
Beneath Mac OS X’s user-friendly and attractive user interface,
Aqua, and the application frameworks (Classic, Carbon and
Cocoa) is Darwin: Mac OS X’s core OS. Unseen by users,

Darwin provides a strong yet flexible foundation with features like
preemptive multitasking, protected memory and real-time support
that make Mac OS X a truly modern operating system.

The focus of this article is to provide a brief overview of
Darwin and its components as well as give an introduction to
developing kernel extensions—modules that extend Darwin’s
functionality. For more in-depth information, you should read
Inside Mac OS X: Kernel Environment which is available, along
with other documents referred to in this article, on the Apple
Developer Connection (ADC) web site in the Mac OS X
Documentation section:
http://developer.apple.com/techpubs/macosx/macosx.html

Most of the reference documents can be
found in the /Developer/Documentation/
Kernel directory on any Mac OS X system
with the Mac OS X Developer Tools package
installed.

Components of Darwin
Just like in the old Reese’s Peanut Butter
Cups commercials (“You’ve got chocolate in
my peanut butter… No, you’ve got peanut butter on my choco-
late!”), Darwin blends a mixture of mature industry standard com-
ponents such as Mach and BSD with Apple-engineered components
to provide Mac OS X with a stable, reliable and extensible founda-
tion. Darwin consists of five main components: Mach, I/O Kit, File
System, Networking and BSD.

Mach
At the heart of Darwin is Mach, based on Mach 3.0 from Carnegie
Mellon University. Mach manages processor resources such as CPU
usage and memory, handles scheduling, provides memory protec-
tion and provides a messaging-centered infrastructure to the rest
of the operating system layers. Mach provides Mac OS X with pro-
tected memory, preemptive multitasking, virtual memory and real-
time support.

I/O Kit
Darwin provides an object-oriented framework, I/O Kit, for the
development of device drivers. I/O Kit not only facilitates the cre-
ation of drivers for Mac OS X but also provides much of the infra-
structure that drivers require. It consists of three major components:
families, nubs and drivers.

A family defines a collection of software abstractions that are
common to all devices of a particular category. Apple provides
families for protocols such as USB, SCSI and FireWire, as well as
for devices such as storage, HID and frame buffers. Mac OS X
developers should rely upon these provided families—not create
new families.

A nub is an I/O object that represents a device or logical service.
A nub may represent a bus, a disk, a disk partition, a keyboard or
any number of similar entities.

A driver is an object that manages a specific piece of hardware,
implementing the appropriate I/O Kit abstractions for controlling

Darwin: Mac OS X’s Core OS

John Signa is the Technology Manager for Mac OS X Core OS in Apple Worldwide Developer Relations. John first got involved in the Macintosh industry in
1988 writing software for Orange Micro’s printing products. He later spent three years at SuperMac/Radius writing display and video drivers.

Register today for Apple’s Worldwide Developers
Conference (WWDC) from May 21-25, 2001 in San

Jose, California. WWDC will feature more than 100 in-
depth technical sessions and hands-on labs. You’ll
have access to Apple engineers and technology
experts to answer your software and hardware devel-
opment questions.

Naturally, WWDC 2001 session topics will cover a

full range of Apple development subjects: Mac OS X

architecture (Darwin, Quartz, OpenGL, QuickTime,

Carbon, Cocoa, Aqua), hardware, BSD UNIX, Java,

WebObjects, development tools and much more.

Register now to attend the conference, network

with peers and learn about all of the exciting technolo-

gies designed in Mac OS X. Pricing, detailed session

information and registration information is available at:

http://www.apple.com/developer/wwdc2001/

Remember, ADC Select and Premier members

receive special discounts. See you in May!

ADC Programs
and Mac OS X

Apple Developer Connection
Direct

ADC April 2001 3/8/01 1:57 PM Page 1

Updates from the Apple Developer Connection
April 2001

that hardware. Mac OS X provides a collection of drivers that han-
dle standard devices such as hard drives and human input devices.
If your device complies with an industry standard but has addi-
tional functionality, then you simply need to subclass the provided
driver and implement just the code that handles the uniqueness of
your device.

Anyone working with I/O Kit—either as an application writer or a
driver developer—should read Inside Mac OS X: I/O Kit Architecture
to get more background on how I/O Kit works. Device driver devel-
opers should also read Mac OS X: Writing I/O Kit Drivers.
Application developers should read Inside Mac OS X: Accessing
Hardware from Applications. Both documents are available on the
ADC web site in the Mac OS X Documentation section.

File System
The file system component of Darwin is based on an enhanced
Virtual File System (VFS) design, which provides the ability to add
in new file systems and enhance those already supported, including
HFS, HFS+ UFS, and ISSO 9660. VFS stacks also allow you to cre-
ate and layer new capabilities, such as file-based compression or
encryption onto an existing file system type.

Networking
Mac OS X also provides an extensible networking system. By imple-
menting Network Kernel Extensions (NKEs) developers can add
support for additional networking protocols as well as enhance the
networking functionality already provided. Developers who need to
extend Mac OS X’s networking capabilities should read Inside Mac
OS X: Network Kernel Extensions for more details.

BSD
Darwin wraps a customized version of BSD 4.4 around the kernel.
Darwin’s implementation of BSD includes many of the POSIX APIs,
exporting them to user-space, and abstracts Darwin’s file system and
networking. Darwin’s BSD also provides Mac OS X’s process model,
basic security policies and threading support.

For developers, the biggest advantage of Darwin’s BSD imple-
mentation is that it enables you to quickly port UNIX-style applica-
tions to Mac OS X. In some cases, developers have had their UNIX
applications up and running on Mac OS X in a matter of hours.
Because BSD does not provide GUI APIs, you will need to create a
Carbon or Cocoa application to handle the user interface. Much of
this work can be done using Interface Builder, Apple’s user inter-
face design tool available on the Mac OS X Developer Tools CD.

Developing Kernel Extensions
To handle enhancements to the kernel, Mac OS X provides the abili-
ty to dynamically load pieces of code, referred to as Kernel

Extensions (KEXTs), without needing to recompile the kernel. All
kernel extensions are implemented as “bundles”—folders that the
Finder treats as single entities. In addition to having names that end
in “.kext,” all kernel extensions contain a property list (plist), which
is an XML text file describing the KEXT’s contents and require-
ments. Additionally, a KEXT will usually, but not always, include a
module (KMOD) that contains the binary code that is actually
loaded into the kernel and run. A KEXT can also contain additional
resources such as icons for the Finder.

Before you dive into developing a KEXT, you must decide if you
really need to run in the kernel space. Compared to code running
at the user space, kernel extensions are more difficult to write and
debug. Furthermore, bugs in kernel extensions can have far more
severe consequences. For example, a memory access error in a user
application can, at worst, cause that application to crash yet leave
the rest of the OS functional. In contrast, a memory access error in
a KEXT causes a system panic, crashing the entire operating system.

When you are trying to decide if a piece of code should be a
KEXT, the answer is generally no. Just because your code was a sys-
tem extension in Mac OS 8 or 9, does not mean that it must neces-

• Regular expression searches are very powerful. If
you use regular expressions with subexpressions, you
can reference the subexpressions in your replace
string using “\#” syntax where “#” is the index of the
subexpression. For example, if you search for the reg-
ular expression “foo(.*)bar” and find an occurrence
with is “fooabcdbar,” a replace string of “bar\1foo”
will change that match into “barabcdfoo.”

• Find Options Sets can make your batch searches
much faster. Try defining a set that does not search
framework headers and one that only searches frame-
work headers, and swap between them depending on
what you’re looking for.

• Lots of cool features are only available if you index
your project. You have to index a project manually, the
first time. After that, your index will be kept up to date
automatically.

Project Builder
Tips & Tricks

Continued on page ?? ☛

ADC April 2001 3/8/01 1:57 PM Page 2

The following software is available from the Download Software
area of the ADC Member Site at:
http://connect.apple.com/

• CarbonLib 1.2.5 GM SDK
The CarbonLib 1.2.5 SDK for Mac OS is now available to all devel-
opers. This SDK provides all the files needed to begin Carbon
development. CarbonLib 1.2.5 supports Mac OS 8.6 and greater.
http://developer.apple.com/technical/

• CarbonLib 1.3d6 SDK
The latest prerelease version of the CarbonLib 1.3 SDK for Mac OS
is now available to all ADC Members.
http://developer.apple.com/technical/

Developer Documentation
The following new and updated documentation is available to help
you on your way to successful Mac OS X application and peripheral
development at:
http://developer.apple.com/techpubs/

• iMac Developer Note (Update)
• Inside Cocoa: Object-Oriented Programming and the

Objective-C Language
• Mac OS X: An Overview for Developers - A 10-page PDF

document that explains the unique combination of technologies
in Mac OS X and discusses the benefits of those technologies to
developers.
http://developer.apple.com/macosx/

TN1191 - USB Software Locator

QA1008 - WaitMouseUp documentation errata
QA1001 - Detecting CD/DVD media types
QA1006 - Displaying Help
QA1005 - Open File Limits on Mac OS X
QA1004 - Displaying the device tree in Mac OS X
QA1003 - Enabling Macintosh-style Menu Bars

SAMPLECODE - QuickTime: Importers and Exporters:
ElectricImageComponent
SAMPLECODE - Human Interface Toolbox: ScrollingTextUserPane
SAMPLECODE - Human Interface Toolbox: MLTEEditField
SAMPLECODE - Human Interface Toolbox: HTMLUserPane
SAMPLECODE - Human Interface Toolbox: HandyScrollingSample

New Mac OS X
Related Releases

Upcoming Seminars
and Events
For more information on Apple developer events please
visit the developer Events page at:
http://developer.apple.com/events/

Training and Seminars

Programming with Cocoa
Taught by Aaron Hillegass at the Big Nerd Ranch, Ashville, NC
and Atlanta, GA. Five-day classes are taught on developing
web-based and Mac OS X applications.
http://www.bignerdranch.com/when.html

Developer Related Conferences

National Association of Broadcasters (NAB) Conference,
Las Vegas, NV
April 21-26
Produced annually by the National Association of
Broadcasters, NAB2001 is the world's leading conference and
exhibition for the converging electronic media communica-
tions industries. Apple will be exhibiting in Booth #M9131.
http://www.nab.org/conventions/nab2001/

Worldwide Developers Conference (WWDC) 2001,
San Jose, CA
May 21-25
Register now for Apple’s Worldwide Developers Conference
2001, which takes place in San Jose, California from May 21-
25. ADC Premier members receive a free pass to the confer-
ence and ADC Select members receive discounts for early reg-
istration. For schedules and other details check out:
http://www.apple.com/developer/wwdc2001/

MacHack Conference, Dearborn, MI
June 21-23
MacHack, in its sixteenth year, remains centered around cut-
ting edge software development. MacHack's uniqueness
derives from the informal feel and the LIVE coding that
occurs around-the-clock during the conference.
http://www.machack.com/

SAMPLECODE - Networking: URLAccessSample
SAMPLECODE - Files: MoreFiles
SAMPLECODE - Printing: PostScript Output Filters
SAMPLECODE - Java: JNISample
SAMPLECODE - Human Interface Toolbox: CarbonCustomList
SAMPLECODE - Networking: OTLookupNameTest

ADC April 2001 3/8/01 1:57 PM Page 3

Darwin: Document It!

Y ou probably know that you can go to Apple’s
Open Source web site (www.opensource.
apple.com) and download the binary and

source code of Darwin and other Open Source projects.
But did you know that you can get more than code?
You can also obtain documentation as well. And you
can add to this store of information.

That’s because this documentation is created by
developers in the Apple Open Source community for
other developers. The Darwin Documentation project
(also at www.opensource.apple.com) provides you with
an assortment of tools and guides to help you compose
professional-looking documents. These documents are
of three types:

• HeaderDoc—Reference documentation produced by a
Perl tool that parses structured commentary embedded
in C and C++ header files and produces rich HTML out-
put from that commentary.

• HOWTO documents—Conceptual and task-oriented
information on specific programming topics. HOWTO
documents are based on DocBook XML because from
this format tools can process the document into multiple
formats (HTML, PDF, etc.). The documentation project
provides a template and instructions for creating
HOWTO documents. You don’t have to learn DocBook
XML if you don’t want to; you can submit the HOWTO
as an HTML document and Apple will convert it to XML.

• Manpages—Traditional UNIX-style documentation of
command-line tools and utilities.

Did You Know?

“Built for Mac OS X”
Badge Now Available

Updates from the Apple Developer Connection
April 2001

Darwin: Mac OS X’s Core OS
Continued from page ??

sarily be a kernel extension in Mac OS X. To help you decide, ask
yourself the following questions:
• Does your code need to take a primary interrupt? That is, does

something in the hardware need to interrupt the CPU?
• Does the primary client of your code reside inside the kernel (for

example, a hard drive whose primary client is the file system)?
• Do a sufficiently large number of running applications require a

resource that your code provides (for example, a file-system
stack)?
If you answered “no” to all of the above, then you should con-

sider developing your code as a library or a background applica-
tion rather than as a kernel extension. You might also consider
using one of the user level plug-in architectures provided by Mac
OS X, such as QuickTime components or Printer Modules.
However, if you are writing device drivers or code to support a
new volume format or networking protocol, KEXTs may be the
only solution.

Fortunately, while KEXTs are more difficult to write than user-
space code, several tools and procedures are available to enhance
the development and debugging process. Currently you’ll need to
use Apple’s Project Builder IDE to create KEXTs and use GDB for
debugging. For a quick introduction on creating and debugging
KEXTs with Project Builder GDB, you should read Inside Mac OS
X:Kernel Extensions Tutorial.

Open Source
In March, 1999, Apple announced the Darwin Open Source initia-
tive, making Apple the first major computer company to make
open-source development a key part of its ongoing software strate-
gy. Apple has released the source code to virtually all of the com-
ponents of Darwin to the developer community, providing you the
ability to see how Apple has implemented Mac OS X’s core OS. Not
only is this helpful in understanding how the OS works, but it also
allows you to utilize portions of Darwin within your own products.
Before doing so you should review the Apple Public Source
License to understand the limitations or obligations this entails. It
can be found at:
http://opensource.apple.com/apsl/

Summary
Developing kernel code is never trivial, however Darwin’s flexible
architecture makes it easier than ever before to write drivers or add
additional file systems for Mac OS X. By implementing such a flexi-
ble architecture in Darwin, Apple has provided a foundation that
delivers the reliability and performance you’d expect from a modern
operating system. Moreover, releasing Darwin to the open source
community ensures that it will continue to evolve as a high-quality,
interoperable system built on open standards.

Tell the world your product runs on Mac OS X! The
artwork, licensing requirements and guidelines for use of
the new “Built for Mac OS X” badge are now available
on the ADC Software Licensing web site. Please note
that this badge cannot be used for products that launch
the Classic environment.

http://developer.apple.com/mkt/swl/agreements.

html#macosx

ADC April 2001 3/8/01 1:57 PM Page 4

