided in the form of man pages.

� /usr/bin now contains more command-line tools than were supplied by the BSD
package alone, most notably cc and gdb. /usr/bin/cc is gcc 2.9.52 in Mac OS X
version 10.1, but gcc 3 is available from the Darwin CVS repository (http://
www.opensource.apple.com/projects/darwin/).

� /Developer/Applications contains a wide assortment of graphical tools and
utilities. Key among these are the following:

Project Builder is a graphical integrated development environment for
applications in multiple programming languages.

Interface Builder provides a simple way to build complex user interfaces.
FileMerge lets you graphically compare and merge files and directories.
IORegistryExplorer helps you determine which devices are registered

with the I/O KIT. See “Device Drivers” (page 46) for a discussion of
the I/O Kit.

MallocDebug analyzes all allocated memory in an application. It can
measure the memory allocated since a given point in time and detect
memory leaks

PackageMaker builds easily distributable Mac OS X packages.

Documentation for these tools is available in the Developer Help Center in Project
Builder’s Help menu and online at http://developer.apple.com/techpubs/
macosx/DeveloperTools/devtools.html.

Building Legacy Projects With Project Builder
Although Project Builder keeps track of build settings in its own preferences files for
information beyond what could normally be maintained in a makefile, this does not
mean that Project Builder cannot deal with your project’s legacy makefiles. If you
want to use Project Builder for development on Mac OS X, the following gives you a
quick walk through of how to include a legacy makefile in a Project Builder project:

1. Open Project Builder.

2. Choose New Project from the File menu.
Preparation 21
  Apple Computer, Inc. June 2002

http://www.opensource.apple.com/projects/darwin/
http://www.opensource.apple.com/projects/darwin/
http://developer.apple.com/techpubs/macosx/DeveloperTools/devtools.html
http://developer.apple.com/techpubs/macosx/DeveloperTools/devtools.html

C H A P T E R 3

The Basic Port
3. Select whatever project type you are targeting. If you ultimately want an
application, select something like Cocoa Application. If you are just trying to
build a command-line utility, select one of the tools, perhaps Standard Tool.

4. Follow the prompts to name and save your project. A new default project of that
type is opened.

5. From the Project menu, Choose New Target.

6. Select Legacy Makefile.

7. Follow the prompts to name that target. When you have done this, a target icon
with the name you just gave it should show up in the Targets pane of the open
Project Builder window.

8. Select that new target.

9. The information pane now changes to reflect the build information for this target.
Modify these settings to include your makefile and any other settings you might
need. For example, in the Custom Build Command pane, you could change Build
Tool from /usr/bin/gnumake to /usr/bin/bsdmake. More information on the fields
is available in Project Builder Help.

10. When you are ready to build the project, click the Build and Run button in the
toolbar, select Build and Run from the Build menu, or just press Command-R.

This should at least get you started in bringing your application into the native
build environment of Mac OS X.

Windowing Environment Considerations
Before you even attempt to compile an application in Mac OS X, you should be aware
that the Mac OS X native windowing and display subsystem, Quartz, is based on the
Portable Document Format (PDF). Quartz consists of a lightweight window server
as well as a graphics rendering library for two-dimensional shapes. The window
server features device-independent color and pixel depth, layered compositing, and
buffered windows. The rendering model is PDF-based. Quartz is not an X Window
System implementation. If you do need an X11R6 implementation, you can easily
install one. If your application uses the X Window System you either need to port the
user interface to a native Mac OS X environment or provide an X Window System
implementation with your application. What to take into consideration in making
this decision as well as information on the graphical environments available to you
can be found in “Porting the User Interface” (page 27).
22 Preparation
  Apple Computer, Inc. June 2002

C H A P T E R 3

The Basic Port
Compiling Your Code

Now that you have the basic pieces in place, it is time to build your application. This
section covers some of the more common issues that you may encounter in bringing
your UNIX application to Mac OS X.

GNU Autoconf
If you are trying to bring a pre-existing command-line utility to Mac OS X that uses
GNU Autoconf, you will find that most utilities just work; you just run configure
and make as you would on any other UNIX-based system.

If Autoconf fails because it doesn’t understand the architecture, try replacing the
project’s config.sub and config.guess files with those available in /usr/libexec. If
you are distributing applications that use Autoconf, please include an up-to-date
version of config.sub and config.guess so that Mac OS X users don’t have to do
anything to get your project to build.

You may also need to run /usr/bin/autoconf on your project before it works. Mac
OS X includes Autoconf version 2.13 with the BSD tools. Beyond these basics, if the
project does not build, you may need to modify your makefile according to some of
the tips provided in the following sections. From that point, more extensive
refactoring may be required.

Compiler Flags
When building your projects on Mac OS X, supplying or modifying the compiler
flags of a few key options makes your job simple on most programs. These are
usually specified by the CFLAGS argument in your makefile. The most common flags
to append are these:

-no-cpp-precomp

Mac OS X uses precompiled headers to accelerate compiling C++ and
Objective-C source code. By default this is done with the Mac OS X
preprocessor and not the GNU C preprocessor. Since many open source
Compiling Your Code 23
  Apple Computer, Inc. June 2002

C H A P T E R 3

The Basic Port
projects are written with GNU C preprocessor extensions, which the
Mac OS X preprocessor doesn’t implement, you can turn the
preprocessor off with the -no-cpp-precomp flag. This gives you the
behavior of the GNU preprocessor. Many times if the error messages
have anything to do with precompiled headers, this is the place to start.

-shared

Use this flag to generate shared libraries on Mac OS X. Shared libraries
on Mac OS X may be different from those you are accustomed to on
other platforms. See “Dynamic Libraries and Plug-ins” (page 25).

-flat_namespace

By default, Mac OS X builds libraries and applications with a two-level
namespace where references to dynamic libraries are resolved to a
definition in a specific dynamic library when the image is built. This flag
can be used to change this behavior. For example, suppose one library,
call it libA, uses another library, libB for its implementation. Now
suppose an application wants to override the use of libB with libC. Since
libA was linked against libB at compile time, this is not possible. To
allow the application to override references made by libA to libB, you
would use the flag -flat_namespace. The ld(1) man page has a more
detailed discussion of this flag. The two-level namespace is discussed at
http://developer.apple.com/techpubs/macosx/ReleaseNotes/
TwoLevelNamespaces.html.

-bundle

Produces a Mach-O bundle format file, which is used for creating
loadable plug-ins. See the ld(1) man page for more discussion of this
flag.

-bundle_loader executable
When building a plug-in, this allows you to specify which executable
will eventually load it. Undefined symbols in that bundle are checked
against the specified executable as if it were another dynamic library,
thus ensuring that the bundle will actually be loadable without missing
symbols.

-framework framework
This flag causes the executable being built to be linked against the listed
framework.

Note: In previous versions of Mac OS X, -traditional-cpp was suggested.
Although this flag still works in the current version, the more accurate
-no-cpp-precomp should be used instead.
24 Compiling Your Code
  Apple Computer, Inc. June 2002

http://developer.apple.com/techpubs/macosx/ReleaseNotes/TwoLevelNamespaces.html
http://developer.apple.com/techpubs/macosx/ReleaseNotes/TwoLevelNamespaces.html

C H A P T E R 3

The Basic Port
More extensive discussion for the compiler in general can be found at http://
developer.apple.com/techpubs/macosx/ReleaseNotes/Compiler.html as well as
the GNU C section of http://developer.apple.com/techpubs/macosx/
DeveloperTools/devtools.html.

Executable Format
The only executable format that the Mac OS X kernel understands is the Mach-O
format. Some bridging tools are provided for classic Macintosh executable formats,
but Mach-O is the native format. It is very different from the commonly used
Executable and Linking Format (ELF). For more information on Mach-O, see Inside
Mac OS X: Mach-O Runtime Architecture, available from http://
developer.apple.com/techpubs/macosx/DeveloperTools/devtools.html.

Dynamic Libraries and Plug-ins
Mac OS X makes heavy use of dynamically linked code. Unlike other binary formats
such as ELF and xcoff, Mach-O treats plug-ins differently than shared libraries.

Libraries that you are familiar with from other UNIX-based systems may not be
installed in Mac OS X where they are on other systems. This difference is mainly due
to the presence of a single dynamically loadable framework, libSystem, that
contains the core system functionality. This single module provides the standard C
runtime environment, input/output routines, math libraries, and most of the
normal functionality required by command-line applications and network services.
This module includes functions that you would normally expect to find in libc, libm,
RPC services, and resolver. libSystem is automatically linked against so you do not
need to explicitly link against a library, for example curses, with the -lm flag.

It is important to note that Mac OS X does not support the concept of weak linking
as it is found in systems like GNU/Linux. If you override one symbol, you must
override all of the symbols in the object file.

If you need to dynamically load executable code with Mac OS X, use the
NSObjectFileImage functions specified in /usr/include/mach-o/dyld.h and the
NSObjectFileImage(3) man page. NSObjectFileImage provides the functionality you
might be accustomed to finding in the dl* routines on other systems. Alternately,
you can use the CFPlugIn or CFBundle APIs, part of CoreFoundation.
Compiling Your Code 25
  Apple Computer, Inc. June 2002

http://developer.apple.com/techpubs/macosx/ReleaseNotes/Compiler.html
http://developer.apple.com/techpubs/macosx/ReleaseNotes/Compiler.html
http://developer.apple.com/techpubs/macosx/DeveloperTools/devtools.html
http://developer.apple.com/techpubs/macosx/DeveloperTools/devtools.html
http://developer.apple.com/techpubs/macosx/DeveloperTools/devtools.html
http://developer.apple.com/techpubs/macosx/DeveloperTools/devtools.html

C H A P T E R 3

The Basic Port
The ld(1) and dyld(1) man pages give more specific details of the dynamic linker’s
implementation.

Bundles
Bundles are used throughout the Mac OS X file system. Though you may not be
familiar with them, they are not to be feared. Bundles are just directories that store
executable code and the software resource related to that code in one discrete
package. Bundles are discussed in more depth in Inside Mac OS X: System Overview.

Application Bundles

Application bundles are special bundles that show up in the Finder as a single
entity. Having only one item allows a user to double-click it to get the application
with all of its supporting resources. If you are building Mac OS X applications, you
should make application bundles. Project Builder builds them by default if you
select one of the application project types. More information on application bundles
is available in Inside Mac OS X: System Overview.

Frameworks

A framework is a type of bundle that packages a shared library with the resources
that the library requires. Depending on the library, this could include header files,
images, and reference documentation. If you are trying to maintain cross-platform
compatibility, you may not want to use them yourself, but you should be aware of
them since you might need to link against them. For example, you might want to
link against the Core Foundation framework. Since a framework is just one form of
a bundle, you may do this by linking against /System/Library/Frameworks/
CoreFoundation.framework with the -framework flag. A more thorough discussion of
Frameworks is in Inside Mac OS X: System Overview.
26 Compiling Your Code
  Apple Computer, Inc. June 2002

C H A P T E R 4
4 Porting the User Interface
Mac OS X Offers many options for transforming your applications with a graphical
user interface from a UNIX code base to a native Mac OS X code base, or even for
wrapping preexisting command-line tools or utilities with a graphical front end,
making them available to users who never want to go to the command line.

Choosing a Graphical Environment

In choosing a graphical environment to use in bringing a UNIX-based application
to Mac OS X, you will need to answer the questions posed in the following sections:

� “What Kind of Application Are You Porting?” (page 27)

� “How Well Does It Need to Integrate With Mac OS X?” (page 28)

� “Does Your Application Require Cross-Platform Functionality?” (page 28)

These questions should all be evaluated while weighing the costs and benefits of
each environment. Mac OS X offers you a variety of cross-platform tool kits and
APIs to work with, so it is important to pick the right one for your task.

What Kind of Application Are You Porting?
Are you bringing a preexisting code base to Mac OS X, or are you adding new
functionality, like a graphical interface to a command-line application? Obviously
if you already have a code base written to a particular API, and that API is
supported on Mac OS X, you probably want to stick with that API for any large,
complex application. For simple applications, or for applications where you are
Choosing a Graphical Environment 27
  Apple Computer, Inc. June 2002

C H A P T E R 4

Porting the User Interface
wrapping a command-line utility with a graphical user interface, you need to
evaluate what API to use based on the information in “How Well Does It Need to
Integrate With Mac OS X?” (page 28), and “Does Your Application Require
Cross-Platform Functionality?” (page 28). It is important to recognize the benefits
and drawbacks of each technology that are listed in the discussions on the
individual technologies.

How Well Does It Need to Integrate With Mac OS X?
Who are you marketing your application to? If they are traditional UNIX users that
just want to run a gene-sequencing application, for example, alongside of Microsoft
Office, then it may be sufficient to just install an X Window System on their Mac OS
X computer. You would simply port your X11R6-based application to Mac OS X,
leaving your code as it stands aside from the little changes you may need to make
to get it to compile in Mac OS X. If you sell that application, some customers might
be happy to have it on their platform. However, if a competing product is released
using Mac OS X native functionality, customers are likely to gravitate to that
product. A hot topic in the science and technology industries is not only bringing a
code base to Mac OS X, but then going the extra step to allow that code base to be
accessed from the native user interface of Mac OS X. This is not a decision to be
made trivially on large code bases, but it is one that can make or break a product in
the market. The individual discussions of the APIs that follow should help you to
make a well-informed decision.

Does Your Application Require Cross-Platform
Functionality?
If you have an application that requires cross-platform functionality, Mac OS X has
you set up for success. You have many options; some are built in and shipped with
every version of the operating system—others require the installation of additional
components. Figure 4-1 depicts the distinction between the cross-platform APIs that
are native and those that aren’t.
28 Choosing a Graphical Environment
  Apple Computer, Inc. June 2002

C H A P T E R 4

Porting the User Interface
Figure 4-1 Graphical environments

You can see that Mac OS X includes some of the standards in its native
cross-platform APIs: Java, OpenGL, and QuickTime. There are also commercial and
free implementations of some of the traditional UNIX technologies. If you are
building a cross-platform application, you should evaluate which platforms you are
targeting with your application and determine which API allows you to bring your
UNIX-based application to Mac OS X. Table 4-1 lists the platforms on which Mac OS
X cross-platform technologies run.

Table 4-1 Platforms of cross-platform technologies

API Platforms

OpenGL Mac OS X, UNIX-based systems, Windows

Java Mac OS X, UNIX-based systems, Windows

QuickTime Mac OS X, Windows

Qt Mac OS X, UNIX-based X Windows Systems, Windows

Tcl/Tk Mac OS X, UNIX-based systems, Windows

X11R6 Mac OS X, UNIX-based systems

Note: Although some of the technologies in Table 4-1 are supported in Mac OS 9,
that is not considered here because your UNIX code base would not run in Mac
OS 9.

Native Mac OS X

Cross-platform

Native implementation +
cross-platform capabilities

Cocoa
Quartz
Carbon

Tcl/Tk
X11R6
Qt

Java
OpenGL
QuickTime
Choosing a Graphical Environment 29
  Apple Computer, Inc. June 2002

C H A P T E R 4

Porting the User Interface
In the following sections, brief descriptions of each of the technologies you could
use for bringing your UNIX application to Mac OS X are discussed in a little more
detail.

Cocoa, Java, and Carbon

Mac OS X includes three high-level native development environments that you can
use for your application’s graphical user interface: Cocoa, Java, and Carbon. These
environments are full-featured development environments in their own right, and
you can write complete applications in any one of these environments. In the
context of this document, they are presented in light of using them as a front end for
a UNIX-based back end. Writing to these environments enables you to build an
application on top of your code base that is indistinguishable from any other native
Mac OS X application. The Java or Cocoa frameworks are probably the
environments that you will use in bringing UNIX applications to Mac OS X,
although the Carbon frameworks are used by some developers. All three are
outlined in the following sections.

Figure 4-2 High-level graphics technologies

Darwin

Cocoa CarbonJava

AppleScript

Quartz QuickTimeOpenGL

Aqua
30 Cocoa, Java, and Carbon
  Apple Computer, Inc. June 2002

C H A P T E R 4

Porting the User Interface
Cocoa
Cocoa is an object-oriented framework that incorporates many of Mac OS X’s
greatest strengths. It allows for rapid development and deployment with both its
object-oriented design and integration with the Mac OS X development tools. Cocoa
is divided into two major parts: Foundation and the Application Kit. Foundation
provides the fundamental classes that define data types and collections; it also
provides classes to access basic system information like dates and communication
ports. The Application Kit builds on that by giving you the classes you need to
implement graphical event-driven user interfaces.

The native language for Cocoa is Objective-C, which provides object-oriented
extensions to standard C and Objective-C++. Inside Mac OS X: The Objective-C
Programming Language describes the grammar of Objective-C and presents the
concepts behind it. Objective-C is supported in gcc 2.95 and 3. Most of the Cocoa
API is also accessible through Java.

Additional Cocoa information, including sample code, can be found at http://
developer.apple.com/cocoa. Cocoa documentation including tutorials is available
at http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html.

Benefits of Cocoa Development

� Rapid development environment

� Object-oriented framework design

� Excellent integration with Mac OS X developer tools

� Very robust feature set

� Can take advantage of existing C, C++, Objective-C, and Java code

Drawbacks of Cocoa Development

� No cross-platform deployment

� Requires learning Objective C or Objective C++.
Cocoa, Java, and Carbon 31
  Apple Computer, Inc. June 2002

http://developer.apple.com/cocoa
http://developer.apple.com/cocoa
http://developer.apple.com/techpubs/macosx/Cocoa/CocoaTopics.html

C H A P T E R 4

Porting the User Interface
Example: Calling C or C++ Code With Cocoa

When designing an application from the ground up in Cocoa, you are in an
object-oriented environment. You can also take advantage of Cocoa’s
object-oriented nature when converting preexisting code. You can use the Cocoa
frameworks to wrap the functionality of C or C++ code.

The Objective-C language has been extended to understand C++. Often this is called
Objective-C++, but the functionality remains basically the same. Because Cocoa
understands Objective-C++, you can call native C and C++ code from Cocoa. This
is one example of how you can take advantage of your code base while adding a
Macintosh front end. An example is provided below of how Objective-C wraps
together C, C++, and Objective-C++ functionality. Listing 4-1 shows the
Objective-C main class.

Listing 4-1 main.m

#import <AppKit/AppKit.h>

int main(int argc, const char *argv[]) {

 return NSApplicationMain(argc, argv);

}

This gets everything started when the user double-clicks the application icon. A call
is then sent to invoke a HelloController object by the NIB, a file that holds interface
information. HelloController.m and HelloController.h follow.

Listing 4-2 HelloController.m

#import "HelloController.h"

@implementation HelloController

- (void)doAbout:(id)sender

{

 NSRunAlertPanel(@"About",@"Welcome to Hello World!",@"OK",NULL,NULL);

}

- (IBAction)switchMessage:(id)sender
32 Cocoa, Java, and Carbon
  Apple Computer, Inc. June 2002

C H A P T E R 4

Porting the User Interface
{

 int which=[sender selectedRow]+1;

 [helloButton setAction:NSSelectorFromString([NSString

stringWithFormat:@"%@%d:",@"message",which])];

}

- (void)awakeFromNib

{

 [[helloButton window] makeKeyAndOrderFront:self];

}

@end

Listing 4-3 HelloController.h

#import <AppKit/AppKit.h>

@interface HelloController : NSObject

{

 id helloButton;

 id messageRadio;

}

- (void)doAbout:(id)sender;

- (void)switchMessage:(id)sender;

@end

The communication between the C, C++, and the Objective-C code is handled as
shown in Listing 4-4. The header file SayHello.h is shown in Listing 4-5.

Listing 4-4 SayHello.mm

#import "SayHello.h"

#include "FooClass.h"

#include <Carbon/Carbon.h>

@implementation SayHello
Cocoa, Java, and Carbon 33
  Apple Computer, Inc. June 2002

C H A P T E R 4

Porting the User Interface
- (void)message1:(id)sender

{

 NSRunAlertPanel(@"Regular Obj-C from Obj-C",@"Hello, World! This is a

regular old NSRunAlertPanel call in Cocoa!",@"OK",NULL,NULL);

}

- (void)message2:(id)sender

{

 int howMany;

 NSString *theAnswer;

 Foo* myCPlusPlusObj;

 myCPlusPlusObj=new Foo();

 howMany=myCPlusPlusObj->getVariable();

 delete myCPlusPlusObj;

 theAnswer=[NSString stringWithFormat:@"Hello, World! When our C++ object

is queried, it tells us that the number is %i!",howMany];

 NSRunAlertPanel(@"C++ from Obj-C",theAnswer,@"OK",NULL,NULL);

}

- (void)message3:(id)sender

{

 Alert(128,NULL); //This calls into Carbon

}

@end

Listing 4-5 SayHello.h

#import <AppKit/AppKit.h>

@interface SayHello : NSObject

{

}

- (void)message1:(id)sender;

- (void)message2:(id)sender;

- (void)message3:(id)sender;

@end
34 Cocoa, Java, and Carbon
  Apple Computer, Inc. June 2002

C H A P T E R 4

Porting the User Interface
The C++ class being wrapped by these Cocoa calls is shown in Listing 4-6. The
header file, FooClass.h, is show shown in Listing 4-7.

Listing 4-6 FooClass.cpp

#include "FooClass.h"

Foo::Foo()

{

 variable=3;

}

int Foo::getVariable()

{

 return variable;

}

Listing 4-7 FooClass.h

class Foo {

public:

 Foo();

 int getVariable();

 void * objCObject;

private:

 int variable;

};

Java
Mac OS X includes a complete implementation of Java 2 Platform Standard Edition
with the 1.3.1 JDK. Pure Java development on Mac OS works just as it would on
other platforms. More information on Java development on Mac OS X can be found
online at http://developer.apple.com/java.
Cocoa, Java, and Carbon 35
  Apple Computer, Inc. June 2002

http://developer.apple.com/java

C H A P T E R 4

Porting the User Interface
Benefits of Java Development

� Installed by default with Mac OS X

� Swing elements are displayed with the native Aqua look and feel of Mac OS X

� Cross-platform deployment

Drawbacks of Java Development

� Might not be as fast as a pure native implementation

� Complexities of communicating between two different languages if your code is
C-based

� Limited access to hardware and OS-specific capabilities

Carbon
Carbon is an environment designed to bring existing Mac OS applications to Mac
OS X. It is a very robust environment in its own right but was not designed initially
to take full advantage of Mac OS X. You can bring your UNIX applications to Mac
OS X using the Carbon API, but unless there is specific functionality you need in
Carbon, you probably should avoid it.

Benefits of Carbon Development

� Well-documented feature set

� Integration with Mac OS X developer tools

� Very robust feature set

� Simple C and C++ integration

Drawbacks of Carbon Development

� No cross-platform deployment
36 Cocoa, Java, and Carbon
  Apple Computer, Inc. June 2002

C H A P T E R 4

Porting the User Interface
Lower-Level Graphics Technologies

With some code it is simple to abstract the display code from the underlying
computational engine, but often this isn’t the case. Especially for graphics-intensive
applications, you may want to take advantage of directly calling the core graphic
functionality of your targeted operating system. You still need to wrap this
functionality in a higher-level API to display it to the screen and allow user
interaction, but for times where you need to push pixels in very specific ways, Mac
OS X offers you access to three first-class graphics technologies: Quartz, OpenGL,
and QuickTime.

Figure 4-3 Low-level graphics technologies

Quartz
Quartz is the graphical system that forms the foundation of the imaging model for
Mac OS X. Quartz gives you a standards-based drawing model and output format.
Quartz provides both a two-dimensional drawing engine and the Mac OS X
windowing environment. Its drawing engine leverages the Portable Document
Format (PDF) drawing model to provide professional-strength drawing
functionality. The windowing services provide low-level functionality like window

AppleScriptAqua

Quartz QuickTimeOpenGL

Cocoa CarbonJava

Darwin
Lower-Level Graphics Technologies 37
  Apple Computer, Inc. June 2002

C H A P T E R 4

Porting the User Interface
buffering and event handling as well as translucency. Quartz is covered in more
detail in Inside Mac OS X: System Overview and in Apple’s Quartz website (http://
developer.apple.com/quartz/).

Benefits of using Quartz

� PostScript-like drawing features

� PDF-based

� Included color management tools

� Unified print and imaging model

Drawbacks to using Quartz

� No cross-platform deployment

OpenGL
OpenGL is an industry-standard 2D and 3D graphics technology. It provides
functionality for rendering, texture mapping, special effects, and other visualization
functions. It is a fundamental part of Mac OS X and is implemented on many other
platforms. Given its integration into many modern graphics chipsets and video
cards, it is of special interest for programs that require intricate graphic
manipulation. OpenGL’s homepage gives more information on the technology in
general at http://www.opengl.org. Apple’s OpenGL page, at http://
developer.apple.com/opengl/, gives more information on how it is integrated into
Mac OS X.

Benefits of using OpenGL

� Cross-platform technology

� Native Mac OS X integration

� Included with every installation of Mac OS X

� Very robust feature set for handling graphics
38 Lower-Level Graphics Technologies
  Apple Computer, Inc. June 2002

http://www.opengl.org
http://developer.apple.com/opengl/
http://developer.apple.com/opengl/
http://developer.apple.com/quartz/
http://developer.apple.com/quartz/

C H A P T E R 4

Porting the User Interface
Drawbacks to using OpenGL

� Some level of integration at an application level is required

QuickTime

QuickTime is a powerful multimedia technology for manipulating, enhancing,
storing, and delivering graphics, video, and sound. It is a cross-platform technology
that provides delivery on Mac OS as well as Windows. More information on the
technology can be found at http://developer.apple.com/quicktime/.

Benefits of using QuickTime

� Robust feature set for manipulating sound and video

� Cross-platform development

Drawbacks to using QuickTime

� Not supported on other UNIX-based systems

Traditional UNIX Graphical Environments

UNIX-based operating systems have grown to include many environments for
providing a graphical interface to users. The X Window System is probably the most
well known. As more specific needs have arisen, other architectures have been
developed that assume an X Window implementation. Mac OS X does not use the
X Window System by default, but it can. This means that X Window System based
applications can be run, as can many of the alternative UNIX-style graphical
environments. This section gives more details on some of these environments.
Traditional UNIX Graphical Environments 39
  Apple Computer, Inc. June 2002

http://developer.apple.com/quicktime/

C H A P T E R 4

Porting the User Interface
X11R6
Mac OS X does not include an X11R6 implementation by default. If you are intent
on only porting your application without adding any Mac OS X functionality, you
can still run X11 on Mac OS X. Along with your application, you should either
distribute an X11 implementation or at least instruct your users on how to
download and configure one. There are commercial and free implementations of
X11 for Mac OS X.

XTools by Tenon Intersystems (http://www.tenon.com) and eXodus from
Powerlan USA both provide X window servers that coexist with Aqua. If you do not
need a commercial implementation of the X Window System, XFree86 offers a very
robust free X11R6 implementation. The Mac OS X version of XFree86 is an active
project with integral support from the XDarwin project. More information on the
XDarwin project including tips for installing X Windows is available at http://
www.xdarwin.org. XFree86 itself can be downloaded from http://xfree86.org/.

With an X Window System implementation, you are now free to use toolkits that
you are already familiar with such as GTK or KDE.

Benefits of X11R6 Development

� The de-facto standard in display technology for UNIX-based operating systems

� Open source implementation is available

� Somewhat portable to certain embedded systems

Drawbacks of X11R6 Development

� Complicated development environment

� Requires a large overhead of installed components

� Is not native to Mac OS X

Tcl/Tk
There is a native Aqua version of Tk available at http://tcl.sourceforge.net. With this
you can easily add graphical elements to your existing Perl, Python, or Tcl scripts.
40 Traditional UNIX Graphical Environments
  Apple Computer, Inc. June 2002

http://www.tenon.com
http://www.xdarwin.org
http://www.xdarwin.org
http://xfree86.org/
http://tcl.sourceforge.net

C H A P T E R 4

Porting the User Interface
Benefits of Tk Development

� Cross-platform development environment

� Easily integrates with Tcl and Perl scripts

� Open source implementation is available

Drawbacks of Tk Development

� Not supported by default in Mac OS X

Qt
Qt is a C++ toolkit for building graphical user interfaces. It is very popular in the
UNIX world especially as it is used by the very popular K Desktop Environment,
KDE. Trolltech has a native version of Qt, Qt/Mac, available for Mac OS X. If you
already have a C++ application or are considering building one, Qt lets you build
applications that run natively in Mac OS X as well as GNU/Linux and Windows.
Information about Qt/Mac is available at http://www.trolltech.com. Qt/Mac does
not run on top of X11 in Mac OS X, but the source code is compatible with Qt’s X
Windows implementation.

Benefits of Qt Development

� Cross-platform development environment

� Integrates easily with C++ code

� Robust feature set

Drawbacks in Qt Development

� May require licensing of third-party software
Traditional UNIX Graphical Environments 41
  Apple Computer, Inc. June 2002

http://www.trolltech.com

C H A P T E R 4

Porting the User Interface
42 Traditional UNIX Graphical Environments
  Apple Computer, Inc. June 2002

C H A P T E R 5
5 Additional Features
Although many parts of Mac OS X are the same as other UNIX-based operating
systems, Mac OS X also includes many things that set it apart. This section highlights
some of the key areas that you should be aware of. These may not be important for
a basic port of a simple application, but the more robust your application and the
more tightly it integrates with the underlying operating system, the more important
it is to understand the additional functionality provided by the operating system.
This section lists some of the key details that distinguish Mac OS X from most other
UNIX-based operating systems. Most of the information here is covered only as an
overview, with references to more detailed documentation where appropriate.

Audio Architecture

With Mac OS X, Apple has provided much of the audio functionality normally
associated with third-party MIDI and other audio protocols right into the operating
system itself. This gives developers a simple platform for developing dynamic
audio applications. For end users, it minimizes the configuration that normally is
required to get high-end audio applications to work. As a UNIX developer, it means
that if you have been looking for a platform to develop a robust audio application
on, you now have one. Among the high-level features of the Mac OS X Core Audio
subsystem are these:

� native multi-channel audio with plug-in support

� native MIDI

� audio Hardware Abstraction Layer (HAL)

� a built-in USB class driver compliant with the USB audio specification
Audio Architecture 43
  Apple Computer, Inc. June 2002

C H A P T E R 5

Additional Features
� a simplified driver model

� a direct relation with the I/O Kit through the IOAudioDevice class that enables
rapid device-driver development

If you are developing applications that need access to the audio layer of Mac OS X,
you can pursue the extensive resources available at http://developer.apple.com/
audio/.

Boot Sequence

An examination of /etc/rc reveals Start System Services, where System Starter is
called. This is an entry unfamiliar on most other UNIX-style operating systems.
System Starter is an application that offers many benefits to developers who need
to start something running at boot time. It starts up many of the services available
in Mac OS X that are traditionally started in /etc/rc. In Mac OS X, /etc/rc gets the
basics going and then System Starter allows for additional functionality. This allows
multiple services to start in tandem, provides a more robust method for checking
dependencies of services than just startup time, and even provides for localization
of startup strings printed to the screen. When invoked, System Starter looks first at
the contents of the /System/Library/StartupItems and then /Library/StartupItems
for services to start. Within each of these directories you can see examples of
services that are run by Mac OS X.

Each service to be run consists of a directory with at least two items:

� A shell script that contains the same types of commands traditionally seen in /
etc/rc. When this script is run in the startup process is determined by the
StartupParameters.plist. This file is named the same as the directory that
contains it.

� StartupParameters.plist is an XML file with a simple key-value DTD. The
property list determines which services will be started when, by looking at
dependencies on other services. It also provides descriptions for the services and
strings to print in the user interface as the system is starting.

Optionally it contains a Resources directory in which you can include localizable
strings for the messages printed to the screen.
44 Boot Sequence
  Apple Computer, Inc. June 2002

http://developer.apple.com/audio/
http://developer.apple.com/audio/

C H A P T E R 5

Additional Features
For an example of how all this works, look at the contents of one of the included
services such as Apache. In /System/Library/StartupItems/Apache you see Apache,
Resources, and StartupParamaters.plist.

Apache contains a very straight forward shell script: @@@FIX FOR JAGUAR@@@

#!/bin/sh

##

Start Web Server

##

. /etc/rc.common

if ["${WEBSERVER:=-NO-}" = "-YES-"]; then

ConsoleMessage "Starting web server"

apachectl start

fi

StartupParamaters.plist, as shown in Listing 5-1, has a bit more structure to it. It
is a compact listing of properties that identify the particular item being started as
well as what services it provides and what the prerequisites are to running it.

Listing 5-1 A startup item’s StartupParamaters.plist file

{

 Description = "Apache web server";

 Provides = ("Web Server");

 Requires = ("Disks", "Resolver");

 Uses = ("NFS", "Network Time");

 OrderPreference = "None";

 Messages =

 {

 start = "Starting Apache web server";

 stop = "Stopping Apache web server";

 };

}

Boot Sequence 45
  Apple Computer, Inc. June 2002

C H A P T E R 5

Additional Features
The resources is directory contains localizable strings that are sent to the screen.
Mac OS X determines which language to use based on the default language set in
System Preferences. It then looks at the Localizable.strings file in that language’s
folder to see if any of the strings in StartupParameters.plist are overridden for that
language. If so, it displays the appropriate string instead of the default string.

Configuration Files

Often on a UNIX-based system you find system configuration files in /etc. This is
still true in Mac OS X, but configuration information is also found in other places as
well. Networking, printing, and user system configuration details are regulated by
the NetInfo database by default. Applications usually make use of XML property
lists (plists) to hold configuration information. You can view many example
property lists by looking in ~/Library/Preferences.

It is important to keep in mind that if changing a configuration file in /etc does not
have your desired effect, you should look to see if that information is regulated by
information in the NetInfo database or is covered by an application’s property list.

Device Drivers

Mac OS X implements an object-oriented programming model for developing
device drivers. This technology is called the I/O Kit. It is a collection of system
frameworks, libraries, tools, and other resources. This model is different from the
model traditionally found on a BSD system. If your code needs to access any devices
other than disks, you use the I/O Kit. I/O Kit programming is done with a restricted
subset of C++, embedded C++ (eC++), that omits features unsuitable for use within
a multi threaded kernel. By modeling the hardware connected to a Mac OS X system
and abstracting common functionality for devices in particular categories, the I/O
Kit streamlines the process of device-driver development. I/O Kit information and
documentation is available at http://developer.apple.com/techpubs/macosx/
Darwin/IOKit/iokit.html.
46 Configuration Files
  Apple Computer, Inc. June 2002

http://developer.apple.com/techpubs/macosx/Darwin/IOKit/iokit.html
http://developer.apple.com/techpubs/macosx/Darwin/IOKit/iokit.html

C H A P T E R 5

Additional Features
The File System

The Mac OS X file system is similar to other UNIX-based operating systems, but
there are some significant differences, which are described below.

File-System Structure
Basically the file-system structure of Mac OS X is similar to a BSD-style system. A
quick glance at hier(7) should comfort you. When in doubt as to where to put
things, you can put them where you would in a BSD-style system.There are some
different directories that you might not recognize.

The default behavior of the Mac OS X Finder is to hide the directories that users
normally would not be interested in, as well as invisible files like those preceded by
a dot (.). This appearance is maintained by the Finder to promote simplicity in the
user interface. As a developer, you might want to see the dot files and your
complete directory layout. /usr/bin/defaults allows you to override the default
behavior of hiding invisible files. To show all of the files that the Finder ordinarily
hides, type in the following command in the shell:

defaults write com.apple.Finder AppleShowAllFiles true

Then restart the Finder either by logging out and back in or by choosing Force Quit
from the Apple Menu.

There are a couple of other simple ways to view the contents of hidden folders
without modifying the default behavior of the Finder itself. You can use the /usr/
bin/open command or the Finder Go to Folder command. With open(1) you can
open a directory in the Finder, hidden or not, from the shell. For example, open /
usr/include opens the hidden folder in a new Finder window. If you are in the
Finder and want to see the contents of an invisible folder hierarchy, choose Go to
Folder from the Go menu, or just press command-~, and type in the pathname of
your desired destination.

For information on how to lay out the directory structure of your completed Mac
OS X applications, consult Inside Mac OS X: Aqua Human Interface Guidelines and
Inside Mac OS X: System Overview.
The File System 47
  Apple Computer, Inc. June 2002

C H A P T E R 5

Additional Features
Supported File-System Types
Mac OS X supports Mac OS Extended (HFS+), the traditional Macintosh volume
format, and the UNIX File System (UFS). HFS+ is recommended and is what most
users have their system installed on. Some more server-centric installations have
their system installed on UFS. If you develop on UFS, you should thoroughly test
your code on an HFS+ system as well. On important thing to note about the HFS+
file system is that although it preserves case, it is not case sensitive. This means that
if you have two files whose names differ only by case, the HFS+ file system regards
them as the same file. This is rarely an issue, but it is something that you should be
aware of. In designing your application, you should not attempt to put two objects
with names that differ only by case in the same directory—for example Makefile
and makefile.

However, developing on HFS+ does not necessarily ensure that your application
will work on UFS. It is far too easy to write code where your program opens a file
as org.mklinux.formattool.prefs one time and as org.MkLinux.formattool.prefs
another time and get completely different results.

Also, do not assume that a bug is unimportant simply because you have only seen
it on UFS. Other file systems have similar properties, including potentially an NFS,
SMB, or AFP share, particularly when those shares are being served by something
other than a Mac. Thus, a bug that occurs on one file system will likely occur on
others.

The Kernel

The core of any operating system is its kernel. The Mac OS X kernel is also known
as XNU. Though Mac OS X shares much of its underlying architecture with BSD, the
kernel is one area where they differ significantly. XNU is based on the Mach
microkernel design, but it also incorporates BSD features. It is not technically a
microkernel implementation, but still has many of the benefits of a microkernel.

Why is it designed like this? Pure Mach allows you to run an operating system as a
separate process on the system that allows for flexibility, but can also slow things
down because of the translation between Mach and the layers above it. With Mac
48 The Kernel
  Apple Computer, Inc. June 2002

C H A P T E R 5

Additional Features
OS X, since the desired behavior of the operating system is known, BSD
functionality has been incorporated in the kernel alongside Mach. The result is that
the kernel combines the strengths of Mach with the strengths of BSD.

How does this relate to the actual tasks the kernel must accomplish? Figure 5-1
illustrates how the kernel’s different personalities are manifested.

Figure 5-1 XNU personalities

The Mach aspects of the kernel handle

� memory management

� Mach messaging and Mach inter process communication (IPC)

� device drivers

The BSD components

� manages users and permissions

� contains the networking stack

� provides a virtual file-system

� maintains the POSIX compatibility layer

See Inside Mac OS X: Kernel Programming for more information on why you would
(or wouldn’t) want to program in the kernel space, including a discussion on the
kernel extension (KEXT) mechanism.

- Memory management
- Messaging
- I/O Kit

- Users and permissions
- Networking stack
- Virtual File System
- POSIX

MachBSD
The Kernel 49
  Apple Computer, Inc. June 2002

C H A P T E R 5

Additional Features
NetInfo

NetInfo is the built-in Mac OS X directory system that system and application
processes can use to store and find administrative information about resources and
users. NetInfo refers to the database that stores this information as well as the
processes by which this information is fed to the system. By default each Mac OS X
computer runs both client and server processes where the server only serves to the
local client. You can also bind client computers to servers other than the local server.
Information is then accessed in a hierarchical scheme where each client computer
accesses the union of the information provided by first its local NetInfo server and
then any higher-level NetInfo servers it is bound to.

NetInfo is important to be aware of because it is the default way that Mac OS X
stores user and some network information. When a user is added, the system
automatically adds their information to the NetInfo database. Traditional tools like
adduser do not work as you might expect. You can add users in several ways:

� through the Users pane of System Preferences

� through /Applications/Utilities/NetInfo Manager

� from the command-line (see “Example: Adding a User From the
Command-Line” (page 50))

More information on NetInfo can be found primarily in netinfo(5) and lookupd(8).
Understanding and Using NetInfo gives a broad overview. netinfo(3), netinfo(5),
nidump(8), nicl(8), nifind(1), niload(8), niutil(1), and nireport(1) round out
details of implementation.

Example: Adding a User From the Command-Line
This section shows a simple example of using the command-line NetInfo tool niutil
to add a user to the system. The example specifies some of the properties that you
would normally associate with any user.

1. Create a new entry in the local (/) domain under the category /users.

niutil -create / /users/username
50 NetInfo
  Apple Computer, Inc. June 2002

C H A P T E R 5

Additional Features
2. Create and set the shell property to bash.

niutil -createprop / /users/username shell /bin/bash

3. Create and set the user’s full name.

niutil -createprop / /users/username realname "User Name"

4. Create and set the user’s ID.

niutil -createprop / /users/username uid 503

5. Creates and sets the user’s global ID property.

niutil -createprop / /users/username gid 1000

6. Create and set the username on the local domain as opposed to the network
domain or another domain.

niutil -createprop / /users/username home /Local/Users/username

7. Make an entry for the password.

niutil -createprop / /users/username _shadow_passwd

8. Now set the password.

passwd username

9. To make that user useful, you might want to add them to the admin group.

niutil -appendprop / /groups/admin users username

This is essentially what System Preferences does when it makes a new user, but is
presented here so you can understand a little bit more about what is going on
behind the scenes with the NetInfo database. A look through the hierarchies in the
NetInfo Manager application will also help you to understand how the database is
organized.

Role-Based Authentication

By default there is no root user in Mac OS X. This is a deliberate design decision both
for security and to simplify the user interface. Your applications should not assume
that a user needs superuser access to the system. For power users and developers,
Role-Based Authentication 51
  Apple Computer, Inc. June 2002

C H A P T E R 5

Additional Features
sudo is provided to run privileged applications in the shell. Privileged applications
can also be run by members of the admin group. By default, the admin group is
included in the list of sudoers. You can assign users to the admin group in System
Preferences:

1. Click the Users button.

2. Select a user from the list and click Edit User, or make a new user.

3. Click the Password tab.

4. Check Allow user to administer this computer.

5. That user can now use administrative applications as well as sudo in the shell.

Although it is generally considered unsafe practice to log in as the root user, it is
mentioned here since the root user is often used to install applications or in some
development scenarios. If during development you need to enable root for yourself:

1. Launch /Applications/Utilities/NetInfo Manager.

2. Choose Domain > Security >Authenticate.

3. As prompted, enter your administrator name and password.

4. Now choose Domain > Security > Enable Root User. The first time you do this
you need to select a root password.

Alternatively you can use sudo passwd root from the shell and set the appropriate
root password.

Important
Do not assume that an end user can enable the root user. This
information is provided to help you in development work
only.

Scripting Languages

Mac OS X includes the ability to run shell scripts in its native sh compatible shell,
zsh or the included csh and tcsh. You can also run Ruby, Perl, Python, or other
scripts you have developed. In addition, Mac OS X provides an Apple-specific
scripting language, AppleScript. Although AppleScript is immensely powerful and
52 Scripting Languages
  Apple Computer, Inc. June 2002

C H A P T E R 5

Additional Features
can be used to build applications itself, it is important to note that it is designed
mainly to communicate with graphical components of the operating system. There
are other uses you can find for it, but it is not a replacement for UNIX-style scripting
languages. You can use it, though, to put a front end onto your traditional scripts.

AppleScript does conform to the Open Scripting Architecture (OSA) language. and
can be used from the command line through the osascript(1) command. Other
languages can be made OSA compliant enabling interaction with the operating
system.

Security Services

Mac OS X implements the Common Data Security Architecture (CDSA). If you need
to use Authorization Services, Secure Transport, or certificates within the scope of
CDSA, online documentation is available at http://developer.apple.com/
techpubs/macosx/CoreTechnologies/ in the Security Services section.

In addition, Mac OS X provides OpenSSL and PAM to ease porting of applications
from other UNIX-based operating systems to Mac OS X.
Security Services 53
  Apple Computer, Inc. June 2002

http://developer.apple.com/techpubs/macosx/CoreTechnologies/
http://developer.apple.com/techpubs/macosx/CoreTechnologies/

C H A P T E R 5

Additional Features
54 Security Services
  Apple Computer, Inc. June 2002

C H A P T E R 6
6 Distributing Your Application
Developing an application is only part of the story. You must now get it out there
for people to use. Given that this is a UNIX-based operating system, you could just
tar and gzip your file, but this won’t meet the needs of the general user. To complete
the transition, you should package you application like other Mac OS X
applications. This chapter walks you through some of those details since they are
probably new to you as a UNIX developer.

Package It

The recommended form of application distribution is a compressed disk image.
This allows for the preservation of resource forks that may be present, simple drag-
and-drop installation, as well as the encryption of data if required. If your
application is a single application bundle, you can simply put your application
bundles along with any relevant documentation on a disk image with Disk Copy,
compress it, and distribute it. If you have an application that requires administrator
privileges to install into privileged directories or requires more than a simple drag-
and-drop installation, you should use /Developer/Applications/PackageMaker to
build installer packages for Apple’s Installer application. The basics of using Disk
Copy to make a disk image are given in “Disk Copy” (page 56). For help using
PackageMaker, choose PackageMaker Help from the PackageMaker Help menu.
Package It 55
  Apple Computer, Inc. June 2002

C H A P T E R 6

Distributing Your Application
Disk Copy
The following steps guide you through how to package your application as a disk
image (dmg file) for distribution on Mac OS X.

1. Open /Applications/Utilities/Disk Copy by double-clicking it.

2. From the Image menu, choose New Blank Image. Disk Copy opens a new
window with customization options as in Figure 6-1 (page 57).

3. In the “Save as” text box, enter the name of the compressed file that you will
distribute. By default a.dmg suffix is appended to the name you enter. Although
it is not required, it is a good idea to retain this suffix for clarity and simplicity.

4. In the Volume Name text field, enter the name of the volume that you want to
appear in the Finder of a user’s computer. Usually this would be the same as the
name of the compressed file without the .dmg suffix.

5. In the file browser, set the location to save the file on your computer. This has
nothing to do with the installation location on the end user’s computer, only
where it saves it on your computer.

6. Set the Size pop-up menu to a size that is large enough to hold your application.

7. Usually you want to leave the Format set to Mac OS Extended (the HFS+ file
format).

8. Leave Encryption set to none. If you change it the end user must enter a
password before the image can be mounted, which is not the normal way to
distribute an application.

9. Click Create.
56 Package It
  Apple Computer, Inc. June 2002

C H A P T E R 6

Distributing Your Application
Figure 6-1 Disk Copy options

Once you have a disk image, mount it by double-clicking it. You can now copy your
files to that mounted image. When you have everything on the image that you want,
you should make your image read-only. Again from Disk Copy:

1. Choose Convert Image from the Image menu.

2. In the file browser, select the disk image you just modified and click Convert.

3. Choose a location to save the resulting file, change the image format to read-
only, and click Convert.

You now have a disk image for your application that is easily distributable.
Package It 57
  Apple Computer, Inc. June 2002

C H A P T E R 6

Distributing Your Application
Tell the World About It

Once you have an application, how do you get the word out? First, let Apple know
about it. To get your application listed on Apple’s main download page for Mac OS
X, go to http://www.apple.com/downloads/macosx/submit/ and fill out the
appropriate information about your application. You should also go to http://
guide.apple.com/ and at the bottom of the page, click Submit a Product to get your
application listed in the Apple Guide. You might then also want to send notices to
http://www.versiontracker.com/and Macintosh news sites like http://
www.maccentral.com/ and http://www.macnn.com/.
58 Tell the World About It
  Apple Computer, Inc. June 2002

http://www.apple.com/downloads/macosx/submit/
http://guide.apple.com/
http://guide.apple.com/
http://www.versiontracker.com/
http://www.maccentral.com/
http://www.maccentral.com/
http://www.macnn.com/

7 Glossary
ADC See Apple Developer Connection

Apple Developer Connection The primary
source for technical and business resources
and information for anyone developing for
Apple's software and hardware platforms
anywhere in the world. It includes programs,
products, and services and a website filled
with up-to-date technical documentation for
existing and emerging Apple technologies.
The Apple Developer Connection is at http:/
/www.apple.com/developer/.

Aqua The graphical user interface for Mac
OS X.

bom (Bill Of Materials) A file in an
installer package used by the Installer to
determine which files to install, remove, or
upgrade. It contains all the files within a
directory, along with information about each
file such as the file's permissions, its owner
and group, size, its time of last modification,
a checksum for each file, and information
about hard links.

bundle A directory in the file system that
stores executable code and the software
resources related to that code. Applications,
plug-ins, and frameworks are types of
bundles. Except for frameworks, bundles are
file packages, presented by the Finder as a
single file.

Carbon An application environment for
Mac OS X that features a set of programming
interfaces derived from earlier versions of the
Mac OS. The Carbon API has been modified
to work properly with Mac OS X, especially
with the foundation of the operating system,
the kernel environment. Carbon applications
can run in Mac OS X, Mac OS 9, and all
versions of Mac OS 8 later than Mac OS 8.1.

An advanced object-oriented development
platform for Mac OS X. Cocoa is a set of
frameworks with programming interfaces in
both Java and Objective-C. It is based on the
integration of OPENSTEP, Apple
technologies, and Java.

Classic An application environment for
Mac OS X that lets you run non-Carbon
legacy Mac OS software. It supports
programs built for both Power PC and 68K
chip architectures and is fully integrated with
the Finder and the other application
environments.

Darwin Another name for the core of the
Mac OS X operating system. The Darwin
kernel is equivalent to the Mac OS X kernel
plus the BSD libraries and commands
essential to the BSD command-line
environment. Darwin is Open Source
technology.
59
  Apple Computer, Inc. June 2002

http://www.apple.com/developer/
http://www.apple.com/developer/

G L O S S A R Y
Darwin committer An individual who has
been granted write access to Apple’s core
operating system CVS tree. Information on
becoming a Darwin committer can be found
at http://www.opensource.apple.com/.

dmg A Mac OS X disk image file.

Finder The system application that acts as
the primary interface for file-system
interaction.

HFS (Hierarchical File System) The Mac
OS Standard file-system format, used to
represent a collection of files as a hierarchy of
directories (folders), each of which may
contain either files or folders themselves.
HFS is a two-fork volume format.

HFS+ The Mac OS Extended file-system
format. This file-system format was
introduced as part of Mac OS 8.1, adding
support for filenames longer than 31
characters, Unicode representation of file and
directory names, and efficient operation on
very large disks. HFS+ is a multiple-fork
volume format.

Mach-O The executable format of Mach
object files. This is the default executable
format in Mac OS X.

NetInfo Mac OS X’s network
administrative information database and
information retrieval system. Many Mac OS
X services consult the NetInfo database for
their configuration information.

nib file An XML archive that describes the
user interface of applications built with
Interface Builder.

.pkg file A Mac OS X Installer file. May be
grouped together into a meta package
(.mpkg).

Plist See Property List.

Project Builder Apple’s graphical
integrated development environment. It is
available free with the Mac OS X Developer
Tools package.

Property List A structured, textual
representation of data that uses the
Extensible Markup Language (XML) as the
structuring medium. Elements of a property
list represent data of certain types, such as
arrays, dictionaries, and strings.

XNU The Mac OS X kernel. The recursive
acronym stands for X’s Not Unix. It combines
functionality of Mach and BSD as well as
underlying support for the I/O Kit, Mac OS
X’s driver model.
60
  Apple Computer, Inc. June 2002

http://www.opensource.apple.com/

Index
Symbols

/etc/rc 44
/Library/StartupItems 44
/usr/bin/defaults 47

A

Apple Developer Connection (ADC) 11
AppleScript 52
Aqua Human Interface Guidelines 18, 47
audio drivers 43
audio Hardware Abstraction Layer (audio HAL)

43
autoconf 23

B

BSD
device driver model 46
file-system layout 47
functionality in Mac OS X kernel 49
relation to Mac OS X 13

-bundle gcc flag 24
-bundle_loader gcc flag 24
bundles 26

C

Carbon
as a development environment 36
shared APIs with Mac OS 9 14

cc 21

Chapter 4, “Porting the User Interface” (page 25)
22

Cocoa
available through Java 31
calling C and C++ code from 32–36
framework 31

Common Data Security Architecture (CDSA) 53
compiler

included in Mac OS X Developer Tools 20
version 21

cross-platform functionality 28–30
CVS, repository of opensource components 21

D

Darwin
CVS repository 21
mailing lists 12
relation to Mac OS X 15–16
XFree86 port 40

debugger, included in Mac OS X Developer Tools
20

developer tools 11, 17, 20
device drivers 46, 49
Disk Copy 56
disk image 56
documentation resources 11
dyld(1) 26
dynamically linked code 25

E

Embedded C++ (eC++) 46
Executable and Linking Format (ELF) 25
61
© Apple Computer, Inc. June 2002

I N D E X
F

FileMerge 21
-flat_namespace gcc flag 24
-framework gcc flag 24, 26
FreeBSD 13

G

gcc
flags 23–24
included in Mac OS X Developer Tools 20
support of Objective-C 31
version in Mac OS X 21

gdb, included in Mac OS X Developer Tools 20
GNU tools 19

H

HFS+ 48
hier(7) 47

I

I/O Kit 46
Interface Builder 21
IORegistryExplorer 21

J

Java 10, 35
and the Cocoa API 31
developer documentation 10
implementation in Mac OS X 35–36
included in Mac OS X 17

K

Kernel 48–49

L

ld(1) 24, 26
libc 25
libm 25
libSystem 25

M

Mac OS 9, Mac OS X’s relation to 14
Mac OS X

Developer Tools CD 11
relation to Darwin 15–16

Mac OS X build environment 21–22
Mach 14

Executable Format 25
interprocess communication (IPC) 49
messaging 49

Mach-O 25
Macintosh user experience 17–18
mailing lists 12
makefiles, incorporating into native build

environment 21–22
MallocDebug 21
memory management 49
MIDI 43

N

NetBSD 13
NetInfo

man pages 50
Manager 50
62
© Apple Computer, Inc. June 2002

I N D E X
networking stack 49
NEXTSTEP 14
-no-cpp-precompgcc flag 23
NSObjectFileImage 25

O

Objective-C++ 32
Objective-C, support in gcc 31
Open Scripting Architecture (OSA) 53
OpenGL 38
OPENSTEP 14

P

PackageMaker 21
PDF based display system 17, 22, 37
Perl 52
POSIX 49
Project Builder 21
property lists 46
Python 52

Q

Qt 41
Quartz 22, 37
QuickTime 39

R

resolver 25
root user 51
RPC 25
Ruby 52

S

Security Services 53
-shared gcc flag 24
shell scripting 52–53

T

Tcl/Tk 40

U

UFS 48

V

virtual file-system 49

W

weak linking 25
Worldwide Developers Conference 11

X, Y, Z

X Window System 22, 28, 40
X11R6 22, 40
XDarwin 40
XNU 48
63
© Apple Computer, Inc. June 2002

I N D E X
64
© Apple Computer, Inc. June 2002

	UNIX Porting Guide
	Contents
	Figures, Listings, and Tables
	Introduction
	Who Should Read This Document?
	How to Use This Document
	Finding More Information

	What You Need To Know About Mac OS X
	The Family Tree
	BSD
	Mach
	NEXTSTEP
	Earlier Version of the Mac OS

	Mac OS X and Darwin
	What Macintosh Users Expect
	Benefits
	Responsibilities

	The Basic Port
	Preparation
	Installing Open Source Development Tools
	The Mac OS X Developer Tools
	Building Legacy Projects With Project Builder
	Windowing Environment Considerations

	Compiling Your Code
	GNU Autoconf
	Compiler Flags
	Executable Format
	Dynamic Libraries and Plug-ins
	Bundles
	Application Bundles
	Frameworks

	Porting the User Interface
	Choosing a Graphical Environment
	What Kind of Application Are You Porting?
	How Well Does It Need to Integrate With Mac OS X?
	Does Your Application Require Cross-Platform Functionality?

	Cocoa, Java, and Carbon
	Cocoa
	Benefits of Cocoa Development
	Drawbacks of Cocoa Development
	Example: Calling C or C++ Code With Cocoa

	Java
	Benefits of Java Development
	Drawbacks of Java Development

	Carbon
	Benefits of Carbon Development
	Drawbacks of Carbon Development

	Lower-Level Graphics Technologies
	Quartz
	Benefits of using Quartz
	Drawbacks to using Quartz

	OpenGL
	Benefits of using OpenGL
	Drawbacks to using OpenGL

	QuickTime
	Benefits of using QuickTime
	Drawbacks to using QuickTime

	Traditional UNIX Graphical Environments
	X11R6
	Benefits of X11R6 Development
	Drawbacks of X11R6 Development

	Tcl/Tk
	Benefits of Tk Development
	Drawbacks of Tk Development

	Qt
	Benefits of Qt Development
	Drawbacks in Qt Development

	Additional Features
	Audio Architecture
	Boot Sequence
	Configuration Files
	Device Drivers
	The File System
	File-System Structure
	Supported File-System Types

	The Kernel
	NetInfo
	Example: Adding a User From the Command-Line

	Role-Based Authentication
	Scripting Languages
	Security Services

	Distributing Your Application
	Package It
	Disk Copy

	Tell the World About It

	Glossary
	Index

