
A Performance Comparison of UNIX Operating Systems on the Pentium

Kevin Lai and Mary Baker

Stanford University

Abstract

This paper evaluates the performance of three popu-
lar versions of the UNIX operating system on the x86
architecture: Linux, FreeBSD, and Solaris. We evalu-
ate the systems using freely available micro- and
application benchmarks to characterize the behavior
of their operating system services. We evaluate the
currently available major releases of the systems “as-
is,” without any performance tuning.

Our results show that the x86 operating systems and
system libraries we tested fail to deliver the Pentium’s
full memory write performance to applications. On
small-file workloads, Linux is an order of magnitude
faster than the other systems. On networking soft-
ware, FreeBSD provides two to three times higher
bandwidth than Linux. In general, Solaris perfor-
mance usually lies between that of the other two sys-
tems.

Although each operating system out-performs the
others in some area, we conclude that no one system
offers clearly better overall performance. Other fac-
tors, such as extra features, ease of installation, or
freely available source code, are more convincing rea-
sons for choosing a particular system.

1. Introduction

Many research, development, and product groups
that have traditionally run on a UNIX workstation-
based computing platform are now moving to a PC-
based platform. Organizations can afford to purchase
many more PCs than workstations on their equipment
budgets. The x86 architecture’s low cost, good perfor-
mance, and expandability give it economies of scale
that will reinforce, and be reinforced by, its popularity
for at least a few more years.

As part of this transition, these groups must decide
whether to move to a PC operating system such as
Microsoft Windows, or whether to continue running a
UNIX-compatible operating system. For many
groups, including our own, dependence on the perfor-
mance, features, and tools available in the UNIX
environment make it sensible to run an x86 imple-
mentation of UNIX.

The next step is to choose between the available
UNIX-compatible operating systems. In particular,

our group is interested in free implementations of
UNIX, because new ideas can be implemented with-
out a non-disclosure agreement and the results can be
freely distributed. We were concerned, though, by
comments describing the free implementations as toy
systems, unsupported and with poor performance and
reliability. This argument has been used against Linux
especially, since its source is not derived from as
respected an ancestor as BSD UNIX 4.4. We decided
to compare a few of the systems ourselves to deter-
mine the validity of these comments. This paper pre-
sents our results.

We benchmarked Linux, FreeBSD, and Solaris.
Linux and FreeBSD are the most popular free imple-
mentations of UNIX that run on our hardware. Solaris
is the least expensive commercial implementation
known to support the hardware on our system. (Sev-
eral other popular systems, such as NetBSD and
BSDI’s BSD/OS, do not currently support our SCSI
controller.) We evaluated only the most recent major
releases of the systems currently available, since these
are the most relevant and accessible versions for most
people.

Our benchmarks are by no means exhaustive; we
only measure the performance of tasks and workloads
that are important to us. The benchmarks test system
call latency; context switch latency for varying num-
bers of processes; memory bandwidth; file system
performance; network bandwidth for pipes, UDP and
TCP; and NFS performance on a file system work-
load.

Our results show that:

• Linux has the best performance on file metadata
operations because it updates metadata asynchro-
nously;

• FreeBSD has the best network performance;

• Solaris’ performance generally lies between that
of the other two systems; and

• All three systems’ library routines for setting and
copying memory fail to deliver the full underlying
Pentium memory bandwidth.

Given these mixed performance results, we believe
overall performance is not a sufficient argument for
choosing one of these operating systems over the oth-
ers. Performance on specific tasks may make the dif-

This paper appears in the proceedings of the 1996 USENIX Technical Conference, January 1996.

ference for some users, but the systems are
competitive overall, and particular performance prob-
lems are likely to improve in future releases of all
three systems.

Other factors may be more important, including
extra features, licensing arrangements, ease of instal-
lation, and available support. Solaris provides more
sophisticated features, including multiprocessor sup-
port, than the current free versions of UNIX, and this
will be sufficient argument in its favor for many users.
The freely available source code and free licensing of
Linux and FreeBSD motivate others to choose one of
these systems. Ease of installation and the level of
available support are also important, and we include a
section in this paper on our relative experiences
installing and configuring the systems on our hard-
ware. A large user community and free access to soft-
ware and other resources over the Internet combine to
provide reasonable support for the free implementa-
tions.

We hope these results will contribute helpful infor-
mation for those choosing a UNIX-compatible operat-
ing system for the PC. We also hope the results, where
negative, will reveal areas for improvement in future
versions of these systems.

The remaining sections of this paper describe our
benchmarking platform and methodology, our results
in more detail, and our experiences installing and
using the three systems.

2. Benchmarking Platform

Our goal was to compare UNIX operating systems
on identical PC hardware performing some standard
tasks of interest to us. The relative performance of the
systems on identical tasks is more important to us
than the absolute best performance that could be
achieved for any individual system through system-
specific tuning. For comparison purposes, and
because we only have source code available for two
of the three systems, our benchmarking methodology
is the “black box” approach. We usually attempt to
explain curious results through external testing and
benchmarking rather than investigations of kernel
code or profiling.

2.1 Operating Systems

For operating systems, we chose UNIX systems that
have a reasonably large user base and development
group, run on our hardware, and cost less than $100 in
the summer of 1995. Linux, FreeBSD and Solaris met
these criteria.

Linux is a free version of UNIX distributed under
the terms of the GNU General Public License.
Roughly speaking, this means that works derived
from the Linux kernel must be distributed with source
code and a fee can only be charged for the transfer of
a copy and not ownership of a copy or licensing of a
copy. Linux was created by Linus Torvalds when he
was a student at the University of Helsinki in Finland.
Since then, many other developers have contributed to
it. Its code is not derived from BSD or System V, but
has features of both and is also generally compliant
with Posix.1.

FreeBSD is a free version of UNIX distributed
under the terms of a University of California license.
This license requires that the copyright notice be
included in both source and binary forms of any dis-
tribution and any advertising must mention that the
product contains University of California, Berkeley
code. FreeBSD is derived from the BSD 4.4-lite
release by the Computer Systems Research Group at
U.C. Berkeley. Like Linux, many developers have
contributed to it. It is fully compatible with BSD-style
API programs.

Solaris is a commercial version of UNIX developed
by Sun Microsystems, Inc. As a commercial system,
it costs money, but we purchased it on CD-ROM for
$99; this made it cheaper than other available com-
mercial versions of UNIX. Including program devel-
opment utilities, the total cost was $244. No source
code is included. Solaris is mainly a System-V-based
UNIX, but includes BSD-compatibility header files
and libraries. Solaris runs on both the x86 and Sparc
architectures. It has a fully preemptive multi-threaded
kernel and support for multi-processor systems.

Of these systems, we chose the most recent major
release that was commonly available at our cut-off
date of October 31, 1995. Consequently, we did not
test unreleased or beta versions. For Linux, we used
version 1.2.8 from the Slackware Distribution. For
FreeBSD, we used version 2.0.5R. For Solaris, we
used version 2.4. Of course, subsequent versions of
any of these systems may perform very differently
from the versions we tested.

2.2 Hardware

We chose the most cost-effective high performance
hardware that was available to us in May, 1995. Our
benchmarking platform istnt.stanford.edu, an
Intel Pentium P54C-100MHz system with 32 mega-
bytes of main memory and two 2-gigabyte disks. It
has a standard 10-Megabit/second Ethernet card
(3Com Etherlink III 3c509). The motherboard is an
Intel Plato. The disk controller is an NCR 53c810 PCI

SCSI card, which has no on-board cache. One disk is
a Quantum Empire 2100 SCSI disk, and the other is
an HP 3725 SCSI disk.

On the first disk we installed the various operating
systems, each in its own partition. The partitioning of
the disk is shown in Table 1. We made each partition
200 megabytes more than the minimum recom-
mended for each OS. Since we installed Linux last, its
partition received the remainder of the disk and is
larger than it needs to be. (Otherwise, its partition
would be the same size as FreeBSD’s.)

We used the second disk to ensure that the unequal
partitioning of the first disk does not affect our file
system performance results. All benchmarks that
manipulate files refer to files on this second disk. We
create a fresh 200-megabyte file system on this sec-
ond disk between different benchmarks, but use the
same file system for different iterations of the same
benchmark. In this way, each of the systems has the
benefit of a fresh file system for its use, but any prob-
lems it suffers from its management of that file system
during the benchmark will remain.

3. Benchmark Overview

We took our benchmarks from a variety of sources.
The system call, context switch, and file create/delete
microbenchmarks are derived from those John Oust-
erhout used in [Ousterhout 90] to compare the effect
of RISC and CISC architectures on operating system
performance. The Modified Andrew Benchmark,
developed from the Andrew Benchmark written by
M. Satyanarayanan at CMU [Howard 88], was also
used in Ousterhout’s experiments. To get a more com-
plete picture of context switch and memory system
performance, we rewrote Ousterhout’s benchmarks in
those areas, and we modified the Modified Andrew
Benchmark for better portability.

To test file system bandwidth and seek performance,
we used Tim Bray’sbonnie benchmark [Bray 90].

Our network benchmarks are a combination of some
of the network benchmarks from Larry McVoy’s

OS Version
Size

(megabytes)

DOS/Windows 6.2/3.1 250

Solaris 2.4 700

FreeBSD 2.0.5R 400

Linux 1.2.8 600

TABLE 1. Disk Partitioning: This table lists the versions
of the operating systems benchmarked and shows how
tnt.stanford.edu’s disk is partitioned.

lmbench package [McVoy 95] and thettcp TCP/
IP benchmarking program.

We tied all of these benchmarks together with Tcl
scripts [Tcl 90] and ran each benchmark program
twenty times. Most of the benchmark programs them-
selves also loop several times over their respective
routines, and we report the average result for the total
number of iterations. All benchmarks were executed
in single-user mode. When run in multi-user mode,
the benchmarks exhibited slightly higher variance.

4. System Call

We measure system call performance since the sys-
tem call is one of the basic mechanisms by which the
operating system provides functionality to applica-
tions. Our results show that Linux has the fastest basic
system call, followed by FreeBSD and then Solaris.

We estimate system call time by callinggetpid()
in a loop. We then divide the total time by the number
of calls. This is an optimistic estimate of the time to
make a system call, because the loop allows succes-
sive getpid() calls to benefit from data and
instructions cached the first time through the loop.
Furthermore,getpid() does so little work in the
kernel that all of the application data and code can
remain in the processor cache. Given the few instruc-
tions executed in the loop and the small amount of
data accessed, the entire loop could execute in an
eight-kilobyte instruction and eight-kilobyte data pro-
cessor cache. This estimate, although optimistic, is
fine for our purposes, because we want to measure the
relative performance of the systems on the same hard-
ware.

Table 2 shows the results. Examination of the source
code for performing a system call reveals that Linux
has slightly more optimized assembly instructions
than FreeBSD. Solaris’ extra features and multi-
threaded fully-preemptive kernel contribute to its
longer system call time [McVoy 95].

OS
Time

(µseconds) Std Dev Norm.

Linux 2.31 0.10% 1.00

FreeBSD 2.62 0.08% 0.88

Solaris 3.52 2.95% 0.66

TABLE 2. System Call: This table lists the time to make
thegetpid() system call, averaged over twenty runs of
100,000 iterations each. Lower times are better. The Norm.
column lists the speed of the benchmark, normalized to the
best time among the systems. This gives a proportional
ranking for the systems in which higher numbers are
better.

5. Context Switching

Context switch time is important for file and data-
base servers and is increasingly important for Internet
servers that must sometimes service hundreds of
simultaneous connections. We determined that Linux
has the best context switch time of the three systems
with fewer than 20 processes, while FreeBSD is faster
with more processes. Solaris context switches more
slowly in all cases.

We used our own context switching benchmark,
ctx, based on ideas from the original Ousterhout
context switching benchmark,cswitch, and Larry
McVoy’s lmbench suite.Ctx estimates the context
switch time by measuring the time towrite() a
byte to another process and thenread() the one-
byte reply. For more than one process, the byte is
passed around in a round-robin fashion through a ring
of processes. The overhead of the pipe operations is
included in our results.

As with thegetpid benchmark, most, if not all of
the code and data in the loop could be cached in the
first-level CPU cache, since the Pentium architecture
has a physically addressed first- and second-level
cache [Anderson 93] that does not need to be flushed
during context switch. In addition, the context switch
benchmark is written as one program that forks into
the required number of processes. Code-sharing

FIGURE 1. Context Switch: This figure shows the time in
microseconds to make a context switch as a function of the
number of active processes in the system. The results include
the overhead of the pipe operations used in the benchmark.
Solaris-LIFO passes a byte back and forth through a chain of
processes. The other benchmarks pass the byte around a ring
of processes. Data points are the average values over twenty
runs with 50,000 context switches each. At two processes, the
standard deviations were 3% for Linux, 4% for FreeBSD, and
9% for Solaris.

0

100

200

300

400

500

600

700

800

900

1 10 100

T
im

e
 i
n

 m
ic

ro
s
e

c
.

Processes (log scale)

FreeBSD
Solaris

Solaris-LIFO
Linux-1.2

between the processes increases the probability that
the entire loop fits into the cache. As with the system
call benchmark, this lower-bound estimate is fine for
our purposes, since we want to compare the systems.

Figure 1 shows that FreeBSD context switches at
almost the same speed no matter how many active
processes there are. In contrast, Linux context switch-
ing time increases linearly with the number of active
processes, suggesting that the Linux scheduler must
search an O(number of processes) data structure dur-
ing a context switch. Aside from the linear time
required to traverse this data structure, Linux has very
little overhead, so it context switches faster than
FreeBSD for fewer than 20 active processes.

Solaris context switches more slowly in all cases.
This is in part due to slower pipe performance (as
described in Section 9.1). We measured the overhead
of sending a byte from a process, through a pipe, and
back to the same process. This took 80 microseconds.
The time for Solaris to context switch between two
active processes is 220 microseconds. Therefore,
without the pipe overhead, the estimated time to con-
text switch would be about 140 microseconds. For the
same number of processes, FreeBSD and Linux con-
text switch in 80 and 55 microseconds, respectively.
The additional overhead is largely due to the extra
work that Solaris’ multi-threaded fully preemptive
kernel scheduler must perform [McVoy 95].

Another interesting result for Solaris is the large
increase in context switch time at about 32 processes.
We hypothesized that a system resource overflows at
that point. In order to test this, we changed thectx
benchmark so that its processes pass the token in
LIFO order, back and forth through a chain of pro-
cesses. We expected that this would take advantage of
a system table with a limited number of elements and
show a gradual increase in context switch time per
process for more than 32 processes, instead of a steep
one. As shown in Figure 1, this is only true for more
than 64 processes. We still see a sharp increase at 32
processes. This behavior does not occur for Solaris
running on other architectures [Bonwick 95], so it is
not caused by the machine-independent portion of the
Solaris scheduler.

6. Memory Bandwidth

As CPUs become faster without a matching speedup
in memory, the time to access memory may dominate
the execution time of non-I/O-bound programs,
including the operating system. We therefore wanted
to know which of these systems best exposes the
underlying Pentium memory performance. To do this,
we compared the performance of the systems’libc

memcpy() andmemset() routines. Essentially the
same routines are also used by the operating systems
themselves. We also wrote our own easily-modifiable
custom routines for reading/writing/copying data to
help us better understand the behavior of the system
library routines.

For all the benchmarks, one or two buffers of vary-
ing sizes are used to read, write, or copy data. The
same buffers are used over and over again until eight
megabytes of data have been transferred, since this
gives us direct information about the effects of the
hardware caches.

Our results show that none of the systems ade-
quately delivers the Pentium’s memory write perfor-
mance. For example, the Pentium can copy data at
over 160 megabytes/second using a prefetching copy
routine, yet none of the systems we tested have imple-
mented such a routine. As described below, the
prefetching routines address the fact that the Pentium
does not have a write-allocate cache. Without this
optimization, the same routines copy data at about 40
megabytes/second.

6.1 Memory Read

As shown in Figure 2, the Pentium can read at a
peak bandwidth of slightly over 300 megabytes/sec-
ond from its first-level cache, i.e., it is reading approx-
imately one word every 13ns or four words every
50ns. Since our Pentium runs at 100Mhz, 50ns corre-
sponds to five clock ticks. Given the Pentium archi-
tecture’s dual issue pipeline, this is a reasonable
result.

FIGURE 2. Custom Read: This figure shows memory read
bandwidth as a function of the size of the buffer read. The
humps at 8 kilobytes and 256 kilobytes reveal cache effects.
The results are averaged over twenty runs.

0

50

100

150

200

250

300

350

0.01 0.1 1 10 100 1000 10000

m
e

g
a

b
y
te

s
/s

e
c
.

buffer size in kilobytes (log scale)

Linux
FreeBSD

Solaris

For buffer sizes larger than 8 kilobytes, the Pen-
tium’s performance drops off significantly because
that is the size of its first-level data cache.

The next plateau is from approximately 10 kilobytes
to 256 kilobytes, where the bandwidth is 110 mega-
bytes/second. This is due to the second-level cache.
Finally, read performance levels out at approximately
75 megabytes/second.

6.2 Memory Write

Given the good read performance of the systems, we
were initially surprised by the poormemset() write
bandwidth, which did not reach even 50 megabytes/
second (Figure 3).

This poor write performance is due to the lack of a
write-allocate cache on the Pentium [Intel 94]. In a
write-allocate cache, when a write is done to a line
that is not in the cache, that line is brought into the
cache while the write is being done, so that later
writes to the same line will hit in the cache. We specu-
lated that prefetching the cache lines in software
could improve performance on a chip without a write-
allocate cache.

In order to test this hypothesis, we coded two ver-
sions of a custom memory writing routine, one to do a
normal copy and the other to prefetch cache lines as
the write is taking place. The results of our non-
prefetching custom write benchmark are shown in
Figure 4 and are very similar to the systemmem-
set() results. In comparison, the prefetching ver-
s ion improved the Pent ium’s per fo rmance
dramatically, as shown in Figure 5. The peak write
bandwidth improved to 310 megabytes/second.

6.3 Memory Copy

As with thememset() function, thememcpy()
routine on the x86 systems has not been optimized to
prefetch, so the results formemcpy() in Figure 6
resemble those for a custom copy routine without
prefetching (Figure 7).

As with the custom write routine, we re-coded the
custom copy routine to do prefetching and achieved a
peak of over 160 megabytes/second in copy band-
width, as shown in Figure 8. This is equivalent to 320
megabytes/second in total bandwidth, which
approaches the peak set by the custom read routine.

6.4 Memory Anomalies

The spikes at the low end of the figures for all of the
custom memory benchmarks are a consequence of the
way the memory benchmarks are written. The mem-

ory benchmark’s inner loop actually consists of two
loops. One loop performs the appropriate operation on
16 bytes of data per iteration and iterates

times. The other loop performs the same operation
to the remaining 0-15 bytes at one iteration per byte.
When the buffer size is such that 15 bytes have to be
processed in the second loop, the memory bandwidth
dips, since the second loop is so much more ineffi-
cient than the first.

FIGURE 3. Memset: This figure shows memory write
bandwidth usingmemset() as a function of buffer size. the
results are averaged over twenty runs.

0

50

100

150

200

250

300

350

0.01 0.1 1 10 100 1000 10000

m
e

g
a

b
y
te

s
/s

e
c
.

buffer size in kilobytes (log scale)

Linux
FreeBSD

Solaris

FIGURE 4. Naive Custom Write: This figure shows memory
write bandwidth using a custom memory writing routine as a
function of buffer size. The results are averaged over twenty
runs.

0

50

100

150

200

250

300

350

0.01 0.1 1 10 100 1000 10000

m
e
g
a
b
y
te

s
/s

e
c
.

buffer size in kilobytes (log scale)

Linux
FreeBSD

Solaris

totalBytes
16

6.5 Summary

Applications programmers rely on the system to
shield them from the unnecessary details of the
machine while delivering its performance. In this
duty, the x86 operating system libraries that we tested
fall short in exposing the full memory write band-
width of the Pentium.

Adding prefetch to memory routines in software
used across all the processors in the x86 family is not
necessarily appropriate, since some members of the
x86 family have a write-allocate cache. Therefore,
statically-linking applications with prefetching mem-
ory routines might cause these applications to perform
worse on some CPUs. However, adding prefetching
memory routines to dynamically-linked libraries
would al low maximum performance on each
machine, because the decision about which library to
link with is made at run time. Similarly, adding
prefetching memory routines to the kernel allows
maximum performance, since the kernel can be com-
piled separately for individual machines.

7. File System Performance

We benchmarked the ability of the operating sys-
tems to satisfy the needs of two types of I/O-intensive
workloads. One workload, which includes applica-
tions such as video playback and editing and large
databases, accesses large files and therefore needs
high raw bandwidth and fast seeking. The other work-
load includes program compilation and accessing,
creating and deleting many small files. It therefore
stresses the file system’s ability to manipulate the file

FIGURE 5. Prefetching Custom Write: This figure shows
memory write bandwidth with prefetching as a function of
buffer size. The results are averaged over twenty runs.

0

50

100

150

200

250

300

350

0.01 0.1 1 10 100 1000 10000

m
e

g
a

b
y
te

s
/s

e
c
.

buffer size in kilobytes (log scale)

Linux
FreeBSD

Solaris

In order to isolate the differences between operating
systems, we used two disks to do the file system
benchmarking. The Quantum 2100S contains the
operating systems themselves and the code for the
benchmarks. We used the HP 3725 as the actual
benchmarking disk. We used the same partition for
each system and benchmark. After each benchmark
(bonnie, crtdel, MAB), we re-made the file sys-
tem on that partition to ensure that the previous
benchmark could not affect the allocation of blocks
during the current benchmark.

All of the systems have a dynamically sized buffer
cache that trades physical pages for buffer cache

FIGURE 6. Memcpy: This figure shows memory copy
bandwidth usingmemcpy() as a function of buffer size. The
results are averaged over twenty runs.

0

20

40

60

80

100

120

140

160

180

0.01 0.1 1 10 100 1000 10000

m
e
g
a
b
y
te

s
/s

e
c
.

buffer size in kilobytes (log scale)

Linux
FreeBSD

Solaris

FIGURE 7. Naive Custom Copy: This figure shows memory
copy bandwidth using a custom copy routine as a function of
buffer size. The results are averaged over twenty runs.

0

20

40

60

80

100

120

140

160

180

0.01 0.1 1 10 100 1000 10000

m
e
g
a
b
y
te

s
/s

e
c
.

buffer size in kilobytes (log scale)

Linux
FreeBSD

Solaris

pages during intensive disk accesses; as a result, they
generally do well when the data set accessed is small
enough to fit in main memory. Our results show that
FreeBSD and Solaris perform well for large files. For
small file workloads, characterized by a high percent-
age of metadata operations, Linux is an order of mag-
nitude faster than the other systems, because it
performs file metadata updates asynchronously.

7.1 Large-file Benchmarks

We wanted to test three aspects of large file perfor-
mance: 1) sequential read bandwidth, 2) sequential
write bandwidth, and 3) time to seek to a random
block in a file and perform an I/O operation on it. To
do this, we used thebonnie benchmark, written by
Tim Bray.Bonnie creates and writes to a file of the
user-specified size, reads from it sequentially, and
then seeks randomly within it. We ranbonnie with
file sizes from two to 100 megabytes to test perfor-
mance for files that do and do not fit in the buffer
cache. Unlike some of the other benchmarks we used,
bonnie performs each of its operations only once
per invocation. We invoke it 20 times per file size.

As shown in Figure 9, all three systems cache the
file for sizes up to 20 megabytes out of 32 megabytes
total on the machine. This is because all three systems
allow a trade-off between memory pages and the file
cache, so the file cache can grow to accommodate
large files.

For files in the buffer cache, FreeBSD reads
between 5% and 15% faster than both Linux and
Solaris. For files outside of the buffer cache, Solaris
has the best read bandwidth. Large sequential

FIGURE 8. Prefetching Custom Copy: This figure shows
memory copy bandwidth with prefetching as a function of
buffer size. The results are averaged over twenty runs.

0

20

40

60

80

100

120

140

160

180

0.01 0.1 1 10 100 1000 10000

m
e
g
a
b
y
te

s
/s

e
c
.

buffer size in kilobytes (log scale)

Linux
FreeBSD

Solaris

accesses negate the benefits of an LRU file cache, and
Solaris compensates for this better than the other sys-
tems. Linux has the worst read bandwidth for files
larger than the buffer cache.

The effects of FreeBSD’s efficient file cache and
Linux’s poor large file performance are also apparent
in Figure 10. FreeBSD writes files of size less than
eight megabytes 50% faster than Solaris or Linux.
Linux maintains less than half the write bandwidth of
FreeBSD or Solaris for almost all file sizes.

In contrast, Linux and Solaris can perform approxi-
mately 50% more random seeks and I/O operations
per second than FreeBSD for files inside the file

FIGURE 9. Bonnie Read: This figure shows file system
sequential read bandwidth in Megabytes/second as a function
of file size. The results are averaged over twenty runs.

0

5000

10000

15000

20000

1 10 100 1000

k
ilo

b
y
te

s
/s

e
c
.

buffer size in megabytes (log scale)

Linux-Async
FreeBSD-Sync

Solaris-Sync

FIGURE 10. Bonnie Write: This figure shows file system
sequential write bandwidth as a function of file size. The
results are averaged over twenty runs.

0

5000

10000

15000

20000

1 10 100 1000

k
ilo

b
y
te

s
/s

e
c
.

buffer size in megabytes (log scale)

Linux-Async
FreeBSD-Sync

Solaris-Sync

cache, as shown in Figure 11. Thebonnie seek
benchmark seeks to a random block in a file, reads the
8-kilobyte block and then writes it out. All three sys-
tems converge to 14ms for random seeks to blocks on
disk.

7.2 Small-file and Metadata Benchmarks

To benchmark the ability of these operating systems
to deal with many small files, we usedcrtdel from
the Ousterhout microbenchmarks.Crtdel opens a
file, writes some data to it, closes it, opens it again,
reads data from it, and deletes it. It mimics the use of
a temporary file by a compiler. It stresses the updating
of file system metadata such as the inode, directory
block and directory inode. We ran it using various file
sizes to get a view of metadata overhead versus file
data overhead (Figure 12).

Given that we measured the average non-cached
seek time of these systems to be 14ms (Figure 11),
Linux clearly is not accessing the disk during this
benchmark. This is because the Linux file system,
ext2fs, uses an asynchronous metadata update policy,
unlike the FreeBSD and Solaris file systems. While
this gives Linux a performance advantage, it could
result in losing more data after a system crash. Some
of the synchronous updates in the BSD-derived file
systems are intended to help preserve file system con-
sistency in the event of such failures.

FreeBSD does worse on this benchmark than can be
explained by its use of synchronous metadata writes.
Since both the FreeBSD and Solaris 2.4 file systems
are derived from the BSD FFS [McKusick 84], they
both use synchronous metadata writes. However,

FIGURE 11. Bonnie Seek: This figure shows the number of
random seeks per second as a function of file size. The results
are averaged over twenty runs.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 10 100 1000

s
e
e
k
s
/s

e
c
.

buffer size in megabytes (log scale)

Linux-Async
FreeBSD-Sync

Solaris-Sync

Solaris executescrtdel in only 34ms (Figure 12),
compared to FreeBSD’s almost 66ms. The magnitude
of FreeBSD’s overhead compared to Solaris suggests
that it accesses the disk more than is necessary or
seeks further. Furthermore, as the amount of data
written increases from one kilobyte to one megabyte,
the difference between the Solariscrtdel time and
the FreeBSDcrtdel time remains almost constant
at about 32ms.

We also tested the FreeBSD file system using its
optional asynchronous update policy. However, this
option appears not to be implemented yet in version
2.5R, since our results for the synchronous and asyn-
chronous modes were identical within the range of
experimental error.

8. Modified Andrew Benchmark (MAB)

So far, we have reported the results of microbench-
marks. Microbenchmarks measure particular aspects
of a system, but they may not reflect overall system
performance under any realistic workload.

As a step towards comparing the operating systems
under a typical software engineering workload, we
used the Modified Andrew Benchmark (MAB). It
consists of five parts: directory creation, file copying,
directory stats, file reading, and compilation. To
achieve portability and to eliminate the differences in
the compilation speed of different compilers, the orig-
inal MAB includes the source for an early version of
gcc. This early version ofgcc is used to compile for
the SPUR architecture during the compilation phase.
The code generated during the benchmark is never

FIGURE 12. File Create/Delete: This figure shows the
number of milliseconds to create and delete files as a function
of file size. The results are averaged over twenty runs.

0

50

100

150

200

250

300

350

1 10 100 1000 10000

m
s

file size in kilobytes (log scale)

Linux-Async
FreeBSD-Sync

Solaris-Sync

executed, so the choice of architecture does not mat-
ter.

We found we had to make further modifications to
MAB, so our results are no longer directly compara-
ble to previously-reported MAB results. The problem
with the original MAB is that its version ofranlib
relies on the system’sar, and binary file formats have
changed enough that this scheme no longer works.
Furthermore, the version ofgcc in the original MAB
is not portable to Linux or System V OSs (such as
Solaris). To maintain the spirit of the original MAB,
we modified MAB to use a recent version ofgcc and
included a compatible version of GNU’sbinutils,
which includes portable versions ofar, ld and
ranlib. We configuredgcc and thebinutils to
generate code for the x86 architecture under Linux
since the SPUR architecture is no longer supported as
a compilation target.

In this section we report MAB results for a local file
system. We report MAB results for accessing remote
file systems over NFS in Section 10.

8.1 Local File System

The results of running MAB on a local disk are
summarized in Table 3. Linux’s first place finish is not
surprising, given its performance on the file and disk
micro-benchmarks. Linux’s asynchronous file meta-
data updates and its good read performance for the
small files (<1 megabyte) used in MAB indicate that it
should do well on MAB.

What is more surprising is FreeBSD’s good perfor-
mance on MAB, given its poor performance in
manipulating file meta-data and in reading small files.
FreeBSD is competitive with Solaris in each of the
benchmark phases, exceptstating directories,
where it exceeds even Linux’s performance. FreeBSD
keeps a separate attribute cache for the directory
information, which is filled in the first phase (direc-
tory creation) and is thus accessed in the third phase
(directory stats). Linux does not have such a separate
attribute cache, so its attribute information is knocked

OS
Time

(seconds)
Std
Dev Norm.

Linux 43.12 4.10% 1.00

FreeBSD 47.45 1.02% 0.91

Solaris 2.4 54.31 1.93% 0.80

TABLE 3. MAB Local: This table shows the total time to
execute MAB on the local file system as averaged over
twenty runs.

out of the file data cache during the second (file copy-
ing) phase.

9. Network Benchmarks

Faster network technology such as 100 Megabit/
second Ethernet is becoming more affordable, while
CPUs are becoming memory speed bound. As a
result, the limiting factor for network performance is
the efficiency of the network protocol implementa-
tion. We discovered that none of the x86 systems can
fully utilize a 100 Megabit/second Ethernet link, with
Linux being two to three times slower than FreeBSD
and Solaris.

In most of our network benchmarks we used the
loopback interface rather than an actual Ethernet
interface. Although this ignores the effect of colli-
sions and other real world effects, we wanted to mea-
sure the best possible performance in order to predict
these operating systems’ performance on a future net-
work.

To isolate possible contributors and detriments to
network performance, we tested network performance
using three protocols: pipes, UDP, and TCP.

9.1 Pipes

Although pipes are not a network protocol, they
require much of the same functionality as a network
protocol, such as system calls, context switches and
data copying. We measured pipe bandwidth as an
upper bound on what network protocols could achieve
if there were no other overhead. The pipe benchmark,
bw_pipe, comes from Larry McVoy’slmbench
benchmark package. It forks off a child and transfers
50 megabytes in 64-kilobyte chunks between itself
and the child.

From Table 4, we see that Linux and FreeBSD could
theoretically keep up with a 100-Megabit/second
Ethernet, if the TCP/IP protocols added no additional
overhead. Solaris, however, could not keep up.
Solaris’ slower system calls and context switches do
not explain this poor performance. The extra overhead

OS

Bandwidth
(megabits/

second)
Std
Dev Norm.

Linux 119.36 1.60% 1.00

FreeBSD 98.03 2.79% 0.82

Solaris 2.4 65.38 1.56% 0.55

TABLE 4. Pipe Bandwidth: This table shows the
bandwidth of a pipe as averaged over twenty runs.

for Solaris pipes is largely due to their implementa-
tion on top of System V streams [Kottapurath 95].

9.2 UDP

The UDP protocol is a slightly higher-level protocol
than pipes, in that UDP forms packets but does not
use time-outs, sequence numbers, and retransmission
as in TCP. In order to test UDP bandwidth, we ran
ttcp using a variety of packet sizes, transferring 4
megabytes every iteration. When run as the sender,
ttcp reads data fromstdin, breaks it up into pack-
ets, and sends the packets to the receiver. When run as
the receiver,ttcp reads packets and writes the data
to stdout. We redirected the output to/dev/
null.

From Figure 13, we see that FreeBSD achieves a
bandwidth of almost 50 megabits/second, meaning
that its UDP runs at only 50% of the bandwidth of
pipes. Solaris is worse. It achieves a peak bandwidth
of 32 megabits/second; just as with FreeBSD, this is
50% of the pipe bandwidth. Linux has the most sur-
prising result. Although it has the best pipe band-
width, it has the worst UDP performance. Its UDP
performance of 16 Megabits/second is only 14% of its
pipe bandwidth. Its UDP implementation has a high
amount of overhead due to unnecessary copies and
inefficient buffer allocation.

9.3 TCP

TCP is one of the most widely used protocols today,
forming the basis for many reliable protocols, such as
ftp. In order to benchmark TCP, we usebw_tcp,
which comes from Larry McVoy’slmbench bench-

FIGURE 13. UDP: This figure shows UDP bandwidth as a
function of packet size when averaged over twenty
benchmark runs.

0

5

10

15

20

25

30

35

40

45

50

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

m
e

g
a

b
it
s
/s

e
c
.

packet size in bytes

Linux
FreeBSD

Solaris

mark package.Bw_tcp transfers 3 megabytes from

one process to another during each iteration using a
48K buffer.

As shown in Table 5, Solaris’s TCP performance is
not hindered by its poor UDP performance. On the
other hand, Linux’s TCP implementation is just as
slow as its UDP implementation. Our investigations
indicate that version 1.2.8 of Linux has a TCP win-
dow of only one packet. This severely limits its TCP
bandwidth, as our results show.

10. MAB across NFS

To measure network file system performance for the
three systems, we ran MAB over NFS, using the three
systems as clients. We ran these tests using a Linux
1.2.8 file server and a SunOS 4.1.4 file server. We did
not test FreeBSD or Solaris as servers, since we do
not have the extra equipment available.

Using a Linux server, the FreeBSD client was the
top performer due to its good networking perfor-
mance. Linux comes in second place with Solaris
coming in third.

Overall, the benchmark ran more slowly when
accessing the SunOS server rather than the Linux
server. The SunOS file server uses a synchronous
update policy, as required by the NFS specifications.
The Linux file server continues using its asynchro-
nous update policy, and we hypothesize that this
explains the difference in performance.

With the SunOS file server, we see somewhat differ-
ent relative results between the three clients.

OS

Bandwidth
(megabits/

second)
Std
Dev Norm.

FreeBSD 65.95 2.36% 1.00

Solaris 2.4 60.11 16.34% 0.91

Linux 25.03 5.45% 0.38

TABLE 5. TCP Bandwidth: This table shows the
bandwidth of a TCP connection.

OS
Time

(seconds)
Std
Dev Norm.

FreeBSD 53.24 0.87% 1.00

Linux 57.73 2.20% 0.92

Solaris 2.4 58.38 1.36% 0.91

TABLE 6. MAB NFS with Linux Server: This table
shows the total time to execute MAB across NFS to a
Linux server.

FreeBSD’s good networking performance again
serves it well when connected to a SunOS NFS server.
Solaris performs relatively poorly when using the
SunOS server instead of the Linux server. Linux’s
networking code is apparently tuned to work with
other Linux hosts and performs miserably when con-
nected to other types of servers.

11. Other Comments

In testing the performance of these systems, we
encountered other differences that may be of interest
to those choosing which system to run. Although
some of these differences may disappear in later
releases, some are a consequence of the policies of the
system developers or vendors and therefore may not
change in future releases. These differences include
installation difficulties, porting differences, and sys-
tem bugs found while running the benchmarks. All of
these areas help indicate the level of support one can
expect when using the systems.

In general, the availability of free system source
code combined with a large user community seems to
have a positive effect on these problems. If the user
community contributes drivers and other system soft-
ware, then that system will work sooner on a wider
range of hardware than is possible for a system with
only a few developers. Even if no one has contributed
a desired feature yet, we can implement and even dis-
tribute it ourselves at a minimum of cost. Almost by
definition, systems research requires new hardware
and software that has not yet made it to the commer-
cial sector. Additionally, a large user community with
access to source code will provide support for a sys-
tem outside of a vendor’s or a developer’s support,
increasing the probability that bugs will be found and
fixed quickly and questions answered.

Our installation experiences with the three systems
were very different, with Linux being the easiest and
Solaris being the most difficult.

OS
Time

(seconds)
Std
Dev Norm.

FreeBSD 67.60 1.41% 1.00

Solaris 2.4 87.94 3.17% 0.77

Linux 115.06 1.54% 0.59

TABLE 7. MAB NFS w/SunOS Server: This table
shows the total time to execute MAB across NFS to a
SunOS Server.

Some of the good installation features:

• Installation across the Internet (Linux, FreeBSD)

• WWW installation documentation (Linux,
FreeBSD)

Among the problems we encountered:

• Didn’t support the (very common) Panasonic/Cre-
ative Labs CD-ROM drive (FreeBSD, Solaris)

• Crashed during installation due to a driver incom-
patibility (FreeBSD, Solaris)

• Obliterated existing boot loader and disk partitions
(Solaris)

• Inaccessible or missing system administration
documentation (Solaris)

Our experiences porting the benchmarks to the three
systems were somewhat more pleasant, with Linux
again being the easiest system and Solaris the most
difficult. In general, Solaris was the most difficult
because there is no Internet repository of Solaris bina-
ries, and there isn’t yet a large enough Solaris x86
user community to provide the level of support found
for the other systems.

Some of the good porting features:

• BSD and System V compatibility (Linux)

• Automatic installation of commonly used free
software likegcc, emacs, and tcsh (Linux,
FreeBSD)

• Internet repository of pre-compiled binaries
(Linux, FreeBSD)

Some of the porting difficulties:

• No installed compiler (Solaris)

• Only an old and buggy pre-compiledgcc avail-
able on the Internet (Solaris)

All of the systems had problems running the bench-
marks, with the most irritating problem being that the
Linux 1.2.8 NFS server requires that clients connect
on a privileged port. FreeBSD 2.0.5 clients do not do
this by default.

12. Conclusions

No one system dominates our benchmarks. Linux
does well on system calls, context switching, and pipe
bandwidth. Its performance on small-file workloads
with intensive metadata manipulation is an order of
magnitude faster than the other systems. Linux also
does well when communicating with a Linux NFS
server. However, Linux has poor overall networking
performance and poor NFS performance when con-
nected to a SunOS NFS server.

FreeBSD has better networking and NFS perfor-
mance than the other systems. It performs well on
large files but not on small files. It does well on the
Modified Andrew Benchmark both remotely and
locally.

Solaris has poor system call, context switch and
pipe performance. It reads large files efficiently but
does poorly when the Modified Andrew Benchmark is
run locally.

An inherent disadvantage of our “black box” bench-
marking approach is that it cannot conclusively
explain all of the performance differences in these
systems. In many cases, it merely exposes the differ-
ences. In addition, using microbenchmarks isolates
the areas of both good and bad performance, but
microbenchmarks cannot predict overall application
performance. Despite the di fferences on the
microbenchmarks, the systems’ overall performance
on the MAB workload is much closer.

13. Future Work

Benchmarking operating systems that are under
active development is always a work in progress. As
we write this paper, new versions of all of these sys-
tems are about to be released with several changes in
their performance. The latest development version of
the Linux kernel (1.3.40) is a good example. It has
very fast context switching (10 microseconds for two
active processes with very little slowdown as the
number of active processes increases). Its NFS perfor-
mance has also improved. The next release version of
FreeBSD (2.1) will offer ordered asynchronous meta-
data updates to improve small-file performance while
helping maintain file system consistency during a
crash. The next version of Solaris (2.5) will have
faster context switching and better performance in
general.

Architectural support for counting operating system
events such as TLB misses [Chen 95] can reveal more
about the workings of an operating system than using
timers alone. We plan to apply some of those tech-
niques to the systems that interest us.

14. Benchmark Source Code Availability

Our benchmarking package is available at http://
plastique.stanford.edu/bench.html.

15. Acknowledgments

We thank Larry McVoy for his many helpful com-
ments. We thank Jeff Bonwick, Sherif Kottapurath,
Dean Long, and Behfar Razavi for their answers to
questions about Solaris. We thank Stuart Cheshire,

Elliot Poger, Mendel Rosenblum, Jonathan Stone,
Diane Tang, and especially Darrell Long for their
comments on the paper. We thank the authors of all
the benchmarks we used. This work was supported by
a grant from the Reid and Polly Anderson Faculty
Scholar Fund at Stanford University.

16. References

[Anderson 93] Don Anderson and Tom Shanley,Pen-
tium Processor System Architecture, MindShare
Press, 1993.

[Anderson 91] Thomas Anderson, Henry Levy, Brian
Bershad, and Edward Lazowska, “The Interac-
tion of Architecture and Operating System
Design.”ASPLOS-IV, April 1991.

[Bonwick 95] Jeff Bonwick, personal communica-
tion, November 1995.

[Bray 90] Tim Bray, Bonnie source code, 1990.

[Chen 93] J. Bradley Chen and Brian N. Bershad,
“The Impact of Operating System Structure on
Memory System Performance,”Proceedings of
the Fourteenth International Symposium on
Operating Systems Principles, pp. 120-133,
December 1993.

[Chen 95] J. Bradley Chen, Yasuhiro Endo, Kee
Chan, David Mazieres, Antonio Dias, Margo
Seltzer, and Michael D. Smith, “The Measured
Performance of Personal Computer Operating
System.” To appear in theProceedings of the Fif-
teenth International Symposium on Operating
Systems Principles, December 1995.

[FreeBSD 95] Various Authors, FreeBSD Home
Page,http://www.freebsd.org/, 1995.

[Howard 88] J. Howard, et al. “Scale and Perfor-
mance in a Distributed File System.”ACM
Transactions on Computer Systems, Vol. 6, No. 1,
February 1988, pp. 51-81.

[Intel 94] Intel Corporation, “The Pentium Family
User’s Manual, Volume 3: Architecture and Pro-
gramming Manual.” Intel Literature Sales, P.O.
Box 7641, Mt. Prospect, IL 60056-7641, 1994.

[Kottapurath 95] Sherif Kottapurath, personal com-
munication, November 1995.

[LDP 95] Various Authors, Linux Documentation
Project,http://sunsite.unc.edu/mdw/
welcome.html, 1995.

[McKusick 84] Marshall K. McKusick, “A Fast File
System for Unix,”ACM Transactions on Com-
puter Systems 2(3) pp. 181-197, 1984.

[McVoy 95] Larry McVoy and Carl Staelin,
“lmbench: Portable tools for performance analy-
sis,” To appear inProceedings for the 1996
Usenix Technical Conference, January 1996.

[Ousterhout 90] John K. Ousterhout, “Why Aren’t
Operating Systems Getting Faster As Fast As
Hardware?”Proceedings of the 1990 Summer
Usenix Conference, pp. 247-256, June 1990.

[Rashid 88] Richard F. Rashid, et al., “Machine-Inde-
pendent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Architec-
tures,”IEEE Transactions on Computers, Vol. 37
No. 8, pp. 896-908, August 1988.

[Tcl 90] John K. Ousterhout,Tcl and the Tk Toolkit,
Addison-Wesley, Reading, Massachusetts, 1994.

[Welsh 94] Matt Welsh,The Linux Bible, Yggdrasil
Computing Incorporated, 1994

17. Biographical Information

Kevin Lai is a Master’s student at Stanford Univer-
sity. He received his B.A. in Computer Science in
1992 from U.C. Berkeley. His interests include per-
formance measurement, operating systems, and oper-
ating system support for mobile computing.

Mary Baker is an assistant professor in the Depart-
ments of Computer Science and Electrical Engineer-
ing at Stanford University. Her interests include
operating systems, distributed systems, and software
fault tolerance. She received her Ph.D. in computer
science in 1994 from U.C. Berkeley.

The authors’ email addresses are
{laik, mgbaker}@cs.stanford.edu.

