
Using and Porting GNU CC

Richard M. Stallman

last updated 14 October 1993

for version 2.5

Copyright c© 1988, 1989, 1992, 1993 Free Software Foundation, Inc.

For GCC Version 2.5,
Printed October, 1993.

ISBN 1-882114-35-3

Published by the Free Software Foundation
675 Massachusetts Avenue
Cambridge, MA 02139 USA

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the sections entitled “GNU General Public License” and
“Protect Your Freedom—Fight ‘Look And Feel’” are included exactly as in the original, and pro-
vided that the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modified versions, except that the sections entitled “GNU General
Public License” and “Protect Your Freedom—Fight ‘Look And Feel’”, and this permission notice,
may be included in translations approved by the Free Software Foundation instead of in the original
English.

GNU GENERAL PUBLIC LICENSE 1

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is covered by the GNU
Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you
if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and

2 Using and Porting GNU CC

passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have made it clear that any patent must be licensed
for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The “Program”, below, refers to any such program or work, and a “work based on the Pro-
gram” means either the Program or any derivative work under copyright law: that is to say, a
work containing the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without limitation in
the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of
Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

GNU GENERAL PUBLIC LICENSE 3

b. You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause
it, when started running for such interactive use in the most ordinary way, to print or
display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

a. Accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 1 and 2 above on a medium customarily used
for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for
a charge no more than your cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be distributed under the terms
of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if
you received the program in object code or executable form with such an offer, in accord
with Subsection b above.)

4 Using and Porting GNU CC

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus the scripts used to control com-
pilation and installation of the executable. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source
along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Pro-
gram is void, and will automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance
of this License to do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,
the balance of the section is intended to apply and the section as a whole is intended to apply
in other circumstances.

GNU GENERAL PUBLIC LICENSE 5

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the
rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under this
License may add an explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded. In such case, this
License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFOR-
MANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DE-

6 Using and Porting GNU CC

FECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO
YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-
SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES
OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

GNU GENERAL PUBLIC LICENSE 7

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than ‘show
w’ and ‘show c’; they could even be mouse-clicks or menu items—whatever suits your program.

8 Using and Porting GNU CC

You should also get your employer (if you work as a programmer) or your school, if any, to sign
a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit linking
proprietary applications with the library. If this is what you want to do, use the GNU Library
General Public License instead of this License.

Contributors to GNU CC 9

Contributors to GNU CC

In addition to Richard Stallman, several people have written parts of GNU CC.

• The idea of using RTL and some of the optimization ideas came from the program PO written at
the University of Arizona by Jack Davidson and Christopher Fraser. See “Register Allocation
and Exhaustive Peephole Optimization”, Software Practice and Experience 14 (9), Sept. 1984,
857-866.

• Paul Rubin wrote most of the preprocessor.

• Leonard Tower wrote parts of the parser, RTL generator, and RTL definitions, and of the Vax
machine description.

• Ted Lemon wrote parts of the RTL reader and printer.

• Jim Wilson implemented loop strength reduction and some other loop optimizations.

• Nobuyuki Hikichi of Software Research Associates, Tokyo, contributed the support for the
Sony NEWS machine.

• Charles LaBrec contributed the support for the Integrated Solutions 68020 system.

• Michael Tiemann of Cygnus Support wrote the front end for C++, as well as the support for in-
line functions and instruction scheduling. Also the descriptions of the National Semiconductor
32000 series cpu, the SPARC cpu and part of the Motorola 88000 cpu.

• Jan Stein of the Chalmers Computer Society provided support for Genix, as well as part of
the 32000 machine description.

• Randy Smith finished the Sun FPA support.

• Robert Brown implemented the support for Encore 32000 systems.

• David Kashtan of SRI adapted GNU CC to the Vomit-Making System (VMS).

• Alex Crain provided changes for the 3b1.

• Greg Satz and Chris Hanson assisted in making GNU CC work on HP-UX for the 9000 series
300.

• William Schelter did most of the work on the Intel 80386 support.

• Christopher Smith did the port for Convex machines.

• Paul Petersen wrote the machine description for the Alliant FX/8.

• Alain Lichnewsky ported GNU CC to the Mips cpu.

• Devon Bowen, Dale Wiles and Kevin Zachmann ported GNU CC to the Tahoe.

• Jonathan Stone wrote the machine description for the Pyramid computer.

• Gary Miller ported GNU CC to Charles River Data Systems machines.

• Richard Kenner of the New York University Ultracomputer Research Laboratory wrote the
machine descriptions for the AMD 29000, the DEC Alpha, the IBM RT PC, and the IBM

10 Using and Porting GNU CC

RS/6000 as well as the support for instruction attributes. He also made changes to better
support RISC processors including changes to common subexpression elimination, strength
reduction, function calling sequence handling, and condition code support, in addition to
generalizing the code for frame pointer elimination.

• Richard Kenner and Michael Tiemann jointly developed reorg.c, the delay slot scheduler.

• Mike Meissner and Tom Wood of Data General finished the port to the Motorola 88000.

• Masanobu Yuhara of Fujitsu Laboratories implemented the machine description for the Tron
architecture (specifically, the Gmicro).

• NeXT, Inc. donated the front end that supports the Objective C language.

• James van Artsdalen wrote the code that makes efficient use of the Intel 80387 register stack.

• Mike Meissner at the Open Software Foundation finished the port to the MIPS cpu, including
adding ECOFF debug support.

• Ron Guilmette implemented the protoize and unprotoize tools, the support for Dwarf sym-
bolic debugging information, and much of the support for System V Release 4. He has also
worked heavily on the Intel 386 and 860 support.

• Torbjorn Granlund of the Swedish Institute of Computer Science implemented multiply-by-
constant optimization and better long long support, and improved leaf function register allo-
cation.

• Mike Stump implemented the support for Elxsi 64 bit CPU.

• John Wehle added the machine description for the Western Electric 32000 processor used in
several 3b series machines (no relation to the National Semiconductor 32000 processor).

• Holger Teutsch provided the support for the Clipper cpu.

• Kresten Krab Thorup wrote the run time support for the Objective C language.

• Stephen Moshier contributed the floating point emulator that assists in cross-compilation and
permits support for floating point numbers wider than 64 bits.

• David Edelsohn contributed the changes to RS/6000 port to make it support the PowerPC
and POWER2 architectures.

• Steve Chamberlain wrote the support for the Hitachi SH processor.

• Peter Schauer wrote the code to allow debugging to work on the Alpha.

Chapter 1: Protect Your Freedom—Fight “Look And Feel” 11

1 Protect Your Freedom—Fight “Look And Feel”

This section is a political message from the League for Programming Freedom to the
users of GNU CC. It is included here as an expression of support for the League on the
part of the Free Software Foundation.

Apple and Lotus are trying to create a new form of legal monopoly: a copyright on a class of user
interfaces. These monopolies would cause serious problems for users and developers of computer
software and systems. Xerox, too, has tried to make a monopoly for itself on window systems; their
suit against Apple was thrown out on a technicality, but Xerox has not said anything to indicate
it wouldn’t try again.

Until a few years ago, the law seemed clear: no one could restrict others from using a user
interface; programmers were free to implement any interface they chose. Imitating interfaces,
sometimes with changes, was standard practice in the computer field. The interfaces we know
evolved gradually in this way; for example, the Macintosh user interface drew ideas from the Xerox
interface, which in turn drew on work done at Stanford and SRI. 1-2-3 imitated VisiCalc, and dBase
imitated a database program from JPL.

Most computer companies, and nearly all computer users, were happy with this state of affairs.
The companies that are suing say it does not offer “enough incentive” to develop their products,
but they must have considered it “enough” when they made their decision to do so. It seems they
are not satisfied with the opportunity to continue to compete in the marketplace—not even with a
head start.

If companies like Xerox, Lotus, and Apple are permitted to make law through the courts, the
precedent will hobble the software industry:

• Gratuitous incompatibilities will burden users. Imagine if each car manufacturer had to arrange
the pedals in a different order.

• Software will become and remain more expensive. Users will be “locked in” to proprietary
interfaces, for which there is no real competition.

• Large companies have an unfair advantage wherever lawsuits become commonplace. Since
they can easily afford to sue, they can intimidate small companies with threats even when
they don’t really have a case.

• User interface improvements will come slower, since incremental evolution through creative
imitation will no longer be permitted.

12 Using and Porting GNU CC

• Even Apple, etc., will find it harder to make improvements if they can no longer adapt the
good ideas that others introduce, for fear of weakening their own legal positions. Some users
suggest that this stagnation may already have started.

• If you use GNU software, you might find it of some concern that user interface copyright
will make it hard for the Free Software Foundation to develop programs compatible with the
interfaces that you already know.

To protect our freedom from lawsuits like these, a group of programmers and users have formed
a new grass-roots political organization, the League for Programming Freedom.

The purpose of the League is to oppose new monopolistic practices such as user-interface copy-
right and software patents; it calls for a return to the legal policies of the recent past, in which
these practices were not allowed. The League is not concerned with free software as an issue, and
not affiliated with the Free Software Foundation.

The League’s membership rolls include John McCarthy, inventor of Lisp, Marvin Minsky,
founder of the Artificial Intelligence lab, Guy L. Steele, Jr., author of well-known books on Lisp and
C, as well as Richard Stallman, the developer of GNU CC. Please join and add your name to the
list. Membership dues in the League are $42 per year for programmers, managers and professionals;
$10.50 for students; $21 for others.

The League needs both activist members and members who only pay their dues.

To join, or for more information, phone (617) 243-4091 or write to:

League for Programming Freedom
1 Kendall Square #143
P.O. Box 9171
Cambridge, MA 02139

You can also send electronic mail to league@prep.ai.mit.edu.

Here are some suggestions from the League for things you can do to protect your freedom to
write programs:

• Don’t buy from Xerox, Lotus or Apple. Buy from their competitors or from the defendants
they are suing.

• Don’t develop software to work with the systems made by these companies.

• Port your existing software to competing systems, so that you encourage users to switch.

Chapter 1: Protect Your Freedom—Fight “Look And Feel” 13

• Write letters to company presidents to let them know their conduct is unacceptable.

• Tell your friends and colleagues about this issue and how it threatens to ruin the computer
industry.

• Above all, don’t work for the look-and-feel plaintiffs, and don’t accept contracts from them.

• Write to Congress to explain the importance of this issue.
House Subcommittee on Intellectual Property
2137 Rayburn Bldg
Washington, DC 20515

Senate Subcommittee on Patents, Trademarks and Copyrights
United States Senate
Washington, DC 20510

(These committees have received lots of mail already; let’s give them even more.)

Express your opinion! You can make a difference.

14 Using and Porting GNU CC

Chapter 2: Compile C, C++, or Objective C 15

2 Compile C, C++, or Objective C

The C, C++, and Objective C versions of the compiler are integrated; the GNU C compiler can
compile programs written in C, C++, or Objective C.

“GCC” is a common shorthand term for the GNU C compiler. This is both the most general
name for the compiler, and the name used when the emphasis is on compiling C programs.

When referring to C++ compilation, it is usual to call the compiler “G++”. Since there is only
one compiler, it is also accurate to call it “GCC” no matter what the language context; however,
the term “G++” is more useful when the emphasis is on compiling C++ programs.

G++ is a compiler, not merely a preprocessor. G++ builds object code directly from your C++
program source. There is no intermediate C version of the program. (By contrast, for example,
some other implementations use a program that generates a C program from your C++ source.)
Avoiding an intermediate C representation of the program means that you get better object code,
and better debugging information. The GNU debugger, GDB, works with this information in the
object code to give you comprehensive C++ source-level editing capabilities (see section “C and
C++” in Debugging with GDB).

16 Using and Porting GNU CC

Chapter 3: GNU CC Command Options 17

3 GNU CC Command Options

When you invoke GNU CC, it normally does preprocessing, compilation, assembly and linking.
The “overall options” allow you to stop this process at an intermediate stage. For example, the ‘-c’
option says not to run the linker. Then the output consists of object files output by the assembler.

Other options are passed on to one stage of processing. Some options control the preprocessor
and others the compiler itself. Yet other options control the assembler and linker; most of these
are not documented here, since you rarely need to use any of them.

Most of the command line options that you can use with GNU CC are useful for C programs;
when an option is only useful with another language (usually C++), the explanation says so explic-
itly. If the description for a particular option does not mention a source language, you can use that
option with all supported languages.

See Section 3.3 [Compiling C++ Programs], page 23, for a summary of special options for
compiling C++ programs.

The gcc program accepts options and file names as operands. Many options have multiletter
names; therefore multiple single-letter options may not be grouped: ‘-dr’ is very different from
‘-d -r’.

You can mix options and other arguments. For the most part, the order you use doesn’t matter.
Order does matter when you use several options of the same kind; for example, if you specify ‘-L’
more than once, the directories are searched in the order specified.

Many options have long names starting with ‘-f’ or with ‘-W’—for example, ‘-fforce-mem’,
‘-fstrength-reduce’, ‘-Wformat’ and so on. Most of these have both positive and negative forms;
the negative form of ‘-ffoo’ would be ‘-fno-foo’. This manual documents only one of these two
forms, whichever one is not the default.

3.1 Option Summary

Here is a summary of all the options, grouped by type. Explanations are in the following sections.

Overall Options

See Section 3.2 [Options Controlling the Kind of Output], page 21.

18 Using and Porting GNU CC

-c -S -E -o file -pipe -v -x language

C Language Options

See Section 3.4 [Options Controlling C Dialect], page 24.
-ansi -fcond-mismatch -fno-asm -fno-builtin
-fsigned-bitfields -fsigned-char
-funsigned-bitfields -funsigned-char -fwritable-strings
-traditional -traditional-cpp -trigraphs

C++ Language Options

See Section 3.5 [Options Controlling C++ Dialect], page 27.
-fall-virtual -fdollars-in-identifiers
-felide-constructors -fenum-int-equiv
-fexternal-templates -fmemoize-lookups
-fno-strict-prototype -fnonnull-objects
-fthis-is-variable -nostdinc++

Warning Options

See Section 3.6 [Options to Request or Suppress Warnings], page 31.
-fsyntax-only -pedantic -pedantic-errors
-w -W -Wall -Waggregate-return -Wcast-align
-Wcast-qual -Wchar-subscript -Wcomment -Wconversion
-Wenum-clash -Werror -Wformat -Wid-clash-len
-Wimplicit -Wimport -Winline -Wmissing-prototypes
-Wnested-externs -Woverloaded-virtual -Wparentheses
-Wpointer-arith -Wredundant-decls -Wreturn-type
-Wshadow -Wstrict-prototypes -Wswitch
-Wtemplate-debugging -Wtraditional -Wtrigraphs
-Wuninitialized -Wunused -Wwrite-strings

Debugging Options

See Section 3.7 [Options for Debugging Your Program or GCC], page 36.
-a -dletters -fpretend-float
-g -glevel -ggdb -gdwarf -gdwarf+
-gstabs -gstabs+ -gcoff -gxcoff -gxcoff+
-p -pg -save-temps -print-libgcc-file-name

Optimization Options

See Section 3.8 [Options that Control Optimization], page 39.
-fcaller-saves -fcse-follow-jumps -fcse-skip-blocks
-fdelayed-branch -fexpensive-optimizations
-ffast-math -ffloat-store -fforce-addr -fforce-mem
-finline-functions -fkeep-inline-functions
-fno-default-inline -fno-defer-pop -fno-function-cse
-fno-inline -fno-peephole -fomit-frame-pointer
-frerun-cse-after-loop -fschedule-insns
-fschedule-insns2 -fstrength-reduce -fthread-jumps
-funroll-all-loops -funroll-loops
-O -O2

Chapter 3: GNU CC Command Options 19

Preprocessor Options

See Section 3.9 [Options Controlling the Preprocessor], page 44.
-Aassertion -C -dD -dM -dN
-Dmacro[=defn] -E -H
-idirafter dir
-include file -imacros file
-iprefix file -iwithprefix dir
-iwithprefixbefore dir
-M -MD -MM -MMD -nostdinc -P -trigraphs -Umacro

Assembler Option

See Section 3.10 [Passing Options to the Assembler], page 46.
-Wa,option

Linker Options

See Section 3.11 [Options for Linking], page 46.
object-file-name
-llibrary -nostartfiles -nostdlib
-static -shared -symbolic
-Wl,option -Xlinker option
-u symbol

Directory Options

See Section 3.12 [Options for Directory Search], page 48.
-Bprefix -Idir -I- -Ldir

Target Options

See Section 3.13 [Target Options], page 49.
-b machine -V version

Machine Dependent Options

See Section 3.14 [Hardware Models and Configurations], page 50.
M680x0 Options
-m68000 -m68020 -m68020-40 -m68030 -m68040 -m68881
-mbitfield -mc68000 -mc68020 -mfpa -mnobitfield
-mrtd -mshort -msoft-float

VAX Options
-mg -mgnu -munix

SPARC Options
-mepilogue -mfpu -mhard-float
-mno-fpu -mno-epilogue -msoft-float
-msparclite -mv8

Convex Options
-mc1 -mc2 -mc32 -mc34 -mc38
-margcount -mnoargcount
-mlong32 -mlong64

20 Using and Porting GNU CC

-mbolatile-cache -mvolatile-nocache

AMD29K Options
-m29000 -m29050 -mbw -mdw -mkernel-registers
-mlarge -mnbw -mnodw -mnormal -msmall -mstack-check
-muser-registers

M88K Options
-m88000 -m88100 -m88110 -mbig-pic
-mcheck-zero-division -mhandle-large-shift
-midentify-revision -mno-check-zero-division
-mno-ocs-debug-info -mno-ocs-frame-position
-mno-optimize-arg-area -mno-serialize-volatile
-mno-underscores -mocs-debug-info
-mocs-frame-position -moptimize-arg-area
-mserialize-volatile -mshort-data-num -msvr3
-msvr4 -mtrap-large-shift -muse-div-instruction
-mversion-03.00 -mwarn-passed-structs

RS/6000 Options and PowerPC
-mcpu=cpu type
-mpower -mno-power -mpower2 -pno-power2
-mpowerpc -mno-powerpc -mpowerpcsqr -mno-powerpcsqr
-mpowerpc64 -mno-powerpc64
-mnew-mnemonics -mno-new-mnemonics
-mnormal-toc -mminimal-toc -mno-fop-in-toc

RT Options
-mcall-lib-mul -mfp-arg-in-fpregs -mfp-arg-in-gregs
-mfull-fp-blocks -mhc-struct-return -min-line-mul
-mminimum-fp-blocks -mnohc-struct-return

MIPS Options
-mcpu=cpu type -mips2 -mips3 -mint64
-mlong64 -mlonglong128 -mmips-as -mgas -mrnames
-mno-rnames -mgpopt -mno-gpopt -mstats -mno-stats
-mmemcpy -mno-memcpy -mno-mips-tfile -mmips-tfile
-msoft-float -mhard-float -mabicalls -mno-abicalls
-mhalf-pic -mno-half-pic -mlong-calls -mno-long-calls
-G num -nocpp

i386 Options
-m486 -mno-486 -msoft-float -msvr3-shlib -mieee-fp
-mno-fp-ret-in-387

HPPA Options
-mpa-risc-1-0
-mpa-risc-1-1
-mlong-calls
-mdisable-fpregs

Chapter 3: GNU CC Command Options 21

-mdisable-indexing
-mtrailing-colon

Intel 960 Options
-mcpu type
-mnumerics -msoft-float
-mcode-align -mno-code-align
-mleaf-procedures -mno-leaf-procedures
-mtail-call -mno-tail-call
-mcomplex-addr -mno-complex-addr
-mclean-linkage -mno-clean-linkage
-mic-compat -mic2.0-compat -mic3.0-compat
-masm-compat -mintel-asm
-mstrict-align -mno-strict-align
-mold-align -mno-old-align

DEC Alpha Options
-mfp-regs -mno-fp-regs -mno-soft-float
-msoft-float

Clipper Options
-mc300 -mc400

System V Options
-G -Qy -Qn -YP,paths -Ym,dir

Code Generation Options

See Section 3.15 [Options for Code Generation Conventions], page 68.
-fcall-saved-reg -fcall-used-reg
-ffixed-reg -finhibit-size-directive
-fno-common -fno-ident
-fno-gnu-linker -fpcc-struct-return -fpic -fPIC
-freg-struct-return -fshared-data -fshort-enums
-fshort-double -fvolatile -fvolatile-global
-fverbose-asm

3.2 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly and
linking, always in that order. The first three stages apply to an individual source file, and end
by producing an object file; linking combines all the object files (those newly compiled, and those
specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is done:

22 Using and Porting GNU CC

file.c C source code which must be preprocessed.

file.i C source code which should not be preprocessed.

file.ii C++ source code which should not be preprocessed.

file.m Objective-C source code. Note that you must link with the library ‘libobjc.a’ to
make an Objective-C program work.

file.h C header file (not to be compiled or linked).

file.cc

file.cxx

file.C C++ source code which must be preprocessed. Note that in ‘.cxx’, the last two letters
must both be literally ‘x’. Likewise, ‘.C’ refers to a literal capital C.

file.s Assembler code.

file.S Assembler code which must be preprocessed.

other An object file to be fed straight into linking. Any file name with no recognized suffix
is treated this way.

You can specify the input language explicitly with the ‘-x’ option:

-x language

Specify explicitly the language for the following input files (rather than letting the
compiler choose a default based on the file name suffix). This option applies to all
following input files until the next ‘-x’ option. Possible values for language are:

c objective-c c++
c-header cpp-output c++-cpp-output
assembler assembler-with-cpp

-x none Turn off any specification of a language, so that subsequent files are handled according
to their file name suffixes (as they are if ‘-x’ has not been used at all).

If you only want some of the stages of compilation, you can use ‘-x’ (or filename suffixes) to tell
gcc where to start, and one of the options ‘-c’, ‘-S’, or ‘-E’ to say where gcc is to stop. Note that
some combinations (for example, ‘-x cpp-output -E’ instruct gcc to do nothing at all.

-c Compile or assemble the source files, but do not link. The linking stage simply is not
done. The ultimate output is in the form of an object file for each source file.

By default, the object file name for a source file is made by replacing the suffix ‘.c’,
‘.i’, ‘.s’, etc., with ‘.o’.

Unrecognized input files, not requiring compilation or assembly, are ignored.

-S Stop after the stage of compilation proper; do not assemble. The output is in the form
of an assembler code file for each non-assembler input file specified.

Chapter 3: GNU CC Command Options 23

By default, the assembler file name for a source file is made by replacing the suffix ‘.c’,
‘.i’, etc., with ‘.s’.

Input files that don’t require compilation are ignored.

-E Stop after the preprocessing stage; do not run the compiler proper. The output is in
the form of preprocessed source code, which is sent to the standard output.

Input files which don’t require preprocessing are ignored.

-o file Place output in file file. This applies regardless to whatever sort of output is being pro-
duced, whether it be an executable file, an object file, an assembler file or preprocessed
C code.

Since only one output file can be specified, it does not make sense to use ‘-o’ when
compiling more than one input file, unless you are producing an executable file as
output.

If ‘-o’ is not specified, the default is to put an executable file in ‘a.out’, the object file
for ‘source.suffix’ in ‘source.o’, its assembler file in ‘source.s’, and all preprocessed C
source on standard output.

-v Print (on standard error output) the commands executed to run the stages of com-
pilation. Also print the version number of the compiler driver program and of the
preprocessor and the compiler proper.

-pipe Use pipes rather than temporary files for communication between the various stages of
compilation. This fails to work on some systems where the assembler is unable to read
from a pipe; but the GNU assembler has no trouble.

3.3 Compiling C++ Programs

C++ source files conventionally use one of the suffixes ‘.C’, ‘.cc’, or ‘.cxx’; preprocessed C++
files use the suffix ‘.ii’. GNU CC recognizes files with these names and compiles them as C++
programs even if you call the compiler the same way as for compiling C programs (usually with the
name gcc).

However, C++ programs often require class libraries as well as a compiler that understands the
C++ language—and under some circumstances, you might want to compile programs from standard
input, or otherwise without a suffix that flags them as C++ programs. g++ is a shell script that
calls GNU CC with the default language set to C++, and automatically specifies linking against the
GNU class library libg++. 1 On many systems, the script g++ is also installed with the name c++.

1 Prior to release 2 of the compiler, there was a separate g++ compiler. That version was based
on GNU CC, but not integrated with it. Versions of g++ with a ‘1.xx’ version number—for

24 Using and Porting GNU CC

When you compile C++ programs, you may specify many of the same command-line options
that you use for compiling programs in any language; or command-line options meaningful for C
and related languages; or options that are meaningful only for C++ programs. See Section 3.4
[Options Controlling C Dialect], page 24, for explanations of options for languages related to C.
See Section 3.5 [Options Controlling C++ Dialect], page 27, for explanations of options that are
meaningful only for C++ programs.

3.4 Options Controlling C Dialect

The following options control the dialect of C (or languages derived from C, such as C++ and
Objective C) that the compiler accepts:

-ansi Support all ANSI standard C programs.

This turns off certain features of GNU C that are incompatible with ANSI C, such as
the asm, inline and typeof keywords, and predefined macros such as unix and vax

that identify the type of system you are using. It also enables the undesirable and
rarely used ANSI trigraph feature, and disallows ‘$’ as part of identifiers.

The alternate keywords __asm__, __extension__, __inline__ and __typeof__ con-
tinue to work despite ‘-ansi’. You would not want to use them in an ANSI C program,
of course, but it useful to put them in header files that might be included in compila-
tions done with ‘-ansi’. Alternate predefined macros such as __unix__ and __vax__

are also available, with or without ‘-ansi’.

The ‘-ansi’ option does not cause non-ANSI programs to be rejected gratuitously. For
that, ‘-pedantic’ is required in addition to ‘-ansi’. See Section 3.6 [Warning Options],
page 31.

The macro __STRICT_ANSI__ is predefined when the ‘-ansi’ option is used. Some
header files may notice this macro and refrain from declaring certain functions or defin-
ing certain macros that the ANSI standard doesn’t call for; this is to avoid interfering
with any programs that might use these names for other things.

The functions alloca, abort, exit, and _exit are not builtin functions when ‘-ansi’
is used.

-fno-asm Do not recognize asm, inline or typeof as a keyword. These words may then be
used as identifiers. You can use the keywords __asm__, __inline__ and __typeof__

instead. ‘-ansi’ implies ‘-fno-asm’.

example, g++ version 1.37 or 1.42—are much less reliable than the versions integrated with GCC
2. Moreover, combining G++ ‘1.xx’ with a version 2 GCC will simply not work.

Chapter 3: GNU CC Command Options 25

-fno-builtin

Don’t recognize builtin functions that do not begin with two leading underscores. Cur-
rently, the functions affected include abort, abs, alloca, cos, exit, fabs, ffs, labs,
memcmp, memcpy, sin, sqrt, strcmp, strcpy, and strlen.

GCC normally generates special code to handle certain builtin functions more effi-
ciently; for instance, calls to alloca may become single instructions that adjust the
stack directly, and calls to memcpy may become inline copy loops. The resulting code
is often both smaller and faster, but since the function calls no longer appear as such,
you cannot set a breakpoint on those calls, nor can you change the behavior of the
functions by linking with a different library.

The ‘-ansi’ option prevents alloca and ffs from being builtin functions, since these
functions do not have an ANSI standard meaning.

-trigraphs

Support ANSI C trigraphs. You don’t want to know about this brain-damage. The
‘-ansi’ option implies ‘-trigraphs’.

-traditional

Attempt to support some aspects of traditional C compilers. Specifically:

• All extern declarations take effect globally even if they are written inside of a
function definition. This includes implicit declarations of functions.

• The newer keywords typeof, inline, signed, const and volatile are not recog-
nized. (You can still use the alternative keywords such as __typeof__, __inline_
_, and so on.)

• Comparisons between pointers and integers are always allowed.

• Integer types unsigned short and unsigned char promote to unsigned int.

• Out-of-range floating point literals are not an error.

• Certain constructs which ANSI regards as a single invalid preprocessing number,
such as ‘0xe-0xd’, are treated as expressions instead.

• String “constants” are not necessarily constant; they are stored in writable space,
and identical looking constants are allocated separately. (This is the same as the
effect of ‘-fwritable-strings’.)

• All automatic variables not declared register are preserved by longjmp. Ordi-
narily, GNU C follows ANSI C: automatic variables not declared volatile may
be clobbered.

• In the preprocessor, comments convert to nothing at all, rather than to a space.
This allows traditional token concatenation.

• In the preprocessor, macro arguments are recognized within string constants in a
macro definition (and their values are stringified, though without additional quote

26 Using and Porting GNU CC

marks, when they appear in such a context). The preprocessor always considers a
string constant to end at a newline.

• The predefined macro __STDC__ is not defined when you use ‘-traditional’, but _
_GNUC__ is (since the GNU extensions which __GNUC__ indicates are not affected by
‘-traditional’). If you need to write header files that work differently depending
on whether ‘-traditional’ is in use, by testing both of these predefined macros
you can distinguish four situations: GNU C, traditional GNU C, other ANSI C
compilers, and other old C compilers. See section “Standard Predefined Macros”
in The C Preprocessor, for more discussion of these and other predefined macros.

• The preprocessor considers a string constant to end at a newline (unless the newline
is escaped with ‘\’). (Without ‘-traditional’, string constants can contain the
newline character as typed.)

• The character escape sequences ‘\x’ and ‘\a’ evaluate as the literal characters ‘x’
and ‘a’ respectively. Without ‘-traditional’, ‘\x’ is a prefix for the hexadecimal
representation of a character, and ‘\a’ produces a bell.

• In C++ programs, assignment to this is permitted with ‘-traditional’. (The
option ‘-fthis-is-variable’ also has this effect.)

You may wish to use ‘-fno-builtin’ as well as ‘-traditional’ if your program uses
names that are normally GNU C builtin functions for other purposes of its own.

-traditional-cpp

Attempt to support some aspects of traditional C preprocessors. This includes the
last three items in the table immediately above, but none of the other effects of
‘-traditional’.

-fcond-mismatch

Allow conditional expressions with mismatched types in the second and third argu-
ments. The value of such an expression is void.

-funsigned-char

Let the type char be unsigned, like unsigned char.

Each kind of machine has a default for what char should be. It is either like unsigned

char by default or like signed char by default.

Ideally, a portable program should always use signed char or unsigned char when
it depends on the signedness of an object. But many programs have been written to
use plain char and expect it to be signed, or expect it to be unsigned, depending on
the machines they were written for. This option, and its inverse, let you make such a
program work with the opposite default.

The type char is always a distinct type from each of signed char or unsigned char,
even though its behavior is always just like one of those two.

Chapter 3: GNU CC Command Options 27

-fsigned-char

Let the type char be signed, like signed char.

Note that this is equivalent to ‘-fno-unsigned-char’, which is the negative form
of ‘-funsigned-char’. Likewise, the option ‘-fno-signed-char’ is equivalent to
‘-funsigned-char’.

-fsigned-bitfields

-funsigned-bitfields

-fno-signed-bitfields

-fno-unsigned-bitfields

These options control whether a bitfield is signed or unsigned, when the declaration
does not use either signed or unsigned. By default, such a bitfield is signed, because
this is consistent: the basic integer types such as int are signed types.

However, when ‘-traditional’ is used, bitfields are all unsigned no matter what.

-fwritable-strings

Store string constants in the writable data segment and don’t uniquize them. This is
for compatibility with old programs which assume they can write into string constants.
The option ‘-traditional’ also has this effect.

Writing into string constants is a very bad idea; “constants” should be constant.

-fallow-single-precision

Do not promote single precision math operations to double precision, even when com-
piling with ‘-traditional’.

Traditional K&R C promotes all floating point operations to double precision, regard-
less of the sizes of the operands. On the architecture for which you are compiling, single
precision may be faster than double precision. If you must use ‘-traditional’, but
want to use single precision operations when the operands are single precision, use this
option. This option has no effect when compiling with ANSI or GNU C conventions
(the default).

3.5 Options Controlling C++ Dialect

This section describes the command-line options that are only meaningful for C++ programs;
but you can also use most of the GNU compiler options regardless of what language your program
is in. For example, you might compile a file firstClass.C like this:

g++ -g -felide-constructors -O -c firstClass.C

28 Using and Porting GNU CC

In this example, only ‘-felide-constructors’ is an option meant only for C++ programs; you can
use the other options with any language supported by GNU CC.

Here is a list of options that are only for compiling C++ programs:

-fall-virtual

Treat all possible member functions as virtual, implicitly. All member functions (except
for constructor functions and new or delete member operators) are treated as virtual
functions of the class where they appear.

This does not mean that all calls to these member functions will be made through
the internal table of virtual functions. Under some circumstances, the compiler can
determine that a call to a given virtual function can be made directly; in these cases
the calls are direct in any case.

-fdollars-in-identifiers

Accept ‘$’ in identifiers. You can also explicitly prohibit use of ‘$’ with the option
‘-fno-dollars-in-identifiers’. (GNU C++ allows ‘$’ by default on some target
systems but not others.) Traditional C allowed the character ‘$’ to form part of iden-
tifiers. However, ANSI C and C++ forbid ‘$’ in identifiers.

-felide-constructors

Elide constructors when this seems plausible. With this option, GNU C++ initializes y
directly from the call to foo without going through a temporary in the following code:

A foo ();
A y = foo ();

Without this option, GNU C++ (1) initializes y by calling the appropriate constructor
for type A; (2) assigns the result of foo to a temporary; and, finally, (3) replaces the
initial value of y with the temporary.

The default behavior (‘-fno-elide-constructors’) is specified by the draft ANSI C++
standard. If your program’s constructors have side effects, ‘-felide-constructors’
can change your program’s behavior, since some constructor calls may be omitted.

-fenum-int-equiv

Permit implicit conversion of int to enumeration types. Normally GNU C++ allows
conversion of enum to int, but not the other way around.

-fexternal-templates

Produce smaller code for template declarations, by generating only a single copy of each
template function where it is defined. To use this option successfully, you must also
mark all files that use templates with either ‘#pragma implementation’ (the definition)
or ‘#pragma interface’ (declarations). See Section 6.4 [Declarations and Definitions
in One Header], page 148, for more discussion of these pragmas.

Chapter 3: GNU CC Command Options 29

When your code is compiled with ‘-fexternal-templates’, all template instantiations
are external. You must arrange for all necessary instantiations to appear in the imple-
mentation file; you can do this with a typedef that references each instantiation needed.
Conversely, when you compile using the default option ‘-fno-external-templates’,
all template instantiations are explicitly internal.

You do not need to specify ‘-fexternal-templates’ when compiling a file that does
not define and instantiate templates used in other files, even if your file uses tem-
plates defined in other files that are compiled with ‘-fexternal-templates’. The
only side effect is an increase in object size for each file that you compile without
‘-fexternal-templates’.

-fmemoize-lookups

-fsave-memoized

Use heuristics to compile faster. These heuristics are not enabled by default, since they
are only effective for certain input files. Other input files compile more slowly.

The first time the compiler must build a call to a member function (or reference to a
data member), it must (1) determine whether the class implements member functions
of that name; (2) resolve which member function to call (which involves figuring out
what sorts of type conversions need to be made); and (3) check the visibility of the
member function to the caller. All of this adds up to slower compilation. Normally, the
second time a call is made to that member function (or reference to that data member),
it must go through the same lengthy process again. This means that code like this:

cout << "This " << p << " has " << n << " legs.\n";

makes six passes through all three steps. By using a software cache, a “hit” sig-
nificantly reduces this cost. Unfortunately, using the cache introduces another
layer of mechanisms which must be implemented, and so incurs its own overhead.
‘-fmemoize-lookups’ enables the software cache.

Because access privileges (visibility) to members and member functions may differ
from one function context to the next, G++ may need to flush the cache. With the
‘-fmemoize-lookups’ flag, the cache is flushed after every function that is compiled.
The ‘-fsave-memoized’ flag enables the same software cache, but when the compiler
determines that the context of the last function compiled would yield the same access
privileges of the next function to compile, it preserves the cache. This is most helpful
when defining many member functions for the same class: with the exception of member
functions which are friends of other classes, each member function has exactly the same
access privileges as every other, and the cache need not be flushed.

-fno-strict-prototype

Treat a function declaration with no arguments, such as ‘int foo ();’, as C would
treat it—as saying nothing about the number of arguments or their types. Normally,
such a declaration in C++ means that the function foo takes no arguments.

30 Using and Porting GNU CC

-fnonnull-objects

Assume that objects reached through references are not null.

Normally, GNU C++ makes conservative assumptions about objects reached through
references. For example, the compiler must check that a is not null in code like the
following:

obj &a = g ();
a.f (2);

Checking that references of this sort have non-null values requires extra code, however,
and it is unnecessary for many programs. You can use ‘-fnonnull-objects’ to omit
the checks for null, if your program doesn’t require checking.

-fthis-is-variable

Permit assignment to this. The incorporation of user-defined free store management
into C++ has made assignment to ‘this’ an anachronism. Therefore, by default it is
invalid to assign to this within a class member function; that is, GNU C++ treats the
type of ‘this’ in a member function of class X to be ‘X *const’. However, for backwards
compatibility, you can make it valid with ‘-fthis-is-variable’.

-nostdinc++

Do not search for header files in the standard directories specific to C++, but do still
search the other standard directories. (This option is used when building libg++.)

-traditional

For C++ programs (in addition to the effects that apply to both C and C++), this
has the same effect as ‘-fthis-is-variable’. See Section 3.4 [Options Controlling C
Dialect], page 24.

In addition, these optimization, warning, and code generation options have meanings only for
C++ programs:

-fno-default-inline

Do not assume ‘inline’ for functions defined inside a class scope. See Section 3.8
[Options That Control Optimization], page 39.

-Wenum-clash

-Woverloaded-virtual

-Wtemplate-debugging

Warnings that apply only to C++ programs. See Section 3.6 [Options to Request or
Suppress Warnings], page 31.

+en Control how virtual function definitions are used, in a fashion compatible with cfront

1.x. See Section 3.15 [Options for Code Generation Conventions], page 68.

Chapter 3: GNU CC Command Options 31

3.6 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erroneous
but which are risky or suggest there may have been an error.

You can request many specific warnings with options beginning ‘-W’, for example ‘-Wimplicit’
to request warnings on implicit declarations. Each of these specific warning options also has a
negative form beginning ‘-Wno-’ to turn off warnings; for example, ‘-Wno-implicit’. This manual
lists only one of the two forms, whichever is not the default.

These options control the amount and kinds of warnings produced by GNU CC:

-fsyntax-only

Check the code for syntax errors, but don’t do anything beyond that.

-w Inhibit all warning messages.

-Wno-import

Inhibit warning messages about the use of ‘#import’.

-pedantic

Issue all the warnings demanded by strict ANSI standard C; reject all programs that
use forbidden extensions.

Valid ANSI standard C programs should compile properly with or without this option
(though a rare few will require ‘-ansi’). However, without this option, certain GNU
extensions and traditional C features are supported as well. With this option, they are
rejected.

‘-pedantic’ does not cause warning messages for use of the alternate keywords whose
names begin and end with ‘__’. Pedantic warnings are also disabled in the expression
that follows __extension__. However, only system header files should use these escape
routes; application programs should avoid them. See Section 5.32 [Alternate Keywords],
page 141.

This option is not intended to be useful; it exists only to satisfy pedants who would
otherwise claim that GNU CC fails to support the ANSI standard.

Some users try to use ‘-pedantic’ to check programs for strict ANSI C conformance.
They soon find that it does not do quite what they want: it finds some non-ANSI
practices, but not all—only those for which ANSI C requires a diagnostic.

A feature to report any failure to conform to ANSI C might be useful in some in-
stances, but would require considerable additional work and would be quite different
from ‘-pedantic’. We recommend, rather, that users take advantage of the extensions

32 Using and Porting GNU CC

of GNU C and disregard the limitations of other compilers. Aside from certain super-
computers and obsolete small machines, there is less and less reason ever to use any
other C compiler other than for bootstrapping GNU CC.

-pedantic-errors

Like ‘-pedantic’, except that errors are produced rather than warnings.

-W Print extra warning messages for these events:

• A nonvolatile automatic variable might be changed by a call to longjmp. These
warnings as well are possible only in optimizing compilation.

The compiler sees only the calls to setjmp. It cannot know where longjmp will be
called; in fact, a signal handler could call it at any point in the code. As a result,
you may get a warning even when there is in fact no problem because longjmp

cannot in fact be called at the place which would cause a problem.

• A function can return either with or without a value. (Falling off the end of the
function body is considered returning without a value.) For example, this function
would evoke such a warning:

foo (a)

{

if (a > 0)

return a;

}

• An expression-statement contains no side effects.

• An unsigned value is compared against zero with ‘>’ or ‘<=’.

• A comparison like ‘x<=y<=z’ appears; this is equivalent to ‘(x<=y ? 1 : 0) <= z’,
which is a different interpretation from that of ordinary mathematical notation.

• Storage-class specifiers like static are not the first things in a declaration. Ac-
cording to the C Standard, this usage is obsolescent.

• An aggregate has a partly bracketed initializer. For example, the following code
would evoke such a warning, because braces are missing around the initializer for
x.h:

struct s { int f, g; };
struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };

-Wimplicit

Warn whenever a function or parameter is implicitly declared.

-Wreturn-type

Warn whenever a function is defined with a return-type that defaults to int. Also warn
about any return statement with no return-value in a function whose return-type is
not void.

Chapter 3: GNU CC Command Options 33

-Wunused Warn whenever a local variable is unused aside from its declaration, whenever a function
is declared static but never defined, and whenever a statement computes a result that
is explicitly not used.

If you want to prevent a warning for a particular variable, you can use this macro:

#define USE(var) \
static void * use_##var = (&use_##var, (void *) &var)

USE (string);

-Wswitch Warn whenever a switch statement has an index of enumeral type and lacks a case

for one or more of the named codes of that enumeration. (The presence of a default

label prevents this warning.) case labels outside the enumeration range also provoke
warnings when this option is used.

-Wcomment

Warn whenever a comment-start sequence ‘/*’ appears in a comment.

-Wtrigraphs

Warn if any trigraphs are encountered (assuming they are enabled).

-Wformat Check calls to printf and scanf, etc., to make sure that the arguments supplied have
types appropriate to the format string specified.

-Wchar-subscripts

Warn if an array subscript has type char. This is a common cause of error, as pro-
grammers often forget that this type is signed on some machines.

-Wuninitialized

An automatic variable is used without first being initialized.

These warnings are possible only in optimizing compilation, because they require data
flow information that is computed only when optimizing. If you don’t specify ‘-O’, you
simply won’t get these warnings.

These warnings occur only for variables that are candidates for register allocation.
Therefore, they do not occur for a variable that is declared volatile, or whose address
is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they do not occur for
structures, unions or arrays, even when they are in registers.

Note that there may be no warning about a variable that is used only to compute a
value that itself is never used, because such computations may be deleted by data flow
analysis before the warnings are printed.

These warnings are made optional because GNU CC is not smart enough to see all the
reasons why the code might be correct despite appearing to have an error. Here is one
example of how this can happen:

34 Using and Porting GNU CC

{
int x;
switch (y)

{
case 1: x = 1;
break;

case 2: x = 4;
break;

case 3: x = 5;
}

foo (x);
}

If the value of y is always 1, 2 or 3, then x is always initialized, but GNU CC doesn’t
know this. Here is another common case:

{
int save_y;
if (change_y) save_y = y, y = new_y;
. . .
if (change_y) y = save_y;

}

This has no bug because save_y is used only if it is set.

Some spurious warnings can be avoided if you declare all the functions you use that
never return as volatile. See Section 5.22 [Function Attributes], page 126.

-Wparentheses

Warn if parentheses are omitted in certain contexts, such as when there is an assignment
in a context where a truth value is expected, or when operators are nested whose
precedence people often get confused about.

-Wenum-clash

Warn about conversion between different enumeration types. (C++ only).

-Wtemplate-debugging

When using templates in a C++ program, warn if debugging is not yet fully available
(C++ only).

-Wall All of the above ‘-W’ options combined. These are all the options which pertain to usage
that we recommend avoiding and that we believe is easy to avoid, even in conjunction
with macros.

The remaining ‘-W. . .’ options are not implied by ‘-Wall’ because they warn about constructions
that we consider reasonable to use, on occasion, in clean programs.

-Wtraditional

Warn about certain constructs that behave differently in traditional and ANSI C.

Chapter 3: GNU CC Command Options 35

• Macro arguments occurring within string constants in the macro body. These
would substitute the argument in traditional C, but are part of the constant in
ANSI C.

• A function declared external in one block and then used after the end of the block.

• A switch statement has an operand of type long.

-Wshadow Warn whenever a local variable shadows another local variable.

-Wid-clash-len

Warn whenever two distinct identifiers match in the first len characters. This may
help you prepare a program that will compile with certain obsolete, brain-damaged
compilers.

-Wpointer-arith

Warn about anything that depends on the “size of” a function type or of void. GNU
C assigns these types a size of 1, for convenience in calculations with void * pointers
and pointers to functions.

-Wcast-qual

Warn whenever a pointer is cast so as to remove a type qualifier from the target type.
For example, warn if a const char * is cast to an ordinary char *.

-Wcast-align

Warn whenever a pointer is cast such that the required alignment of the target is
increased. For example, warn if a char * is cast to an int * on machines where integers
can only be accessed at two- or four-byte boundaries.

-Wwrite-strings

Give string constants the type const char[length] so that copying the address of one
into a non-const char * pointer will get a warning. These warnings will help you find
at compile time code that can try to write into a string constant, but only if you have
been very careful about using const in declarations and prototypes. Otherwise, it will
just be a nuisance; this is why we did not make ‘-Wall’ request these warnings.

-Wconversion

Warn if a prototype causes a type conversion that is different from what would happen
to the same argument in the absence of a prototype. This includes conversions of fixed
point to floating and vice versa, and conversions changing the width or signedness of a
fixed point argument except when the same as the default promotion.

Also, warn if a negative integer constant expression is implicitly converted to an un-
signed type. For example, warn about the assignment x = -1 if x is unsigned. But do
not warn about explicit casts like (unsigned) -1.

-Waggregate-return

Warn if any functions that return structures or unions are defined or called. (In lan-
guages where you can return an array, this also elicits a warning.)

36 Using and Porting GNU CC

-Wstrict-prototypes

Warn if a function is declared or defined without specifying the argument types. (An
old-style function definition is permitted without a warning if preceded by a declaration
which specifies the argument types.)

-Wmissing-prototypes

Warn if a global function is defined without a previous prototype declaration. This
warning is issued even if the definition itself provides a prototype. The aim is to detect
global functions that fail to be declared in header files.

-Wredundant-decls

Warn if anything is declared more than once in the same scope, even in cases where
multiple declaration is valid and changes nothing.

-Wnested-externs

Warn if an extern declaration is encountered within an function.

-Winline Warn if a function can not be inlined, and either it was declared as inline, or else the
‘-finline-functions’ option was given.

-Woverloaded-virtual

Warn when a derived class function declaration may be an error in defining a virtual
function (C++ only). In a derived class, the definitions of virtual functions must match
the type signature of a virtual function declared in the base class. With this option, the
compiler warns when you define a function with the same name as a virtual function,
but with a type signature that does not match any declarations from the base class.

-Werror Make all warnings into errors.

3.7 Options for Debugging Your Program or GNU CC

GNU CC has various special options that are used for debugging either your program or GCC:

-g Produce debugging information in the operating system’s native format (stabs, COFF,
XCOFF, or DWARF). GDB can work with this debugging information.

On most systems that use stabs format, ‘-g’ enables use of extra debugging information
that only GDB can use; this extra information makes debugging work better in GDB
but will probably make other debuggers crash or refuse to read the program. If you
want to control for certain whether to generate the extra information, use ‘-gstabs+’,
‘-gstabs’, ‘-gxcoff+’, ‘-gxcoff’, ‘-gdwarf+’, or ‘-gdwarf’ (see below).

Unlike most other C compilers, GNU CC allows you to use ‘-g’ with ‘-O’. The shortcuts
taken by optimized code may occasionally produce surprising results: some variables

Chapter 3: GNU CC Command Options 37

you declared may not exist at all; flow of control may briefly move where you did not
expect it; some statements may not be executed because they compute constant results
or their values were already at hand; some statements may execute in different places
because they were moved out of loops.

Nevertheless it proves possible to debug optimized output. This makes it reasonable
to use the optimizer for programs that might have bugs.

The following options are useful when GNU CC is generated with the capability for
more than one debugging format.

-ggdb Produce debugging information in the native format (if that is supported), including
GDB extensions if at all possible.

-gstabs Produce debugging information in stabs format (if that is supported), without GDB
extensions. This is the format used by DBX on most BSD systems. On MIPS and
Alpha systems this option produces embedded stabs debugging output which is not
understood by DBX.

-gstabs+ Produce debugging information in stabs format (if that is supported), using GNU
extensions understood only by the GNU debugger (GDB). The use of these extensions
is likely to make other debuggers crash or refuse to read the program.

-gcoff Produce debugging information in COFF format (if that is supported). This is the
format used by SDB on most System V systems prior to System V Release 4.

-gxcoff Produce debugging information in XCOFF format (if that is supported). This is the
format used by the DBX debugger on IBM RS/6000 systems.

-gxcoff+ Produce debugging information in XCOFF format (if that is supported), using GNU
extensions understood only by the GNU debugger (GDB). The use of these extensions
is likely to make other debuggers crash or refuse to read the program.

-gdwarf Produce debugging information in DWARF format (if that is supported). This is the
format used by SDB on most System V Release 4 systems.

-gdwarf+ Produce debugging information in DWARF format (if that is supported), using GNU
extensions understood only by the GNU debugger (GDB). The use of these extensions
is likely to make other debuggers crash or refuse to read the program.

-glevel

-ggdblevel

-gstabslevel

-gcofflevel

-gxcofflevel

-gdwarflevel

Request debugging information and also use level to specify how much information.
The default level is 2.

38 Using and Porting GNU CC

Level 1 produces minimal information, enough for making backtraces in parts of the
program that you don’t plan to debug. This includes descriptions of functions and
external variables, but no information about local variables and no line numbers.

Level 3 includes extra information, such as all the macro definitions present in the
program. Some debuggers support macro expansion when you use ‘-g3’.

-p Generate extra code to write profile information suitable for the analysis program prof.
You must use this option when compiling the source files you want data about, and
you must also use it when linking.

-pg Generate extra code to write profile information suitable for the analysis program
gprof. You must use this option when compiling the source files you want data about,
and you must also use it when linking.

-a Generate extra code to write profile information for basic blocks, which will record the
number of times each basic block is executed, the basic block start address, and the
function name containing the basic block. If ‘-g’ is used, the line number and filename
of the start of the basic block will also be recorded. If not overridden by the machine
description, the default action is to append to the text file ‘bb.out’.

This data could be analyzed by a program like tcov. Note, however, that the format
of the data is not what tcov expects. Eventually GNU gprof should be extended to
process this data.

-dletters Says to make debugging dumps during compilation at times specified by letters. This
is used for debugging the compiler. The file names for most of the dumps are made
by appending a word to the source file name (e.g. ‘foo.c.rtl’ or ‘foo.c.jump’). Here
are the possible letters for use in letters, and their meanings:

‘M’ Dump all macro definitions, at the end of preprocessing, and write no
output.

‘N’ Dump all macro names, at the end of preprocessing.

‘D’ Dump all macro definitions, at the end of preprocessing, in addition to
normal output.

‘y’ Dump debugging information during parsing, to standard error.

‘r’ Dump after RTL generation, to ‘file.rtl’.

‘x’ Just generate RTL for a function instead of compiling it. Usually used
with ‘r’.

‘j’ Dump after first jump optimization, to ‘file.jump’.

‘s’ Dump after CSE (including the jump optimization that sometimes follows
CSE), to ‘file.cse’.

‘L’ Dump after loop optimization, to ‘file.loop’.

‘t’ Dump after the second CSE pass (including the jump optimization that
sometimes follows CSE), to ‘file.cse2’.

Chapter 3: GNU CC Command Options 39

‘f’ Dump after flow analysis, to ‘file.flow’.

‘c’ Dump after instruction combination, to the file ‘file.combine’.

‘S’ Dump after the first instruction scheduling pass, to ‘file.sched’.

‘l’ Dump after local register allocation, to ‘file.lreg’.

‘g’ Dump after global register allocation, to ‘file.greg’.

‘R’ Dump after the second instruction scheduling pass, to ‘file.sched2’.

‘J’ Dump after last jump optimization, to ‘file.jump2’.

‘d’ Dump after delayed branch scheduling, to ‘file.dbr’.

‘k’ Dump after conversion from registers to stack, to ‘file.stack’.

‘a’ Produce all the dumps listed above.

‘m’ Print statistics on memory usage, at the end of the run, to standard error.

‘p’ Annotate the assembler output with a comment indicating which pattern
and alternative was used.

-fpretend-float

When running a cross-compiler, pretend that the target machine uses the same floating
point format as the host machine. This causes incorrect output of the actual floating
constants, but the actual instruction sequence will probably be the same as GNU CC
would make when running on the target machine.

-save-temps

Store the usual “temporary” intermediate files permanently; place them in the current
directory and name them based on the source file. Thus, compiling ‘foo.c’ with ‘-c
-save-temps’ would produce files ‘foo.i’ and ‘foo.s’, as well as ‘foo.o’.

-print-libgcc-file-name

Print the full absolute name of the library file ‘libgcc.a’ that would be used when
linking—and don’t do anything else. With this option, GNU CC does not compile or
link anything; it just prints the file name.

This is useful when you use ‘-nostdlib’ but you do want to link with ‘libgcc.a’. You
can do

gcc -nostdlib files. . . ‘gcc -print-libgcc-file-name‘

3.8 Options That Control Optimization

These options control various sorts of optimizations:

40 Using and Porting GNU CC

-O

-O1 Optimize. Optimizing compilation takes somewhat more time, and a lot more memory
for a large function.

Without ‘-O’, the compiler’s goal is to reduce the cost of compilation and to make
debugging produce the expected results. Statements are independent: if you stop the
program with a breakpoint between statements, you can then assign a new value to
any variable or change the program counter to any other statement in the function and
get exactly the results you would expect from the source code.

Without ‘-O’, only variables declared register are allocated in registers. The resulting
compiled code is a little worse than produced by PCC without ‘-O’.

With ‘-O’, the compiler tries to reduce code size and execution time.

When ‘-O’ is specified, the two options ‘-fthread-jumps’ and ‘-fdelayed-branch’ are
turned on. On some machines other flags may also be turned on.

-O2 Optimize even more. Nearly all supported optimizations that do not involve a space-
speed tradeoff are performed. As compared to ‘-O’, this option increases both compi-
lation time and the performance of the generated code.

‘-O2’ turns on all optional optimizations except for loop unrolling and frame pointer
elimination.

-O0 Do not optimize.

If you use multiple ‘-O’ options, with or without level numbers, the last such option is
the one that is effective.

Options of the form ‘-fflag ’ specify machine-independent flags. Most flags have both positive
and negative forms; the negative form of ‘-ffoo’ would be ‘-fno-foo’. In the table below, only
one of the forms is listed—the one which is not the default. You can figure out the other form by
either removing ‘no-’ or adding it.

-ffloat-store

Do not store floating point variables in registers, and inhibit other options that might
change whether a floating point value is taken from a register or memory.

This option prevents undesirable excess precision on machines such as the 68000 where
the floating registers (of the 68881) keep more precision than a double is supposed to
have. For most programs, the excess precision does only good, but a few programs
rely on the precise definition of IEEE floating point. Use ‘-ffloat-store’ for such
programs.

-fno-default-inline

Do not make member functions inline by default merely because they are defined inside
the class scope (C++ only). Otherwise, when you specify ‘-O’, member functions defined

Chapter 3: GNU CC Command Options 41

inside class scope are compiled inline by default; i.e., you don’t need to add ‘inline’
in front of the member function name.

-fno-defer-pop

Always pop the arguments to each function call as soon as that function returns. For
machines which must pop arguments after a function call, the compiler normally lets
arguments accumulate on the stack for several function calls and pops them all at once.

-fforce-mem

Force memory operands to be copied into registers before doing arithmetic on them.
This may produce better code by making all memory references potential common
subexpressions. When they are not common subexpressions, instruction combination
should eliminate the separate register-load. I am interested in hearing about the dif-
ference this makes.

-fforce-addr

Force memory address constants to be copied into registers before doing arithmetic on
them. This may produce better code just as ‘-fforce-mem’ may. I am interested in
hearing about the difference this makes.

-fomit-frame-pointer

Don’t keep the frame pointer in a register for functions that don’t need one. This
avoids the instructions to save, set up and restore frame pointers; it also makes an
extra register available in many functions. It also makes debugging impossible on

some machines.

On some machines, such as the Vax, this flag has no effect, because the standard calling
sequence automatically handles the frame pointer and nothing is saved by pretending
it doesn’t exist. The machine-description macro FRAME_POINTER_REQUIRED controls
whether a target machine supports this flag. See Section 16.5 [Registers], page 322.

-fno-inline

Don’t pay attention to the inline keyword. Normally this option is used to keep the
compiler from expanding any functions inline. Note that if you are not optimizing, no
functions can be expanded inline.

-finline-functions

Integrate all simple functions into their callers. The compiler heuristically decides
which functions are simple enough to be worth integrating in this way.

If all calls to a given function are integrated, and the function is declared static, then
the function is normally not output as assembler code in its own right.

-fkeep-inline-functions

Even if all calls to a given function are integrated, and the function is declared static,
nevertheless output a separate run-time callable version of the function.

42 Using and Porting GNU CC

-fno-function-cse

Do not put function addresses in registers; make each instruction that calls a constant
function contain the function’s address explicitly.

This option results in less efficient code, but some strange hacks that alter the assembler
output may be confused by the optimizations performed when this option is not used.

-ffast-math

This option allows GCC to violate some ANSI or IEEE rules and/or specifications in
the interest of optimizing code for speed. For example, it allows the compiler to assume
arguments to the sqrt function are non-negative numbers.

This option should never be turned on by any ‘-O’ option since it can result in incorrect
output for programs which depend on an exact implementation of IEEE or ANSI
rules/specifications for math functions.

The following options control specific optimizations. The ‘-O2’ option turns on all of these
optimizations except ‘-funroll-loops’ and ‘-funroll-all-loops’. On most machines, the ‘-O’
option turns on the ‘-fthread-jumps’ and ‘-fdelayed-branch’ options, but specific machines may
handle it differently.

You can use the following flags in the rare cases when “fine-tuning” of optimizations to be
performed is desired.

-fstrength-reduce

Perform the optimizations of loop strength reduction and elimination of iteration vari-
ables.

-fthread-jumps

Perform optimizations where we check to see if a jump branches to a location where
another comparison subsumed by the first is found. If so, the first branch is redirected
to either the destination of the second branch or a point immediately following it,
depending on whether the condition is known to be true or false.

-fcse-follow-jumps

In common subexpression elimination, scan through jump instructions when the target
of the jump is not reached by any other path. For example, when CSE encounters an
if statement with an else clause, CSE will follow the jump when the condition tested
is false.

-fcse-skip-blocks

This is similar to ‘-fcse-follow-jumps’, but causes CSE to follow jumps which con-
ditionally skip over blocks. When CSE encounters a simple if statement with no else

Chapter 3: GNU CC Command Options 43

clause, ‘-fcse-skip-blocks’ causes CSE to follow the jump around the body of the
if.

-frerun-cse-after-loop

Re-run common subexpression elimination after loop optimizations has been performed.

-fexpensive-optimizations

Perform a number of minor optimizations that are relatively expensive.

-fdelayed-branch

If supported for the target machine, attempt to reorder instructions to exploit instruc-
tion slots available after delayed branch instructions.

-fschedule-insns

If supported for the target machine, attempt to reorder instructions to eliminate ex-
ecution stalls due to required data being unavailable. This helps machines that have
slow floating point or memory load instructions by allowing other instructions to be
issued until the result of the load or floating point instruction is required.

-fschedule-insns2

Similar to ‘-fschedule-insns’, but requests an additional pass of instruction schedul-
ing after register allocation has been done. This is especially useful on machines with
a relatively small number of registers and where memory load instructions take more
than one cycle.

-fcaller-saves

Enable values to be allocated in registers that will be clobbered by function calls, by
emitting extra instructions to save and restore the registers around such calls. Such
allocation is done only when it seems to result in better code than would otherwise be
produced.

This option is enabled by default on certain machines, usually those which have no
call-preserved registers to use instead.

-funroll-loops

Perform the optimization of loop unrolling. This is only done for loops whose number
of iterations can be determined at compile time or run time. ‘-funroll-loop’ implies
both ‘-fstrength-reduce’ and ‘-frerun-cse-after-loop’.

-funroll-all-loops

Perform the optimization of loop unrolling. This is done for all loops and usually makes
programs run more slowly. ‘-funroll-all-loops’ implies ‘-fstrength-reduce’ as
well as ‘-frerun-cse-after-loop’.

-fno-peephole

Disable any machine-specific peephole optimizations.

44 Using and Porting GNU CC

3.9 Options Controlling the Preprocessor

These options control the C preprocessor, which is run on each C source file before actual
compilation.

If you use the ‘-E’ option, nothing is done except preprocessing. Some of these options make
sense only together with ‘-E’ because they cause the preprocessor output to be unsuitable for actual
compilation.

-include file

Process file as input before processing the regular input file. In effect, the contents
of file are compiled first. Any ‘-D’ and ‘-U’ options on the command line are always
processed before ‘-include file’, regardless of the order in which they are written. All
the ‘-include’ and ‘-imacros’ options are processed in the order in which they are
written.

-imacros file

Process file as input, discarding the resulting output, before processing the regular input
file. Because the output generated from file is discarded, the only effect of ‘-imacros
file’ is to make the macros defined in file available for use in the main input.

Any ‘-D’ and ‘-U’ options on the command line are always processed before ‘-imacros
file’, regardless of the order in which they are written. All the ‘-include’ and
‘-imacros’ options are processed in the order in which they are written.

-idirafter dir

Add the directory dir to the second include path. The directories on the second include
path are searched when a header file is not found in any of the directories in the main
include path (the one that ‘-I’ adds to).

-iprefix prefix

Specify prefix as the prefix for subsequent ‘-iwithprefix’ options.

-iwithprefix dir

Add a directory to the second include path. The directory’s name is made by con-
catenating prefix and dir, where prefix was specified previously with ‘-iprefix’. If
you have not specified a prefix yet, the directory containing the installed passes of the
compiler is used as the default.

-iwithprefixbefore dir

Add a directory to the main include path. The directory’s name is made by concate-
nating prefix and dir, as in the case of ‘-iwithprefix’.

Chapter 3: GNU CC Command Options 45

-nostdinc

Do not search the standard system directories for header files. Only the directories you
have specified with ‘-I’ options (and the current directory, if appropriate) are searched.
See Section 3.12 [Directory Options], page 48, for information on ‘-I’.

By using both ‘-nostdinc’ and ‘-I-’, you can limit the include-file search path to only
those directories you specify explicitly.

-undef Do not predefine any nonstandard macros. (Including architecture flags).

-E Run only the C preprocessor. Preprocess all the C source files specified and output the
results to standard output or to the specified output file.

-C Tell the preprocessor not to discard comments. Used with the ‘-E’ option.

-P Tell the preprocessor not to generate ‘#line’ commands. Used with the ‘-E’ option.

-M Tell the preprocessor to output a rule suitable for make describing the dependencies
of each object file. For each source file, the preprocessor outputs one make-rule whose
target is the object file name for that source file and whose dependencies are all the
#include header files it uses. This rule may be a single line or may be continued with
‘\’-newline if it is long. The list of rules is printed on standard output instead of the
preprocessed C program.

‘-M’ implies ‘-E’.

Another way to specify output of a make rule is by setting the environment variable
DEPENDENCIES_OUTPUT (see Section 3.16 [Environment Variables], page 71).

-MM Like ‘-M’ but the output mentions only the user header files included with ‘#include
"file"’. System header files included with ‘#include <file>’ are omitted.

-MD Like ‘-M’ but the dependency information is written to files with names made by replac-
ing ‘.o’ with ‘.d’ at the end of the output file names. This is in addition to compiling
the input files as specified—‘-MD’ does not inhibit ordinary compilation the way ‘-M’
does.

The Mach utility ‘md’ can be used to merge the ‘.d’ files into a single dependency file
suitable for using with the ‘make’ command.

-MMD Like ‘-MD’ except mention only user header files, not system header files.

-H Print the name of each header file used, in addition to other normal activities.

-Aquestion(answer)

Assert the answer answer for question, in case it is tested with a preprocessor con-
ditional such as ‘#if #question(answer)’. ‘-A-’ disables the standard assertions that
normally describe the target machine.

-Dmacro Define macro macro with the string ‘1’ as its definition.

-Dmacro=defn

Define macro macro as defn. All instances of ‘-D’ on the command line are processed
before any ‘-U’ options.

46 Using and Porting GNU CC

-Umacro Undefine macro macro. ‘-U’ options are evaluated after all ‘-D’ options, but before any
‘-include’ and ‘-imacros’ options.

-dM Tell the preprocessor to output only a list of the macro definitions that are in effect at
the end of preprocessing. Used with the ‘-E’ option.

-dD Tell the preprocessing to pass all macro definitions into the output, in their proper
sequence in the rest of the output.

-dN Like ‘-dD’ except that the macro arguments and contents are omitted. Only ‘#define
name’ is included in the output.

-trigraphs

Support ANSI C trigraphs. You don’t want to know about this brain-damage. The
‘-ansi’ option also has this effect.

3.10 Passing Options to the Assembler

-Wa,option

Pass option as an option to the assembler. If option contains commas, it is split into
multiple options at the commas.

3.11 Options for Linking

These options come into play when the compiler links object files into an executable output file.
They are meaningless if the compiler is not doing a link step.

object-file-name

A file name that does not end in a special recognized suffix is considered to name
an object file or library. (Object files are distinguished from libraries by the linker
according to the file contents.) If linking is done, these object files are used as input to
the linker.

-c

-S

-E If any of these options is used, then the linker is not run, and object file names should
not be used as arguments. See Section 3.2 [Overall Options], page 21.

-llibrary Search the library named library when linking.

It makes a difference where in the command you write this option; the linker searches
processes libraries and object files in the order they are specified. Thus, ‘foo.o -lz

Chapter 3: GNU CC Command Options 47

bar.o’ searches library ‘z’ after file ‘foo.o’ but before ‘bar.o’. If ‘bar.o’ refers to
functions in ‘z’, those functions may not be loaded.

The linker searches a standard list of directories for the library, which is actually a file
named ‘liblibrary.a’. The linker then uses this file as if it had been specified precisely
by name.

The directories searched include several standard system directories plus any that you
specify with ‘-L’.

Normally the files found this way are library files—archive files whose members are
object files. The linker handles an archive file by scanning through it for members
which define symbols that have so far been referenced but not defined. But if the
file that is found is an ordinary object file, it is linked in the usual fashion. The only
difference between using an ‘-l’ option and specifying a file name is that ‘-l’ surrounds
library with ‘lib’ and ‘.a’ and searches several directories.

-lobjc You need this special case of the ‘-l’ option in order to link an Objective C program.

-nostartfiles

Do not use the standard system startup files when linking. The standard libraries are
used normally.

-nostdlib

Don’t use the standard system libraries and startup files when linking. Only the files
you specify will be passed to the linker.

-static On systems that support dynamic linking, this prevents linking with the shared li-
braries. On other systems, this option has no effect.

-shared Produce a shared object which can then be linked with other objects to form an exe-
cutable. Only a few systems support this option.

-symbolic

Bind references to global symbols when building a shared object. Warn about any un-
resolved references (unless overridden by the link editor option ‘-Xlinker -z -Xlinker

defs’). Only a few systems support this option.

-Xlinker option

Pass option as an option to the linker. You can use this to supply system-specific linker
options which GNU CC does not know how to recognize.

If you want to pass an option that takes an argument, you must use ‘-Xlinker’
twice, once for the option and once for the argument. For example, to pass ‘-assert
definitions’, you must write ‘-Xlinker -assert -Xlinker definitions’. It does
not work to write ‘-Xlinker "-assert definitions"’, because this passes the entire
string as a single argument, which is not what the linker expects.

48 Using and Porting GNU CC

-Wl,option

Pass option as an option to the linker. If option contains commas, it is split into
multiple options at the commas.

-u symbol Pretend the symbol symbol is undefined, to force linking of library modules to define
it. You can use ‘-u’ multiple times with different symbols to force loading of additional
library modules.

3.12 Options for Directory Search

These options specify directories to search for header files, for libraries and for parts of the
compiler:

-Idir Append directory dir to the list of directories searched for include files.

-I- Any directories you specify with ‘-I’ options before the ‘-I-’ option are searched only
for the case of ‘#include "file"’; they are not searched for ‘#include <file>’.

If additional directories are specified with ‘-I’ options after the ‘-I-’, these directories
are searched for all ‘#include’ directives. (Ordinarily all ‘-I’ directories are used this
way.)

In addition, the ‘-I-’ option inhibits the use of the current directory (where the current
input file came from) as the first search directory for ‘#include "file"’. There is no
way to override this effect of ‘-I-’. With ‘-I.’ you can specify searching the directory
which was current when the compiler was invoked. That is not exactly the same as
what the preprocessor does by default, but it is often satisfactory.

‘-I-’ does not inhibit the use of the standard system directories for header files. Thus,
‘-I-’ and ‘-nostdinc’ are independent.

-Ldir Add directory dir to the list of directories to be searched for ‘-l’.

-Bprefix This option specifies where to find the executables, libraries and data files of the com-
piler itself.

The compiler driver program runs one or more of the subprograms ‘cpp’, ‘cc1’, ‘as’
and ‘ld’. It tries prefix as a prefix for each program it tries to run, both with and
without ‘machine/version/’ (see Section 3.13 [Target Options], page 49).

For each subprogram to be run, the compiler driver first tries the ‘-B’ prefix, if any.
If that name is not found, or if ‘-B’ was not specified, the driver tries two standard
prefixes, which are ‘/usr/lib/gcc/’ and ‘/usr/local/lib/gcc-lib/’. If neither of
those results in a file name that is found, the unmodified program name is searched for
using the directories specified in your ‘PATH’ environment variable.

Chapter 3: GNU CC Command Options 49

‘-B’ prefixes that effectively specify directory names also apply to libraries in the linker,
because the compiler translates these options into ‘-L’ options for the linker.

The run-time support file ‘libgcc.a’ can also be searched for using the ‘-B’ prefix, if
needed. If it is not found there, the two standard prefixes above are tried, and that is
all. The file is left out of the link if it is not found by those means.

Another way to specify a prefix much like the ‘-B’ prefix is to use the environment
variable GCC_EXEC_PREFIX. See Section 3.16 [Environment Variables], page 71.

3.13 Specifying Target Machine and Compiler Version

By default, GNU CC compiles code for the same type of machine that you are using. However,
it can also be installed as a cross-compiler, to compile for some other type of machine. In fact,
several different configurations of GNU CC, for different target machines, can be installed side by
side. Then you specify which one to use with the ‘-b’ option.

In addition, older and newer versions of GNU CC can be installed side by side. One of them
(probably the newest) will be the default, but you may sometimes wish to use another.

-b machine

The argument machine specifies the target machine for compilation. This is useful
when you have installed GNU CC as a cross-compiler.

The value to use for machine is the same as was specified as the machine type when
configuring GNU CC as a cross-compiler. For example, if a cross-compiler was con-
figured with ‘configure i386v’, meaning to compile for an 80386 running System V,
then you would specify ‘-b i386v’ to run that cross compiler.

When you do not specify ‘-b’, it normally means to compile for the same type of
machine that you are using.

-V version The argument version specifies which version of GNU CC to run. This is useful when
multiple versions are installed. For example, version might be ‘2.0’, meaning to run
GNU CC version 2.0.

The default version, when you do not specify ‘-V’, is controlled by the way GNU CC
is installed. Normally, it will be a version that is recommended for general use.

The ‘-b’ and ‘-V’ options actually work by controlling part of the file name used for the ex-
ecutable files and libraries used for compilation. A given version of GNU CC, for a given target
machine, is normally kept in the directory ‘/usr/local/lib/gcc-lib/machine/version’.

50 Using and Porting GNU CC

Thus, sites can customize the effect of ‘-b’ or ‘-V’ either by changing the names of these direc-
tories or adding alternate names (or symbolic links). If in directory ‘/usr/local/lib/gcc-lib/’
the file ‘80386’ is a link to the file ‘i386v’, then ‘-b 80386’ becomes an alias for ‘-b i386v’.

In one respect, the ‘-b’ or ‘-V’ do not completely change to a different compiler: the top-level
driver program gcc that you originally invoked continues to run and invoke the other executables
(preprocessor, compiler per se, assembler and linker) that do the real work. However, since no real
work is done in the driver program, it usually does not matter that the driver program in use is
not the one for the specified target and version.

The only way that the driver program depends on the target machine is in the parsing and
handling of special machine-specific options. However, this is controlled by a file which is found,
along with the other executables, in the directory for the specified version and target machine.
As a result, a single installed driver program adapts to any specified target machine and compiler
version.

The driver program executable does control one significant thing, however: the default version
and target machine. Therefore, you can install different instances of the driver program, compiled
for different targets or versions, under different names.

For example, if the driver for version 2.0 is installed as ogcc and that for version 2.1 is installed
as gcc, then the command gcc will use version 2.1 by default, while ogcc will use 2.0 by default.
However, you can choose either version with either command with the ‘-V’ option.

3.14 Hardware Models and Configurations

Earlier we discussed the standard option ‘-b’ which chooses among different installed compilers
for completely different target machines, such as Vax vs. 68000 vs. 80386.

In addition, each of these target machine types can have its own special options, starting with
‘-m’, to choose among various hardware models or configurations—for example, 68010 vs 68020,
floating coprocessor or none. A single installed version of the compiler can compile for any model
or configuration, according to the options specified.

Some configurations of the compiler also support additional special options, usually for compat-
ibility with other compilers on the same platform.

Chapter 3: GNU CC Command Options 51

These options are defined by the macro TARGET_SWITCHES in the machine description. The
default for the options is also defined by that macro, which enables you to change the defaults.

3.14.1 M680x0 Options

These are the ‘-m’ options defined for the 68000 series. The default values for these options
depends on which style of 68000 was selected when the compiler was configured; the defaults for
the most common choices are given below.

-m68000

-mc68000 Generate output for a 68000. This is the default when the compiler is configured for
68000-based systems.

-m68020

-mc68020 Generate output for a 68020. This is the default when the compiler is configured for
68020-based systems.

-m68881 Generate output containing 68881 instructions for floating point. This is the default
for most 68020 systems unless ‘-nfp’ was specified when the compiler was configured.

-m68030 Generate output for a 68030. This is the default when the compiler is configured for
68030-based systems.

-m68040 Generate output for a 68040. This is the default when the compiler is configured for
68040-based systems.

This option inhibits the use of 68881/68882 instructions that have to be emulated by
software on the 68040. If your 68040 does not have code to emulate those instructions,
use ‘-m68040’.

-m68020-40

Generate output for a 68040, without using any of the new instructions. This results
in code which can run relatively efficiently on either a 68020/68881 or a 68030 or a
68040. The generated code does use the 68881 instructions that are emulated on the
68040.

-mfpa Generate output containing Sun FPA instructions for floating point.

-msoft-float

Generate output containing library calls for floating point. Warning: the requisite
libraries are not part of GNU CC. Normally the facilities of the machine’s usual C
compiler are used, but this can’t be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for cross-compilation.

-mshort Consider type int to be 16 bits wide, like short int.

52 Using and Porting GNU CC

-mnobitfield

Do not use the bit-field instructions. The ‘-m68000’ option implies ‘-mnobitfield’.

-mbitfield

Do use the bit-field instructions. The ‘-m68020’ option implies ‘-mbitfield’. This is
the default if you use a configuration designed for a 68020.

-mrtd Use a different function-calling convention, in which functions that take a fixed num-
ber of arguments return with the rtd instruction, which pops their arguments while
returning. This saves one instruction in the caller since there is no need to pop the
arguments there.

This calling convention is incompatible with the one normally used on Unix, so you
cannot use it if you need to call libraries compiled with the Unix compiler.

Also, you must provide function prototypes for all functions that take variable numbers
of arguments (including printf); otherwise incorrect code will be generated for calls
to those functions.

In addition, seriously incorrect code will result if you call a function with too many
arguments. (Normally, extra arguments are harmlessly ignored.)

The rtd instruction is supported by the 68010 and 68020 processors, but not by the
68000.

3.14.2 VAX Options

These ‘-m’ options are defined for the Vax:

-munix Do not output certain jump instructions (aobleq and so on) that the Unix assembler
for the Vax cannot handle across long ranges.

-mgnu Do output those jump instructions, on the assumption that you will assemble with the
GNU assembler.

-mg Output code for g-format floating point numbers instead of d-format.

3.14.3 SPARC Options

These ‘-m’ switches are supported on the SPARC:

-mfpu

-mhard-float

Generate output containing floating point instructions. This is the default.

Chapter 3: GNU CC Command Options 53

-mno-fpu

-msoft-float

Generate output containing library calls for floating point. Warning: there is no GNU
floating-point library for SPARC. Normally the facilities of the machine’s usual C com-
piler are used, but this cannot be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for cross-compilation.

‘-msoft-float’ changes the calling convention in the output file; therefore, it is only
useful if you compile all of a program with this option. In particular, you need to
compile ‘libgcc.a’, the library that comes with GNU CC, with ‘-msoft-float’ in
order for this to work.

-mno-epilogue

-mepilogue

With ‘-mepilogue’ (the default), the compiler always emits code for function exit at
the end of each function. Any function exit in the middle of the function (such as a
return statement in C) will generate a jump to the exit code at the end of the function.

With ‘-mno-epilogue’, the compiler tries to emit exit code inline at every function
exit.

-mv8

-msparclite

These two options select variations on the SPARC architecture.

By default (unless specifically configured for the Fujitsu SPARClite), GCC generates
code for the v7 variant of the SPARC architecture.

‘-mv8’ will give you SPARC v8 code. The only difference from v7 code is that the com-
piler emits the integer multiply and integer divide instructions which exist in SPARC
v8 but not in SPARC v7.

‘-msparclite’ will give you SPARClite code. This adds the integer multiply, integer
divide step and scan (ffs) instructions which exist in SPARClite but not in SPARC
v7.

3.14.4 Convex Options

These ‘-m’ options are defined for Convex:

-mc1 Generate output for C1. The code will run on any Convex machine. The preprocessor
symbol __convex__c1__ is defined.

-mc2 Generate output for C2. Uses instructions not available on C1. Scheduling and other
optimizations are chosen for max performance on C2. The preprocessor symbol __
convex_c2__ is defined.

54 Using and Porting GNU CC

-mc32 Generate output for C32xx. Uses instructions not available on C1. Scheduling and
other optimizations are chosen for max performance on C32. The preprocessor symbol
__convex_c32__ is defined.

-mc34 Generate output for C34xx. Uses instructions not available on C1. Scheduling and
other optimizations are chosen for max performance on C34. The preprocessor symbol
__convex_c34__ is defined.

-mc38 Generate output for C38xx. Uses instructions not available on C1. Scheduling and
other optimizations are chosen for max performance on C38. The preprocessor symbol
__convex_c38__ is defined.

-margcount

Generate code which puts an argument count in the word preceding each argument
list. This is compatible with regular CC, and a few programs may need the argument
count word. GDB and other source-level debuggers do not need it; this info is in the
symbol table.

-mnoargcount

Omit the argument count word. This is the default.

-mvolatile-cache

Allow volatile references to be cached. This is the default.

-mvolatile-nocache

Volatile references bypass the data cache, going all the way to memory. This is only
needed for multi-processor code that does not use standard synchronization instruc-
tions. Making non-volatile references to volatile locations will not necessarily work.

-mlong32 Type long is 32 bits, the same as type int. This is the default.

-mlong64 Type long is 64 bits, the same as type long long. This option is useless, because no
library support exists for it.

3.14.5 AMD29K Options

These ‘-m’ options are defined for the AMD Am29000:

-mdw Generate code that assumes the DW bit is set, i.e., that byte and halfword operations
are directly supported by the hardware. This is the default.

-mnodw Generate code that assumes the DW bit is not set.

-mbw Generate code that assumes the system supports byte and halfword write operations.
This is the default.

-mnbw Generate code that assumes the systems does not support byte and halfword write
operations. ‘-mnbw’ implies ‘-mnodw’.

Chapter 3: GNU CC Command Options 55

-msmall Use a small memory model that assumes that all function addresses are either within
a single 256 KB segment or at an absolute address of less than 256k. This allows the
call instruction to be used instead of a const, consth, calli sequence.

-mnormal Use the normal memory model: Generate call instructions only when calling functions
in the same file and calli instructions otherwise. This works if each file occupies less
than 256 KB but allows the entire executable to be larger than 256 KB. This is the
default.

-mlarge Always use calli instructions. Specify this option if you expect a single file to compile
into more than 256 KB of code.

-m29050 Generate code for the Am29050.

-m29000 Generate code for the Am29000. This is the default.

-mkernel-registers

Generate references to registers gr64-gr95 instead of to registers gr96-gr127. This
option can be used when compiling kernel code that wants a set of global registers
disjoint from that used by user-mode code.

Note that when this option is used, register names in ‘-f’ flags must use the normal,
user-mode, names.

-muser-registers

Use the normal set of global registers, gr96-gr127. This is the default.

-mstack-check

Insert a call to __msp_check after each stack adjustment. This is often used for kernel
code.

3.14.6 M88K Options

These ‘-m’ options are defined for Motorola 88k architectures:

-m88000 Generate code that works well on both the m88100 and the m88110.

-m88100 Generate code that works best for the m88100, but that also runs on the m88110.

-m88110 Generate code that works best for the m88110, and may not run on the m88100.

-mbig-pic

Obsolete option to be removed from the next revision. Use ‘-fPIC’.

-midentify-revision

Include an ident directive in the assembler output recording the source file name,
compiler name and version, timestamp, and compilation flags used.

56 Using and Porting GNU CC

-mno-underscores

In assembler output, emit symbol names without adding an underscore character at
the beginning of each name. The default is to use an underscore as prefix on each
name.

-mocs-debug-info

-mno-ocs-debug-info

Include (or omit) additional debugging information (about registers used in each stack
frame) as specified in the 88open Object Compatibility Standard, “OCS”. This extra
information allows debugging of code that has had the frame pointer eliminated. The
default for DG/UX, SVr4, and Delta 88 SVr3.2 is to include this information; other
88k configurations omit this information by default.

-mocs-frame-position

When emitting COFF debugging information for automatic variables and parameters
stored on the stack, use the offset from the canonical frame address, which is the stack
pointer (register 31) on entry to the function. The DG/UX, SVr4, Delta88 SVr3.2, and
BCS configurations use ‘-mocs-frame-position’; other 88k configurations have the
default ‘-mno-ocs-frame-position’.

-mno-ocs-frame-position

When emitting COFF debugging information for automatic variables and parameters
stored on the stack, use the offset from the frame pointer register (register 30). When
this option is in effect, the frame pointer is not eliminated when debugging information
is selected by the -g switch.

-moptimize-arg-area

-mno-optimize-arg-area

Control how function arguments are stored in stack frames. ‘-moptimize-arg-area’
saves space by optimizing them, but this conflicts with the 88open specifications. The
opposite alternative, ‘-mno-optimize-arg-area’, agrees with 88open standards. By
default GNU CC does not optimize the argument area.

-mshort-data-num

Generate smaller data references by making them relative to r0, which allows loading
a value using a single instruction (rather than the usual two). You control which data
references are affected by specifying num with this option. For example, if you specify
‘-mshort-data-512’, then the data references affected are those involving displace-
ments of less than 512 bytes. ‘-mshort-data-num’ is not effective for num greater
than 64k.

-mserialize-volatile

-mno-serialize-volatile

Do, or do not, generate code to guarantee sequential consistency of volatile memory
references.

Chapter 3: GNU CC Command Options 57

GNU CC always guarantees consistency by default.

The order of memory references made by the m88110 processor does not always match
the order of the instructions requesting those references. In particular, a load in-
struction may execute before a preceding store instruction. Such reordering violates
sequential consistency of volatile memory references, when there are multiple proces-
sors.

The extra code generated to guarantee consistency may affect the performance of your
application. If you know that you can safely forgo this guarantee, you may use the
option ‘-mno-serialize-volatile’.

-msvr4

-msvr3 Turn on (‘-msvr4’) or off (‘-msvr3’) compiler extensions related to System V release 4
(SVr4). This controls the following:

1. Which variant of the assembler syntax to emit (which you can select independently
using ‘-mversion-03.00’).

2. ‘-msvr4’ makes the C preprocessor recognize ‘#pragma weak’ that is used on Sys-
tem V release 4.

3. ‘-msvr4’ makes GNU CC issue additional declaration directives used in SVr4.

‘-msvr3’ is the default for all m88k configurations except the SVr4 configuration.

-mversion-03.00

In the DG/UX configuration, there are two flavors of SVr4. This option modifies
‘-msvr4’ to select whether the hybrid-COFF or real-ELF flavor is used. All other
configurations ignore this option.

-mno-check-zero-division

-mcheck-zero-division

Early models of the 88k architecture had problems with division by zero; in particular,
many of them didn’t trap. Use these options to avoid including (or to include explicitly)
additional code to detect division by zero and signal an exception. All GNU CC
configurations for the 88k use ‘-mcheck-zero-division’ by default.

-muse-div-instruction

Do not emit code to check both the divisor and dividend when doing signed integer
division to see if either is negative, and adjust the signs so the divide is done using
non-negative numbers. Instead, rely on the operating system to calculate the correct
value when the div instruction traps. This results in different behavior when the most
negative number is divided by -1, but is useful when most or all signed integer divisions
are done with positive numbers.

58 Using and Porting GNU CC

-mtrap-large-shift

-mhandle-large-shift

Include code to detect bit-shifts of more than 31 bits; respectively, trap such shifts or
emit code to handle them properly. By default GNU CC makes no special provision
for large bit shifts.

-mwarn-passed-structs

Warn when a function passes a struct as an argument or result. Structure-passing
conventions have changed during the evolution of the C language, and are often the
source of portability problems. By default, GNU CC issues no such warning.

3.14.7 IBM RS/6000 and PowerPC Options

These ‘-m’ options are defined for the IBM RS/6000 and PowerPC:

-mpower

-mno-power

-mpower2

-mno-power2

-mpowerpc

-mno-powerpc

-mpowerpcsqr

-mno-powerpcsqr

-mpowerpc64

-mno-powerpc64

GNU CC supports two related instruction set architectures for the RS/6000 and Pow-
erPC. The POWER instruction set are those instructions supported by the ‘rios’ chip
set used in the original RS/6000 systems and the PowerPC instruction set is the archi-
tecture of the Motorola MPC6xx microprocessors. The PowerPC architecture defines
64-bit instructions, but they are not supported by any current processors.

Neither architecture is a subset of the other. However there is a large common subset
of instructions supported by both. An MQ register is included in processors supporting
the POWER architecture.

You use these options to specify which instructions are available on the processor you
are using. The default value of these options is determined when configuring GNU
CC. Specifying the ‘-mcpu=cpu type’ overrides the specification of these options. We
recommend you use that option rather than these.

The ‘-mpower’ option allows GNU CC to generate instructions that are found only in
the POWER architecture and to use the MQ register. Specifying ‘-mpower2’ implies

Chapter 3: GNU CC Command Options 59

‘-power’ and also allows GNU CC to generate instructions that are present in the
POWER2 architecture but not the original POWER architecture.

The ‘-mpowerpc’ option allows GNU CC to generate instructions that are found only
in the 32-bit subset of the PowerPC architecture. Specifying ‘-mpowerpcsqr’ implies
‘-mpowerpc’ and also allows GNU CC to use the floating point square root instructions
in the PowerPC architecture but not in its first implementation. Likewise, specifying
‘-mpowerpc64’ implies ‘-mpowerpc’ and also allows GNU CC to use the 64-bit instruc-
tions in the PowerPC architecture.

If you specify both ‘-mno-power’ and ‘-mno-powerpc’, GNU CC will use only the
instructions in the common subset of both architectures and will not use the MQ
register. Specifying both ‘-mpower’ and ‘-mpowerpc’ permits GNU CC to use any
instruction from either architecture and to allow use of the MQ register; specify this
for the Motorola MPC601.

-mnew-mnemonics

-mold-mnemonics

Select which mnemonics to use in the generated assembler code. ‘-mnew-mnemonics’ re-
quests output that uses the assembler mnemonics defined for the PowerPC architecture,
while ‘-mold-mnemonics’ requests the assembler mnemonics defined for the POWER
architecture. Instructions defined in only one architecture have only one mnemonic;
GNU CC uses that mnemonic irrespective of which of thse options is specified.

PowerPC assemblers support both the old and new mnemonics, as will later POWER
assemblers. Current POWER assemblers only support the old mnemonics. Specify
‘-mnew-mnemonics’ if you have an assembler that supports them, otherwise specify
‘-mold-mnemonics’.

The default value of these options depends on how GNU CC was configured. Specif-
ing ‘-mcpu=cpu type’ sometimes overrides the value of these option. Unless you are
building a cross-compiled, you should normally not specify either ‘-mnew-mnemonics’
or ‘-mold-mnemonics’, but should instead accept the default.

-mcpu=cpu˙type

Set architecture type, register usage, choice of mnemonics, and instruction scheduling
parameters for machine type cpu type. By default, cpu type is the target system
defined when GNU CC was configured. Supported values for cpu type are ‘rios1’,
‘rios2’, ‘rsc1’, ‘601’, ‘603’, ‘604’, ‘620’ and ‘all’.

Specifying ‘-mcpu=rios1’ or ‘-mcpu=rios2’ enables the ‘-mpower’ option and disables
the ‘-mpowerpc’ option, ‘-mcpu=601’ enables both the ‘-mpower’ and ‘-mpowerpc’ op-
tions, ‘-mcpu=603’ and ‘-mcpu=604’ enable the ‘-mpowerpc’ option and disables the
‘-mpower’ option, and ‘-mcpu=620’ enables both the ‘-mpowerpc’ and ‘-mpowerpc64’
options and also disables the ‘-mpower’ option.

60 Using and Porting GNU CC

To generate code that will operate on all members of the RS/6000 and PowerPC family,
specify ‘-mcpu=all’. In that case, GNU CC will only use instructions in the common
subset and will not use the MQ register. The instruction scheduling parameters and
choice of mnemonics are not affected.

Specifying ‘-mcpu=601’, ‘-mcpu=603’, ‘-mcpu=604’, or ‘-mcpu=620’ also enables the
‘new-mnemonics’ option.

-mnormal-toc

-mno-fp-in-toc

-mminimal-toc

Modify generation of the TOC (Table Of Contents), which is created for every exe-
cutable file. The ‘-mnormal-toc’ option is selected by default. In that case, GNU CC
will allocate at least one TOC entry for each unique non-automatic variable reference in
your program. GNU CC will also place floating-point constants in the TOC. However,
only 16K entries are available in the TOC.

If you receive a linker error message that says you have overflowed the available TOC
space, recompile your files with either the ‘-mno-fp-in-toc’ or ‘-mminimal-toc’ op-
tions. ‘-mno-fp-in-toc’ prevents GNU CC from putting floating-point constants in
the TOC. ‘-mminimal-toc’ causes GNU CC to make only one TOC entry for every
file. Using the ‘-minimal-toc’ option produces slightly slower and larger code than
the ‘-mnormal-toc’ or ‘-mno-fp-in-toc’ options. If you use floating-point, try the
‘-mno-fp-in-toc’ option before you specify ‘-mminimal-toc’.

3.14.8 IBM RT Options

These ‘-m’ options are defined for the IBM RT PC:

-min-line-mul

Use an in-line code sequence for integer multiplies. This is the default.

-mcall-lib-mul

Call lmul$$ for integer multiples.

-mfull-fp-blocks

Generate full-size floating point data blocks, including the minimum amount of scratch
space recommended by IBM. This is the default.

-mminimum-fp-blocks

Do not include extra scratch space in floating point data blocks. This results in smaller
code, but slower execution, since scratch space must be allocated dynamically.

Chapter 3: GNU CC Command Options 61

-mfp-arg-in-fpregs

Use a calling sequence incompatible with the IBM calling convention in which float-
ing point arguments are passed in floating point registers. Note that varargs.h and
stdargs.h will not work with floating point operands if this option is specified.

-mfp-arg-in-gregs

Use the normal calling convention for floating point arguments. This is the default.

-mhc-struct-return

Return structures of more than one word in memory, rather than in a register. This
provides compatibility with the MetaWare HighC (hc) compiler. Use the option
‘-fpcc-struct-return’ for compatibility with the Portable C Compiler (pcc).

-mnohc-struct-return

Return some structures of more than one word in registers, when convenient. This
is the default. For compatibility with the IBM-supplied compilers, use the option
‘-fpcc-struct-return’ or the option ‘-mhc-struct-return’.

3.14.9 MIPS Options

These ‘-m’ options are defined for the MIPS family of computers:

-mcpu=cpu type

Assume the defaults for the machine type cpu type when scheduling instructions. The
default cpu type is ‘default’, which picks the longest cycles times for any of the
machines, in order that the code run at reasonable rates on all MIPS cpu’s. Other
choices for cpu type are ‘r2000’, ‘r3000’, ‘r4000’, and ‘r6000’. While picking a specific
cpu type will schedule things appropriately for that particular chip, the compiler will
not generate any code that does not meet level 1 of the MIPS ISA (instruction set
architecture) without the ‘-mips2’ or ‘-mips3’ switches being used.

-mips2 Issue instructions from level 2 of the MIPS ISA (branch likely, square root instructions).
The ‘-mcpu=r4000’ or ‘-mcpu=r6000’ switch must be used in conjunction with ‘-mips2’.

-mips3 Issue instructions from level 3 of the MIPS ISA (64 bit instructions). You must use
the ‘-mcpu=r4000’ switch along with ‘-mips3’.

-mint64

-mlong64

-mlonglong128

These options don’t work at present.

62 Using and Porting GNU CC

-mmips-as

Generate code for the MIPS assembler, and invoke ‘mips-tfile’ to add normal debug
information. This is the default for all platforms except for the OSF/1 reference plat-
form, using the OSF/rose object format. If the either of the ‘-gstabs’ or ‘-gstabs+’
switches are used, the ‘mips-tfile’ program will encapsulate the stabs within MIPS
ECOFF.

-mgas Generate code for the GNU assembler. This is the default on the OSF/1 reference
platform, using the OSF/rose object format.

-mrnames

-mno-rnames

The ‘-mrnames’ switch says to output code using the MIPS software names for the
registers, instead of the hardware names (ie, a0 instead of $4). The GNU assembler
does not support the ‘-mrnames’ switch, and the MIPS assembler will be instructed to
run the MIPS C preprocessor over the source file. The ‘-mno-rnames’ switch is default.

-mgpopt

-mno-gpopt

The ‘-mgpopt’ switch says to write all of the data declarations before the instructions
in the text section, this allows the MIPS assembler to generate one word memory
references instead of using two words for short global or static data items. This is on
by default if optimization is selected.

-mstats

-mno-stats

For each non-inline function processed, the ‘-mstats’ switch causes the compiler to
emit one line to the standard error file to print statistics about the program (number
of registers saved, stack size, etc.).

-mmemcpy

-mno-memcpy

The ‘-mmemcpy’ switch makes all block moves call the appropriate string function
(‘memcpy’ or ‘bcopy’) instead of possibly generating inline code.

-mmips-tfile

-mno-mips-tfile

The ‘-mno-mips-tfile’ switch causes the compiler not postprocess the object file with
the ‘mips-tfile’ program, after the MIPS assembler has generated it to add debug
support. If ‘mips-tfile’ is not run, then no local variables will be available to the
debugger. In addition, ‘stage2’ and ‘stage3’ objects will have the temporary file
names passed to the assembler embedded in the object file, which means the objects
will not compare the same. The ‘-mno-mips-tfile’ switch should only be used when
there are bugs in the ‘mips-tfile’ program that prevents compilation.

Chapter 3: GNU CC Command Options 63

-msoft-float

Generate output containing library calls for floating point. Warning: the requisite
libraries are not part of GNU CC. Normally the facilities of the machine’s usual C
compiler are used, but this can’t be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for cross-compilation.

-mhard-float

Generate output containing floating point instructions. This is the default if you use
the unmodified sources.

-mfp64 Assume that the FR bit in the status word is on, and that there are 32 64-bit floating
point registers, instead of 32 32-bit floating point registers. You must also specify the
‘-mcpu=r4000’ and ‘-mips3’ switches.

-mfp32 Assume that there are 32 32-bit floating point registers. This is the default.

-mabicalls

-mno-abicalls

Emit (or do not emit) the pseudo operations ‘.abicalls’, ‘.cpload’, and ‘.cprestore’
that some System V.4 ports use for position independent code.

-mlong-calls

-mlong-calls

Do all calls with the ‘JALR’ instruction, which requires loading up a function’s address
into a register before the call. You need to use this switch, if you call outside of the
current 512 megabyte segment to functions that are not through pointers.

-mhalf-pic

-mno-half-pic

Put pointers to extern references into the data section and load them up, rather than
put the references in the text section.

-G num Put global and static items less than or equal to num bytes into the small data or
bss sections instead of the normal data or bss section. This allows the assembler to
emit one word memory reference instructions based on the global pointer (gp or $28),
instead of the normal two words used. By default, num is 8 when the MIPS assembler
is used, and 0 when the GNU assembler is used. The ‘-G num’ switch is also passed
to the assembler and linker. All modules should be compiled with the same ‘-G num’
value.

-nocpp Tell the MIPS assembler to not run it’s preprocessor over user assembler files (with a
‘.s’ suffix) when assembling them.

These options are defined by the macro TARGET_SWITCHES in the machine description. The
default for the options is also defined by that macro, which enables you to change the defaults.

64 Using and Porting GNU CC

3.14.10 Intel 386 Options

These ‘-m’ options are defined for the i386 family of computers:

-m486

-mno-486 Control whether or not code is optimized for a 486 instead of an 386. Code generated
for an 486 will run on a 386 and vice versa.

-msoft-float

Generate output containing library calls for floating point. Warning: the requisite
libraries are not part of GNU CC. Normally the facilities of the machine’s usual C
compiler are used, but this can’t be done directly in cross-compilation. You must make
your own arrangements to provide suitable library functions for cross-compilation.

On machines where a function returns floating point results in the 80387 register stack,
some floating point opcodes may be emitted even if ‘-msoft-float’ is used.

-mno-fp-ret-in-387

Do not use the FPU registers for return values of functions.

The usual calling convention has functions return values of types float and double in
an FPU register, even if there is no FPU. The idea is that the operating system should
emulate an FPU.

The option ‘-mno-fp-ret-in-387’ causes such values to be returned in ordinary CPU
registers instead.

3.14.11 HPPA Options

These ‘-m’ options are defined for the HPPA family of computers:

-mpa-risc-1-0

Generate code for a PA 1.0 processor.

-mpa-risc-1-1

Generate code for a PA 1.1 processor.

-mlong-calls

Generate code which allows calls to functions greater than 256k away from the caller
when the caller and callee are in the same source file. Do not turn this option on unless
code refuses to link with "branch out of range errors" from the linker.

-mdisable-fpregs

Prevent floating point registers from being used in any manner. This is necessary for
compiling kernels which perform lazy context switching of floating point registers. If

Chapter 3: GNU CC Command Options 65

you use this option and attempt to perform floating point operations, the compiler will
abort.

-mdisable-indexing

Prevent the compiler from using indexing address modes. This avoids some rather
obscure problems when compiling MIG generated code under MACH.

-mtrailing-colon

Add a colon to the end of label definitions (for ELF assemblers).

3.14.12 Intel 960 Options

These ‘-m’ options are defined for the Intel 960 implementations:

-mcpu type

Assume the defaults for the machine type cpu type for some of the other options,
including instruction scheduling, floating point support, and addressing modes. The
choices for cpu type are ‘ka’, ‘kb’, ‘mc’, ‘ca’, ‘cf’, ‘sa’, and ‘sb’. The default is ‘kb’.

-mnumerics

-msoft-float

The ‘-mnumerics’ option indicates that the processor does support floating-point in-
structions. The ‘-msoft-float’ option indicates that floating-point support should not
be assumed.

-mleaf-procedures

-mno-leaf-procedures

Do (or do not) attempt to alter leaf procedures to be callable with the bal instruction
as well as call. This will result in more efficient code for explicit calls when the bal

instruction can be substituted by the assembler or linker, but less efficient code in other
cases, such as calls via function pointers, or using a linker that doesn’t support this
optimization.

-mtail-call

-mno-tail-call

Do (or do not) make additional attempts (beyond those of the machine-independent
portions of the compiler) to optimize tail-recursive calls into branches. You may not
want to do this because the detection of cases where this is not valid is not totally
complete. The default is ‘-mno-tail-call’.

66 Using and Porting GNU CC

-mcomplex-addr

-mno-complex-addr

Assume (or do not assume) that the use of a complex addressing mode is a win
on this implementation of the i960. Complex addressing modes may not be worth-
while on the K-series, but they definitely are on the C-series. The default is currently
‘-mcomplex-addr’ for all processors except the CB and CC.

-mcode-align

-mno-code-align

Align code to 8-byte boundaries for faster fetching (or don’t bother). Currently turned
on by default for C-series implementations only.

-mic-compat

-mic2.0-compat

-mic3.0-compat

Enable compatibility with iC960 v2.0 or v3.0.

-masm-compat

-mintel-asm

Enable compatibility with the iC960 assembler.

-mstrict-align

-mno-strict-align

Do not permit (do permit) unaligned accesses.

-mold-align

Enable structure-alignment compatibility with Intel’s gcc release version 1.3 (based on
gcc 1.37). Currently this is buggy in that ‘#pragma align 1’ is always assumed as well,
and cannot be turned off.

3.14.13 DEC Alpha Options

These ‘-m’ options are defined for the DEC Alpha implementations:

-mno-soft-float

-msoft-float

Use (do not use) the hardware floating-point instructions for floating-point opera-
tions. When -msoft-float is specified, functions in ‘libgcc1.c’ will be used to per-
form floating-point operations. Unless they are replaced by routines that emulate the
floating-point operations, or compiled in such a way as to call such emulations routines,
these routines will issue floating-point operations. If you are compiling for an Alpha

Chapter 3: GNU CC Command Options 67

without floating-point operations, you must ensure that the library is built so as not
to call them.

Note that Alpha implementations without floating-point operations are required to
have floating-point registers.

-mfp-reg

-mno-fp-regs

Generate code that uses (does not use) the floating-point register set. -mno-fp-regs

implies -msoft-float. If the floating-point register set is not used, floating point
operands are passed in integer registers as if they were integers and floating-point
results are passed in $0 instead of $f0. This is a non-standard calling sequence, so any
function with a floating-point argument or return value called by code compiled with
-mno-fp-regs must also be compiled with that option.

A typical use of this option is building a kernel that does not use, and hence need not
save and restore, any floating-point registers.

3.14.14 Clipper Options

These ‘-m’ options are defined for the Clipper implementations:

-mc300 Produce code for a C300 Clipper processor. This is the default.
-mc400 Produce code for a C400 Clipper processor i.e. use floting point registers f8..f15.

3.14.15 Options for System V

These additional options are available on System V Release 4 for compatibility with other
compilers on those systems:

-Qy Identify the versions of each tool used by the compiler, in a .ident assembler directive
in the output.

-Qn Refrain from adding .ident directives to the output file (this is the default).

-YP,dirs Search the directories dirs, and no others, for libraries specified with ‘-l’.

-Ym,dir Look in the directory dir to find the M4 preprocessor. The assembler uses this option.

68 Using and Porting GNU CC

3.15 Options for Code Generation Conventions

These machine-independent options control the interface conventions used in code generation.

Most of them have both positive and negative forms; the negative form of ‘-ffoo’ would be
‘-fno-foo’. In the table below, only one of the forms is listed—the one which is not the default.
You can figure out the other form by either removing ‘no-’ or adding it.

-fpcc-struct-return

Return “short” struct and union values in memory like longer ones, rather than
in registers. This convention is less efficient, but it has the advantage of allowing
intercallability between GNU CC-compiled files and files compiled with other compilers.

The precise convention for returning structures in memory depends on the target con-
figuration macros.

Short structures and unions are those whose size and alignment match that of some
integer type.

-freg-struct-return

Use the convention that struct and union values are returned in registers when pos-
sible. This is more efficient for small structures than ‘-fpcc-struct-return’.

If you specify neither ‘-fpcc-struct-return’ nor its contrary ‘-freg-struct-return’,
GNU CC defaults to whichever convention is standard for the target. If there is no
standard convention, GNU CC defaults to ‘-fpcc-struct-return’, except on targets
where GNU CC is the principal compiler. In those cases, we can choose the standard,
and we chose the more efficient register return alternative.

-fshort-enums

Allocate to an enum type only as many bytes as it needs for the declared range of
possible values. Specifically, the enum type will be equivalent to the smallest integer
type which has enough room.

-fshort-double

Use the same size for double as for float.

-fshared-data

Requests that the data and non-const variables of this compilation be shared data
rather than private data. The distinction makes sense only on certain operating sys-
tems, where shared data is shared between processes running the same program, while
private data exists in one copy per process.

-fno-common

Allocate even uninitialized global variables in the bss section of the object file, rather
than generating them as common blocks. This has the effect that if the same variable

Chapter 3: GNU CC Command Options 69

is declared (without extern) in two different compilations, you will get an error when
you link them. The only reason this might be useful is if you wish to verify that the
program will work on other systems which always work this way.

-fno-ident

Ignore the ‘#ident’ directive.

-fno-gnu-linker

Do not output global initializations (such as C++ constructors and destructors) in the
form used by the GNU linker (on systems where the GNU linker is the standard method
of handling them). Use this option when you want to use a non-GNU linker, which
also requires using the collect2 program to make sure the system linker includes
constructors and destructors. (collect2 is included in the GNU CC distribution.) For
systems which must use collect2, the compiler driver gcc is configured to do this
automatically.

-finhibit-size-directive

Don’t output a .size assembler directive, or anything else that would cause trouble if
the function is split in the middle, and the two halves are placed at locations far apart
in memory. This option is used when compiling ‘crtstuff.c’; you should not need to
use it for anything else.

-fverbose-asm

Put extra commentary information in the generated assembly code to make it more
readable. This option is generally only of use to those who actually need to read the
generated assembly code (perhaps while debugging the compiler itself).

-fvolatile

Consider all memory references through pointers to be volatile.

-fvolatile-global

Consider all memory references to extern and global data items to be volatile.

-fpic Generate position-independent code (PIC) suitable for use in a shared library, if sup-
ported for the target machine. Such code accesses all constant addresses through a
global offset table (GOT). If the GOT size for the linked executable exceeds a machine-
specific maximum size, you get an error message from the linker indicating that ‘-fpic’
does not work; in that case, recompile with ‘-fPIC’ instead. (These maximums are 16k
on the m88k, 8k on the Sparc, and 32k on the m68k and RS/6000. The 386 has no
such limit.)

Position-independent code requires special support, and therefore works only on certain
machines. For the 386, GNU CC supports PIC for System V but not for the Sun 386i.
Code generated for the IBM RS/6000 is always position-independent.

The GNU assembler does not fully support PIC. Currently, you must use some other
assembler in order for PIC to work. We would welcome volunteers to upgrade GAS

70 Using and Porting GNU CC

to handle this; the first part of the job is to figure out what the assembler must do
differently.

-fPIC If supported for the target machine, emit position-independent code, suitable for dy-
namic linking and avoiding any limit on the size of the global offset table. This option
makes a difference on the m68k, m88k and the Sparc.

Position-independent code requires special support, and therefore works only on certain
machines.

-ffixed-reg

Treat the register named reg as a fixed register; generated code should never refer to
it (except perhaps as a stack pointer, frame pointer or in some other fixed role).

reg must be the name of a register. The register names accepted are machine-specific
and are defined in the REGISTER_NAMES macro in the machine description macro file.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-used-reg

Treat the register named reg as an allocatable register that is clobbered by function
calls. It may be allocated for temporaries or variables that do not live across a call.
Functions compiled this way will not save and restore the register reg.

Use of this flag for a register that has a fixed pervasive role in the machine’s execution
model, such as the stack pointer or frame pointer, will produce disastrous results.

This flag does not have a negative form, because it specifies a three-way choice.

-fcall-saved-reg

Treat the register named reg as an allocatable register saved by functions. It may be
allocated even for temporaries or variables that live across a call. Functions compiled
this way will save and restore the register reg if they use it.

Use of this flag for a register that has a fixed pervasive role in the machine’s execution
model, such as the stack pointer or frame pointer, will produce disastrous results.

A different sort of disaster will result from the use of this flag for a register in which
function values may be returned.

This flag does not have a negative form, because it specifies a three-way choice.

+e0

+e1 Control whether virtual function definitions in classes are used to generate code, or
only to define interfaces for their callers. (C++ only).

These options are provided for compatibility with cfront 1.x usage; the recommended
alternative GNU C++ usage is in flux. See Section 6.4 [Declarations and Definitions in
One Header], page 148.

With ‘+e0’, virtual function definitions in classes are declared extern; the declaration
is used only as an interface specification, not to generate code for the virtual functions
(in this compilation).

Chapter 3: GNU CC Command Options 71

With ‘+e1’, G++ actually generates the code implementing virtual functions defined in
the code, and makes them publicly visible.

3.16 Environment Variables Affecting GNU CC

This section describes several environment variables that affect how GNU CC operates. They
work by specifying directories or prefixes to use when searching for various kinds of files.

Note that you can also specify places to search using options such as ‘-B’, ‘-I’ and ‘-L’ (see
Section 3.12 [Directory Options], page 48). These take precedence over places specified using
environment variables, which in turn take precedence over those specified by the configuration of
GNU CC. See Section 16.1 [Driver], page 307.

TMPDIR If TMPDIR is set, it specifies the directory to use for temporary files. GNU CC uses
temporary files to hold the output of one stage of compilation which is to be used as
input to the next stage: for example, the output of the preprocessor, which is the input
to the compiler proper.

GCC_EXEC_PREFIX

If GCC_EXEC_PREFIX is set, it specifies a prefix to use in the names of the subprograms
executed by the compiler. No slash is added when this prefix is combined with the
name of a subprogram, but you can specify a prefix that ends with a slash if you wish.

If GNU CC cannot find the subprogram using the specified prefix, it tries looking in
the usual places for the subprogram.

Other prefixes specified with ‘-B’ take precedence over this prefix.

This prefix is also used for finding files such as ‘crt0.o’ that are used for linking.

In addition, the prefix is used in an unusual way in finding the directories to search
for header files. For each of the standard directories whose name normally begins
with ‘/usr/local/lib/gcc-lib’ (more precisely, with the value of GCC_INCLUDE_DIR),
GNU CC tries replacing that beginning with the specified prefix to produce an alternate
directory name. Thus, with ‘-Bfoo/’, GNU CC will search ‘foo/bar’ where it would
normally search ‘/usr/local/lib/bar’. These alternate directories are searched first;
the standard directories come next.

COMPILER_PATH

The value of COMPILER_PATH is a colon-separated list of directories, much like PATH.
GNU CC tries the directories thus specified when searching for subprograms, if it can’t
find the subprograms using GCC_EXEC_PREFIX.

72 Using and Porting GNU CC

LIBRARY_PATH

The value of LIBRARY_PATH is a colon-separated list of directories, much like PATH.
GNU CC tries the directories thus specified when searching for special linker files, if
it can’t find them using GCC_EXEC_PREFIX. Linking using GNU CC also uses these
directories when searching for ordinary libraries for the ‘-l’ option (but directories
specified with ‘-L’ come first).

C_INCLUDE_PATH

CPLUS_INCLUDE_PATH

OBJC_INCLUDE_PATH

These environment variables pertain to particular languages. Each variable’s value is a
colon-separated list of directories, much like PATH. When GNU CC searches for header
files, it tries the directories listed in the variable for the language you are using, after
the directories specified with ‘-I’ but before the standard header file directories.

DEPENDENCIES_OUTPUT

If this variable is set, its value specifies how to output dependencies for Make based
on the header files processed by the compiler. This output looks much like the output
from the ‘-M’ option (see Section 3.9 [Preprocessor Options], page 44), but it goes to a
separate file, and is in addition to the usual results of compilation.

The value of DEPENDENCIES_OUTPUT can be just a file name, in which case the Make
rules are written to that file, guessing the target name from the source file name. Or
the value can have the form ‘file target’, in which case the rules are written to file file

using target as the target name.

3.17 Running Protoize

The program protoize is an optional part of GNU C. You can use it to add prototypes to
a program, thus converting the program to ANSI C in one respect. The companion program
unprotoize does the reverse: it removes argument types from any prototypes that are found.

When you run these programs, you must specify a set of source files as command line arguments.
The conversion programs start out by compiling these files to see what functions they define. The
information gathered about a file foo is saved in a file named ‘foo.X’.

After scanning comes actual conversion. The specified files are all eligible to be converted; any
files they include (whether sources or just headers) are eligible as well.

But not all the eligible files are converted. By default, protoize and unprotoize convert only
source and header files in the current directory. You can specify additional directories whose files

Chapter 3: GNU CC Command Options 73

should be converted with the ‘-d directory ’ option. You can also specify particular files to exclude
with the ‘-x file’ option. A file is converted if it is eligible, its directory name matches one of the
specified directory names, and its name within the directory has not been excluded.

Basic conversion with protoize consists of rewriting most function definitions and function
declarations to specify the types of the arguments. The only ones not rewritten are those for
varargs functions.

protoize optionally inserts prototype declarations at the beginning of the source file, to make
them available for any calls that precede the function’s definition. Or it can insert prototype
declarations with block scope in the blocks where undeclared functions are called.

Basic conversion with unprotoize consists of rewriting most function declarations to remove
any argument types, and rewriting function definitions to the old-style pre-ANSI form.

Both conversion programs print a warning for any function declaration or definition that they
can’t convert. You can suppress these warnings with ‘-q’.

The output from protoize or unprotoize replaces the original source file. The original file is
renamed to a name ending with ‘.save’. If the ‘.save’ file already exists, then the source file is
simply discarded.

protoize and unprotoize both depend on GNU CC itself to scan the program and collect
information about the functions it uses. So neither of these programs will work until GNU CC is
installed.

Here is a table of the options you can use with protoize and unprotoize. Each option works
with both programs unless otherwise stated.

-B directory

Look for the file ‘SYSCALLS.c.X’ in directory, instead of the usual directory (normally
‘/usr/local/lib’). This file contains prototype information about standard system
functions. This option applies only to protoize.

-c compilation-options

Use compilation-options as the options when running gcc to produce the ‘.X’ files. The
special option ‘-aux-info’ is always passed in addition, to tell gcc to write a ‘.X’ file.

74 Using and Porting GNU CC

Note that the compilation options must be given as a single argument to protoize or
unprotoize. If you want to specify several gcc options, you must quote the entire set
of compilation options to make them a single word in the shell.

There are certain gcc arguments that you cannot use, because they would produce the
wrong kind of output. These include ‘-g’, ‘-O’, ‘-c’, ‘-S’, and ‘-o’ If you include these
in the compilation-options, they are ignored.

-C Rename files to end in ‘.C’ instead of ‘.c’. This is convenient if you are converting a
C program to C++. This option applies only to protoize.

-g Add explicit global declarations. This means inserting explicit declarations at the
beginning of each source file for each function that is called in the file and was not
declared. These declarations precede the first function definition that contains a call
to an undeclared function. This option applies only to protoize.

-i string Indent old-style parameter declarations with the string string. This option applies only
to protoize.

unprotoize converts prototyped function definitions to old-style function definitions,
where the arguments are declared between the argument list and the initial ‘{’. By
default, unprotoize uses five spaces as the indentation. If you want to indent with
just one space instead, use ‘-i " "’.

-k Keep the ‘.X’ files. Normally, they are deleted after conversion is finished.

-l Add explicit local declarations. protoize with ‘-l’ inserts a prototype declaration for
each function in each block which calls the function without any declaration. This
option applies only to protoize.

-n Make no real changes. This mode just prints information about the conversions that
would have been done without ‘-n’.

-N Make no ‘.save’ files. The original files are simply deleted. Use this option with
caution.

-p program

Use the program program as the compiler. Normally, the name ‘gcc’ is used.

-q Work quietly. Most warnings are suppressed.

-v Print the version number, just like ‘-v’ for gcc.

If you need special compiler options to compile one of your program’s source files, then you
should generate that file’s ‘.X’ file specially, by running gcc on that source file with the appropriate
options and the option ‘-aux-info’. Then run protoize on the entire set of files. protoize will
use the existing ‘.X’ file because it is newer than the source file. For example:

gcc -Dfoo=bar file1.c -aux-info
protoize *.c

Chapter 3: GNU CC Command Options 75

You need to include the special files along with the rest in the protoize command, even though
their ‘.X’ files already exist, because otherwise they won’t get converted.

See Section 7.10 [Protoize Caveats], page 169, for more information on how to use protoize

successfully.

76 Using and Porting GNU CC

Chapter 4: Installing GNU CC 77

4 Installing GNU CC

Here is the procedure for installing GNU CC on a Unix system.

See below for VMS systems, and modified procedures needed on other systems including HP,
Sun, 3b1, SCO Unix and Unos.

The following section says how to compile in a separate directory on Unix; here we assume you
compile in the same directory that contains the source files.

You cannot install GNU C by itself on MSDOS; it will not compile under any MSDOS compiler
except itself. You need to get the complete compilation package DJGPP, which includes binaries
as well as sources, and includes all the necessary compilation tools and libraries.

1. If you have built GNU CC previously in the same directory for a different target machine,
do ‘make distclean’ to delete all files that might be invalid. One of the files this deletes is
‘Makefile’; if ‘make distclean’ complains that ‘Makefile’ does not exist, it probably means
that the directory is already suitably clean.

2. On a System V release 4 system, make sure ‘/usr/bin’ precedes ‘/usr/ucb’ in PATH. The cc

command in ‘/usr/ucb’ uses libraries which have bugs.

3. Specify the host and target machine configurations. You do this by running the file ‘configure’
with appropriate arguments.

If you are building a compiler to produce code for the machine it runs on, specify just one
machine type, with the ‘--target’ option; the host type will default to be the same as the tar-
get. (For information on building a cross-compiler, see Section 4.2 [Cross-Compiler], page 89.)
Here is an example:

configure --target=sparc-sun-sunos4.1

If you run ‘configure’ without specifying configuration arguments, ‘configure’ tries to guess
the type of host you are on, and uses that configuration type for both host and target. So
you don’t need to specify a configuration, for building a native compiler, unless ‘configure’
cannot figure out what your configuration is.

A configuration name may be canonical or it may be more or less abbreviated.

A canonical configuration name has three parts, separated by dashes. It looks like this:
‘cpu-company-system’. (The three parts may themselves contain dashes; ‘configure’ can
figure out which dashes serve which purpose.) For example, ‘m68k-sun-sunos4.1’ specifies a
Sun 3.

You can also replace parts of the configuration by nicknames or aliases. For example, ‘sun3’
stands for ‘m68k-sun’, so ‘sun3-sunos4.1’ is another way to specify a Sun 3. You can also

78 Using and Porting GNU CC

use simply ‘sun3-sunos’, since the version of SunOS is assumed by default to be version 4.
‘sun3-bsd’ also works, since ‘configure’ knows that the only BSD variant on a Sun 3 is
SunOS.

You can specify a version number after any of the system types, and some of the CPU types.
In most cases, the version is irrelevant, and will be ignored. So you might as well specify the
version if you know it.

Here are the possible CPU types:
a29k, alpha, arm, cn, clipper, elxsi, h8300, hppa1.0, hppa1.1, i370, i386, i486,
i860, i960, m68000, m68k, m88k, mips, ns32k, pyramid, romp, rs6000, sh, sparc,
sparclite, vax, we32k.

Here are the recognized company names. As you can see, customary abbreviations are used
rather than the longer official names.

alliant, altos, apollo, att, bull, cbm, convergent, convex, crds, dec, dg, dolphin,
elxsi, encore, harris, hitachi, hp, ibm, intergraph, isi, mips, motorola, ncr, next,
ns, omron, plexus, sequent, sgi, sony, sun, tti, unicom.

The company name is meaningful only to disambiguate when the rest of the information
supplied is insufficient. You can omit it, writing just ‘cpu-system’, if it is not needed. For
example, ‘vax-ultrix4.2’ is equivalent to ‘vax-dec-ultrix4.2’.

Here is a list of system types:
aix, acis, aos, bsd, clix, ctix, dgux, dynix, genix, hpux, isc, linux, luna, lynxos,
mach, minix, newsos, osf, osfrose, riscos, sco, solaris, sunos, sysv, ultrix, unos,
vms.

You can omit the system type; then ‘configure’ guesses the operating system from the CPU
and company.

You can add a version number to the system type; this may or may not make a difference. For
example, you can write ‘bsd4.3’ or ‘bsd4.4’ to distinguish versions of BSD. In practice, the
version number is most needed for ‘sysv3’ and ‘sysv4’, which are often treated differently.

If you specify an impossible combination such as ‘i860-dg-vms’, then you may get an error
message from ‘configure’, or it may ignore part of the information and do the best it can
with the rest. ‘configure’ always prints the canonical name for the alternative that it used.

Often a particular model of machine has a name. Many machine names are recognized as
aliases for CPU/company combinations. Thus, the machine name ‘sun3’, mentioned above, is
an alias for ‘m68k-sun’. Sometimes we accept a company name as a machine name, when the
name is popularly used for a particular machine. Here is a table of the known machine names:

3300, 3b1, 3bn, 7300, altos3068, altos, apollo68, att-7300, balance, convex-cn,
crds, decstation-3100, decstation, delta, encore, fx2800, gmicro, hp7nn, hp8nn,
hp9k2nn, hp9k3nn, hp9k7nn, hp9k8nn, iris4d, iris, isi68, m3230, magnum, merlin,
miniframe, mmax, news-3600, news800, news, next, pbd, pc532, pmax, ps2, risc-
news, rtpc, sun2, sun386i, sun386, sun3, sun4, symmetry, tower-32, tower.

Remember that a machine name specifies both the cpu type and the company name.

Chapter 4: Installing GNU CC 79

There are four additional options you can specify independently to describe variant hardware
and software configurations. These are ‘--with-gnu-as’, ‘--with-gnu-ld’, ‘--with-stabs’
and ‘--nfp’.

‘--with-gnu-as’

If you will use GNU CC with the GNU assembler (GAS), you should declare this
by using the ‘--with-gnu-as’ option when you run ‘configure’.

Using this option does not install GAS. It only modifies the output of GNU CC
to work with GAS. Building and installing GAS is up to you.

Conversely, if you do not wish to use GAS and do not specify ‘--with-gnu-as’
when building GNU CC, it is up to you to make sure that GAS is not installed.
GNU CC searches for a program named as in various directories; if the program
it finds is GAS, then it runs GAS. If you are not sure where GNU CC finds the
assembler it is using, try specifying ‘-v’ when you run it.

The systems where it makes a difference whether you use GAS are
‘hppa1.0-any-any ’, ‘hppa1.1-any-any ’, ‘i386-any-sysv’, ‘i386-any-isc’,
‘i860-any-bsd’, ‘m68k-bull-sysv’, ‘m68k-hp-hpux’, ‘m68k-sony-bsd’,
‘m68k-altos-sysv’, ‘m68000-hp-hpux’, ‘m68000-att-sysv’, and ‘mips-any ’). On
any other system, ‘--with-gnu-as’ has no effect.

On the systems listed above (except for the HP-PA and for ISC on the 386), if you
use GAS, you should also use the GNU linker (and specify ‘--with-gnu-ld’).

‘--with-gnu-ld’

Specify the option ‘--with-gnu-ld’ if you plan to use the GNU linker with GNU
CC.

This option does not cause the GNU linker to be installed; it just modifies the
behavior of GNU CC to work with the GNU linker. Specifically, it inhibits the
installation of collect2, a program which otherwise serves as a front-end for the
system’s linker on most configurations.

‘--with-stabs’

On MIPS based systems and on Alphas, you must specify whether you want GNU
CC to create the normal ECOFF debugging format, or to use BSD-style stabs
passed through the ECOFF symbol table. The normal ECOFF debug format
cannot fully handle languages other than C. BSD stabs format can handle other
languages, but it only works with the GNU debugger GDB.

Normally, GNU CC uses the ECOFF debugging format by default; if you prefer
BSD stabs, specify ‘--with-stabs’ when you configure GNU CC.

No matter which default you choose when you configure GNU CC, the user can
use the ‘-gcoff’ and ‘-gstabs+’ options to specify explicitly the debug format for
a particular compilation.

80 Using and Porting GNU CC

‘--with-stabs’ is meaningful on the ISC system on the 386, also, if ‘--with-gas’
is used. It selects use of stabs debugging information embedded in COFF output.
This kind of debugging information supports C++ well; ordinary COFF debugging
information does not.

‘--nfp’ On certain systems, you must specify whether the machine has a floating point
unit. These systems include ‘m68k-sun-sunosn’ and ‘m68k-isi-bsd’. On any
other system, ‘--nfp’ currently has no effect, though perhaps there are other
systems where it could usefully make a difference.

If you want to install your own homemade configuration files, you can use ‘local’ as the
company name to access them. If you use configuration ‘cpu-local’, the configuration name
without the cpu prefix is used to form the configuration file names.

Thus, if you specify ‘m68k-local’, configuration uses files ‘local.md’, ‘local.h’, ‘local.c’,
‘xm-local.h’, ‘t-local’, and ‘x-local’, all in the directory ‘config/m68k’.

Here is a list of configurations that have special treatment or special things you must know:

‘alpha-*-osf1’

Systems using processors that implement the DEC Alpha architecture and are
running the OSF/1 operating system, for example the DEC Alpha AXP systems.
(VMS on the Alpha is not currently supported by GNU CC.)

Objective C and C++ do not yet work on the Alpha. We hope to support C++ in
version 2.6.

GNU CC writes a ‘.verstamp’ directive to the assembler output file unless it
is built as a cross-compiler. It gets the version to use from the system header
file ‘/usr/include/stamp.h’. If you install a new version of OSF/1, you should
rebuild GCC to pick up the new version stamp.

Note that since the Alpha is a 64-bit architecture, cross-compilers from 32-bit
machines will not generate as efficient code as that generated when the compiler
is running on a 64-bit machine because many optimizations that depend on being
able to represent a word on the target in an integral value on the host cannot be
performed. Building cross-compilers on the Alpha for 32-bit machines has only
been tested in a few cases and may not work properly.

make compare may fail on some versions of OSF/1 unless you add ‘-save-temps’
to CFLAGS. The same problem occurs on Irix version 5.1.1. On these systems,
the name of the assembler input file is stored in the object file, and that makes
comparison fail if it differs between the stage1 and stage2 compilations. The
option ‘-save-temps’ forces a fixed name to be used for the assembler input file,
instead of a randomly chosen name in ‘/tmp’.

GNU CC now supports both the native (ECOFF) debugging format used by DBX
and GDB and an encapsulated STABS format for use only with GDB. See the

Chapter 4: Installing GNU CC 81

discussion of the ‘--with-stabs’ option of ‘configure’ above for more information
on these formats and how to select them.

There is a bug in DEC’s assembler that produces incorrect line numbers for ECOFF
format when the ‘.align’ directive is used. To work around this problem, GNU
CC will not emit such alignment directives even if optimization is being performed
if it is writing ECOFF format debugging information. Unfortunately, this has the
very undesirable side-effect that code addresses when ‘-O’ is specified are different
depending on whether or not ‘-g’ is also specified.

To avoid this behavior, specify ‘-gstabs+’ and use GDB instead of DBX. DEC is
now aware of this problem with the assembler and hopes to provide a fix shortly.

‘a29k’ AMD Am29k-family processors. These are normally used in embedded applica-
tions. There are no standard Unix configurations. This configuration corresponds
to AMD’s standard calling sequence and binary interface and is compatible with
other 29k tools.

You may need to make a variant of the file ‘a29k.h’ for your particular configura-
tion.

‘a29k-*-bsd’

AMD Am29050 used in a system running a variant of BSD Unix.

‘elxsi-elxsi-bsd’

The Elxsi’s C compiler has known limitations that prevent it from compiling GNU
C. Please contact mrs@cygnus.com for more details.

‘hppa*-*-*’

Using GAS is highly recommended for all HP-PA configurations. See Section 4.3
[PA Install], page 95 for the special procedures needed to compile GNU CC for
the HP-PA.

‘i386-*-sco’

Compilation with RCC is recommended. Also, it may be a good idea to link with
GNU malloc instead of the malloc that comes with the system.

‘i386-*-sco3.2.4’

Use this configuration for SCO release 3.2 version 4.

‘i386-*-isc’

It may be good idea to link with GNU malloc instead of the malloc that comes
with the system.

‘i386-*-esix’

It may be good idea to link with GNU malloc instead of the malloc that comes
with the system.

82 Using and Porting GNU CC

‘i386-ibm-aix’

You need to use GAS version 2.1 or later, and and LD from GNU binutils version
2.2 or later.

‘i386-sequent’

Go to the Berkeley universe before compiling. In addition, you probably need to
create a file named ‘string.h’ containing just one line: ‘#include <strings.h>’.

‘i386-sun-sunos4’

You may find that you need another version of GNU CC to begin bootstrapping
with, since the current version when built with the system’s own compiler seems
to get an infinite loop compiling part of ‘libgcc2.c’. GNU CC version 2 compiled
with GNU CC (any version) seems not to have this problem.

‘i860-intel-osf1’

This is the Paragon. If you have version 1.0 of the operating system, see Section 7.2
[Installation Problems], page 151, for special things you need to do to compensate
for peculiarities in the system.

‘m68000-att’

AT&T 3b1, a.k.a. 7300 PC. Special procedures are needed to compile GNU CC
with this machine’s standard C compiler, due to bugs in that compiler. See Sec-
tion 4.5 [3b1 Install], page 97. You can bootstrap it more easily with previous
versions of GNU CC if you have them.

‘m68000-hp-bsd’

HP 9000 series 200 running BSD. Note that the C compiler that comes with this
system cannot compile GNU CC; contact law@cs.utah.edu to get binaries of GNU
CC for bootstrapping.

‘m68k-altos’

Altos 3068. You must use the GNU assembler, linker and debugger. Also, you
must fix a kernel bug. Details in the file ‘README.ALTOS’.

‘m68k-bull-sysv’

Bull DPX/2 series 200 and 300 with BOS-2.00.45 up to BOS-2.01. GNU CC works
either with native assembler or GNU assembler. You can use GNU assembler with
native coff generation by providing ‘--gas’ to the configure script or use GNU
assembler with dbx-in-coff encapsulation by providing ‘--gas --stabs’. For any
problem with native assembler or for availability of the DPX/2 port of GAS,
contact F.Pierresteguy@frcl.bull.fr.

‘m68k-hp-hpux’

HP 9000 series 300 or 400 running HP-UX. HP-UX version 8.0 has a bug in the
assembler that prevents compilation of GNU CC. To fix it, get patch PHCO 0800
from HP.

Chapter 4: Installing GNU CC 83

In addition, ‘--gas’ does not currently work with this configuration. Changes in
HP-UX have broken the library conversion tool and the linker.

‘m68k-sun’

Sun 3. We do not provide a configuration file to use the Sun FPA by default,
because programs that establish signal handlers for floating point traps inherently
cannot work with the FPA.

‘m88k-*-svr3’

Motorola m88k running the AT&T/Unisoft/Motorola V.3 reference port. These
systems tend to use the Green Hills C, revision 1.8.5, as the standard C compiler.
There are apparently bugs in this compiler that result in object files differences
between stage 2 and stage 3. If this happens, make the stage 4 compiler and
compare it to the stage 3 compiler. If the stage 3 and stage 4 object files are
identical, this suggests you encountered a problem with the standard C compiler;
the stage 3 and 4 compilers may be usable.

It is best, however, to use an older version of GNU CC for bootstrapping if you
have one.

‘m88k-*-dgux’

Motorola m88k running DG/UX. To build native or cross compilers on DG/UX,
you must first change to the 88open BCS software development environment. This
is done by issuing this command:

eval ‘sde-target m88kbcs‘

‘m88k-tektronix-sysv3’

Tektronix XD88 running UTekV 3.2e. Do not turn on optimization while building
stage1 if you bootstrap with the buggy Green Hills compiler. Also, The bundled
LAI System V NFS is buggy so if you build in an NFS mounted directory, start
from a fresh reboot, or avoid NFS all together. Otherwise you may have trouble
getting clean comparisons between stages.

‘mips-mips-bsd’

MIPS machines running the MIPS operating system in BSD mode. It’s possi-
ble that some old versions of the system lack the functions memcpy, memcmp, and
memset. If your system lacks these, you must remove or undo the definition of
TARGET_MEM_FUNCTIONS in ‘mips-bsd.h’.

‘mips-sgi-*’

Silicon Graphics MIPS machines running IRIX. In order to compile GCC on an
SGI the "c.hdr.lib" option must be installed from the CD-ROM supplied from
Silicon Graphics. This is found on the 2nd CD in release 4.0.1.

‘mips-sony-sysv’

Sony MIPS NEWS. This works in NEWSOS 5.0.1, but not in 5.0.2 (which uses ELF
instead of COFF). Support for 5.0.2 will probably be provided soon by volunteers.

84 Using and Porting GNU CC

In particular, the linker does not like the code generated by GCC when shared
libraries are linked in.

‘ns32k-encore’

Encore ns32000 system. Encore systems are supported only under BSD.

‘ns32k-*-genix’

National Semiconductor ns32000 system. Genix has bugs in alloca and malloc;
you must get the compiled versions of these from GNU Emacs.

‘ns32k-sequent’

Go to the Berkeley universe before compiling. In addition, you probably need to
create a file named ‘string.h’ containing just one line: ‘#include <strings.h>’.

‘ns32k-utek’

UTEK ns32000 system (“merlin”). The C compiler that comes with this system
cannot compile GNU CC; contact ‘tektronix!reed!mason’ to get binaries of GNU
CC for bootstrapping.

‘romp-*-aos’
‘romp-*-mach’

The only operating systems supported for the IBM RT PC are AOS and MACH.
GNU CC does not support AIX running on the RT. We recommend you compile
GNU CC with an earlier version of itself; if you compile GNU CC with hc, the
Metaware compiler, it will work, but you will get mismatches between the stage 2
and stage 3 compilers in various files. These errors are minor differences in some
floating-point constants and can be safely ignored; the stage 3 compiler is correct.

‘rs6000-*-aix’

Read the file ‘README.RS6000’ for information on how to get a fix for problems

in the IBM assembler that interfere with GNU CC. You must either obtain the
new assembler or avoid using the ‘-g’ switch. Note that ‘Makefile.in’ uses ‘-g’
by default when compiling ‘libgcc2.c’.

The PowerPC and POWER2 architectures are now supported, but have not been
extensively tested due to lack of appropriate systems. Only AIX is supported on
the PowerPC.

Objective C does not work on this architecture.

XLC version 1.3.0.0 will miscompile ‘jump.c’. XLC version 1.3.0.1 or later fixes
this problem. We do not yet have a PTF number for this fix.

‘vax-dec-ultrix’

Don’t try compiling with Vax C (vcc). It produces incorrect code in some cases
(for example, when alloca is used).

Meanwhile, compiling ‘cp-parse.c’ with pcc does not work because of an internal
table size limitation in that compiler. To avoid this problem, compile just the

Chapter 4: Installing GNU CC 85

GNU C compiler first, and use it to recompile building all the languages that you
want to run.

Here we spell out what files will be set up by configure. Normally you need not be concerned
with these files.

• A symbolic link named ‘config.h’ is made to the top-level config file for the machine you
will run the compiler on (see Chapter 17 [Config], page 403). This file is responsible for
defining information about the host machine. It includes ‘tm.h’.

The top-level config file is located in the subdirectory ‘config’. Its name is always
‘xm-something.h’; usually ‘xm-machine.h’, but there are some exceptions.

If your system does not support symbolic links, you might want to set up ‘config.h’ to
contain a ‘#include’ command which refers to the appropriate file.

• A symbolic link named ‘tconfig.h’ is made to the top-level config file for your target
machine. This is used for compiling certain programs to run on that machine.

• A symbolic link named ‘tm.h’ is made to the machine-description macro file for your target
machine. It should be in the subdirectory ‘config’ and its name is often ‘machine.h’.

• A symbolic link named ‘md’ will be made to the machine description pattern file. It should
be in the ‘config’ subdirectory and its name should be ‘machine.md’; but machine is often
not the same as the name used in the ‘tm.h’ file because the ‘md’ files are more general.

• A symbolic link named ‘aux-output.c’ will be made to the output subroutine file for your
machine. It should be in the ‘config’ subdirectory and its name should be ‘machine.c’.

• The command file ‘configure’ also constructs the file ‘Makefile’ by adding some text
to the template file ‘Makefile.in’. The additional text comes from files in the ‘config’
directory, named ‘t-target’ and ‘x-host’. If these files do not exist, it means nothing needs
to be added for a given target or host.

4. The standard directory for installing GNU CC is ‘/usr/local/lib’. If you want to install
its files somewhere else, specify ‘--prefix=dir’ when you run ‘configure’. Here dir is a
directory name to use instead of ‘/usr/local’ for all purposes with one exception: the directory
‘/usr/local/include’ is searched for header files no matter where you install the compiler.

5. Specify ‘--local-prefix=dir’ if you want the compiler to search directory ‘dir/include’ for
header files instead of ‘/usr/local/include’. (This is for systems that have different conven-
tions for where to put site-specific things.)

Unless you have a convention other than ‘/usr/local’ for site-specific files, it is a bad idea to
specify ‘--local-prefix’.

6. Make sure the Bison parser generator is installed. (This is unnecessary if the Bison output
files ‘c-parse.c’ and ‘cexp.c’ are more recent than ‘c-parse.y’ and ‘cexp.y’ and you do not
plan to change the ‘.y’ files.)

Bison versions older than Sept 8, 1988 will produce incorrect output for ‘c-parse.c’.

86 Using and Porting GNU CC

7. If you have chosen a configuration for GNU CC which requires other GNU tools (such as GAS
or the GNU linker) instead of the standard system tools, install the required tools in the build
directory under the names ‘as’, ‘ld’ or whatever is appropriate. This will enable the compiler
to find the proper tools for compilation of the program ‘enquire’.

Alternatively, you can do subsequent compilation using a value of the PATH environment vari-
able such that the necessary GNU tools come before the standard system tools.

8. Build the compiler. Just type ‘make LANGUAGES=c’ in the compiler directory.

‘LANGUAGES=c’ specifies that only the C compiler should be compiled. The makefile normally
builds compilers for all the supported languages; currently, C, C++ and Objective C. However,
C is the only language that is sure to work when you build with other non-GNU C compilers.
In addition, building anything but C at this stage is a waste of time.

In general, you can specify the languages to build by typing the argument ‘LANGUAGES="list"’,
where list is one or more words from the list ‘c’, ‘c++’, and ‘objective-c’.

Ignore any warnings you may see about “statement not reached” in ‘insn-emit.c’; they are
normal. Also, warnings about “unknown escape sequence” are normal in ‘genopinit.c’ and
perhaps some other files. Any other compilation errors may represent bugs in the port to your
machine or operating system, and should be investigated and reported (see Chapter 8 [Bugs],
page 175).

Some commercial compilers fail to compile GNU CC because they have bugs or limitations.
For example, the Microsoft compiler is said to run out of macro space. Some Ultrix compilers
run out of expression space; then you need to break up the statement where the problem
happens.

If you are building with a previous GNU C compiler, do not use ‘CC=gcc’ on the make com-
mand or by editing the Makefile. Instead, use a full pathname to specify the compiler, such
as ‘CC=/usr/local/bin/gcc’. This is because make might execute the ‘gcc’ in the current
directory before all of the compiler components have been built.

9. If you are building a cross-compiler, stop here. See Section 4.2 [Cross-Compiler], page 89.

10. Move the first-stage object files and executables into a subdirectory with this command:
make stage1

The files are moved into a subdirectory named ‘stage1’. Once installation is complete, you
may wish to delete these files with rm -r stage1.

11. If you have chosen a configuration for GNU CC which requires other GNU tools (such as
GAS or the GNU linker) instead of the standard system tools, install the required tools in the
‘stage1’ subdirectory under the names ‘as’, ‘ld’ or whatever is appropriate. This will enable
the stage 1 compiler to find the proper tools in the following stage.

Alternatively, you can do subsequent compilation using a value of the PATH environment vari-
able such that the necessary GNU tools come before the standard system tools.

12. Recompile the compiler with itself, with this command:

Chapter 4: Installing GNU CC 87

make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O"

This is called making the stage 2 compiler.

The command shown above builds compilers for all the supported languages. If you don’t want
them all, you can specify the languages to build by typing the argument ‘LANGUAGES="list"’.
list should contain one or more words from the list ‘c’, ‘c++’, ‘objective-c’, and ‘proto’.
Separate the words with spaces. ‘proto’ stands for the programs protoize and unprotoize;
they are not a separate language, but you use LANGUAGES to enable or disable their installation.

If you are going to build the stage 3 compiler, then you might want to build only the C language
in stage 2.

Once you have built the stage 2 compiler, if you are short of disk space, you can delete the
subdirectory ‘stage1’.

On a 68000 or 68020 system lacking floating point hardware, unless you have selected a ‘tm.h’
file that expects by default that there is no such hardware, do this instead:

make CC="stage1/xgcc -Bstage1/" CFLAGS="-g -O -msoft-float"

13. If you wish to test the compiler by compiling it with itself one more time, install any other
necessary GNU tools (such as GAS or the GNU linker) in the ‘stage2’ subdirectory as you
did in the ‘stage1’ subdirectory, then do this:

make stage2
make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O"

This is called making the stage 3 compiler. Aside from the ‘-B’ option, the compiler options
should be the same as when you made the stage 2 compiler. But the LANGUAGES option need
not be the same. The command shown above builds compilers for all the supported languages;
if you don’t want them all, you can specify the languages to build by typing the argument
‘LANGUAGES="list"’, as described above.

Then compare the latest object files with the stage 2 object files—they ought to be identical,
aside from time stamps (if any).

On some systems, meaningful comparison of object files is impossible; they always appear
“different.” This is currently true on Solaris and probably on all systems that use ELF object
file format. Some other systems where this is so are listed below.

Use this command to compare the files:
make compare

This will mention any object files that differ between stage 2 and stage 3. Any difference, no
matter how innocuous, indicates that the stage 2 compiler has compiled GNU CC incorrectly,
and is therefore a potentially serious bug which you should investigate and report (see Chapter 8
[Bugs], page 175).

If your system does not put time stamps in the object files, then this is a faster way to compare
them (using the Bourne shell):

for file in *.o; do
cmp $file stage2/$file

88 Using and Porting GNU CC

done

If you have built the compiler with the ‘-mno-mips-tfile’ option on MIPS machines, you will
not be able to compare the files.

The Alpha stores file names of internal temporary files in the object files and ‘make compare’
does not know how to ignore them, so normally you cannot compare on the Alpha. However,
if you use the ‘-save-temps’ option when compiling both stage 2 and stage 3, this causes the
same file names to be used in both stages; then you can do the comparison.

14. Build the Objective C library (if you have built the Objective C compiler). Here is the command
to do this:

make objc-runtime CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O"

15. Install the compiler driver, the compiler’s passes and run-time support with ‘make install’.
Use the same value for CC, CFLAGS and LANGUAGES that you used when compiling the files that
are being installed. One reason this is necessary is that some versions of Make have bugs and
recompile files gratuitously when you do this step. If you use the same variable values, those
files will be recompiled properly.

For example, if you have built the stage 2 compiler, you can use the following command:
make install CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O" LANGUAGES="list"

This copies the files ‘cc1’, ‘cpp’ and ‘libgcc.a’ to files ‘cc1’, ‘cpp’ and ‘libgcc.a’ in the direc-
tory ‘/usr/local/lib/gcc-lib/target/version’, which is where the compiler driver program
looks for them. Here target is the target machine type specified when you ran ‘configure’,
and version is the version number of GNU CC. This naming scheme permits various versions
and/or cross-compilers to coexist.

This also copies the driver program ‘xgcc’ into ‘/usr/local/bin/gcc’, so that it appears in
typical execution search paths.

On some systems, this command causes recompilation of some files. This is usually due to
bugs in make. You should either ignore this problem, or use GNU Make.

Warning: there is a bug in alloca in the Sun library. To avoid this bug, be sure to install

the executables of GNU CC that were compiled by GNU CC. (That is, the executables from

stage 2 or 3, not stage 1.) They use alloca as a built-in function and never the one in the

library.

(It is usually better to install GNU CC executables from stage 2 or 3, since they usually run
faster than the ones compiled with some other compiler.)

16. Install the Objective C library (if you are installing the Objective C compiler). Here is the
command to do this:

make install-libobjc CC="stage2/xgcc -Bstage2/" CFLAGS="-g -O"

17. If you’re going to use C++, it’s likely that you need to also install the libg++ distribution. It
should be available from the same place where you got the GNU C distribution. Just as GNU
C does not distribute a C runtime library, it also does not include a C++ run-time library. All
I/O functionality, special class libraries, etc., are available in the libg++ distribution.

Chapter 4: Installing GNU CC 89

4.1 Compilation in a Separate Directory

If you wish to build the object files and executables in a directory other than the one containing
the source files, here is what you must do differently:

1. Make sure you have a version of Make that supports the VPATH feature. (GNU Make supports
it, as do Make versions on most BSD systems.)

2. If you have ever run ‘configure’ in the source directory, you must undo the configuration. Do
this by running:

make distclean

3. Go to the directory in which you want to build the compiler before running ‘configure’:
mkdir gcc-sun3
cd gcc-sun3

On systems that do not support symbolic links, this directory must be on the same file system
as the source code directory.

4. Specify where to find ‘configure’ when you run it:
../gcc/configure . . .

This also tells configure where to find the compiler sources; configure takes the directory
from the file name that was used to invoke it. But if you want to be sure, you can specify the
source directory with the ‘--srcdir’ option, like this:

../gcc/configure --srcdir=../gcc sun3

The directory you specify with ‘--srcdir’ need not be the same as the one that configure is
found in.

Now, you can run make in that directory. You need not repeat the configuration steps shown
above, when ordinary source files change. You must, however, run configure again when the
configuration files change, if your system does not support symbolic links.

4.2 Building and Installing a Cross-Compiler

GNU CC can function as a cross-compiler for many machines, but not all.

• Cross-compilers for the Mips as target using the Mips assembler currently do not work, because
the auxiliary programs ‘mips-tdump.c’ and ‘mips-tfile.c’ can’t be compiled on anything but
a Mips. It does work to cross compile for a Mips if you use the GNU assembler and linker.

• Cross-compilers between machines with different floating point formats have not all been made
to work. GNU CC now has a floating point emulator with which these can work, but each
target machine description needs to be updated to take advantage of it.

90 Using and Porting GNU CC

• Cross-compilation between machines of different word sizes has not really been addressed yet.

Since GNU CC generates assembler code, you probably need a cross-assembler that GNU CC
can run, in order to produce object files. If you want to link on other than the target machine, you
need a cross-linker as well. You also need header files and libraries suitable for the target machine
that you can install on the host machine.

4.2.1 Steps of Cross-Compilation

To compile and run a program using a cross-compiler involves several steps:

• Run the cross-compiler on the host machine to produce assembler files for the target machine.
This requires header files for the target machine.

• Assemble the files produced by the cross-compiler. You can do this either with an assembler
on the target machine, or with a cross-assembler on the host machine.

• Link those files to make an executable. You can do this either with a linker on the target
machine, or with a cross-linker on the host machine. Whichever machine you use, you need
libraries and certain startup files (typically ‘crt. . ..o’) for the target machine.

It is most convenient to do all of these steps on the same host machine, since then you can do it
all with a single invocation of GNU CC. This requires a suitable cross-assembler and cross-linker.
For some targets, the GNU assembler and linker are available.

4.2.2 Configuring a Cross-Compiler

To build GNU CC as a cross-compiler, you start out by running configure. You must specify
two different configurations, the host and the target. Use the ‘--host=host’ option for the host
and ‘--target=target’ to specify the target type. For example, here is how to configure for a
cross-compiler that runs on a hypothetical Intel 386 system and produces code for an HP 68030
system running BSD:

configure --target=m68k-hp-bsd4.3 --host=i386-bozotheclone-bsd4.3

Chapter 4: Installing GNU CC 91

4.2.3 Tools and Libraries for a Cross-Compiler

If you have a cross-assembler and cross-linker available, you should install them now. Put them
in the directory ‘/usr/local/target/bin’. Here is a table of the tools you should put in this
directory:

‘as’ This should be the cross-assembler.

‘ld’ This should be the cross-linker.

‘ar’ This should be the cross-archiver: a program which can manipulate archive files (linker
libraries) in the target machine’s format.

‘ranlib’ This should be a program to construct a symbol table in an archive file.

The installation of GNU CC will find these programs in that directory, and copy or link them
to the proper place to for the cross-compiler to find them when run later.

The easiest way to provide these files is to build the Binutils package and GAS. Configure them
with the same ‘--host’ and ‘--target’ options that you use for configuring GNU CC, then build
and install them. They install their executables automatically into the proper directory. Alas, they
do not support all the targets that GNU CC supports.

If you want to install libraries to use with the cross-compiler, such as a standard C library, put
them in the directory ‘/usr/local/target/lib’; installation of GNU CC copies all all the files in
that subdirectory into the proper place for GNU CC to find them and link with them. Here’s an
example of copying some libraries from a target machine:

ftp target-machine
lcd /usr/local/target/lib
cd /lib
get libc.a
cd /usr/lib
get libg.a
get libm.a
quit

The precise set of libraries you’ll need, and their locations on the target machine, vary depending
on its operating system.

Many targets require “start files” such as ‘crt0.o’ and ‘crtn.o’ which are linked into each exe-
cutable; these too should be placed in ‘/usr/local/target/lib’. There may be several alternatives
for ‘crt0.o’, for use with profiling or other compilation options. Check your target’s definition of

92 Using and Porting GNU CC

STARTFILE_SPEC to find out what start files it uses. Here’s an example of copying these files from
a target machine:

ftp target-machine
lcd /usr/local/target/lib
prompt
cd /lib
mget *crt*.o
cd /usr/lib
mget *crt*.o
quit

4.2.4 ‘libgcc.a’ and Cross-Compilers

Code compiled by GNU CC uses certain runtime support functions implicitly. Some of these
functions can be compiled successfully with GNU CC itself, but a few cannot be. These problem
functions are in the source file ‘libgcc1.c’; the library made from them is called ‘libgcc1.a’.

When you build a native compiler, these functions are compiled with some other compiler–
the one that you use for bootstrapping GNU CC. Presumably it knows how to open code these
operations, or else knows how to call the run-time emulation facilities that the machine comes
with. But this approach doesn’t work for building a cross-compiler. The compiler that you use for
building knows about the host system, not the target system.

So, when you build a cross-compiler you have to supply a suitable library ‘libgcc1.a’ that does
the job it is expected to do.

To compile ‘libgcc1.c’ with the cross-compiler itself does not work. The functions in this file
are supposed to implement arithmetic operations that GNU CC does not know how to open code,
for your target machine. If these functions are compiled with GNU CC itself, they will compile
into infinite recursion.

On any given target, most of these functions are not needed. If GNU CC can open code an
arithmetic operation, it will not call these functions to perform the operation. It is possible that
on your target machine, none of these functions is needed. If so, you can supply an empty library
as ‘libgcc1.a’.

Many targets need library support only for multiplication and division. If you are linking with
a library that contains functions for multiplication and division, you can tell GNU CC to call them
directly by defining the macros MULSI3_LIBCALL, and the like. These macros need to be defined in

Chapter 4: Installing GNU CC 93

the target description macro file. For some targets, they are defined already. This may be sufficient
to avoid the need for libgcc1.a; if so, you can supply an empty library.

Some targets do not have floating point instructions; they need other functions in ‘libgcc1.a’,
which do floating arithmetic. Recent versions of GNU CC have a file which emulates floating point.
With a certain amount of work, you should be able to construct a floating point emulator that can
be used as ‘libgcc1.a’. Perhaps future versions will contain code to do this automatically and
conveniently. That depends on whether someone wants to implement it.

If your target system has another C compiler, you can configure GNU CC as a native compiler on
that machine, build just ‘libgcc1.a’ with ‘make libgcc1.a’ on that machine, and use the resulting
file with the cross-compiler. To do this, execute the following on the target machine:

cd target-build-dir
configure --host=sparc --target=sun3
make libgcc1.a

And then this on the host machine:

ftp target-machine
binary
cd target-build-dir
get libgcc1.a
quit

Another way to provide the functions you need in ‘libgcc1.a’ is to define the appropriate
perform_. . . macros for those functions. If these definitions do not use the C arithmetic operators
that they are meant to implement, you should be able to compile them with the cross-compiler you
are building. (If these definitions already exist for your target file, then you are all set.)

To build ‘libgcc1.a’ using the perform macros, use ‘LIBGCC1=libgcc1.a OLDCC=./xgcc’ when
building the compiler. Otherwise, you should place your replacement library under the name
‘libgcc1.a’ in the directory in which you will build the cross-compiler, before you run make.

4.2.5 Cross-Compilers and Header Files

If you are cross-compiling a standalone program or a program for an embedded system, then
you may not need any header files except the few that are part of GNU CC (and those of your

94 Using and Porting GNU CC

program). However, if you intend to link your program with a standard C library such as ‘libc.a’,
then you probably need to compile with the header files that go with the library you use.

The GNU C compiler does not come with these files, because (1) they are system-specific, and
(2) they belong in a C library, not in a compiler.

If the GNU C library supports your target machine, then you can get the header files from there
(assuming you actually use the GNU library when you link your program).

If your target machine comes with a C compiler, it probably comes with suitable header files
also. If you make these files accessible from the host machine, the cross-compiler can use them also.

Otherwise, you’re on your own in finding header files to use when cross-compiling.

When you have found suitable header files, put them in ‘/usr/local/target/include’, before
building the cross compiler. Then installation will run fixincludes properly and install the corrected
versions of the header files where the compiler will use them.

Provide the header files before you build the cross-compiler, because the build stage actually
runs the cross-compiler to produce parts of ‘libgcc.a’. (These are the parts that can be compiled
with GNU CC.) Some of them need suitable header files.

Here’s an example showing how to copy the header files from a target machine. On the target
machine, do this:

(cd /usr/include; tar cf - .) > tarfile

Then, on the host machine, do this:

ftp target-machine
lcd /usr/local/target/include
get tarfile
quit
tar xf tarfile

Chapter 4: Installing GNU CC 95

4.2.6 Actually Building the Cross-Compiler

Now you can proceed just as for compiling a single-machine compiler through the step of building
stage 1. If you have not provided some sort of ‘libgcc1.a’, then compilation will give up at the
point where it needs that file, printing a suitable error message. If you do provide ‘libgcc1.a’,
then building the compiler will automatically compile and link a test program called ‘cross-test’;
if you get errors in the linking, it means that not all of the necessary routines in ‘libgcc1.a’ are
available.

If you are making a cross-compiler for an embedded system, and there is no ‘stdio.h’ header for
it, then the compilation of ‘enquire’ will probably fail. The job of ‘enquire’ is to run on the target
machine and figure out by experiment the nature of its floating point representation. ‘enquire’
records its findings in the header file ‘float.h’. If you can’t produce this file by running ‘enquire’
on the target machine, then you will need to come up with a suitable ‘float.h’ in some other way
(or else, avoid using it in your programs).

Do not try to build stage 2 for a cross-compiler. It doesn’t work to rebuild GNU CC as a
cross-compiler using the cross-compiler, because that would produce a program that runs on the
target machine, not on the host. For example, if you compile a 386-to-68030 cross-compiler with
itself, the result will not be right either for the 386 (because it was compiled into 68030 code) or
for the 68030 (because it was configured for a 386 as the host). If you want to compile GNU CC
into 68030 code, whether you compile it on a 68030 or with a cross-compiler on a 386, you must
specify a 68030 as the host when you configure it.

To install the cross-compiler, use ‘make install’, as usual.

4.3 Installing on the HP Precision Architecture

There are two variants of this CPU, called 1.0 and 1.1, which have different machine descriptions.
You must use the right one for your machine. All 7nn machines and 8n7 machines use 1.1, while
all other 8nn machines use 1.0.

The easiest way to handle this problem is to use ‘configure hpnnn’ or ‘configure hpnnn-hpux’,
where nnn is the model number of the machine. Then ‘configure’ will figure out if the machine is
a 1.0 or 1.1. Use ‘uname -a’ to find out the model number of your machine.

‘-g’ does not work on HP-UX, since that system uses a peculiar debugging format which GNU
CC does not know about. There are preliminary versions of GAS and GDB for the HP-PA which do

96 Using and Porting GNU CC

work with GNU CC for debugging. You can get them by anonymous ftp from jaguar.cs.utah.edu

‘dist’ subdirectory. You would need to install GAS in the file

/usr/local/lib/gcc-lib/configuration/gccversion/as

where configuration is the configuration name (perhaps ‘hpnnn-hpux’) and gccversion is the GNU
CC version number. Do this before starting the build process, otherwise you will get errors from
the HPUX assembler while building ‘libgcc2.a’. The command

make install-dir

will create the necessary directory hierarchy so you can install GAS before building GCC.

If you obtained GAS before October 6, 1992 it is highly recommended you get a new one to
avoid several bugs which have been discovered recently.

To enable debugging, configure GNU CC with the ‘--gas’ option before building.

It has been reported that GNU CC produces invalid assembly code for 1.1 machines running
HP-UX 8.02 when using the HP assembler. Typically the errors look like this:

as: bug.s @line#15 [err#1060]
Argument 0 or 2 in FARG upper

- lookahead = ARGW1=FR,RTNVAL=GR
as: foo.s @line#28 [err#1060]

Argument 0 or 2 in FARG upper
- lookahead = ARGW1=FR

You can check the version of HP-UX you are running by executing the command ‘uname -r’.
If you are indeed running HP-UX 8.02 on a PA and using the HP assembler then configure GCC
with "hpnnn-hpux8.02".

4.4 Installing GNU CC on the Sun

On Solaris (version 2.1), do not use the linker or other tools in ‘/usr/ucb’ to build GNU CC.
Use /usr/ccs/bin.

Chapter 4: Installing GNU CC 97

Make sure the environment variable FLOAT_OPTION is not set when you compile ‘libgcc.a’. If
this option were set to f68881 when ‘libgcc.a’ is compiled, the resulting code would demand to
be linked with a special startup file and would not link properly without special pains.

The GNU compiler does not really support the Super SPARC processor that is used in SPARC
Station 10 and similar class machines. You can get code that runs by specifying ‘sparc’ as the cpu
type; however, its performance is not very good, and may vary widely according to the compiler
version and optimization options used. This is because the instruction scheduling parameters
designed for the Sparc are not correct for the Super SPARC. Implementing scheduling parameters
for the Super SPARC might be a good project for someone who is willing to learn a great deal
about instruction scheduling in GNU CC.

There is a bug in alloca in certain versions of the Sun library. To avoid this bug, install the
binaries of GNU CC that were compiled by GNU CC. They use alloca as a built-in function and
never the one in the library.

Some versions of the Sun compiler crash when compiling GNU CC. The problem is a segmenta-
tion fault in cpp. This problem seems to be due to the bulk of data in the environment variables.
You may be able to avoid it by using the following command to compile GNU CC with Sun CC:

make CC="TERMCAP=x OBJS=x LIBFUNCS=x STAGESTUFF=x cc"

4.5 Installing GNU CC on the 3b1

Installing GNU CC on the 3b1 is difficult if you do not already have GNU CC running, due to
bugs in the installed C compiler. However, the following procedure might work. We are unable to
test it.

1. Comment out the ‘#include "config.h"’ line on line 37 of ‘cccp.c’ and do ‘make cpp’. This
makes a preliminary version of GNU cpp.

2. Save the old ‘/lib/cpp’ and copy the preliminary GNU cpp to that file name.

3. Undo your change in ‘cccp.c’, or reinstall the original version, and do ‘make cpp’ again.

4. Copy this final version of GNU cpp into ‘/lib/cpp’.

5. Replace every occurrence of obstack_free in the file ‘tree.c’ with _obstack_free.

6. Run make to get the first-stage GNU CC.

7. Reinstall the original version of ‘/lib/cpp’.

8. Now you can compile GNU CC with itself and install it in the normal fashion.

98 Using and Porting GNU CC

4.6 Installing GNU CC on Unos

Use ‘configure unos’ for building on Unos.

The Unos assembler is named casm instead of as. For some strange reason linking ‘/bin/as’ to
‘/bin/casm’ changes the behavior, and does not work. So, when installing GNU CC, you should
install the following script as ‘as’ in the subdirectory where the passes of GCC are installed:

#!/bin/sh
casm $*

The default Unos library is named ‘libunos.a’ instead of ‘libc.a’. To allow GNU CC to
function, either change all references to ‘-lc’ in ‘gcc.c’ to ‘-lunos’ or link ‘/lib/libc.a’ to
‘/lib/libunos.a’.

When compiling GNU CC with the standard compiler, to overcome bugs in the support of
alloca, do not use ‘-O’ when making stage 2. Then use the stage 2 compiler with ‘-O’ to make the
stage 3 compiler. This compiler will have the same characteristics as the usual stage 2 compiler on
other systems. Use it to make a stage 4 compiler and compare that with stage 3 to verify proper
compilation.

(Perhaps simply defining ALLOCA in ‘x-crds’ as described in the comments there will make the
above paragraph superfluous. Please inform us of whether this works.)

Unos uses memory segmentation instead of demand paging, so you will need a lot of memory.
5 Mb is barely enough if no other tasks are running. If linking ‘cc1’ fails, try putting the object
files into a library and linking from that library.

4.7 Installing GNU CC on VMS

The VMS version of GNU CC is distributed in a backup saveset containing both source code
and precompiled binaries.

To install the ‘gcc’ command so you can use the compiler easily, in the same manner as you use
the VMS C compiler, you must install the VMS CLD file for GNU CC as follows:

1. Define the VMS logical names ‘GNU_CC’ and ‘GNU_CC_INCLUDE’ to point to the directories where

Chapter 4: Installing GNU CC 99

the GNU CC executables (‘gcc-cpp.exe’, ‘gcc-cc1.exe’, etc.) and the C include files are kept
respectively. This should be done with the commands:

$ assign /system /translation=concealed -
disk:[gcc.] gnu_cc

$ assign /system /translation=concealed -
disk:[gcc.include.] gnu_cc_include

with the appropriate disk and directory names. These commands can be placed in your system
startup file so they will be executed whenever the machine is rebooted. You may, if you choose,
do this via the ‘GCC_INSTALL.COM’ script in the ‘[GCC]’ directory.

2. Install the ‘GCC’ command with the command line:
$ set command /table=sys$common:[syslib]dcltables -
/output=sys$common:[syslib]dcltables gnu_cc:[000000]gcc

$ install replace sys$common:[syslib]dcltables

3. To install the help file, do the following:
$ library/help sys$library:helplib.hlb gcc.hlp

Now you can invoke the compiler with a command like ‘gcc /verbose file.c’, which is equiv-
alent to the command ‘gcc -v -c file.c’ in Unix.

If you wish to use GNU C++ you must first install GNU CC, and then perform the following
steps:

1. Define the VMS logical name ‘GNU_GXX_INCLUDE’ to point to the directory where the prepro-
cessor will search for the C++ header files. This can be done with the command:

$ assign /system /translation=concealed -
disk:[gcc.gxx_include.] gnu_gxx_include

with the appropriate disk and directory name. If you are going to be using libg++, this is where
the libg++ install procedure will install the libg++ header files.

2. Obtain the file ‘gcc-cc1plus.exe’, and place this in the same directory that ‘gcc-cc1.exe’
is kept.

The GNU C++ compiler can be invoked with a command like ‘gcc /plus /verbose file.cc’,
which is equivalent to the command ‘g++ -v -c file.cc’ in Unix.

We try to put corresponding binaries and sources on the VMS distribution tape. But sometimes
the binaries will be from an older version than the sources, because we don’t always have time
to update them. (Use the ‘/version’ option to determine the version number of the binaries and
compare it with the source file ‘version.c’ to tell whether this is so.) In this case, you should use
the binaries you get to recompile the sources. If you must recompile, here is how:

1. Execute the command procedure ‘vmsconfig.com’ to set up the files ‘tm.h’, ‘config.h’,
‘aux-output.c’, and ‘md.’, and to create files ‘tconfig.h’ and ‘hconfig.h’. This proce-

100 Using and Porting GNU CC

dure also creates several linker option files used by ‘make-cc1.com’ and a data file used by
‘make-l2.com’.

$ @vmsconfig.com

2. Setup the logical names and command tables as defined above. In addition, define the VMS
logical name ‘GNU_BISON’ to point at the to the directories where the Bison executable is kept.
This should be done with the command:

$ assign /system /translation=concealed -
disk:[bison.] gnu_bison

You may, if you choose, use the ‘INSTALL_BISON.COM’ script in the ‘[BISON]’ directory.

3. Install the ‘BISON’ command with the command line:
$ set command /table=sys$common:[syslib]dcltables -
/output=sys$common:[syslib]dcltables -
gnu_bison:[000000]bison

$ install replace sys$common:[syslib]dcltables

4. Type ‘@make-gcc’ to recompile everything (alternatively, submit the file ‘make-gcc.com’ to a
batch queue). If you wish to build the GNU C++ compiler as well as the GNU CC compiler,
you must first edit ‘make-gcc.com’ and follow the instructions that appear in the comments.

5. In order to use GCC, you need a library of functions which GCC compiled code will call to
perform certain tasks, and these functions are defined in the file ‘libgcc2.c’. To compile
this you should use the command procedure ‘make-l2.com’, which will generate the library
‘libgcc2.olb’. ‘libgcc2.olb’ should be built using the compiler built from the same distri-
bution that ‘libgcc2.c’ came from, and ‘make-gcc.com’ will automatically do all of this for
you.

To install the library, use the following commands:
$ library gnu_cc:[000000]gcclib/delete=(new,eprintf)
$ library gnu_cc:[000000]gcclib/delete=L_*
$ library libgcc2/extract=*/output=libgcc2.obj
$ library gnu_cc:[000000]gcclib libgcc2.obj

The first command simply removes old modules that will be replaced with modules from
‘libgcc2’ under different module names. The modules new and eprintf may not actually
be present in your ‘gcclib.olb’—if the VMS librarian complains about those modules not
being present, simply ignore the message and continue on with the next command. The second
command removes the modules that came from the previous version of the library ‘libgcc2.c’.

Whenever you update the compiler on your system, you should also update the library with
the above procedure.

6. You may wish to build GCC in such a way that no files are written to the directory where the
source files reside. An example would be the when the source files are on a read-only disk. In
these cases, execute the following DCL commands (substituting your actual path names):

$ assign dua0:[gcc.build_dir.]/translation=concealed, -
dua1:[gcc.source_dir.]/translation=concealed gcc_build

$ set default gcc_build:[000000]

Chapter 4: Installing GNU CC 101

where the directory ‘dua1:[gcc.source_dir]’ contains the source code, and the directory
‘dua0:[gcc.build_dir]’ is meant to contain all of the generated object files and executables.
Once you have done this, you can proceed building GCC as described above. (Keep in mind
that ‘gcc_build’ is a rooted logical name, and thus the device names in each element of the
search list must be an actual physical device name rather than another rooted logical name).

7. If you are building GNU CC with a previous version of GNU CC, you also should check to see

that you have the newest version of the assembler. In particular, GNU CC version 2 treats
global constant variables slightly differently from GNU CC version 1, and GAS version 1.38.1
does not have the patches required to work with GCC version 2. If you use GAS 1.38.1, then
extern const variables will not have the read-only bit set, and the linker will generate warning
messages about mismatched psect attributes for these variables. These warning messages are
merely a nuisance, and can safely be ignored.

If you are compiling with a version of GNU CC older than 1.33, specify ‘/DEFINE=("inline=")’
as an option in all the compilations. This requires editing all the gcc commands in
‘make-cc1.com’. (The older versions had problems supporting inline.) Once you have a
working 1.33 or newer GNU CC, you can change this file back.

8. If you want to build GNU CC with the VAX C compiler, you will need to make minor changes
in ‘make-cccp.com’ and ‘make-cc1.com’ to choose alternate definitions of CC, CFLAGS, and
LIBS. See comments in those files. However, you must also have a working version of the GNU
assembler (GNU as, aka GAS) as it is used as the back-end for GNU CC to produce binary
object modules and is not included in the GNU CC sources. GAS is also needed to compile
‘libgcc2’ in order to build ‘gcclib’ (see above); ‘make-l2.com’ expects to be able to find it
operational in ‘gnu_cc:[000000]gnu-as.exe’.

To use GNU CC on VMS, you need the VMS driver programs ‘gcc.exe’, ‘gcc.com’, and
‘gcc.cld’. They are distributed with the VMS binaries (‘gcc-vms’) rather than the GNU CC
sources. GAS is also included in ‘gcc-vms’, as is Bison.

Once you have successfully built GNU CC with VAX C, you should use the resulting compiler
to rebuild itself. Before doing this, be sure to restore the CC, CFLAGS, and LIBS definitions
in ‘make-cccp.com’ and ‘make-cc1.com’. The second generation compiler will be able to take
advantage of many optimizations that must be suppressed when building with other compilers.

Under previous versions of GNU CC, the generated code would occasionally give strange results
when linked with the sharable ‘VAXCRTL’ library. Now this should work.

Even with this version, however, GNU CC itself should not be linked with the sharable ‘VAXCRTL’.
The version of qsort in ‘VAXCRTL’ has a bug (known to be present in VMS versions V4.6 through
V5.5) which causes the compiler to fail.

102 Using and Porting GNU CC

The executables are generated by ‘make-cc1.com’ and ‘make-cccp.com’ use the object library
version of ‘VAXCRTL’ in order to make use of the qsort routine in ‘gcclib.olb’. If you wish to link
the compiler executables with the shareable image version of ‘VAXCRTL’, you should edit the file
‘tm.h’ (created by ‘vmsconfig.com’) to define the macro QSORT_WORKAROUND.

QSORT_WORKAROUND is always defined when GNU CC is compiled with VAX C, to avoid a problem
in case ‘gcclib.olb’ is not yet available.

4.8 Installing GNU CC on the WE32K

These computers are also known as the 3b2, 3b5, 3b20 and other similar names. (However, the
3b1 is actually a 68000; see Section 4.5 [3b1 Install], page 97.)

Don’t use ‘-g’ when compiling with the system’s compiler. The system’s linker seems to be
unable to handle such a large program with debugging information.

The system’s compiler runs out of capacity when compiling ‘stmt.c’ in GNU CC. You can work
around this by building ‘cpp’ in GNU CC first, then use that instead of the system’s preprocessor
with the system’s C compiler to compile ‘stmt.c’. Here is how:

mv /lib/cpp /lib/cpp.att
cp cpp /lib/cpp.gnu
echo ’/lib/cpp.gnu -traditional ${1+"$@"}’ > /lib/cpp
chmod +x /lib/cpp

The system’s compiler produces bad code for some of the GNU CC optimization files. So
you must build the stage 2 compiler without optimization. Then build a stage 3 compiler with
optimization. That executable should work. Here are the necessary commands:

make LANGUAGES=c CC=stage1/xgcc CFLAGS="-Bstage1/ -g"
make stage2
make CC=stage2/xgcc CFLAGS="-Bstage2/ -g -O"

You may need to raise the ULIMIT setting to build a C++ compiler, as the file ‘cc1plus’ is
larger than one megabyte.

Chapter 4: Installing GNU CC 103

4.9 Installing GNU CC on the MIPS

See Chapter 4 [Installation], page 77 about whether to use either of the options ‘--with-stabs’
or ‘--with-gnu-as’.

The MIPS C compiler needs to be told to increase its table size for switch statements with the
‘-Wf,-XNg1500’ option in order to compile ‘cp-parse.c’. If you use the ‘-O2’ optimization option,
you also need to use ‘-Olimit 3000’. Both of these options are automatically generated in the
‘Makefile’ that the shell script ‘configure’ builds. If you override the CC make variable and use
the MIPS compilers, you may need to add ‘-Wf,-XNg1500 -Olimit 3000’.

MIPS computers running RISC-OS can support four different personalities: default, BSD 4.3,
System V.3, and System V.4 (older versions of RISC-OS don’t support V.4). To configure GCC
for these platforms use the following configurations:

‘mips-mips-riscosrev’

Default configuration for RISC-OS, revision rev.

‘mips-mips-riscosrevbsd’

BSD 4.3 configuration for RISC-OS, revision rev.

‘mips-mips-riscosrevsysv4’

System V.4 configuration for RISC-OS, revision rev.

‘mips-mips-riscosrevsysv’

System V.3 configuration for RISC-OS, revision rev.

The revision rev mentioned above is the revision of RISC-OS to use. You must reconfigure
GCC when going from a RISC-OS revision 4 to RISC-OS revision 5. This has the effect of avoiding
a linker bug (see Section 7.2 [Installation Problems], page 151 for more details).

DECstations can support three different personalities: Ultrix, DEC OSF/1, and OSF/rose. To
configure GCC for these platforms use the following configurations:

‘decstation-ultrix’

Ultrix configuration.

‘decstation-osf1’

Dec’s version of OSF/1.

104 Using and Porting GNU CC

‘decstation-osfrose’

Open Software Foundation reference port of OSF/1 which uses the OSF/rose object
file format instead of ECOFF. Normally, you would not select this configuration.

On Irix version 4.0.5F, and perhaps on some other versions as well, there is an assembler
bug that reorders instructions incorrectly. To work around it, specify the target configuration
‘mips-sgi-irix4loser’. This configuration inhibits assembler optimization.

You can turn off assembler optimization in a compiler configured with target ‘mips-sgi-irix4’
using the ‘-noasmopt’ option. This compiler option passes the option ‘-O0’ to the assembler, to
inhibit reordering.

The ‘-noasmopt’ option can be useful for testing whether a problem is due to erroneous assembler
reordering. Even if a problem does not go away with ‘-noasmopt’, it may still be due to assembler
reordering—perhaps GNU CC itself was miscompiled as a result.

We know this is inconvenient, but it’s the best that can be done at the last minute.

4.10 collect2

Many target systems do not have support in the assembler and linker for “constructors”—
initialization functions to be called before the official “start” of main. On such systems, GNU CC
uses a utility called collect2 to arrange to call these functions at start time.

The program collect2 works by linking the program once and looking through the linker output
file for symbols with particular names indicating they are constructor functions. If it finds any, it
creates a new temporary ‘.c’ file containing a table of them, compiles it, and links the program a
second time including that file.

The actual calls to the constructors are carried out by a subroutine called __main, which is
called (automatically) at the beginning of the body of main (provided main was compiled with
GNU CC).

The program collect2 is installed as ld in the directory where the passes of the compiler are
installed. When collect2 needs to find the real ld, it tries the following file names:

• ‘gld’ in the directories listed in the compiler’s search directories.

Chapter 4: Installing GNU CC 105

• ‘gld’ in the directories listed in the environment variable PATH.

• ‘real-ld’ in the compiler’s search directories.

• ‘real-ld’ in PATH.

• ‘ld’ in PATH.

“The compiler’s search directories” means all the directories where gcc searches for passes of
the compiler. This includes directories that you specify with ‘-B’.

Cross-compilers search a little differently:

• ‘gld’ in the compiler’s search directories.

• ‘target-gld’ in PATH.

• ‘real-ld’ in the compiler’s search directories.

• ‘target-real-ld’ in PATH.

• ‘target-ld’ in PATH.

collect2 does not search for ‘ld’ using the compiler’s search directories, because if it did, it
would find itself—not the real ld—and this could lead to infinite recursion. However, the directory
where collect2 is installed might happen to be in PATH. That could lead collect2 to invoke itself
anyway. when looking for ld.

To prevent this, collect2 explicitly avoids running ld using the file name under which collect2

itself was invoked. In fact, it remembers up to two such names—in case one copy of collect2 finds
another copy (or version) of collect2 installed as ld in a second place in the search path.

If two file names to avoid are not sufficient, you may still encounter an infinite recursion of
collect2 processes. When this happens. check all the files installed as ‘ld’ in any of the directories
searched, and straighten out the situation.

(In a future version, we will probably change collect2 to avoid any reinvocation of a file from
which any parent collect2 was run.)

4.11 Standard Header File Directories

GCC_INCLUDE_DIR means the same thing for native and cross. It is where GNU CC stores
its private include files, and also where GNU CC stores the fixed include files. A cross compiled

106 Using and Porting GNU CC

GNU CC runs fixincludes on the header files in ‘$(tooldir)/include’. (If the cross compilation
header files need to be fixed, they must be installed before GNU CC is built. If the cross compilation
header files are already suitable for ANSI C and GNU CC, nothing special need be done).

GPLUS_INCLUDE_DIR means the same thing for native and cross. It is where g++ looks first for
header files. libg++ installs only target independent header files in that directory.

LOCAL_INCLUDE_DIR is used only for a native compiler. It is normally ‘/usr/local/include’.
GNU CC searches this directory so that users can install header files in ‘/usr/local/include’.

CROSS_INCLUDE_DIR is used only for a cross compiler. GNU CC doesn’t install anything there.

TOOL_INCLUDE_DIR is used for both native and cross compilers. It is the place for other pack-
ages to install header files that GNU CC will use. For a cross-compiler, this is the equivalent of
‘/usr/include’. When you build a cross-compiler, fixincludes processes any header files in this
directory.

Chapter 5: Extensions to the C Language Family 107

5 Extensions to the C Language Family

GNU C provides several language features not found in ANSI standard C. (The ‘-pedantic’
option directs GNU CC to print a warning message if any of these features is used.) To test for the
availability of these features in conditional compilation, check for a predefined macro __GNUC__,
which is always defined under GNU CC.

These extensions are available in C and in the languages derived from it, C++ and Objective
C. See Chapter 6 [Extensions to the C++ Language], page 145, for extensions that apply only to
C++.

5.1 Statements and Declarations in Expressions

A compound statement enclosed in parentheses may appear as an expression in GNU C. This
allows you to use loops, switches, and local variables within an expression.

Recall that a compound statement is a sequence of statements surrounded by braces; in this
construct, parentheses go around the braces. For example:

({ int y = foo (); int z;
if (y > 0) z = y;
else z = - y;
z; })

is a valid (though slightly more complex than necessary) expression for the absolute value of foo
().

The last thing in the compound statement should be an expression followed by a semicolon; the
value of this subexpression serves as the value of the entire construct. (If you use some other kind
of statement last within the braces, the construct has type void, and thus effectively no value.)

This feature is especially useful in making macro definitions “safe” (so that they evaluate each
operand exactly once). For example, the “maximum” function is commonly defined as a macro in
standard C as follows:

#define max(a,b) ((a) > (b) ? (a) : (b))

108 Using and Porting GNU CC

But this definition computes either a or b twice, with bad results if the operand has side effects.
In GNU C, if you know the type of the operands (here let’s assume int), you can define the macro
safely as follows:

#define maxint(a,b) \
({int _a = (a), _b = (b); _a > _b ? _a : _b; })

Embedded statements are not allowed in constant expressions, such as the value of an enumer-
ation constant, the width of a bit field, or the initial value of a static variable.

If you don’t know the type of the operand, you can still do this, but you must use typeof (see
Section 5.7 [Typeof], page 114) or type naming (see Section 5.6 [Naming Types], page 113).

5.2 Locally Declared Labels

Each statement expression is a scope in which local labels can be declared. A local label is
simply an identifier; you can jump to it with an ordinary goto statement, but only from within the
statement expression it belongs to.

A local label declaration looks like this:

__label__ label;

or

__label__ label1, label2, . . .;

Local label declarations must come at the beginning of the statement expression, right after the
‘({’, before any ordinary declarations.

The label declaration defines the label name, but does not define the label itself. You must do
this in the usual way, with label:, within the statements of the statement expression.

The local label feature is useful because statement expressions are often used in macros. If the
macro contains nested loops, a goto can be useful for breaking out of them. However, an ordinary
label whose scope is the whole function cannot be used: if the macro can be expanded several
times in one function, the label will be multiply defined in that function. A local label avoids this
problem. For example:

Chapter 5: Extensions to the C Language Family 109

#define SEARCH(array, target) \
({ \

__label__ found; \
typeof (target) _SEARCH_target = (target); \
typeof (*(array)) *_SEARCH_array = (array); \
int i, j; \
int value; \
for (i = 0; i < max; i++) \

for (j = 0; j < max; j++) \
if (_SEARCH_array[i][j] == _SEARCH_target) \
{ value = i; goto found; } \

value = -1; \
found: \
value; \

})

5.3 Labels as Values

You can get the address of a label defined in the current function (or a containing function)
with the unary operator ‘&&’. The value has type void *. This value is a constant and can be used
wherever a constant of that type is valid. For example:

void *ptr;
. . .
ptr = &&foo;

To use these values, you need to be able to jump to one. This is done with the computed goto
statement1, goto *exp;. For example,

goto *ptr;

Any expression of type void * is allowed.

One way of using these constants is in initializing a static array that will serve as a jump table:

static void *array[] = { &&foo, &&bar, &&hack };

Then you can select a label with indexing, like this:

1 The analogous feature in Fortran is called an assigned goto, but that name seems inappropriate
in C, where one can do more than simply store label addresses in label variables.

110 Using and Porting GNU CC

goto *array[i];

Note that this does not check whether the subscript is in bounds—array indexing in C never does
that.

Such an array of label values serves a purpose much like that of the switch statement. The
switch statement is cleaner, so use that rather than an array unless the problem does not fit a
switch statement very well.

Another use of label values is in an interpreter for threaded code. The labels within the inter-
preter function can be stored in the threaded code for super-fast dispatching.

You can use this mechanism to jump to code in a different function. If you do that, totally
unpredictable things will happen. The best way to avoid this is to store the label address only in
automatic variables and never pass it as an argument.

5.4 Nested Functions

A nested function is a function defined inside another function. (Nested functions are not
supported for GNU C++.) The nested function’s name is local to the block where it is defined. For
example, here we define a nested function named square, and call it twice:

foo (double a, double b)

{

double square (double z) { return z * z; }

return square (a) + square (b);

}

The nested function can access all the variables of the containing function that are visible at the
point of its definition. This is called lexical scoping. For example, here we show a nested function
which uses an inherited variable named offset:

bar (int *array, int offset, int size)

Chapter 5: Extensions to the C Language Family 111

{
int access (int *array, int index)

{ return array[index + offset]; }
int i;
. . .
for (i = 0; i < size; i++)

. . . access (array, i) . . .
}

Nested function definitions are permitted within functions in the places where variable definitions
are allowed; that is, in any block, before the first statement in the block.

It is possible to call the nested function from outside the scope of its name by storing its address
or passing the address to another function:

hack (int *array, int size)
{

void store (int index, int value)
{ array[index] = value; }

intermediate (store, size);
}

Here, the function intermediate receives the address of store as an argument. If intermediate
calls store, the arguments given to store are used to store into array. But this technique works
only so long as the containing function (hack, in this example) does not exit.

If you try to call the nested function through its address after the containing function has exited,
all hell will break loose. If you try to call it after a containing scope level has exited, and if it refers
to some of the variables that are no longer in scope, you may be lucky, but it’s not wise to take the
risk. If, however, the nested function does not refer to anything that has gone out of scope, you
should be safe.

GNU CC implements taking the address of a nested function using a technique called tram-

polines. A paper describing them is available from ‘maya.idiap.ch’ in directory ‘pub/tmb’, file
‘usenix88-lexic.ps.Z’.

A nested function can jump to a label inherited from a containing function, provided the label
was explicitly declared in the containing function (see Section 5.2 [Local Labels], page 108). Such
a jump returns instantly to the containing function, exiting the nested function which did the goto
and any intermediate functions as well. Here is an example:

112 Using and Porting GNU CC

bar (int *array, int offset, int size)

{

__label__ failure;

int access (int *array, int index)

{

if (index > size)

goto failure;

return array[index + offset];

}

int i;

. . .

for (i = 0; i < size; i++)

. . . access (array, i) . . .

. . .

return 0;

/* Control comes here from access

if it detects an error. */

failure:

return -1;

}

A nested function always has internal linkage. Declaring one with extern is erroneous. If you
need to declare the nested function before its definition, use auto (which is otherwise meaningless
for function declarations).

bar (int *array, int offset, int size)
{

__label__ failure;
auto int access (int *, int);
. . .
int access (int *array, int index)

{
if (index > size)
goto failure;

return array[index + offset];
}

. . .
}

Chapter 5: Extensions to the C Language Family 113

5.5 Constructing Function Calls

Using the built-in functions described below, you can record the arguments a function received,
and call another function with the same arguments, without knowing the number or types of the
arguments.

You can also record the return value of that function call, and later return that value, without
knowing what data type the function tried to return (as long as your caller expects that data type).

__builtin_apply_args ()

This built-in function returns a pointer of type void * to data describing how to perform
a call with the same arguments as were passed to the current function.

The function saves the arg pointer register, structure value address, and all registers
that might be used to pass arguments to a function into a block of memory allocated
on the stack. Then it returns the address of that block.

__builtin_apply (function, arguments, size)

This built-in function invokes function (type void (*)()) with a copy of the parameters
described by arguments (type void *) and size (type int).

The value of arguments should be the value returned by __builtin_apply_args. The
argument size specifies the size of the stack argument data, in bytes.

This function returns a pointer of type void * to data describing how to return whatever
value was returned by function. The data is saved in a block of memory allocated on
the stack.

It is not always simple to compute the proper value for size. The value is used by
__builtin_apply to compute the amount of data that should be pushed on the stack
and copied from the incoming argument area.

__builtin_return (result)

This built-in function returns the value described by result from the containing function.
You should specify, for result, a value returned by __builtin_apply.

5.6 Naming an Expression’s Type

You can give a name to the type of an expression using a typedef declaration with an initializer.
Here is how to define name as a type name for the type of exp:

typedef name = exp;

114 Using and Porting GNU CC

This is useful in conjunction with the statements-within-expressions feature. Here is how the
two together can be used to define a safe “maximum” macro that operates on any arithmetic type:

#define max(a,b) \
({typedef _ta = (a), _tb = (b); \

_ta _a = (a); _tb _b = (b); \
_a > _b ? _a : _b; })

The reason for using names that start with underscores for the local variables is to avoid conflicts
with variable names that occur within the expressions that are substituted for a and b. Eventually
we hope to design a new form of declaration syntax that allows you to declare variables whose
scopes start only after their initializers; this will be a more reliable way to prevent such conflicts.

5.7 Referring to a Type with typeof

Another way to refer to the type of an expression is with typeof. The syntax of using of
this keyword looks like sizeof, but the construct acts semantically like a type name defined with
typedef.

There are two ways of writing the argument to typeof: with an expression or with a type. Here
is an example with an expression:

typeof (x[0](1))

This assumes that x is an array of functions; the type described is that of the values of the functions.

Here is an example with a typename as the argument:

typeof (int *)

Here the type described is that of pointers to int.

If you are writing a header file that must work when included in ANSI C programs, write
__typeof__ instead of typeof. See Section 5.32 [Alternate Keywords], page 141.

A typeof-construct can be used anywhere a typedef name could be used. For example, you can
use it in a declaration, in a cast, or inside of sizeof or typeof.

Chapter 5: Extensions to the C Language Family 115

• This declares y with the type of what x points to.
typeof (*x) y;

• This declares y as an array of such values.
typeof (*x) y[4];

• This declares y as an array of pointers to characters:
typeof (typeof (char *)[4]) y;

It is equivalent to the following traditional C declaration:
char *y[4];

To see the meaning of the declaration using typeof, and why it might be a useful way to write,
let’s rewrite it with these macros:

#define pointer(T) typeof(T *)
#define array(T, N) typeof(T [N])

Now the declaration can be rewritten this way:
array (pointer (char), 4) y;

Thus, array (pointer (char), 4) is the type of arrays of 4 pointers to char.

5.8 Generalized Lvalues

Compound expressions, conditional expressions and casts are allowed as lvalues provided their
operands are lvalues. This means that you can take their addresses or store values into them.

For example, a compound expression can be assigned, provided the last expression in the se-
quence is an lvalue. These two expressions are equivalent:

(a, b) += 5
a, (b += 5)

Similarly, the address of the compound expression can be taken. These two expressions are
equivalent:

&(a, b)
a, &b

A conditional expression is a valid lvalue if its type is not void and the true and false branches
are both valid lvalues. For example, these two expressions are equivalent:

(a ? b : c) = 5
(a ? b = 5 : (c = 5))

116 Using and Porting GNU CC

A cast is a valid lvalue if its operand is an lvalue. A simple assignment whose left-hand side is a
cast works by converting the right-hand side first to the specified type, then to the type of the inner
left-hand side expression. After this is stored, the value is converted back to the specified type to
become the value of the assignment. Thus, if a has type char *, the following two expressions are
equivalent:

(int)a = 5
(int)(a = (char *)(int)5)

An assignment-with-arithmetic operation such as ‘+=’ applied to a cast performs the arithmetic
using the type resulting from the cast, and then continues as in the previous case. Therefore, these
two expressions are equivalent:

(int)a += 5
(int)(a = (char *)(int) ((int)a + 5))

You cannot take the address of an lvalue cast, because the use of its address would not work out
coherently. Suppose that &(int)f were permitted, where f has type float. Then the following
statement would try to store an integer bit-pattern where a floating point number belongs:

*&(int)f = 1;

This is quite different from what (int)f = 1 would do—that would convert 1 to floating point
and store it. Rather than cause this inconsistency, we think it is better to prohibit use of ‘&’ on a
cast.

If you really do want an int * pointer with the address of f, you can simply write (int *)&f.

5.9 Conditionals with Omitted Operands

The middle operand in a conditional expression may be omitted. Then if the first operand is
nonzero, its value is the value of the conditional expression.

Therefore, the expression

x ? : y

has the value of x if that is nonzero; otherwise, the value of y.

Chapter 5: Extensions to the C Language Family 117

This example is perfectly equivalent to

x ? x : y

In this simple case, the ability to omit the middle operand is not especially useful. When it
becomes useful is when the first operand does, or may (if it is a macro argument), contain a side
effect. Then repeating the operand in the middle would perform the side effect twice. Omitting the
middle operand uses the value already computed without the undesirable effects of recomputing it.

5.10 Double-Word Integers

GNU C supports data types for integers that are twice as long as long int. Simply write
long long int for a signed integer, or unsigned long long int for an unsigned integer. To make
an integer constant of type long long int, add the suffix LL to the integer. To make an integer
constant of type unsigned long long int, add the suffix ULL to the integer.

You can use these types in arithmetic like any other integer types. Addition, subtraction, and
bitwise boolean operations on these types are open-coded on all types of machines. Multiplication
is open-coded if the machine supports fullword-to-doubleword a widening multiply instruction.
Division and shifts are open-coded only on machines that provide special support. The operations
that are not open-coded use special library routines that come with GNU CC.

There may be pitfalls when you use long long types for function arguments, unless you declare
function prototypes. If a function expects type int for its argument, and you pass a value of type
long long int, confusion will result because the caller and the subroutine will disagree about the
number of bytes for the argument. Likewise, if the function expects long long int and you pass
int. The best way to avoid such problems is to use prototypes.

5.11 Complex Numbers

GNU C supports complex data types. You can declare both complex integer types and complex
floating types, using the keyword __complex__.

For example, ‘__complex__ double x;’ declares x as a variable whose real part and imaginary
part are both of type double. ‘__complex__ short int y;’ declares y to have real and imaginary
parts of type short int; this is not likely to be useful, but it shows that the set of complex types
is complete.

118 Using and Porting GNU CC

To write a constant with a complex data type, use the suffix ‘i’ or ‘j’ (either one; they are
equivalent). For example, 2.5fi has type __complex__ float and 3i has type __complex__ int.
Such a constant always has a pure imaginary value, but you can form any complex value you like
by adding one to a real constant.

To extract the real part of a complex-valued expression exp, write __real__ exp. Likewise, use
__imag__ to extract the imaginary part.

The operator ‘~’ performs complex conjugation when used on a value with a complex type.

GNU CC can allocate complex automatic variables in a noncontiguous fashion; it’s even possible
for the real part to be in a register while the imaginary part is on the stack (or vice-versa). None
of the supported debugging info formats has a way to represent noncontiguous allocation like
this, so GNU CC describes a noncontiguous complex variable as if it were two separate variables
of noncomplex type. If the variable’s actual name is foo, the two fictitious variables are named
foo$real and foo$imag. You can examine and set these two fictitious variables with your debugger.

A future version of GDB will know how to recognize such pairs and treat them as a single
variable with a complex type.

5.12 Arrays of Length Zero

Zero-length arrays are allowed in GNU C. They are very useful as the last element of a structure
which is really a header for a variable-length object:

struct line {
int length;
char contents[0];

};

{
struct line *thisline = (struct line *)

malloc (sizeof (struct line) + this_length);
thisline->length = this_length;

}

In standard C, you would have to give contents a length of 1, which means either you waste
space or complicate the argument to malloc.

Chapter 5: Extensions to the C Language Family 119

5.13 Arrays of Variable Length

Variable-length automatic arrays are allowed in GNU C. These arrays are declared like any other
automatic arrays, but with a length that is not a constant expression. The storage is allocated at
the point of declaration and deallocated when the brace-level is exited. For example:

FILE *
concat_fopen (char *s1, char *s2, char *mode)
{

char str[strlen (s1) + strlen (s2) + 1];
strcpy (str, s1);
strcat (str, s2);
return fopen (str, mode);

}

Jumping or breaking out of the scope of the array name deallocates the storage. Jumping into
the scope is not allowed; you get an error message for it.

You can use the function alloca to get an effect much like variable-length arrays. The function
alloca is available in many other C implementations (but not in all). On the other hand, variable-
length arrays are more elegant.

There are other differences between these two methods. Space allocated with alloca exists until
the containing function returns. The space for a variable-length array is deallocated as soon as the
array name’s scope ends. (If you use both variable-length arrays and alloca in the same function,
deallocation of a variable-length array will also deallocate anything more recently allocated with
alloca.)

You can also use variable-length arrays as arguments to functions:

struct entry
tester (int len, char data[len][len])
{

. . .
}

The length of an array is computed once when the storage is allocated and is remembered for
the scope of the array in case you access it with sizeof.

If you want to pass the array first and the length afterward, you can use a forward declaration
in the parameter list—another GNU extension.

120 Using and Porting GNU CC

struct entry
tester (int len; char data[len][len], int len)
{

. . .
}

The ‘int len’ before the semicolon is a parameter forward declaration, and it serves the purpose
of making the name len known when the declaration of data is parsed.

You can write any number of such parameter forward declarations in the parameter list. They
can be separated by commas or semicolons, but the last one must end with a semicolon, which
is followed by the “real” parameter declarations. Each forward declaration must match a “real”
declaration in parameter name and data type.

5.14 Macros with Variable Numbers of Arguments

In GNU C, a macro can accept a variable number of arguments, much as a function can. The
syntax for defining the macro looks much like that used for a function. Here is an example:

#define eprintf(format, args...) \
fprintf (stderr, format , ## args)

Here args is a rest argument: it takes in zero or more arguments, as many as the call contains.
All of them plus the commas between them form the value of args, which is substituted into the
macro body where args is used. Thus, we have this expansion:

eprintf ("%s:%d: ", input_file_name, line_number)
7→
fprintf (stderr, "%s:%d: " , input_file_name, line_number)

Note that the comma after the string constant comes from the definition of eprintf, whereas the
last comma comes from the value of args.

The reason for using ‘##’ is to handle the case when args matches no arguments at all. In
this case, args has an empty value. In this case, the second comma in the definition becomes an
embarrassment: if it got through to the expansion of the macro, we would get something like this:

fprintf (stderr, "success!\n" ,)

Chapter 5: Extensions to the C Language Family 121

which is invalid C syntax. ‘##’ gets rid of the comma, so we get the following instead:

fprintf (stderr, "success!\n")

This is a special feature of the GNU C preprocessor: ‘##’ before a rest argument that is empty
discards the preceding sequence of non-whitespace characters from the macro definition. (If another
macro argument precedes, none of it is discarded.)

It might be better to discard the last preprocessor token instead of the last preceding sequence
of non-whitespace characters; in fact, we may someday change this feature to do so. We advise you
to write the macro definition so that the preceding sequence of non-whitespace characters is just a
single token, so that the meaning will not change if we change the definition of this feature.

5.15 Non-Lvalue Arrays May Have Subscripts

Subscripting is allowed on arrays that are not lvalues, even though the unary ‘&’ operator is not.
For example, this is valid in GNU C though not valid in other C dialects:

struct foo {int a[4];};

struct foo f();

bar (int index)

{

return f().a[index];

}

5.16 Arithmetic on void- and Function-Pointers

In GNU C, addition and subtraction operations are supported on pointers to void and on
pointers to functions. This is done by treating the size of a void or of a function as 1.

A consequence of this is that sizeof is also allowed on void and on function types, and returns
1.

The option ‘-Wpointer-arith’ requests a warning if these extensions are used.

122 Using and Porting GNU CC

5.17 Non-Constant Initializers

The elements of an aggregate initializer for an automatic variable are not required to be constant
expressions in GNU C. Here is an example of an initializer with run-time varying elements:

foo (float f, float g)
{

float beat_freqs[2] = { f-g, f+g };
. . .

}

5.18 Constructor Expressions

GNU C supports constructor expressions. A constructor looks like a cast containing an initial-
izer. Its value is an object of the type specified in the cast, containing the elements specified in the
initializer.

Usually, the specified type is a structure. Assume that struct foo and structure are declared
as shown:

struct foo {int a; char b[2];} structure;

Here is an example of constructing a struct foo with a constructor:

structure = ((struct foo) {x + y, ’a’, 0});

This is equivalent to writing the following:

{
struct foo temp = {x + y, ’a’, 0};
structure = temp;

}

You can also construct an array. If all the elements of the constructor are (made up of) simple
constant expressions, suitable for use in initializers, then the constructor is an lvalue and can be
coerced to a pointer to its first element, as shown here:

char **foo = (char *[]) { "x", "y", "z" };

Chapter 5: Extensions to the C Language Family 123

Array constructors whose elements are not simple constants are not very useful, because the
constructor is not an lvalue. There are only two valid ways to use it: to subscript it, or initialize
an array variable with it. The former is probably slower than a switch statement, while the latter
does the same thing an ordinary C initializer would do. Here is an example of subscripting an array
constructor:

output = ((int[]) { 2, x, 28 }) [input];

Constructor expressions for scalar types and union types are is also allowed, but then the
constructor expression is equivalent to a cast.

5.19 Labeled Elements in Initializers

Standard C requires the elements of an initializer to appear in a fixed order, the same as the
order of the elements in the array or structure being initialized.

In GNU C you can give the elements in any order, specifying the array indices or structure field
names they apply to.

To specify an array index, write ‘[index] =’ before the element value. For example,

int a[6] = { [4] = 29, [2] = 15 };

is equivalent to

int a[6] = { 0, 0, 15, 0, 29, 0 };

The index values must be constant expressions, even if the array being initialized is automatic.

In a structure initializer, specify the name of a field to initialize with ‘fieldname:’ before the
element value. For example, given the following structure,

struct point { int x, y; };

the following initialization

struct point p = { y: yvalue, x: xvalue };

124 Using and Porting GNU CC

is equivalent to

struct point p = { xvalue, yvalue };

Another syntax which has the same meaning is ‘.fieldname =’., as shown here:

struct point p = { .y = yvalue, .x = xvalue };

You can also use an element label (with either the colon syntax or the period-equal syntax)
when initializing a union, to specify which element of the union should be used. For example,

union foo { int i; double d; };

union foo f = { d: 4 };

will convert 4 to a double to store it in the union using the second element. By contrast, casting
4 to type union foo would store it into the union as the integer i, since it is an integer. (See
Section 5.21 [Cast to Union], page 125.)

You can combine this technique of naming elements with ordinary C initialization of successive
elements. Each initializer element that does not have a label applies to the next consecutive element
of the array or structure. For example,

int a[6] = { [1] = v1, v2, [4] = v4 };

is equivalent to

int a[6] = { 0, v1, v2, 0, v4, 0 };

Labeling the elements of an array initializer is especially useful when the indices are characters
or belong to an enum type. For example:

int whitespace[256]
= { [’ ’] = 1, [’\t’] = 1, [’\h’] = 1,

[’\f’] = 1, [’\n’] = 1, [’\r’] = 1 };

5.20 Case Ranges

You can specify a range of consecutive values in a single case label, like this:

Chapter 5: Extensions to the C Language Family 125

case low ... high:

This has the same effect as the proper number of individual case labels, one for each integer value
from low to high, inclusive.

This feature is especially useful for ranges of ASCII character codes:

case ’A’ ... ’Z’:

Be careful: Write spaces around the ..., for otherwise it may be parsed wrong when you use it
with integer values. For example, write this:

case 1 ... 5:

rather than this:

case 1...5:

Warning to C++ users: When compiling C++, you must write two dots ‘..’ rather than
three to specify a range in case statements, thus:

case ’A’ .. ’Z’:

This is an anachronism in the GNU C++ front end, and will be rectified in a future
release.

5.21 Cast to a Union Type

A cast to union type is similar to other casts, except that the type specified is a union type.
You can specify the type either with union tag or with a typedef name. A cast to union is actually
a constructor though, not a cast, and hence does not yield an lvalue like normal casts. (See
Section 5.18 [Constructors], page 122.)

The types that may be cast to the union type are those of the members of the union. Thus,
given the following union and variables:

union foo { int i; double d; };
int x;
double y;

126 Using and Porting GNU CC

both x and y can be cast to type union foo.

Using the cast as the right-hand side of an assignment to a variable of union type is equivalent
to storing in a member of the union:

union foo u;
. . .
u = (union foo) x ≡ u.i = x
u = (union foo) y ≡ u.d = y

You can also use the union cast as a function argument:

void hack (union foo);
. . .
hack ((union foo) x);

5.22 Declaring Attributes of Functions

In GNU C, you declare certain things about functions called in your program which help the
compiler optimize function calls and check your code more carefully.

The keyword __attribute__ allows you to specify special attributes when making a declaration.
This keyword is followed by an attribute specification inside double parentheses. Three attributes,
noreturn, const and format, are currently defined for functions. Others are implemented for
variables and structure fields (see Section 5.27 [Variable Attributes], page 131).

noreturn A few standard library functions, such as abort and exit, cannot return. GNU CC
knows this automatically. Some programs define their own functions that never return.
You can declare them noreturn to tell the compiler this fact. For example,

void fatal () __attribute__ ((noreturn));

void
fatal (. . .)
{

. . . /* Print error message. */ . . .
exit (1);

}

The noreturn keyword tells the compiler to assume that fatal cannot return. It can
then optimize without regard to what would happen if fatal ever did return. This

Chapter 5: Extensions to the C Language Family 127

makes slightly better code. More importantly, it helps avoid spurious warnings of
uninitialized variables.

Do not assume that registers saved by the calling function are restored before calling
the noreturn function.

It does not make sense for a noreturn function to have a return type other than void.

The attribute noreturn is not implemented in GNU C versions earlier than 2.5. An
alternative way to declare that a function does not return, which works in the current
version and in some older versions, is as follows:

typedef void voidfn ();

volatile voidfn fatal;

const Many functions do not examine any values except their arguments, and have no effects
except the return value. Such a function can be subject to common subexpression
elimination and loop optimization just as an arithmetic operator would be. These
functions should be declared with the attribute const. For example,

int square (int) __attribute__ ((const));

says that the hypothetical function square is safe to call fewer times than the program
says.

The attribute const is not implemented in GNU C versions earlier than 2.5. An
alternative way to declare that a function has no side effects, which works in the
current version and in some older versions, is as follows:

typedef int intfn ();

extern const intfn square;

Note that a function that has pointer arguments and examines the data pointed to must
not be declared const. Likewise, a function that calls a non-const function usually
must not be const. It does not make sense for a const function to return void.

format (archetype, string-index, first-to-check)

The format attribute specifies that a function takes printf or scanf style arguments
which should be type-checked against a format string. For example, the declaration:

extern int
my_printf (void *my_object, const char *my_format, ...)

__attribute__ ((format (printf, 2, 3)));

causes the compiler to check the arguments in calls to my_printf for consistency with
the printf style format string argument my_format.

The parameter archetype determines how the format string is interpreted, and should
be either printf or scanf. The parameter string-index specifies which argument is
the format string argument (starting from 1), while first-to-check is the number of the
first argument to check against the format string. For functions where the arguments

128 Using and Porting GNU CC

are not available to be checked (such as vprintf), specify the third parameter as zero.
In this case the compiler only checks the format string for consistency.

In the example above, the format string (my_format) is the second argument of the
function my_print, and the arguments to check start with the third argument, so the
correct parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions which take format
strings as arguments, so that GNU CC can check the calls to these functions for errors.
The compiler always checks formats for the ANSI library functions printf, fprintf,
sprintf, scanf, fscanf, sscanf, vprintf, vfprintf and vsprintf whenever such
warnings are requested (using ‘-Wformat’), so there is no need to modify the header
file ‘stdio.h’.

You can specify multiple attributes in a declaration by separating them by commas within the
double parentheses. Currently it is never useful to do this for a function, but it can be useful for a
variable.

Some people object to the __attribute__ feature, suggesting that ANSI C’s #pragma should
be used instead. There are two reasons for not doing this.

1. It is impossible to generate #pragma commands from a macro.

2. There is no telling what the same #pragma might mean in another compiler.

These two reasons apply to almost any application that might be proposed for #pragma. It is
basically a mistake to use #pragma for anything.

5.23 Prototypes and Old-Style Function Definitions

GNU C extends ANSI C to allow a function prototype to override a later old-style non-prototype
definition. Consider the following example:

/* Use prototypes unless the compiler is old-fashioned. */
#if __STDC__
#define P(x) x
#else
#define P(x) ()
#endif

/* Prototype function declaration. */
int isroot P((uid_t));

Chapter 5: Extensions to the C Language Family 129

/* Old-style function definition. */
int
isroot (x) /* ??? lossage here ??? */

uid_t x;
{

return x == 0;
}

Suppose the type uid_t happens to be short. ANSI C does not allow this example, because
subword arguments in old-style non-prototype definitions are promoted. Therefore in this example
the function definition’s argument is really an int, which does not match the prototype argument
type of short.

This restriction of ANSI C makes it hard to write code that is portable to traditional C compilers,
because the programmer does not know whether the uid_t type is short, int, or long. Therefore,
in cases like these GNU C allows a prototype to override a later old-style definition. More precisely,
in GNU C, a function prototype argument type overrides the argument type specified by a later
old-style definition if the former type is the same as the latter type before promotion. Thus in
GNU C the above example is equivalent to the following:

int isroot (uid_t);

int
isroot (uid_t x)
{

return x == 0;
}

5.24 Dollar Signs in Identifier Names

In GNU C, you may use dollar signs in identifier names. This is because many traditional C
implementations allow such identifiers.

On some machines, dollar signs are allowed in identifiers if you specify ‘-traditional’. On a
few systems they are allowed by default, even if you do not use ‘-traditional’. But they are never
allowed if you specify ‘-ansi’.

There are certain ANSI C programs (obscure, to be sure) that would compile incorrectly if dollar
signs were permitted in identifiers. For example:

130 Using and Porting GNU CC

#define foo(a) #a
#define lose(b) foo (b)
#define test$
lose (test)

5.25 The Character ESC in Constants

You can use the sequence ‘\e’ in a string or character constant to stand for the ASCII character
ESC.

5.26 Inquiring on Alignment of Types or Variables

The keyword __alignof__ allows you to inquire about how an object is aligned, or the minimum
alignment usually required by a type. Its syntax is just like sizeof.

For example, if the target machine requires a double value to be aligned on an 8-byte boundary,
then __alignof__ (double) is 8. This is true on many RISC machines. On more traditional
machine designs, __alignof__ (double) is 4 or even 2.

Some machines never actually require alignment; they allow reference to any data type even at
an odd addresses. For these machines, __alignof__ reports the recommended alignment of a type.

When the operand of __alignof__ is an lvalue rather than a type, the value is the largest
alignment that the lvalue is known to have. It may have this alignment as a result of its data type,
or because it is part of a structure and inherits alignment from that structure. For example, after
this declaration:

struct foo { int x; char y; } foo1;

the value of __alignof__ (foo1.y) is probably 2 or 4, the same as __alignof__ (int), even
though the data type of foo1.y does not itself demand any alignment.

A related feature which lets you specify the alignment of an object is __attribute__ ((aligned

(alignment))); see the following section.

Chapter 5: Extensions to the C Language Family 131

5.27 Specifying Attributes of Variables

The keyword __attribute__ allows you to specify special attributes of variables or structure
fields. This keyword is followed by an attribute specification inside double parentheses. Four
attributes are currently defined: aligned, format, mode and packed. format is used for functions,
and thus not documented here; see Section 5.22 [Function Attributes], page 126.

aligned (alignment)

This attribute specifies a minimum alignment for the variable or structure field, mea-
sured in bytes. For example, the declaration:

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte boundary. On a
68040, this could be used in conjunction with an asm expression to access the move16

instruction which requires 16-byte aligned operands.

You can also specify the alignment of structure fields. For example, to create a double-
word aligned int pair, you could write:

struct foo { int x[2] __attribute__ ((aligned (8))); };

This is an alternative to creating a union with a double member that forces the union
to be double-word aligned.

It is not possible to specify the alignment of functions; the alignment of functions is
determined by the machine’s requirements and cannot be changed. You cannot specify
alignment for a typedef name because such a name is just an alias, not a distinct type.

The aligned attribute can only increase the alignment; but you can decrease it by
specifying packed as well. See below.

The linker of your operating system imposes a maximum alignment. If the linker
aligns each object file on a four byte boundary, then it is beyond the compiler’s power
to cause anything to be aligned to a larger boundary than that. For example, if the
linker happens to put this object file at address 136 (eight more than a multiple of
64), then the compiler cannot guarantee an alignment of more than 8 just by aligning
variables in the object file.

mode (mode)

This attribute specifies the data type for the declaration—whichever type corresponds
to the mode mode. This in effect lets you request an integer or floating point type
according to its width.

packed The packed attribute specifies that a variable or structure field should have the smallest
possible alignment—one byte for a variable, and one bit for a field, unless you specify
a larger value with the aligned attribute.

132 Using and Porting GNU CC

To specify multiple attributes, separate them by commas within the double parentheses: for
example, ‘__attribute__ ((aligned (16), packed))’.

5.28 An Inline Function is As Fast As a Macro

By declaring a function inline, you can direct GNU CC to integrate that function’s code into
the code for its callers. This makes execution faster by eliminating the function-call overhead;
in addition, if any of the actual argument values are constant, their known values may permit
simplifications at compile time so that not all of the inline function’s code needs to be included.
The effect on code size is less predictable; object code may be larger or smaller with function
inlining, depending on the particular case. Inlining of functions is an optimization and it really
“works” only in optimizing compilation. If you don’t use ‘-O’, no function is really inline.

To declare a function inline, use the inline keyword in its declaration, like this:

inline int
inc (int *a)
{

(*a)++;
}

(If you are writing a header file to be included in ANSI C programs, write __inline__ instead
of inline. See Section 5.32 [Alternate Keywords], page 141.)

You can also make all “simple enough” functions inline with the option ‘-finline-functions’.
Note that certain usages in a function definition can make it unsuitable for inline substitution.

For C++ programs, GNU CC automatically inlines member functions even if they are not explic-
itly declared inline. (You can override this with ‘-fno-default-inline’; see Section 3.5 [Options
Controlling C++ Dialect], page 27.)

When a function is both inline and static, if all calls to the function are integrated into the
caller, and the function’s address is never used, then the function’s own assembler code is never
referenced. In this case, GNU CC does not actually output assembler code for the function, unless
you specify the option ‘-fkeep-inline-functions’. Some calls cannot be integrated for various
reasons (in particular, calls that precede the function’s definition cannot be integrated, and neither
can recursive calls within the definition). If there is a nonintegrated call, then the function is
compiled to assembler code as usual. The function must also be compiled as usual if the program
refers to its address, because that can’t be inlined.

Chapter 5: Extensions to the C Language Family 133

When an inline function is not static, then the compiler must assume that there may be calls
from other source files; since a global symbol can be defined only once in any program, the function
must not be defined in the other source files, so the calls therein cannot be integrated. Therefore,
a non-static inline function is always compiled on its own in the usual fashion.

If you specify both inline and extern in the function definition, then the definition is used
only for inlining. In no case is the function compiled on its own, not even if you refer to its address
explicitly. Such an address becomes an external reference, as if you had only declared the function,
and had not defined it.

This combination of inline and extern has almost the effect of a macro. The way to use it
is to put a function definition in a header file with these keywords, and put another copy of the
definition (lacking inline and extern) in a library file. The definition in the header file will cause
most calls to the function to be inlined. If any uses of the function remain, they will refer to the
single copy in the library.

GNU C does not inline any functions when not optimizing. It is not clear whether it is better
to inline or not, in this case, but we found that a correct implementation when not optimizing was
difficult. So we did the easy thing, and turned it off.

5.29 Assembler Instructions with C Expression Operands

In an assembler instruction using asm, you can now specify the operands of the instruction using
C expressions. This means no more guessing which registers or memory locations will contain the
data you want to use.

You must specify an assembler instruction template much like what appears in a machine de-
scription, plus an operand constraint string for each operand.

For example, here is how to use the 68881’s fsinx instruction:

asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

Here angle is the C expression for the input operand while result is that of the output operand.
Each has ‘"f"’ as its operand constraint, saying that a floating point register is required. The ‘=’
in ‘=f’ indicates that the operand is an output; all output operands’ constraints must use ‘=’. The
constraints use the same language used in the machine description (see Section 15.6 [Constraints],
page 255).

134 Using and Porting GNU CC

Each operand is described by an operand-constraint string followed by the C expression in
parentheses. A colon separates the assembler template from the first output operand, and another
separates the last output operand from the first input, if any. Commas separate output operands
and separate inputs. The total number of operands is limited to ten or to the maximum number
of operands in any instruction pattern in the machine description, whichever is greater.

If there are no output operands, and there are input operands, then there must be two consec-
utive colons surrounding the place where the output operands would go.

Output operand expressions must be lvalues; the compiler can check this. The input operands
need not be lvalues. The compiler cannot check whether the operands have data types that are
reasonable for the instruction being executed. It does not parse the assembler instruction template
and does not know what it means, or whether it is valid assembler input. The extended asm feature
is most often used for machine instructions that the compiler itself does not know exist.

The output operands must be write-only; GNU CC will assume that the values in these operands
before the instruction are dead and need not be generated. Extended asm does not support input-
output or read-write operands. For this reason, the constraint character ‘+’, which indicates such
an operand, may not be used.

When the assembler instruction has a read-write operand, or an operand in which only some
of the bits are to be changed, you must logically split its function into two separate operands, one
input operand and one write-only output operand. The connection between them is expressed by
constraints which say they need to be in the same location when the instruction executes. You
can use the same C expression for both operands, or different expressions. For example, here we
write the (fictitious) ‘combine’ instruction with bar as its read-only source operand and foo as its
read-write destination:

asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));

The constraint ‘"0"’ for operand 1 says that it must occupy the same location as operand 0. A
digit in constraint is allowed only in an input operand, and it must refer to an output operand.

Only a digit in the constraint can guarantee that one operand will be in the same place as
another. The mere fact that foo is the value of both operands is not enough to guarantee that
they will be in the same place in the generated assembler code. The following would not work:

asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));

Chapter 5: Extensions to the C Language Family 135

Various optimizations or reloading could cause operands 0 and 1 to be in different registers;
GNU CC knows no reason not to do so. For example, the compiler might find a copy of the value
of foo in one register and use it for operand 1, but generate the output operand 0 in a different
register (copying it afterward to foo’s own address). Of course, since the register for operand 1 is
not even mentioned in the assembler code, the result will not work, but GNU CC can’t tell that.

Some instructions clobber specific hard registers. To describe this, write a third colon after the
input operands, followed by the names of the clobbered hard registers (given as strings). Here is a
realistic example for the Vax:

asm volatile ("movc3 %0,%1,%2"
: /* no outputs */
: "g" (from), "g" (to), "g" (count)
: "r0", "r1", "r2", "r3", "r4", "r5");

If you refer to a particular hardware register from the assembler code, then you will probably
have to list the register after the third colon to tell the compiler that the register’s value is modified.
In many assemblers, the register names begin with ‘%’; to produce one ‘%’ in the assembler code,
you must write ‘%%’ in the input.

If your assembler instruction can alter the condition code register, add ‘cc’ to the list of clobbered
registers. GNU CC on some machines represents the condition codes as a specific hardware register;
‘cc’ serves to name this register. On other machines, the condition code is handled differently, and
specifying ‘cc’ has no effect. But it is valid no matter what the machine.

If your assembler instruction modifies memory in an unpredictable fashion, add ‘memory’ to the
list of clobbered registers. This will cause GNU CC to not keep memory values cached in registers
across the assembler instruction.

You can put multiple assembler instructions together in a single asm template, separated either
with newlines (written as ‘\n’) or with semicolons if the assembler allows such semicolons. The
GNU assembler allows semicolons and all Unix assemblers seem to do so. The input operands
are guaranteed not to use any of the clobbered registers, and neither will the output operands’
addresses, so you can read and write the clobbered registers as many times as you like. Here is
an example of multiple instructions in a template; it assumes that the subroutine _foo accepts
arguments in registers 9 and 10:

asm ("movl %0,r9;movl %1,r10;call _foo"
: /* no outputs */
: "g" (from), "g" (to)
: "r9", "r10");

136 Using and Porting GNU CC

Unless an output operand has the ‘&’ constraint modifier, GNU CC may allocate it in the same
register as an unrelated input operand, on the assumption that the inputs are consumed before
the outputs are produced. This assumption may be false if the assembler code actually consists of
more than one instruction. In such a case, use ‘&’ for each output operand that may not overlap
an input. See Section 15.6.4 [Modifiers], page 261.

If you want to test the condition code produced by an assembler instruction, you must include
a branch and a label in the asm construct, as follows:

asm ("clr %0;frob %1;beq 0f;mov #1,%0;0:"
: "g" (result)
: "g" (input));

This assumes your assembler supports local labels, as the GNU assembler and most Unix assemblers
do.

Speaking of labels, jumps from one asm to another are not supported. The compiler’s optimizers
do not know about these jumps, and therefore they cannot take account of them when deciding
how to optimize.

Usually the most convenient way to use these asm instructions is to encapsulate them in macros
that look like functions. For example,

#define sin(x) \
({ double __value, __arg = (x); \

asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
__value; })

Here the variable __arg is used to make sure that the instruction operates on a proper double

value, and to accept only those arguments x which can convert automatically to a double.

Another way to make sure the instruction operates on the correct data type is to use a cast in
the asm. This is different from using a variable __arg in that it converts more different types. For
example, if the desired type were int, casting the argument to int would accept a pointer with no
complaint, while assigning the argument to an int variable named __arg would warn about using
a pointer unless the caller explicitly casts it.

If an asm has output operands, GNU CC assumes for optimization purposes that the instruction
has no side effects except to change the output operands. This does not mean that instructions
with a side effect cannot be used, but you must be careful, because the compiler may eliminate

Chapter 5: Extensions to the C Language Family 137

them if the output operands aren’t used, or move them out of loops, or replace two with one if they
constitute a common subexpression. Also, if your instruction does have a side effect on a variable
that otherwise appears not to change, the old value of the variable may be reused later if it happens
to be found in a register.

You can prevent an asm instruction from being deleted, moved significantly, or combined, by
writing the keyword volatile after the asm. For example:

#define set_priority(x) \
asm volatile ("set_priority %0": /* no outputs */ : "g" (x))

An instruction without output operands will not be deleted or moved significantly, regardless, unless
it is unreachable.

Note that even a volatile asm instruction can be moved in ways that appear insignificant to the
compiler, such as across jump instructions. You can’t expect a sequence of volatile asm instructions
to remain perfectly consecutive. If you want consecutive output, use a single asm.

It is a natural idea to look for a way to give access to the condition code left by the assem-
bler instruction. However, when we attempted to implement this, we found no way to make it
work reliably. The problem is that output operands might need reloading, which would result in
additional following “store” instructions. On most machines, these instructions would alter the
condition code before there was time to test it. This problem doesn’t arise for ordinary “test” and
“compare” instructions because they don’t have any output operands.

If you are writing a header file that should be includable in ANSI C programs, write __asm__

instead of asm. See Section 5.32 [Alternate Keywords], page 141.

5.30 Controlling Names Used in Assembler Code

You can specify the name to be used in the assembler code for a C function or variable by
writing the asm (or __asm__) keyword after the declarator as follows:

int foo asm ("myfoo") = 2;

This specifies that the name to be used for the variable foo in the assembler code should be ‘myfoo’
rather than the usual ‘_foo’.

138 Using and Porting GNU CC

On systems where an underscore is normally prepended to the name of a C function or variable,
this feature allows you to define names for the linker that do not start with an underscore.

You cannot use asm in this way in a function definition; but you can get the same effect by
writing a declaration for the function before its definition and putting asm there, like this:

extern func () asm ("FUNC");

func (x, y)
int x, y;

. . .

It is up to you to make sure that the assembler names you choose do not conflict with any other
assembler symbols. Also, you must not use a register name; that would produce completely invalid
assembler code. GNU CC does not as yet have the ability to store static variables in registers.
Perhaps that will be added.

5.31 Variables in Specified Registers

GNU C allows you to put a few global variables into specified hardware registers. You can also
specify the register in which an ordinary register variable should be allocated.

• Global register variables reserve registers throughout the program. This may be useful in
programs such as programming language interpreters which have a couple of global variables
that are accessed very often.

• Local register variables in specific registers do not reserve the registers. The compiler’s data
flow analysis is capable of determining where the specified registers contain live values, and
where they are available for other uses.

These local variables are sometimes convenient for use with the extended asm feature (see
Section 5.29 [Extended Asm], page 133), if you want to write one output of the assembler
instruction directly into a particular register. (This will work provided the register you specify
fits the constraints specified for that operand in the asm.)

5.31.1 Defining Global Register Variables

You can define a global register variable in GNU C like this:

Chapter 5: Extensions to the C Language Family 139

register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Choose a register which is normally
saved and restored by function calls on your machine, so that library routines will not clobber it.

Naturally the register name is cpu-dependent, so you would need to conditionalize your program
according to cpu type. The register a5 would be a good choice on a 68000 for a variable of pointer
type. On machines with register windows, be sure to choose a “global” register that is not affected
magically by the function call mechanism.

In addition, operating systems on one type of cpu may differ in how they name the registers;
then you would need additional conditionals. For example, some 68000 operating systems call this
register %a5.

Eventually there may be a way of asking the compiler to choose a register automatically, but
first we need to figure out how it should choose and how to enable you to guide the choice. No
solution is evident.

Defining a global register variable in a certain register reserves that register entirely for this use,
at least within the current compilation. The register will not be allocated for any other purpose
in the functions in the current compilation. The register will not be saved and restored by these
functions. Stores into this register are never deleted even if they would appear to be dead, but
references may be deleted or moved or simplified.

It is not safe to access the global register variables from signal handlers, or from more than one
thread of control, because the system library routines may temporarily use the register for other
things (unless you recompile them specially for the task at hand).

It is not safe for one function that uses a global register variable to call another such function
foo by way of a third function lose that was compiled without knowledge of this variable (i.e. in
a different source file in which the variable wasn’t declared). This is because lose might save the
register and put some other value there. For example, you can’t expect a global register variable
to be available in the comparison-function that you pass to qsort, since qsort might have put
something else in that register. (If you are prepared to recompile qsort with the same global
register variable, you can solve this problem.)

If you want to recompile qsort or other source files which do not actually use your global register
variable, so that they will not use that register for any other purpose, then it suffices to specify the

140 Using and Porting GNU CC

compiler option ‘-ffixed-reg ’. You need not actually add a global register declaration to their
source code.

A function which can alter the value of a global register variable cannot safely be called from
a function compiled without this variable, because it could clobber the value the caller expects to
find there on return. Therefore, the function which is the entry point into the part of the program
that uses the global register variable must explicitly save and restore the value which belongs to
its caller.

On most machines, longjmp will restore to each global register variable the value it had at
the time of the setjmp. On some machines, however, longjmp will not change the value of global
register variables. To be portable, the function that called setjmp should make other arrangements
to save the values of the global register variables, and to restore them in a longjmp. This way, the
same thing will happen regardless of what longjmp does.

All global register variable declarations must precede all function definitions. If such a dec-
laration could appear after function definitions, the declaration would be too late to prevent the
register from being used for other purposes in the preceding functions.

Global register variables may not have initial values, because an executable file has no means
to supply initial contents for a register.

On the Sparc, there are reports that g3 . . . g7 are suitable registers, but certain library functions,
such as getwd, as well as the subroutines for division and remainder, modify g3 and g4. g1 and g2
are local temporaries.

On the 68000, a2 . . . a5 should be suitable, as should d2 . . . d7. Of course, it will not do to use
more than a few of those.

5.31.2 Specifying Registers for Local Variables

You can define a local register variable with a specified register like this:

register int *foo asm ("a5");

Here a5 is the name of the register which should be used. Note that this is the same syntax used
for defining global register variables, but for a local variable it would appear within a function.

Chapter 5: Extensions to the C Language Family 141

Naturally the register name is cpu-dependent, but this is not a problem, since specific regis-
ters are most often useful with explicit assembler instructions (see Section 5.29 [Extended Asm],
page 133). Both of these things generally require that you conditionalize your program according
to cpu type.

In addition, operating systems on one type of cpu may differ in how they name the registers;
then you would need additional conditionals. For example, some 68000 operating systems call this
register %a5.

Eventually there may be a way of asking the compiler to choose a register automatically, but
first we need to figure out how it should choose and how to enable you to guide the choice. No
solution is evident.

Defining such a register variable does not reserve the register; it remains available for other uses
in places where flow control determines the variable’s value is not live. However, these registers are
made unavailable for use in the reload pass. I would not be surprised if excessive use of this feature
leaves the compiler too few available registers to compile certain functions.

5.32 Alternate Keywords

The option ‘-traditional’ disables certain keywords; ‘-ansi’ disables certain others. This
causes trouble when you want to use GNU C extensions, or ANSI C features, in a general-purpose
header file that should be usable by all programs, including ANSI C programs and traditional
ones. The keywords asm, typeof and inline cannot be used since they won’t work in a program
compiled with ‘-ansi’, while the keywords const, volatile, signed, typeof and inline won’t
work in a program compiled with ‘-traditional’.

The way to solve these problems is to put ‘__’ at the beginning and end of each problematical
keyword. For example, use __asm__ instead of asm, __const__ instead of const, and __inline__

instead of inline.

Other C compilers won’t accept these alternative keywords; if you want to compile with another
compiler, you can define the alternate keywords as macros to replace them with the customary
keywords. It looks like this:

#ifndef __GNUC__
#define __asm__ asm
#endif

142 Using and Porting GNU CC

‘-pedantic’ causes warnings for many GNU C extensions. You can prevent such warnings
within one expression by writing __extension__ before the expression. __extension__ has no
effect aside from this.

5.33 Incomplete enum Types

You can define an enum tag without specifying its possible values. This results in an incomplete
type, much like what you get if you write struct foo without describing the elements. A later
declaration which does specify the possible values completes the type.

You can’t allocate variables or storage using the type while it is incomplete. However, you can
work with pointers to that type.

This extension may not be very useful, but it makes the handling of enum more consistent with
the way struct and union are handled.

5.34 Function Names as Strings

GNU CC predefines two string variables to be the name of the current function. The variable
__FUNCTION__ is the name of the function as it appears in the source. The variable __PRETTY_

FUNCTION__ is the name of the function pretty printed in a language specific fashion.

These names are always the same in a C function, but in a C++ function they may be different.
For example, this program:

extern "C" {
extern int printf (char *, ...);
}

class a {
public:
sub (int i)

{
printf ("__FUNCTION__ = %s\n", __FUNCTION__);
printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);

}
};

int

Chapter 5: Extensions to the C Language Family 143

main (void)
{

a ax;
ax.sub (0);
return 0;

}

gives this output:

__FUNCTION__ = sub
__PRETTY_FUNCTION__ = int a::sub (int)

144 Using and Porting GNU CC

Chapter 6: Extensions to the C++ Language 145

6 Extensions to the C++ Language

The GNU compiler provides these extensions to the C++ language (and you can also use most of
the C language extensions in your C++ programs). If you want to write code that checks whether
these features are available, you can test for the GNU compiler the same way as for C programs:
check for a predefined macro __GNUC__. You can also use __GNUG__ to test specifically for GNU
C++ (see section “Standard Predefined Macros” in The C Preprocessor).

6.1 Named Return Values in C++

GNU C++ extends the function-definition syntax to allow you to specify a name for the result
of a function outside the body of the definition, in C++ programs:

type

functionname (args) return resultname;

{

. . .

body

. . .

}

You can use this feature to avoid an extra constructor call when a function result has a class
type. For example, consider a function m, declared as ‘X v = m ();’, whose result is of class X:

X
m ()
{

X b;
b.a = 23;
return b;

}

Although m appears to have no arguments, in fact it has one implicit argument: the address of
the return value. At invocation, the address of enough space to hold v is sent in as the implicit
argument. Then b is constructed and its a field is set to the value 23. Finally, a copy constructor
(a constructor of the form ‘X(X&)’) is applied to b, with the (implicit) return value location as the
target, so that v is now bound to the return value.

146 Using and Porting GNU CC

But this is wasteful. The local b is declared just to hold something that will be copied right
out. While a compiler that combined an “elision” algorithm with interprocedural data flow analysis
could conceivably eliminate all of this, it is much more practical to allow you to assist the compiler
in generating efficient code by manipulating the return value explicitly, thus avoiding the local
variable and copy constructor altogether.

Using the extended GNU C++ function-definition syntax, you can avoid the temporary allocation
and copying by naming r as your return value as the outset, and assigning to its a field directly:

X
m () return r;
{

r.a = 23;
}

The declaration of r is a standard, proper declaration, whose effects are executed before any of the
body of m.

Functions of this type impose no additional restrictions; in particular, you can execute return

statements, or return implicitly by reaching the end of the function body (“falling off the edge”).
Cases like

X
m () return r (23);
{

return;
}

(or even ‘X m () return r (23); { }’) are unambiguous, since the return value r has been initialized
in either case. The following code may be hard to read, but also works predictably:

X
m () return r;
{

X b;
return b;

}

The return value slot denoted by r is initialized at the outset, but the statement ‘return b;’
overrides this value. The compiler deals with this by destroying r (calling the destructor if there is
one, or doing nothing if there is not), and then reinitializing r with b.

Chapter 6: Extensions to the C++ Language 147

This extension is provided primarily to help people who use overloaded operators, where there
is a great need to control not just the arguments, but the return values of functions. For classes
where the copy constructor incurs a heavy performance penalty (especially in the common case
where there is a quick default constructor), this is a major savings. The disadvantage of this
extension is that you do not control when the default constructor for the return value is called: it
is always called at the beginning.

6.2 Minimum and Maximum Operators in C++

It is very convenient to have operators which return the “minimum” or the “maximum” of two
arguments. In GNU C++ (but not in GNU C),

a <? b is the minimum, returning the smaller of the numeric values a and b;

a >? b is the maximum, returning the larger of the numeric values a and b.

These operations are not primitive in ordinary C++, since you can use a macro to return the
minimum of two things in C++, as in the following example.

#define MIN(X,Y) ((X) < (Y) ? : (X) : (Y))

You might then use ‘int min = MIN (i, j);’ to set min to the minimum value of variables i and j.

However, side effects in X or Y may cause unintended behavior. For example, MIN (i++, j++)

will fail, incrementing the smaller counter twice. A GNU C extension allows you to write safe
macros that avoid this kind of problem (see Section 5.6 [Naming an Expression’s Type], page 113).
However, writing MIN and MAX as macros also forces you to use function-call notation notation for a
fundamental arithmetic operation. Using GNU C++ extensions, you can write ‘int min = i <? j;’
instead.

Since <? and >? are built into the compiler, they properly handle expressions with side-effects;
‘int min = i++ <? j++;’ works correctly.

148 Using and Porting GNU CC

6.3 goto and Destructors in GNU C++

In C++ programs, you can safely use the goto statement. When you use it to exit a block which
contains aggregates requiring destructors, the destructors will run before the goto transfers control.
(In ANSI C++, goto is restricted to targets within the current block.)

The compiler still forbids using goto to enter a scope that requires constructors.

6.4 Declarations and Definitions in One Header

C++ object definitions can be quite complex. In principle, your source code will need two kinds
of things for each object that you use across more than one source file. First, you need an interface

specification, describing its structure with type declarations and function prototypes. Second, you
need the implementation itself. It can be tedious to maintain a separate interface description in a
header file, in parallel to the actual implementation. It is also dangerous, since separate interface
and implementation definitions may not remain parallel.

With GNU C++, you can use a single header file for both purposes.

Warning: The mechanism to specify this is in transition. For the nonce, you must
use one of two #pragma commands; in a future release of GNU C++, an alternative
mechanism will make these #pragma commands unnecessary.

The header file contains the full definitions, but is marked with ‘#pragma interface’ in the
source code. This allows the compiler to use the header file only as an interface specification
when ordinary source files incorporate it with #include. In the single source file where the full
implementation belongs, you can use either a naming convention or ‘#pragma implementation’ to
indicate this alternate use of the header file.

#pragma interface

Use this directive in header files that define object classes, to save space in most of
the object files that use those classes. Normally, local copies of certain information
(backup copies of inline member functions, debugging information, and the internal
tables that implement virtual functions) must be kept in each object file that includes
class definitions. You can use this pragma to avoid such duplication. When a header
file containing ‘#pragma interface’ is included in a compilation, this auxiliary infor-
mation will not be generated (unless the main input source file itself uses ‘#pragma

Chapter 6: Extensions to the C++ Language 149

implementation’). Instead, the object files will contain references to be resolved at
link time.

#pragma implementation

#pragma implementation "objects.h"

Use this pragma in a main input file, when you want full output from included header
files to be generated (and made globally visible). The included header file, in turn,
should use ‘#pragma interface’. Backup copies of inline member functions, debug-
ging information, and the internal tables used to implement virtual functions are all
generated in implementation files.

‘#pragma implementation’ is implied whenever the basename1 of your source file
matches the basename of a header file it includes. There is no way to turn this off
(other than using a different name for one of the two files). In the same vein, if you
use ‘#pragma implementation’ with no argument, it applies to an include file with
the same basename as your source file. For example, in ‘allclass.cc’, ‘#pragma
implementation’ by itself is equivalent to ‘#pragma implementation "allclass.h"’;
but even if you do not say ‘#pragma implementation’ at all, ‘allclass.h’ is treated
as an implementation file whenever you include it from ‘allclass.cc’.

If you use an explicit ‘#pragma implementation’, it must appear in your source file
before you include the affected header files.

Use the string argument if you want a single implementation file to include code from
multiple header files. (You must also use ‘#include’ to include the header file; ‘#pragma
implementation’ only specifies how to use the file—it doesn’t actually include it.)

There is no way to split up the contents of a single header file into multiple implemen-
tation files.

‘#pragma implementation’ and ‘#pragma interface’ also have an effect on function inlining.

If you define a class in a header file marked with ‘#pragma interface’, the effect on a function
defined in that class is similar to an explicit extern declaration—the compiler emits no code at
all to define an independent version of the function. Its definition is used only for inlining with its
callers.

Conversely, when you include the same header file in a main source file that declares it as
‘#pragma implementation’, the compiler emits code for the function itself; this defines a version
of the function that can be found via pointers (or by callers compiled without inlining).

1 A file’s basename is the name stripped of all leading path information and of trailing suffixes,
such as ‘.h’ or ‘.C’ or ‘.cc’.

150 Using and Porting GNU CC

Chapter 7: Known Causes of Trouble with GNU CC 151

7 Known Causes of Trouble with GNU CC

This section describes known problems that affect users of GNU CC. Most of these are not GNU
CC bugs per se—if they were, we would fix them. But the result for a user may be like the result
of a bug.

Some of these problems are due to bugs in other software, some are missing features that are
too much work to add, and some are places where people’s opinions differ as to what is best.

7.1 Actual Bugs We Haven’t Fixed Yet

• The fixincludes script interacts badly with automounters; if the directory of system header
files is automounted, it tends to be unmounted while fixincludes is running. This would
seem to be a bug in the automounter. We don’t know any good way to work around it.

• The fixproto script will sometimes add prototypes for the sigsetjmp and siglongjmp func-
tions that reference the jmp_buf type before that type is defined. To work around this, edit
the offending file and place the typedef in front of the prototypes.

• Loop unrolling doesn’t work properly for certain C++ programs. This is because of difficulty
in updating the debugging information within the loop being unrolled. We plan to revamp the
representation of debugging information so that this will work properly, but we have not done
this in version 2.5 because we don’t want to delay it any further.

7.2 Installation Problems

This is a list of problems (and some apparent problems which don’t really mean anything is
wrong) that show up during installation of GNU CC.

• On certain systems, defining certain environment variables such as CC can interfere with the
functioning of make.

• If you encounter seemingly strange errors when trying to build the compiler in a directory other
than the source directory, it could be because you have previously configured the compiler in
the source directory. Make sure you have done all the necessary preparations. See Section 4.1
[Other Dir], page 89.

• If you build GNU CC on a BSD system using a directory stored in a System V file system, prob-
lems may occur in running fixincludes if the System V file system doesn’t support symbolic

152 Using and Porting GNU CC

links. These problems result in a failure to fix the declaration of size_t in ‘sys/types.h’. If
you find that size_t is a signed type and that type mismatches occur, this could be the cause.

The solution is not to use such a directory for building GNU CC.

• In previous versions of GNU CC, the gcc driver program looked for as and ld in various
places; for example, in files beginning with ‘/usr/local/lib/gcc-’. GNU CC version 2 looks
for them in the directory ‘/usr/local/lib/gcc-lib/target/version’.

Thus, to use a version of as or ld that is not the system default, for example gas or GNU ld,
you must put them in that directory (or make links to them from that directory).

• Some commands executed when making the compiler may fail (return a non-zero status) and
be ignored by make. These failures, which are often due to files that were not found, are
expected, and can safely be ignored.

• It is normal to have warnings in compiling certain files about unreachable code and about
enumeration type clashes. These files’ names begin with ‘insn-’. Also, ‘real.c’ may get some
warnings that you can ignore.

• Sometimes make recompiles parts of the compiler when installing the compiler. In one case,
this was traced down to a bug in make. Either ignore the problem or switch to GNU Make.

• If you have installed a program known as purify, you may find that it causes errors while
linking enquire, which is part of building GNU CC. The fix is to get rid of the file real-ld

which purify installs—so that GNU CC won’t try to use it.

• On Linux SLS 1.01, there is a problem with ‘libc.a’: it does not contain the obstack functions.
However, GNU CC assumes that the obstack functions are in ‘libc.a’ when it is the GNU C
library. To work around this problem, change the __GNU_LIBRARY__ conditional around line
31 to ‘#if 1’.

• On some 386 systems, building the compiler never finishes because enquire hangs due to
a hardware problem in the motherboard—it reports floating point exceptions to the kernel
incorrectly. You can install GNU CC except for ‘float.h’ by patching out the command
to run enquire. You may also be able to fix the problem for real by getting a replacement
motherboard. This problem was observed in Revision E of the Micronics motherboard, and is
fixed in Revision F. It has also been observed in the MYLEX MXA-33 motherboard.

If you encounter this problem, you may also want to consider removing the FPU from the
socket during the compilation. Alternatively, if you are running SCO Unix, you can reboot
and force the FPU to be ignored. To do this, type ‘hd(40)unix auto ignorefpu’.

• On some 386 systems, GNU CC crashes trying to compile ‘enquire.c’. This happens on
machines that don’t have a 387 FPU chip. On 386 machines, the system kernel is supposed to
emulate the 387 when you don’t have one. The crash is due to a bug in the emulator.

One of these systems is the Unix from Interactive Systems: 386/ix. On this system, an alternate
emulator is provided, and it does work. To use it, execute this command as super-user:

ln /etc/emulator.rel1 /etc/emulator

Chapter 7: Known Causes of Trouble with GNU CC 153

and then reboot the system. (The default emulator file remains present under the name
‘emulator.dflt’.)

Try using ‘/etc/emulator.att’, if you have such a problem on the SCO system.

Another system which has this problem is Esix. We don’t know whether it has an alternate
emulator that works.

On NetBSD 0.8, a similar problem manifests itself as these error messages:
enquire.c: In function ‘fprop’:
enquire.c:2328: floating overflow

• On SCO systems, when compiling GNU CC with the system’s compiler, do not use ‘-O’. Some
versions of the system’s compiler miscompile GNU CC with ‘-O’.

• Sometimes on a Sun 4 you may observe a crash in the program genflags or genoutput while
building GNU CC. This is said to be due to a bug in sh. You can probably get around it by
running genflags or genoutput manually and then retrying the make.

• On Solaris 2, executables of GNU CC version 2.0.2 are commonly available, but they have
a bug that shows up when compiling current versions of GNU CC: undefined symbol errors
occur during assembly if you use ‘-g’.

The solution is to compile the current version of GNU CC without ‘-g’. That makes a working
compiler which you can use to recompile with ‘-g’.

• Solaris 2 comes with a number of optional OS packages. Some of these packages are needed
to use GNU CC fully. If you did not install all optional packages when installing Solaris, you
will need to verify that the packages that GNU CC needs are installed.

To check whether an optional package is installed, use the pkginfo command. To add an
optional package, use the pkgadd command. For further details, see the Solaris documentation.

For Solaris 2.0 and 2.1, GNU CC needs six packages: ‘SUNWarc’, ‘SUNWbtool’, ‘SUNWesu’,
‘SUNWhea’, ‘SUNWlibm’, and ‘SUNWtoo’.

For Solaris 2.2, GNU CC needs an additional seventh package: ‘SUNWsprot’.

• On Solaris 2, trying to use the linker and other tools in ‘/usr/ucb’ to install GNU CC has
been observed to cause trouble. For example, the linker may hang indefinitely. The fix is to
remove ‘/usr/ucb’ from your PATH.

• If you use the 1.31 version of the MIPS assembler (such as was shipped with Ultrix 3.1), you will
need to use the -fno-delayed-branch switch when optimizing floating point code. Otherwise,
the assembler will complain when the GCC compiler fills a branch delay slot with a floating
point instruction, such as add.d.

• If on a MIPS system you get an error message saying “does not have gp sections for all it’s
[sic] sectons [sic]”, don’t worry about it. This happens whenever you use GAS with the MIPS
linker, but there is not really anything wrong, and it is okay to use the output file. You can
stop such warnings by installing the GNU linker.

It would be nice to extend GAS to produce the gp tables, but they are optional, and there
should not be a warning about their absence.

154 Using and Porting GNU CC

• In Ultrix 4.0 on the MIPS machine, ‘stdio.h’ does not work with GNU CC at all unless it
has been fixed with fixincludes. This causes problems in building GNU CC. Once GNU CC
is installed, the problems go away.

To work around this problem, when making the stage 1 compiler, specify this option to Make:
GCC_FOR_TARGET="./xgcc -B./ -I./include"

When making stage 2 and stage 3, specify this option:
CFLAGS="-g -I./include"

• Users have reported some problems with version 2.0 of the MIPS compiler tools that were
shipped with Ultrix 4.1. Version 2.10 which came with Ultrix 4.2 seems to work fine.

• Some versions of the MIPS linker will issue an assertion failure when linking code that uses
alloca against shared libraries on RISC-OS 5.0, and DEC’s OSF/1 systems. This is a bug in
the linker, that is supposed to be fixed in future revisions. To protect against this, GNU CC
passes ‘-non_shared’ to the linker unless you pass an explicit ‘-shared’ or ‘-call_shared’
switch.

• On System V release 3, you may get this error message while linking:
ld fatal: failed to write symbol name something
in strings table for file whatever

This probably indicates that the disk is full or your ULIMIT won’t allow the file to be as large
as it needs to be.

This problem can also result because the kernel parameter MAXUMEM is too small. If so, you
must regenerate the kernel and make the value much larger. The default value is reported to
be 1024; a value of 32768 is said to work. Smaller values may also work.

• On System V, if you get an error like this,
/usr/local/lib/bison.simple: In function ‘yyparse’:
/usr/local/lib/bison.simple:625: virtual memory exhausted

that too indicates a problem with disk space, ULIMIT, or MAXUMEM.

• Current GNU CC versions probably do not work on version 2 of the NeXT operating system.

• On NeXTStep 3.0, the Objective C compiler does not work, due, apparently, to a kernel bug
that it happens to trigger. This problem does not happen on 3.1.

• On the Tower models 4n0 and 6n0, by default a process is not allowed to have more than one
megabyte of memory. GNU CC cannot compile itself (or many other programs) with ‘-O’ in
that much memory.

To solve this problem, reconfigure the kernel adding the following line to the configuration file:
MAXUMEM = 4096

• On HP 9000 series 300 or 400 running HP-UX release 8.0, there is a bug in the assembler that
must be fixed before GNU CC can be built. This bug manifests itself during the first stage of
compilation, while building ‘libgcc2.a’:

_floatdisf
cc1: warning: ‘-g’ option not supported on this version of GCC

Chapter 7: Known Causes of Trouble with GNU CC 155

cc1: warning: ‘-g1’ option not supported on this version of GCC
./xgcc: Internal compiler error: program as got fatal signal 11

A patched version of the assembler is available by anonymous ftp from altdorf.ai.mit.edu

as the file ‘archive/cph/hpux-8.0-assembler’. If you have HP software support, the patch
can also be obtained directly from HP, as described in the following note:

This is the patched assembler, to patch SR#1653-010439, where the assembler
aborts on floating point constants.
The bug is not really in the assembler, but in the shared library version of the
function “cvtnum(3c)”. The bug on “cvtnum(3c)” is SR#4701-078451. Anyway,
the attached assembler uses the archive library version of “cvtnum(3c)” and thus
does not exhibit the bug.

This patch is also known as PHCO 0800.

• On HP-UX version 8.05, but not on 8.07 or more recent versions, the fixproto shell script
triggers a bug in the system shell. If you encounter this problem, upgrade your operating
system or use BASH (the GNU shell) to run fixproto.

• Some versions of the Pyramid C compiler are reported to be unable to compile GNU CC. You
must use an older version of GNU CC for bootstrapping. One indication of this problem is if
you get a crash when GNU CC compiles the function muldi3 in file ‘libgcc2.c’.

You may be able to succeed by getting GNU CC version 1, installing it, and using it to compile
GNU CC version 2. The bug in the Pyramid C compiler does not seem to affect GNU CC
version 1.

• There may be similar problems on System V Release 3.1 on 386 systems.

• On the Intel Paragon (an i860 machine), if you are using operating system version 1.0, you
will get warnings or errors about redefinition of va_arg when you build GNU CC.

If this happens, then you need to link most programs with the library ‘iclib.a’. You must
also modify ‘stdio.h’ as follows: before the lines

#if defined(__i860__) && !defined(_VA_LIST)
#include <va_list.h>

insert the line
#if __PGC__

and after the lines
extern int vprintf(const char *, va_list);
extern int vsprintf(char *, const char *, va_list);
#endif

insert the line
#endif /* __PGC__ */

These problems don’t exist in operating system version 1.1.

• On the Altos 3068, programs compiled with GNU CC won’t work unless you fix a kernel bug.
This happens using system versions V.2.2 1.0gT1 and V.2.2 1.0e and perhaps later versions as
well. See the file ‘README.ALTOS’.

156 Using and Porting GNU CC

• You will get several sorts of compilation and linking errors on the we32k if you don’t follow
the special instructions. See Section 4.8 [WE32K Install], page 102.

7.3 Cross-Compiler Problems

You may run into problems with cross compilation on certain machines, for several reasons.

• Cross compilation can run into trouble for certain machines because some target machines’
assemblers require floating point numbers to be written as integer constants in certain contexts.

The compiler writes these integer constants by examining the floating point value as an integer
and printing that integer, because this is simple to write and independent of the details of the
floating point representation. But this does not work if the compiler is running on a different
machine with an incompatible floating point format, or even a different byte-ordering.

In addition, correct constant folding of floating point values requires representing them in the
target machine’s format. (The C standard does not quite require this, but in practice it is the
only way to win.)

It is now possible to overcome these problems by defining macros such as REAL_VALUE_TYPE.
But doing so is a substantial amount of work for each target machine. See Section 16.18
[Cross-compilation], page 394.

• At present, the program ‘mips-tfile’ which adds debug support to object files on MIPS
systems does not work in a cross compile environment.

7.4 Interoperation

This section lists various difficulties encountered in using GNU C or GNU C++ together with
other compilers or with the assemblers, linkers, libraries and debuggers on certain systems.

• Objective C does not work on the RS/6000 or the Alpha.

• C++ does not work on the Alpha.

• GNU C++ does not do name mangling in the same way as other C++ compilers. This means
that object files compiled with one compiler cannot be used with another.

This effect is intentional, to protect you from more subtle problems. Compilers differ as to
many internal details of C++ implementation, including: how class instances are laid out, how
multiple inheritance is implemented, and how virtual function calls are handled. If the name
encoding were made the same, your programs would link against libraries provided from other

Chapter 7: Known Causes of Trouble with GNU CC 157

compilers—but the programs would then crash when run. Incompatible libraries are then
detected at link time, rather than at run time.

• Older GDB versions sometimes fail to read the output of GNU CC version 2. If you have
trouble, get GDB version 4.4 or later.

• DBX rejects some files produced by GNU CC, though it accepts similar constructs in output
from PCC. Until someone can supply a coherent description of what is valid DBX input and
what is not, there is nothing I can do about these problems. You are on your own.

• The GNU assembler (GAS) does not support PIC. To generate PIC code, you must use some
other assembler, such as ‘/bin/as’.

• On some BSD systems, including some versions of Ultrix, use of profiling causes static variable
destructors (currently used only in C++) not to be run.

• Use of ‘-I/usr/include’ may cause trouble.

Many systems come with header files that won’t work with GNU CC unless corrected by
fixincludes. The corrected header files go in a new directory; GNU CC searches this di-
rectory before ‘/usr/include’. If you use ‘-I/usr/include’, this tells GNU CC to search
‘/usr/include’ earlier on, before the corrected headers. The result is that you get the uncor-
rected header files.

Instead, you should use these options (when compiling C programs):
-I/usr/local/lib/gcc-lib/target/version/include -I/usr/include

For C++ programs, GNU CC also uses a special directory that defines C++ interfaces to stan-
dard C subroutines. This directory is meant to be searched before other standard include
directories, so that it takes precedence. If you are compiling C++ programs and specifying
include directories explicitly, use this option first, then the two options above:

-I/usr/local/lib/g++-include

• On some SGI systems, when you use ‘-lgl_s’ as an option, it gets translated magically to
‘-lgl_s -lX11_s -lc_s’. Naturally, this does not happen when you use GNU CC. You must
specify all three options explicitly.

• On a Sparc, GNU CC aligns all values of type double on an 8-byte boundary, and it expects
every double to be so aligned. The Sun compiler usually gives double values 8-byte alignment,
with one exception: function arguments of type double may not be aligned.

As a result, if a function compiled with Sun CC takes the address of an argument of type double
and passes this pointer of type double * to a function compiled with GNU CC, dereferencing
the pointer may cause a fatal signal.

One way to solve this problem is to compile your entire program with GNU CC. Another
solution is to modify the function that is compiled with Sun CC to copy the argument into
a local variable; local variables are always properly aligned. A third solution is to modify
the function that uses the pointer to dereference it via the following function access_double

instead of directly with ‘*’:

158 Using and Porting GNU CC

inline double
access_double (double *unaligned_ptr)
{

union d2i { double d; int i[2]; };

union d2i *p = (union d2i *) unaligned_ptr;
union d2i u;

u.i[0] = p->i[0];
u.i[1] = p->i[1];

return u.d;
}

Storing into the pointer can be done likewise with the same union.

• On Solaris, the malloc function in the ‘libmalloc.a’ library may allocate memory that is
only 4 byte aligned. Since GNU CC on the Sparc assumes that doubles are 8 byte aligned, this
may result in a fatal signal if doubles are stored in memory allocated by the ‘libmalloc.a’
library.

The solution is to not use the ‘libmalloc.a’ library. Use instead malloc and related functions
from ‘libc.a’; they do not have this problem.

• On a Sun, linking using GNU CC fails to find a shared library and reports that the library
doesn’t exist at all.

This happens if you are using the GNU linker, because it does only static linking and looks
only for unshared libraries. If you have a shared library with no unshared counterpart, the
GNU linker won’t find anything.

We hope to make a linker which supports Sun shared libraries, but please don’t ask when it
will be finished—we don’t know.

• Sun forgot to include a static version of ‘libdl.a’ with some versions of SunOS (mainly 4.1).
This results in undefined symbols when linking static binaries (that is, if you use ‘-static’).
If you see undefined symbols _dlclose, _dlsym or _dlopen when linking, compile and link
against the file ‘mit/util/misc/dlsym.c’ from the MIT version of X windows.

• The 128-bit long double format that the Sparc port supports currently works by using the
architecturally defined quad-word floating point instructions. Since there is no hardware that
supports these instructions they must be emulated by the operating system. Long doubles do
not work in Sun OS versions 4.0.3 and earlier, because the kernel eumulator uses an obsolete
and incompatible format. Long doubles do not work in Sun OS versions 4.1.1 to 4.1.3 because
of emululator bugs that cause random unpredicatable failures. Long doubles appear to work
in Sun OS 5.x (Solaris 2.x).

A future implementation of the sparc long double support will use functions calls to library
routines instead of the quad-word floating point instructions. This will allow long doubles to
work in more situtations, since one can then substitute a working library if the kernel emulator
is buggy.

Chapter 7: Known Causes of Trouble with GNU CC 159

• On HP-UX version 9.01 on the HP PA, the HP compiler cc does not compile GNU CC
correctly. We do not yet know why. However, GNU CC compiled on earlier HP-UX versions
works properly on HP-UX 9.01 and can compile itself properly on 9.01.

• On the HP PA machine, ADB sometimes fails to work on functions compiled with GNU CC.
Specifically, it fails to work on functions that use alloca or variable-size arrays. This is
because GNU CC doesn’t generate HP-UX unwind descriptors for such functions. It may even
be impossible to generate them.

• Debugging (‘-g’) is not supported on the HP PA machine, unless you use the preliminary GNU
tools (see Chapter 4 [Installation], page 77).

• Taking the address of a label may generate errors from the HP-UX PA assembler. GAS for
the PA does not have this problem.

• Using floating point parameters for indirect calls to static functions will not work when using
the HP assembler. There simply is no way for GCC to specify what registers hold arguments
for static functions when using the HP assembler. GAS for the PA does not have this problem.

• For some very large functions you may receive errors from the HP linker complaining about
an out of bounds unconditional branch offset. Fixing this problem correctly requires fixing
problems in GNU CC and GAS. We hope to fix this in time for GNU CC 2.6. Until then you
can work around by making your function smaller, and if you are using GAS, splitting the
function into multiple source files may be necessary.

• GNU CC compiled code sometimes emits warnings from the HP-UX assembler of the form:
(warning) Use of GR3 when
frame >= 8192 may cause conflict.

These warnings are harmless and can be safely ignored.

• The current version of the assembler (‘/bin/as’) for the RS/6000 has certain problems that
prevent the ‘-g’ option in GCC from working. Note that ‘Makefile.in’ uses ‘-g’ by default
when compiling ‘libgcc2.c’.

IBM has produced a fixed version of the assembler. The upgraded assembler unfortunately
was not included in any of the AIX 3.2 update PTF releases (3.2.2, 3.2.3, or 3.2.3e). Users
of AIX 3.1 should request PTF U403044 from IBM and users of AIX 3.2 should request PTF
U416277. See the file ‘README.RS6000’ for more details on these updates.

You can test for the presense of a fixed assembler by using the command
as -u < /dev/null

If the command exits normally, the assembler fix already is installed. If the assembler complains
that "-u" is an unknown flag, you need to order the fix.

• On the IBM RS/6000, compiling code of the form
extern int foo;

. . . foo . . .

160 Using and Porting GNU CC

static int foo;

will cause the linker to report an undefined symbol foo. Although this behavior differs from
most other systems, it is not a bug because redefining an extern variable as static is undefined
in ANSI C.

• AIX on the RS/6000 provides support (NLS) for environments outside of the United States.
Compilers and assemblers use NLS to support locale-specific representations of various objects
including floating-point numbers ("." vs "," for separating decimal fractions). There have been
problems reported where the library linked with GCC does not produce the same floating-point
formats that the assembler accepts. If you have this problem, set the LANG environment
variable to "C" or "En US".

• On the RS/6000, XLC version 1.3.0.0 will miscompile ‘jump.c’. XLC version 1.3.0.1 or later
fixes this problem. We do not yet have a PTF number for this fix.

• There is an assembler bug in versions of DG/UX prior to 5.4.2.01 that occurs when the ‘fldcr’
instruction is used. GNU CC uses ‘fldcr’ on the 88100 to serialize volatile memory references.
Use the option ‘-mno-serialize-volatile’ if your version of the assembler has this bug.

• On VMS, GAS versions 1.38.1 and earlier may cause spurious warning messages from the
linker. These warning messages complain of mismatched psect attributes. You can ignore
them. See Section 4.7 [VMS Install], page 98.

• On NewsOS version 3, if you include both of the files ‘stddef.h’ and ‘sys/types.h’, you
get an error because there are two typedefs of size_t. You should change ‘sys/types.h’ by
adding these lines around the definition of size_t:

#ifndef _SIZE_T
#define _SIZE_T
actual typedef here
#endif

• On the Alliant, the system’s own convention for returning structures and unions is unusual,
and is not compatible with GNU CC no matter what options are used.

• On the IBM RT PC, the MetaWare HighC compiler (hc) uses a different convention for struc-
ture and union returning. Use the option ‘-mhc-struct-return’ to tell GNU CC to use a
convention compatible with it.

• On Ultrix, the Fortran compiler expects registers 2 through 5 to be saved by function calls.
However, the C compiler uses conventions compatible with BSD Unix: registers 2 through 5
may be clobbered by function calls.

GNU CC uses the same convention as the Ultrix C compiler. You can use these options to
produce code compatible with the Fortran compiler:

-fcall-saved-r2 -fcall-saved-r3 -fcall-saved-r4 -fcall-saved-r5

• On the WE32k, you may find that programs compiled with GNU CC do not work with the
standard shared C ilbrary. You may need to link with the ordinary C compiler. If you do so,
you must specify the following options:

Chapter 7: Known Causes of Trouble with GNU CC 161

-L/usr/local/lib/gcc-lib/we32k-att-sysv/2.5 -lgcc -lc_s

The first specifies where to find the library ‘libgcc.a’ specified with the ‘-lgcc’ option.

GNU CC does linking by invoking ld, just as cc does, and there is no reason why it should

matter which compilation program you use to invoke ld. If someone tracks this problem down,
it can probably be fixed easily.

• On the Alpha, you may get assembler errors about invalid syntax as a result of floating point
constants. This is due to a bug in the C library functions ecvt, fcvt and gcvt. Given valid
floating point numbers, they sometimes print ‘NaN’.

• On Irix 4.0.5F (and perhaps in some other versions), an assembler bug sometimes reorders
instructions incorrectly when optimization is turned on. If you think this may be happening
to you, try using the GNU assembler; GAS version 2.1 supports ECOFF on Irix.

Or use the ‘-noasmopt’ option when you compile GNU CC with itself, and then again when
you compile your program. (This is a temporary kludge to turn off assembler optimization on
Irix.) If this proves to be what you need, edit the assembler spec in the file ‘specs’ so that it
unconditionally passes ‘-O0’ to the assembler, and never passes ‘-O2’ or ‘-O3’.

7.5 Problems Compiling Certain Programs

• Parse errors may occur compiling X11 on a Decstation running Ultrix 4.2 because of problems
in DEC’s versions of the X11 header files ‘X11/Xlib.h’ and ‘X11/Xutil.h’. People recom-
mend adding ‘-I/usr/include/mit’ to use the MIT versions of the header files, using the
‘-traditional’ switch to turn off ANSI C, or fixing the header files by adding this:

#ifdef __STDC__
#define NeedFunctionPrototypes 0
#endif

• If you have trouble compiling Perl on a SunOS 4 system, it may be because Perl specifies
‘-I/usr/ucbinclude’. This accesses the unfixed header files. Perl specifies the options

-traditional -Dvolatile=__volatile__
-I/usr/include/sun -I/usr/ucbinclude
-fpcc-struct-return

all of which are unnecessary with GCC 2.4.5 and newer versions. You can make a properly
working Perl by setting ccflags and cppflags to empty values in ‘config.sh’, then typing
‘./doSH; make depend; make’.

• On various 386 Unix systems derived from System V, including SCO, ISC, and ESIX, you may
get error messages about running out of virtual memory while compiling certain programs.

You can prevent this problem by linking GNU CC with the GNU malloc (which thus replaces
the malloc that comes with the system). GNU malloc is available as a separate package, and
also in the file ‘src/gmalloc.c’ in the GNU Emacs 19 distribution.

162 Using and Porting GNU CC

If you have installed GNU malloc as a separate library package, use this option when you relink
GNU CC:

MALLOC=/usr/local/lib/libgmalloc.a

Alternatively, if you have compiled ‘gmalloc.c’ from Emacs 19, copy the object file to
‘gmalloc.o’ and use this option when you relink GNU CC:

MALLOC=gmalloc.o

7.6 Incompatibilities of GNU CC

There are several noteworthy incompatibilities between GNU C and most existing (non-ANSI)
versions of C. The ‘-traditional’ option eliminates many of these incompatibilities, but not all,
by telling GNU C to behave like the other C compilers.

• GNU CC normally makes string constants read-only. If several identical-looking string con-
stants are used, GNU CC stores only one copy of the string.

One consequence is that you cannot call mktemp with a string constant argument. The function
mktemp always alters the string its argument points to.

Another consequence is that sscanf does not work on some systems when passed a string
constant as its format control string or input. This is because sscanf incorrectly tries to write
into the string constant. Likewise fscanf and scanf.

The best solution to these problems is to change the program to use char-array variables with
initialization strings for these purposes instead of string constants. But if this is not possible,
you can use the ‘-fwritable-strings’ flag, which directs GNU CC to handle string constants
the same way most C compilers do. ‘-traditional’ also has this effect, among others.

• -2147483648 is positive.

This is because 2147483648 cannot fit in the type int, so (following the ANSI C rules) its data
type is unsigned long int. Negating this value yields 2147483648 again.

• GNU CC does not substitute macro arguments when they appear inside of string constants.
For example, the following macro in GNU CC

#define foo(a) "a"

will produce output "a" regardless of what the argument a is.

The ‘-traditional’ option directs GNU CC to handle such cases (among others) in the old-
fashioned (non-ANSI) fashion.

• When you use setjmp and longjmp, the only automatic variables guaranteed to remain valid
are those declared volatile. This is a consequence of automatic register allocation. Consider
this function:

Chapter 7: Known Causes of Trouble with GNU CC 163

jmp_buf j;

foo ()
{

int a, b;

a = fun1 ();
if (setjmp (j))

return a;

a = fun2 ();
/* longjmp (j) may occur in fun3. */
return a + fun3 ();

}

Here a may or may not be restored to its first value when the longjmp occurs. If a is allocated
in a register, then its first value is restored; otherwise, it keeps the last value stored in it.

If you use the ‘-W’ option with the ‘-O’ option, you will get a warning when GNU CC thinks
such a problem might be possible.

The ‘-traditional’ option directs GNU C to put variables in the stack by default, rather than
in registers, in functions that call setjmp. This results in the behavior found in traditional C
compilers.

• Programs that use preprocessor directives in the middle of macro arguments do not work with
GNU CC. For example, a program like this will not work:

foobar (
#define luser

hack)

ANSI C does not permit such a construct. It would make sense to support it when
‘-traditional’ is used, but it is too much work to implement.

• Declarations of external variables and functions within a block apply only to the block con-
taining the declaration. In other words, they have the same scope as any other declaration in
the same place.

In some other C compilers, a extern declaration affects all the rest of the file even if it happens
within a block.

The ‘-traditional’ option directs GNU C to treat all extern declarations as global, like
traditional compilers.

• In traditional C, you can combine long, etc., with a typedef name, as shown here:
typedef int foo;
typedef long foo bar;

In ANSI C, this is not allowed: long and other type modifiers require an explicit int. Because
this criterion is expressed by Bison grammar rules rather than C code, the ‘-traditional’
flag cannot alter it.

164 Using and Porting GNU CC

• PCC allows typedef names to be used as function parameters. The difficulty described imme-
diately above applies here too.

• PCC allows whitespace in the middle of compound assignment operators such as ‘+=’. GNU
CC, following the ANSI standard, does not allow this. The difficulty described immediately
above applies here too.

• GNU CC complains about unterminated character constants inside of preprocessor conditionals
that fail. Some programs have English comments enclosed in conditionals that are guaranteed
to fail; if these comments contain apostrophes, GNU CC will probably report an error. For
example, this code would produce an error:

#if 0
You can’t expect this to work.
#endif

The best solution to such a problem is to put the text into an actual C comment delimited by
‘/*. . .*/’. However, ‘-traditional’ suppresses these error messages.

• Many user programs contain the declaration ‘long time ();’. In the past, the system header
files on many systems did not actually declare time, so it did not matter what type your
program declared it to return. But in systems with ANSI C headers, time is declared to
return time_t, and if that is not the same as long, then ‘long time ();’ is erroneous.

The solution is to change your program to use time_t as the return type of time.

• When compiling functions that return float, PCC converts it to a double. GNU CC actu-
ally returns a float. If you are concerned with PCC compatibility, you should declare your
functions to return double; you might as well say what you mean.

• When compiling functions that return structures or unions, GNU CC output code normally
uses a method different from that used on most versions of Unix. As a result, code compiled
with GNU CC cannot call a structure-returning function compiled with PCC, and vice versa.

The method used by GNU CC is as follows: a structure or union which is 1, 2, 4 or 8 bytes
long is returned like a scalar. A structure or union with any other size is stored into an address
supplied by the caller (usually in a special, fixed register, but on some machines it is passed
on the stack). The machine-description macros STRUCT_VALUE and STRUCT_INCOMING_VALUE

tell GNU CC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size by copying
the data into an area of static storage, and then returning the address of that storage as if it
were a pointer value. The caller must copy the data from that memory area to the place where
the value is wanted. GNU CC does not use this method because it is slower and nonreentrant.

On some newer machines, PCC uses a reentrant convention for all structure and union re-
turning. GNU CC on most of these machines uses a compatible convention when returning
structures and unions in memory, but still returns small structures and unions in registers.

You can tell GNU CC to use a compatible convention for all structure and union returning
with the option ‘-fpcc-struct-return’.

Chapter 7: Known Causes of Trouble with GNU CC 165

• GNU C complains about program fragments such as ‘0x74ae-0x4000’ which appear to be
two hexadecimal constants separated by the minus operator. Actually, this string is a single
preprocessing token. Each such token must correspond to one token in C. Since this does not,
GNU C prints an error message. Although it may appear obvious that what is meant is an
operator and two values, the ANSI C standard specifically requires that this be treated as
erroneous.

A preprocessing token is a preprocessing number if it begins with a digit and is followed by
letters, underscores, digits, periods and ‘e+’, ‘e-’, ‘E+’, or ‘E-’ character sequences.

To make the above program fragment valid, place whitespace in front of the minus sign. This
whitespace will end the preprocessing number.

7.7 Fixed Header Files

GNU CC needs to install corrected versions of some system header files. This is because most
target systems have some header files that won’t work with GNU CC unless they are changed.
Some have bugs, some are incompatible with ANSI C, and some depend on special features of
other compilers.

Installing GNU CC automatically creates and installs the fixed header files, by running a pro-
gram called fixincludes (or for certain targets an alternative such as fixinc.svr4). Normally,
you don’t need to pay attention to this. But there are cases where it doesn’t do the right thing
automatically.

• If you update the system’s header files, such as by installing a new system version, the fixed
header files of GNU CC are not automatically updated. The easiest way to update them is to
reinstall GNU CC. (If you want to be clever, look in the makefile and you can find a shortcut.)

• On some systems, in particular SunOS 4, header file directories contain machine-specific sym-
bolic links in certain places. This makes it possible to share most of the header files among
hosts running the same version of SunOS 4 on different machine models.

The programs that fix the header files do not understand this special way of using symbolic
links; therefore, the directory of fixed header files is good only for the machine model used to
build it.

In SunOS 4, only programs that look inside the kernel will notice the difference between
machine models. Therefore, for most purposes, you need not be concerned about this.

It is possible to make separate sets of fixed header files for the different machine models, and
arrange a structure of symbolic links so as to use the proper set, but you’ll have to do this by
hand.

166 Using and Porting GNU CC

• On Lynxos, GNU CC by default does not fix the header files. This is because bugs in the shell
cause the fixincludes script to fail.

This means you will encounter problems due to bugs in the system header files. It may be no
comfort that they aren’t GNU CC’s fault, but it does mean that there’s nothing for us to do
about them.

7.8 Disappointments and Misunderstandings

These problems are perhaps regrettable, but we don’t know any practical way around them.

• Certain local variables aren’t recognized by debuggers when you compile with optimization.

This occurs because sometimes GNU CC optimizes the variable out of existence. There is no
way to tell the debugger how to compute the value such a variable “would have had”, and it is
not clear that would be desirable anyway. So GNU CC simply does not mention the eliminated
variable when it writes debugging information.

You have to expect a certain amount of disagreement between the executable and your source
code, when you use optimization.

• Users often think it is a bug when GNU CC reports an error for code like this:
int foo (struct mumble *);

struct mumble { . . . };

int foo (struct mumble *x)
{ . . . }

This code really is erroneous, because the scope of struct mumble in the prototype is limited
to the argument list containing it. It does not refer to the struct mumble defined with file
scope immediately below—they are two unrelated types with similar names in different scopes.

But in the definition of foo, the file-scope type is used because that is available to be inherited.
Thus, the definition and the prototype do not match, and you get an error.

This behavior may seem silly, but it’s what the ANSI standard specifies. It is easy enough for
you to make your code work by moving the definition of struct mumble above the prototype.
It’s not worth being incompatible with ANSI C just to avoid an error for the example shown
above.

• Accesses to bitfields even in volatile objects works by accessing larger objects, such as a byte
or a word. You cannot rely on what size of object is accessed in order to read or write the
bitfield; it may even vary for a given bitfield according to the precise usage.

If you care about controlling the amount of memory that is accessed, use volatile but do not
use bitfields.

Chapter 7: Known Causes of Trouble with GNU CC 167

• GNU CC comes with shell scripts to fix certain known problems in system header files. They
install corrected copies of various header files in a special directory where only GNU CC will
normally look for them. The scripts adapt to various systems by searching all the system
header files for the problem cases that we know about.

If new system header files are installed, nothing automatically arranges to update the corrected
header files. You will have to reinstall GNU CC to fix the new header files. More specifically,
go to the build directory and delete the files ‘stmp-fixinc’ and ‘stmp-headers’, and the
subdirectory include; then do ‘make install’ again.

• On 68000 systems, you can get paradoxical results if you test the precise values of floating
point numbers. For example, you can find that a floating point value which is not a NaN is not
equal to itself. This results from the fact that the the floating point registers hold a few more
bits of precision than fit in a double in memory. Compiled code moves values between memory
and floating point registers at its convenience, and moving them into memory truncates them.

You can partially avoid this problem by using the ‘-ffloat-store’ option (see Section 3.8
[Optimize Options], page 39).

• On the MIPS, variable argument functions using ‘varargs.h’ cannot have a floating point
value for the first argument. The reason for this is that in the absence of a prototype in scope,
if the first argument is a floating point, it is passed in a floating point register, rather than an
integer register.

If the code is rewritten to use the ANSI standard ‘stdarg.h’ method of variable arguments,
and the prototype is in scope at the time of the call, everything will work fine.

7.9 Common Misunderstandings with GNU C++

C++ is a complex language and an evolving one, and its standard definition (the ANSI C++
draft standard) is also evolving. As a result, your C++ compiler may occasionally surprise you,
even when its behavior is correct. This section discusses some areas that frequently give rise to
questions of this sort.

7.9.1 Declare and Define Static Members

When a class has static data members, it is not enough to declare the static member; you must
also define it. For example:

class Foo

168 Using and Porting GNU CC

{
. . .
void method();
static int bar;

};

This declaration only establishes that the class Foo has an int named Foo::bar, and a member
function named Foo::method. But you still need to define both method and bar elsewhere. Ac-
cording to the draft ANSI standard, you must supply an initializer in one (and only one) source
file, such as:

int Foo::bar = 0;

Other C++ compilers may not correctly implement the standard behavior. As a result, when
you switch to g++ from one of these compilers, you may discover that a program that appeared
to work correctly in fact does not conform to the standard: g++ reports as undefined symbols any
static data members that lack definitions.

7.9.2 Temporaries May Vanish Before You Expect

It is dangerous to use pointers or references to portions of a temporary object. The compiler
may very well delete the object before you expect it to, leaving a pointer to garbage. The most
common place where this problem crops up is in classes like the libg++ String class, that define a
conversion function to type char * or const char *. However, any class that returns a pointer to
some internal structure is potentially subject to this problem.

For example, a program may use a function strfunc that returns String objects, and another
function charfunc that operates on pointers to char:

String strfunc ();
void charfunc (const char *);

In this situation, it may seem natural to write ‘charfunc (strfunc ());’ based on the knowledge
that class String has an explicit conversion to char pointers. However, what really happens is akin
to ‘charfunc (strfunc ().convert ());’, where the convert method is a function to do the same
data conversion normally performed by a cast. Since the last use of the temporary String object
is the call to the conversion function, the compiler may delete that object before actually calling
charfunc. The compiler has no way of knowing that deleting the String object will invalidate

Chapter 7: Known Causes of Trouble with GNU CC 169

the pointer. The pointer then points to garbage, so that by the time charfunc is called, it gets an
invalid argument.

Code like this may run successfully under some other compilers, especially those that delete
temporaries relatively late. However, the GNU C++ behavior is also standard-conformant, so if
your program depends on late destruction of temporaries it is not portable.

If you think this is surprising, you should be aware that the ANSI C++ committee continues to
debate the lifetime-of-temporaries problem.

For now, at least, the safe way to write such code is to give the temporary a name, which forces
it to remain until the end of the scope of the name. For example:

String& tmp = strfunc ();
charfunc (tmp);

7.10 Caveats of using protoize

The conversion programs protoize and unprotoize can sometimes change a source file in a
way that won’t work unless you rearrange it.

• protoize can insert references to a type name or type tag before the definition, or in a file
where they are not defined.

If this happens, compiler error messages should show you where the new references are, so
fixing the file by hand is straightforward.

• There are some C constructs which protoize cannot figure out. For example, it can’t deter-
mine argument types for declaring a pointer-to-function variable; this you must do by hand.
protoize inserts a comment containing ‘???’ each time it finds such a variable; so you can find
all such variables by searching for this string. ANSI C does not require declaring the argument
types of pointer-to-function types.

• Using unprotoize can easily introduce bugs. If the program relied on prototypes to bring
about conversion of arguments, these conversions will not take place in the program without
prototypes. One case in which you can be sure unprotoize is safe is when you are remov-
ing prototypes that were made with protoize; if the program worked before without any
prototypes, it will work again without them.

You can find all the places where this problem might occur by compiling the program with the
‘-Wconversion’ option. It prints a warning whenever an argument is converted.

170 Using and Porting GNU CC

• Both conversion programs can be confused if there are macro calls in and around the text to be
converted. In other words, the standard syntax for a declaration or definition must not result
from expanding a macro. This problem is inherent in the design of C and cannot be fixed. If
only a few functions have confusing macro calls, you can easily convert them manually.

• protoize cannot get the argument types for a function whose definition was not actually
compiled due to preprocessor conditionals. When this happens, protoize changes nothing in
regard to such a function. protoize tries to detect such instances and warn about them.

You can generally work around this problem by using protoize step by step, each time specify-
ing a different set of ‘-D’ options for compilation, until all of the functions have been converted.
There is no automatic way to verify that you have got them all, however.

• Confusion may result if there is an occasion to convert a function declaration or definition in
a region of source code where there is more than one formal parameter list present. Thus,
attempts to convert code containing multiple (conditionally compiled) versions of a single
function header (in the same vicinity) may not produce the desired (or expected) results.

If you plan on converting source files which contain such code, it is recommended that you
first make sure that each conditionally compiled region of source code which contains an
alternative function header also contains at least one additional follower token (past the final
right parenthesis of the function header). This should circumvent the problem.

• unprotoize can become confused when trying to convert a function definition or declaration
which contains a declaration for a pointer-to-function formal argument which has the same
name as the function being defined or declared. We recommand you avoid such choices of
formal parameter names.

• You might also want to correct some of the indentation by hand and break long lines. (The
conversion programs don’t write lines longer than eighty characters in any case.)

7.11 Certain Changes We Don’t Want to Make

This section lists changes that people frequently request, but which we do not make because we
think GNU CC is better without them.

• Checking the number and type of arguments to a function which has an old-fashioned definition
and no prototype.

Such a feature would work only occasionally—only for calls that appear in the same file as the
called function, following the definition. The only way to check all calls reliably is to add a
prototype for the function. But adding a prototype eliminates the motivation for this feature.
So the feature is not worthwhile.

Chapter 7: Known Causes of Trouble with GNU CC 171

• Warning about using an expression whose type is signed as a shift count.

Shift count operands are probably signed more often than unsigned. Warning about this would
cause far more annoyance than good.

• Warning about assigning a signed value to an unsigned variable.

Such assignments must be very common; warning about them would cause more annoyance
than good.

• Warning about unreachable code.

It’s very common to have unreachable code in machine-generated programs. For example, this
happens normally in some files of GNU C itself.

• Warning when a non-void function value is ignored.

Coming as I do from a Lisp background, I balk at the idea that there is something dangerous
about discarding a value. There are functions that return values which some callers may find
useful; it makes no sense to clutter the program with a cast to void whenever the value isn’t
useful.

• Assuming (for optimization) that the address of an external symbol is never zero.

This assumption is false on certain systems when ‘#pragma weak’ is used.

• Making ‘-fshort-enums’ the default.

This would cause storage layout to be incompatible with most other C compilers. And it
doesn’t seem very important, given that you can get the same result in other ways. The case
where it matters most is when the enumeration-valued object is inside a structure, and in that
case you can specify a field width explicitly.

• Making bitfields unsigned by default on particular machines where “the ABI standard” says
to do so.

The ANSI C standard leaves it up to the implementation whether a bitfield declared plain int

is signed or not. This in effect creates two alternative dialects of C.

The GNU C compiler supports both dialects; you can specify the signed dialect with
‘-fsigned-bitfields’ and the unsigned dialect with ‘-funsigned-bitfields’. However,
this leaves open the question of which dialect to use by default.

Currently, the preferred dialect makes plain bitfields signed, because this is simplest. Since
int is the same as signed int in every other context, it is cleanest for them to be the same
in bitfields as well.

Some computer manufacturers have published Application Binary Interface standards which
specify that plain bitfields should be unsigned. It is a mistake, however, to say anything about
this issue in an ABI. This is because the handling of plain bitfields distinguishes two dialects
of C. Both dialects are meaningful on every type of machine. Whether a particular object file
was compiled using signed bitfields or unsigned is of no concern to other object files, even if
they access the same bitfields in the same data structures.

172 Using and Porting GNU CC

A given program is written in one or the other of these two dialects. The program stands a
chance to work on most any machine if it is compiled with the proper dialect. It is unlikely to
work at all if compiled with the wrong dialect.

Many users appreciate the GNU C compiler because it provides an environment that is uniform
across machines. These users would be inconvenienced if the compiler treated plain bitfields
differently on certain machines.

Occasionally users write programs intended only for a particular machine type. On these
occasions, the users would benefit if the GNU C compiler were to support by default the same
dialect as the other compilers on that machine. But such applications are rare. And users
writing a program to run on more than one type of machine cannot possibly benefit from this
kind of compatibility.

This is why GNU CC does and will treat plain bitfields in the same fashion on all types of
machines (by default).

There are some arguments for making bitfields unsigned by default on all machines. If, for
example, this becomes a universal de facto standard, it would make sense for GNU CC to go
along with it. This is something to be considered in the future.

(Of course, users strongly concerned about portability should indicate explicitly in each bitfield
whether it is signed or not. In this way, they write programs which have the same meaning in
both C dialects.)

• Undefining __STDC__ when ‘-ansi’ is not used.

Currently, GNU CC defines __STDC__ as long as you don’t use ‘-traditional’. This provides
good results in practice.

Programmers normally use conditionals on __STDC__ to ask whether it is safe to use certain
features of ANSI C, such as function prototypes or ANSI token concatenation. Since plain
‘gcc’ supports all the features of ANSI C, the correct answer to these questions is “yes”.

Some users try to use __STDC__ to check for the availability of certain library facilities. This
is actually incorrect usage in an ANSI C program, because the ANSI C standard says that a
conforming freestanding implementation should define __STDC__ even though it does not have
the library facilities. ‘gcc -ansi -pedantic’ is a conforming freestanding implementation,
and it is therefore required to define __STDC__, even though it does not come with an ANSI
C library.

Sometimes people say that defining __STDC__ in a compiler that does not completely conform
to the ANSI C standard somehow violates the standard. This is illogical. The standard is
a standard for compilers that claim to support ANSI C, such as ‘gcc -ansi’—not for other
compilers such as plain ‘gcc’. Whatever the ANSI C standard says is relevant to the design of
plain ‘gcc’ without ‘-ansi’ only for pragmatic reasons, not as a requirement.

• Undefining __STDC__ in C++.

Programs written to compile with C++-to-C translators get the value of __STDC__ that goes
with the C compiler that is subsequently used. These programs must test __STDC__ to deter-

Chapter 7: Known Causes of Trouble with GNU CC 173

mine what kind of C preprocessor that compiler uses: whether they should concatenate tokens
in the ANSI C fashion or in the traditional fashion.

These programs work properly with GNU C++ if __STDC__ is defined. They would not work
otherwise.

In addition, many header files are written to provide prototypes in ANSI C but not in tradi-
tional C. Many of these header files can work without change in C++ provided __STDC__ is
defined. If __STDC__ is not defined, they will all fail, and will all need to be changed to test
explicitly for C++ as well.

• Deleting “empty” loops.

GNU CC does not delete “empty” loops because the most likely reason you would put one in
a program is to have a delay. Deleting them will not make real programs run any faster, so it
would be pointless.

It would be different if optimization of a nonempty loop could produce an empty one. But this
generally can’t happen.

• Making side effects happen in the same order as in some other compiler.

It is never safe to depend on the order of evaluation of side effects. For example, a function
call like this may very well behave differently from one compiler to another:

void func (int, int);

int i = 2;
func (i++, i++);

There is no guarantee (in either the C or the C++ standard language definitions) that the
increments will be evaluated in any particular order. Either increment might happen first.
func might get the arguments ‘3, 4’, or it might get ‘4, 3’, or even ‘3, 3’.

• Using the “canonical” form of the target configuration name as the directory for installation.

This would be an improvement in some respects, but it would also cause problems. For one
thing, users might expect to use in the ‘-b’ option the same name specified at installation; if
installation used the canonical form, that would not work. What’s more, the canonical name
might be too long for certain file systems.

We suggest you make a link to the installation directory under the canonical name, if you want
to use that name in the ‘-b’ option.

7.12 Warning Messages and Error Messages

The GNU compiler can produce two kinds of diagnostics: errors and warnings. Each kind has
a different purpose:

174 Using and Porting GNU CC

Errors report problems that make it impossible to compile your program. GNU CC reports
errors with the source file name and line number where the problem is apparent.

Warnings report other unusual conditions in your code that may indicate a problem, although
compilation can (and does) proceed. Warning messages also report the source file name and
line number, but include the text ‘warning:’ to distinguish them from error messages.

Warnings may indicate danger points where you should check to make sure that your program
really does what you intend; or the use of obsolete features; or the use of nonstandard features of
GNU C or C++. Many warnings are issued only if you ask for them, with one of the ‘-W’ options
(for instance, ‘-Wall’ requests a variety of useful warnings).

GNU CC always tries to compile your program if possible; it never gratuituously rejects a
program whose meaning is clear merely because (for instance) it fails to conform to a standard. In
some cases, however, the C and C++ standards specify that certain extensions are forbidden, and
a diagnostic must be issued by a conforming compiler. The ‘-pedantic’ option tells GNU CC to
issue warnings in such cases; ‘-pedantic-errors’ says to make them errors instead. This does not
mean that all non-ANSI constructs get warnings or errors.

See Section 3.6 [Options to Request or Suppress Warnings], page 31, for more detail on these
and related command-line options.

Chapter 8: Reporting Bugs 175

8 Reporting Bugs

Your bug reports play an essential role in making GNU CC reliable.

When you encounter a problem, the first thing to do is to see if it is already known. See
Chapter 7 [Trouble], page 151. If it isn’t known, then you should report the problem.

Reporting a bug may help you by bringing a solution to your problem, or it may not. (If it does
not, look in the service directory; see Chapter 9 [Service], page 185.) In any case, the principal
function of a bug report is to help the entire community by making the next version of GNU CC
work better. Bug reports are your contribution to the maintenance of GNU CC.

Since the maintainers are very overloaded, we cannot respond to every bug report. However,
if the bug has not been fixed, we are likely to send you a patch and ask you to tell us whether it
works.

In order for a bug report to serve its purpose, you must include the information that makes for
fixing the bug.

8.1 Have You Found a Bug?

If you are not sure whether you have found a bug, here are some guidelines:

• If the compiler gets a fatal signal, for any input whatever, that is a compiler bug. Reliable
compilers never crash.

• If the compiler produces invalid assembly code, for any input whatever (except an asm state-
ment), that is a compiler bug, unless the compiler reports errors (not just warnings) which
would ordinarily prevent the assembler from being run.

• If the compiler produces valid assembly code that does not correctly execute the input source
code, that is a compiler bug.

However, you must double-check to make sure, because you may have run into an incompati-
bility between GNU C and traditional C (see Section 7.6 [Incompatibilities], page 162). These
incompatibilities might be considered bugs, but they are inescapable consequences of valuable
features.

Or you may have a program whose behavior is undefined, which happened by chance to give
the desired results with another C or C++ compiler.

176 Using and Porting GNU CC

For example, in many nonoptimizing compilers, you can write ‘x;’ at the end of a function
instead of ‘return x;’, with the same results. But the value of the function is undefined if
return is omitted; it is not a bug when GNU CC produces different results.

Problems often result from expressions with two increment operators, as in f (*p++, *p++).
Your previous compiler might have interpreted that expression the way you intended; GNU
CC might interpret it another way. Neither compiler is wrong. The bug is in your code.

After you have localized the error to a single source line, it should be easy to check for these
things. If your program is correct and well defined, you have found a compiler bug.

• If the compiler produces an error message for valid input, that is a compiler bug.

• If the compiler does not produce an error message for invalid input, that is a compiler bug.
However, you should note that your idea of “invalid input” might be my idea of “an extension”
or “support for traditional practice”.

• If you are an experienced user of C or C++ compilers, your suggestions for improvement of
GNU CC or GNU C++ are welcome in any case.

8.2 Where to Report Bugs

Send bug reports for GNU C to one of these addresses:

bug-gcc@prep.ai.mit.edu
{ucbvax|mit-eddie|uunet}!prep.ai.mit.edu!bug-gcc

Send bug reports for GNU C++ to one of these addresses:

bug-g++@prep.ai.mit.edu
{ucbvax|mit-eddie|uunet}!prep.ai.mit.edu!bug-g++

If your bug involves the C++ class library libg++, send mail to ‘bug-lib-g++@prep.ai.mit.edu’.
If you’re not sure, you can send the bug report to both lists.

Do not send bug reports to the mailing list ‘help-gcc’, or to the newsgroup ‘gnu.gcc.help’.

Most users of GNU CC do not want to receive bug reports. Those that do, have asked to be on
‘bug-gcc’ and/or ‘bug-g++’.

The mailing lists ‘bug-gcc’ and ‘bug-g++’ both have newsgroups which serve as repeaters:
‘gnu.gcc.bug’ and ‘gnu.g++.bug’. Each mailing list and its newsgroup carry exactly the same
messages.

Chapter 8: Reporting Bugs 177

Often people think of posting bug reports to the newsgroup instead of mailing them. This
appears to work, but it has one problem which can be crucial: a newsgroup posting does not
contain a mail path back to the sender. Thus, if maintainers need more information, they may be
unable to reach you. For this reason, you should always send bug reports by mail to the proper
mailing list.

As a last resort, send bug reports on paper to:

GNU Compiler Bugs
Free Software Foundation
675 Mass Ave
Cambridge, MA 02139

8.3 How to Report Bugs

The fundamental principle of reporting bugs usefully is this: report all the facts. If you are not
sure whether to state a fact or leave it out, state it!

Often people omit facts because they think they know what causes the problem and they con-
clude that some details don’t matter. Thus, you might assume that the name of the variable you
use in an example does not matter. Well, probably it doesn’t, but one cannot be sure. Perhaps
the bug is a stray memory reference which happens to fetch from the location where that name
is stored in memory; perhaps, if the name were different, the contents of that location would fool
the compiler into doing the right thing despite the bug. Play it safe and give a specific, complete
example. That is the easiest thing for you to do, and the most helpful.

Keep in mind that the purpose of a bug report is to enable someone to fix the bug if it is not
known. It isn’t very important what happens if the bug is already known. Therefore, always write
your bug reports on the assumption that the bug is not known.

Sometimes people give a few sketchy facts and ask, “Does this ring a bell?” This cannot help
us fix a bug, so it is basically useless. We respond by asking for enough details to enable us to
investigate. You might as well expedite matters by sending them to begin with.

Try to make your bug report self-contained. If we have to ask you for more information, it is
best if you include all the previous information in your response, as well as the information that
was missing.

178 Using and Porting GNU CC

To enable someone to investigate the bug, you should include all these things:

• The version of GNU CC. You can get this by running it with the ‘-v’ option.

Without this, we won’t know whether there is any point in looking for the bug in the current
version of GNU CC.

• A complete input file that will reproduce the bug. If the bug is in the C preprocessor, send a
source file and any header files that it requires. If the bug is in the compiler proper (‘cc1’), run
your source file through the C preprocessor by doing ‘gcc -E sourcefile > outfile’, then include
the contents of outfile in the bug report. (When you do this, use the same ‘-I’, ‘-D’ or ‘-U’
options that you used in actual compilation.)

A single statement is not enough of an example. In order to compile it, it must be embedded
in a complete file of compiler input; and the bug might depend on the details of how this is
done.

Without a real example one can compile, all anyone can do about your bug report is wish you
luck. It would be futile to try to guess how to provoke the bug. For example, bugs in register
allocation and reloading frequently depend on every little detail of the function they happen
in.

Even if the input file that fails comes from a GNU program, you should still send the complete
test case. Don’t ask the GNU CC maintainers to do the extra work of obtaining the program
in question—they are all overworked as it is. Also, the problem may depend on what is in the
header files on your system; it is unreliable for the GNU CC maintainers to try the problem
with the header files available to them. By sending CPP output, you can eliminate this source
of uncertainty and save us a certain percentage of wild goose chases.

• The command arguments you gave GNU CC or GNU C++ to compile that example and observe
the bug. For example, did you use ‘-O’? To guarantee you won’t omit something important,
list all the options.

If we were to try to guess the arguments, we would probably guess wrong and then we would
not encounter the bug.

• The type of machine you are using, and the operating system name and version number.

• The operands you gave to the configure command when you installed the compiler.

• A complete list of any modifications you have made to the compiler source. (We don’t promise
to investigate the bug unless it happens in an unmodified compiler. But if you’ve made
modifications and don’t tell us, then you are sending us on a wild goose chase.)

Be precise about these changes. A description in English is not enough—send a context diff
for them.

Adding files of your own (such as a machine description for a machine we don’t support) is a
modification of the compiler source.

• Details of any other deviations from the standard procedure for installing GNU CC.

Chapter 8: Reporting Bugs 179

• A description of what behavior you observe that you believe is incorrect. For example, “The
compiler gets a fatal signal,” or, “The assembler instruction at line 208 in the output is incor-
rect.”

Of course, if the bug is that the compiler gets a fatal signal, then one can’t miss it. But if the
bug is incorrect output, the maintainer might not notice unless it is glaringly wrong. None of
us has time to study all the assembler code from a 50-line C program just on the chance that
one instruction might be wrong. We need you to do this part!

Even if the problem you experience is a fatal signal, you should still say so explicitly. Suppose
something strange is going on, such as, your copy of the compiler is out of synch, or you have
encountered a bug in the C library on your system. (This has happened!) Your copy might
crash and the copy here would not. If you said to expect a crash, then when the compiler
here fails to crash, we would know that the bug was not happening. If you don’t say to expect
a crash, then we would not know whether the bug was happening. We would not be able to
draw any conclusion from our observations.

If the problem is a diagnostic when compiling GNU CC with some other compiler, say whether
it is a warning or an error.

Often the observed symptom is incorrect output when your program is run. Sad to say, this is
not enough information unless the program is short and simple. None of us has time to study
a large program to figure out how it would work if compiled correctly, much less which line of
it was compiled wrong. So you will have to do that. Tell us which source line it is, and what
incorrect result happens when that line is executed. A person who understands the program
can find this as easily as finding a bug in the program itself.

• If you send examples of assembler code output from GNU CC or GNU C++, please use ‘-g’
when you make them. The debugging information includes source line numbers which are
essential for correlating the output with the input.

• If you wish to mention something in the GNU CC source, refer to it by context, not by line
number.

The line numbers in the development sources don’t match those in your sources. Your line
numbers would convey no useful information to the maintainers.

• Additional information from a debugger might enable someone to find a problem on a machine
which he does not have available. However, you need to think when you collect this information
if you want it to have any chance of being useful.

For example, many people send just a backtrace, but that is never useful by itself. A simple
backtrace with arguments conveys little about GNU CC because the compiler is largely data-
driven; the same functions are called over and over for different RTL insns, doing different
things depending on the details of the insn.

Most of the arguments listed in the backtrace are useless because they are pointers to RTL
list structure. The numeric values of the pointers, which the debugger prints in the backtrace,

180 Using and Porting GNU CC

have no significance whatever; all that matters is the contents of the objects they point to (and
most of the contents are other such pointers).

In addition, most compiler passes consist of one or more loops that scan the RTL insn sequence.
The most vital piece of information about such a loop—which insn it has reached—is usually
in a local variable, not in an argument.

What you need to provide in addition to a backtrace are the values of the local variables for
several stack frames up. When a local variable or an argument is an RTX, first print its value
and then use the GDB command pr to print the RTL expression that it points to. (If GDB
doesn’t run on your machine, use your debugger to call the function debug_rtx with the RTX
as an argument.) In general, whenever a variable is a pointer, its value is no use without the
data it points to.

Here are some things that are not necessary:

• A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to the input
file will make the bug go away and which changes will not affect it.

This is often time consuming and not very useful, because the way we will find the bug is by
running a single example under the debugger with breakpoints, not by pure deduction from a
series of examples. You might as well save your time for something else.

Of course, if you can find a simpler example to report instead of the original one, that is a
convenience. Errors in the output will be easier to spot, running under the debugger will take
less time, etc. Most GNU CC bugs involve just one function, so the most straightforward
way to simplify an example is to delete all the function definitions except the one where the
bug occurs. Those earlier in the file may be replaced by external declarations if the crucial
function depends on them. (Exception: inline functions may affect compilation of functions
defined later in the file.)

However, simplification is not vital; if you don’t want to do this, report the bug anyway and
send the entire test case you used.

• In particular, some people insert conditionals ‘#ifdef BUG’ around a statement which, if re-
moved, makes the bug not happen. These are just clutter; we won’t pay any attention to them
anyway. Besides, you should send us cpp output, and that can’t have conditionals.

• A patch for the bug.

A patch for the bug is useful if it is a good one. But don’t omit the necessary information,
such as the test case, on the assumption that a patch is all we need. We might see problems
with your patch and decide to fix the problem another way, or we might not understand it at
all.

Chapter 8: Reporting Bugs 181

Sometimes with a program as complicated as GNU CC it is very hard to construct an example
that will make the program follow a certain path through the code. If you don’t send the
example, we won’t be able to construct one, so we won’t be able to verify that the bug is fixed.

And if we can’t understand what bug you are trying to fix, or why your patch should be an
improvement, we won’t install it. A test case will help us to understand.

See Section 8.4 [Sending Patches], page 181, for guidelines on how to make it easy for us to
understand and install your patches.

• A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even I can’t guess right about such things without first using
the debugger to find the facts.

• A core dump file.

We have no way of examining a core dump for your type of machine unless we have an identical
system—and if we do have one, we should be able to reproduce the crash ourselves.

8.4 Sending Patches for GNU CC

If you would like to write bug fixes or improvements for the GNU C compiler, that is very
helpful. When you send your changes, please follow these guidelines to avoid causing extra work
for us in studying the patches.

If you don’t follow these guidelines, your information might still be useful, but using it will take
extra work. Maintaining GNU C is a lot of work in the best of circumstances, and we can’t keep
up unless you do your best to help.

• Send an explanation with your changes of what problem they fix or what improvement they
bring about. For a bug fix, just include a copy of the bug report, and explain why the change
fixes the bug.

(Referring to a bug report is not as good as including it, because then we will have to look it
up, and we have probably already deleted it if we’ve already fixed the bug.)

• Always include a proper bug report for the problem you think you have fixed. We need to
convince ourselves that the change is right before installing it. Even if it is right, we might
have trouble judging it if we don’t have a way to reproduce the problem.

• Include all the comments that are appropriate to help people reading the source in the future
understand why this change was needed.

• Don’t mix together changes made for different reasons. Send them individually.

If you make two changes for separate reasons, then we might not want to install them both.
We might want to install just one. If you send them all jumbled together in a single set of diffs,

182 Using and Porting GNU CC

we have to do extra work to disentangle them—to figure out which parts of the change serve
which purpose. If we don’t have time for this, we might have to ignore your changes entirely.

If you send each change as soon as you have written it, with its own explanation, then the two
changes never get tangled up, and we can consider each one properly without any extra work
to disentangle them.

Ideally, each change you send should be impossible to subdivide into parts that we might want
to consider separately, because each of its parts gets its motivation from the other parts.

• Send each change as soon as that change is finished. Sometimes people think they are helping
us by accumulating many changes to send them all together. As explained above, this is
absolutely the worst thing you could do.

Since you should send each change separately, you might as well send it right away. That gives
us the option of installing it immediately if it is important.

• Use ‘diff -c’ to make your diffs. Diffs without context are hard for us to install reliably. More
than that, they make it hard for us to study the diffs to decide whether we want to install
them. Unidiff format is better than contextless diffs, but not as easy to read as ‘-c’ format.

If you have GNU diff, use ‘diff -cp’, which shows the name of the function that each change
occurs in.

• Write the change log entries for your changes. We get lots of changes, and we don’t have time
to do all the change log writing ourselves.

Read the ‘ChangeLog’ file to see what sorts of information to put in, and to learn the style that
we use. The purpose of the change log is to show people where to find what was changed. So
you need to be specific about what functions you changed; in large functions, it’s often helpful
to indicate where within the function the change was.

On the other hand, once you have shown people where to find the change, you need not explain
its purpose. Thus, if you add a new function, all you need to say about it is that it is new.
If you feel that the purpose needs explaining, it probably does—but the explanation will be
much more useful if you put it in comments in the code.

If you would like your name to appear in the header line for who made the change, send us
the header line.

• When you write the fix, keep in mind that we can’t install a change that would break other
systems.

People often suggest fixing a problem by changing machine-independent files such as ‘toplev.c’
to do something special that a particular system needs. Sometimes it is totally obvious that
such changes would break GNU CC for almost all users. We can’t possibly make a change
like that. At best it might tell us how to write another patch that would solve the problem
acceptably.

Sometimes people send fixes that might be an improvement in general—but it is hard to be
sure of this. It’s hard to install such changes because we have to study them very carefully. Of

Chapter 8: Reporting Bugs 183

course, a good explanation of the reasoning by which you concluded the change was correct
can help convince us.

The safest changes are changes to the configuration files for a particular machine. These are
safe because they can’t create new bugs on other machines.

Please help us keep up with the workload by designing the patch in a form that is good to
install.

184 Using and Porting GNU CC

Chapter 9: How To Get Help with GNU CC 185

9 How To Get Help with GNU CC

If you need help installing, using or changing GNU CC, there are two ways to find it:

• Send a message to a suitable network mailing list. First try bug-gcc@prep.ai.mit.edu, and
if that brings no response, try help-gcc@prep.ai.mit.edu.

• Look in the service directory for someone who might help you for a fee. The service directory
is found in the file named ‘SERVICE’ in the GNU CC distribution.

186 Using and Porting GNU CC

Chapter 10: Using GNU CC on VMS 187

10 Using GNU CC on VMS

10.1 Include Files and VMS

Due to the differences between the filesystems of Unix and VMS, GNU CC attempts to translate
file names in ‘#include’ into names that VMS will understand. The basic strategy is to prepend
a prefix to the specification of the include file, convert the whole filename to a VMS filename, and
then try to open the file. GNU CC tries various prefixes one by one until one of them succeeds:

1. The first prefix is the ‘GNU_CC_INCLUDE:’ logical name: this is where GNU C header files are
traditionally stored. If you wish to store header files in non-standard locations, then you can
assign the logical ‘GNU_CC_INCLUDE’ to be a search list, where each element of the list is suitable
for use with a rooted logical.

2. The next prefix tried is ‘SYS$SYSROOT:[SYSLIB.]’. This is where VAX-C header files are
traditionally stored.

3. If the include file specification by itself is a valid VMS filename, the preprocessor then uses
this name with no prefix in an attempt to open the include file.

4. If the file specification is not a valid VMS filename (i.e. does not contain a device or a directory
specifier, and contains a ‘/’ character), the preprocessor tries to convert it from Unix syntax
to VMS syntax.

Conversion works like this: the first directory name becomes a device, and the rest of the direc-
tories are converted into VMS-format directory names. For example, the name ‘X11/foobar.h’
is translated to ‘X11:[000000]foobar.h’ or ‘X11:foobar.h’, whichever one can be opened.
This strategy allows you to assign a logical name to point to the actual location of the header
files.

5. If none of these strategies succeeds, the ‘#include’ fails.

Include directives of the form:

#include foobar

are a common source of incompatibility between VAX-C and GNU CC. VAX-C treats this much
like a standard #include <foobar.h> directive. That is incompatible with the ANSI C behavior
implemented by GNU CC: to expand the name foobar as a macro. Macro expansion should
eventually yield one of the two standard formats for #include:

#include "file"

188 Using and Porting GNU CC

#include <file>

If you have this problem, the best solution is to modify the source to convert the #include

directives to one of the two standard forms. That will work with either compiler. If you want a
quick and dirty fix, define the file names as macros with the proper expansion, like this:

#define stdio <stdio.h>

This will work, as long as the name doesn’t conflict with anything else in the program.

Another source of incompatibility is that VAX-C assumes that:

#include "foobar"

is actually asking for the file ‘foobar.h’. GNU CC does not make this assumption, and instead
takes what you ask for literally; it tries to read the file ‘foobar’. The best way to avoid this problem
is to always specify the desired file extension in your include directives.

GNU CC for VMS is distributed with a set of include files that is sufficient to compile most
general purpose programs. Even though the GNU CC distribution does not contain header files to
define constants and structures for some VMS system-specific functions, there is no reason why you
cannot use GNU CC with any of these functions. You first may have to generate or create header
files, either by using the public domain utility UNSDL (which can be found on a DECUS tape), or
by extracting the relevant modules from one of the system macro libraries, and using an editor to
construct a C header file.

A #include file name cannot contain a DECNET node name. The preprocessor reports an I/O
error if you attempt to use a node name, whether explicitly, or implicitly via a logical name.

10.2 Global Declarations and VMS

GNU CC does not provide the globalref, globaldef and globalvalue keywords of VAX-C.
You can get the same effect with an obscure feature of GAS, the GNU assembler. (This requires
GAS version 1.39 or later.) The following macros allow you to use this feature in a fairly natural
way:

#ifdef __GNUC__

Chapter 10: Using GNU CC on VMS 189

#define GLOBALREF(TYPE,NAME) \
TYPE NAME \
asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME)

#define GLOBALDEF(TYPE,NAME,VALUE) \
TYPE NAME \
asm ("_$$PsectAttributes_GLOBALSYMBOL$$" #NAME) \

= VALUE
#define GLOBALVALUEREF(TYPE,NAME) \

const TYPE NAME[1] \
asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME)

#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \
const TYPE NAME[1] \
asm ("_$$PsectAttributes_GLOBALVALUE$$" #NAME) \

= {VALUE}
#else
#define GLOBALREF(TYPE,NAME) \

globalref TYPE NAME
#define GLOBALDEF(TYPE,NAME,VALUE) \

globaldef TYPE NAME = VALUE
#define GLOBALVALUEDEF(TYPE,NAME,VALUE) \

globalvalue TYPE NAME = VALUE
#define GLOBALVALUEREF(TYPE,NAME) \

globalvalue TYPE NAME
#endif

(The _$$PsectAttributes_GLOBALSYMBOL prefix at the start of the name is removed by the as-
sembler, after it has modified the attributes of the symbol). These macros are provided in the VMS
binaries distribution in a header file ‘GNU_HACKS.H’. An example of the usage is:

GLOBALREF (int, ijk);
GLOBALDEF (int, jkl, 0);

The macros GLOBALREF and GLOBALDEF cannot be used straightforwardly for arrays, since there
is no way to insert the array dimension into the declaration at the right place. However, you can
declare an array with these macros if you first define a typedef for the array type, like this:

typedef int intvector[10];
GLOBALREF (intvector, foo);

Array and structure initializers will also break the macros; you can define the initializer to be
a macro of its own, or you can expand the GLOBALDEF macro by hand. You may find a case where
you wish to use the GLOBALDEF macro with a large array, but you are not interested in explicitly
initializing each element of the array. In such cases you can use an initializer like: {0,}, which will
initialize the entire array to 0.

190 Using and Porting GNU CC

A shortcoming of this implementation is that a variable declared with GLOBALVALUEREF or
GLOBALVALUEDEF is always an array. For example, the declaration:

GLOBALVALUEREF(int, ijk);

declares the variable ijk as an array of type int [1]. This is done because a globalvalue is actually
a constant; its “value” is what the linker would normally consider an address. That is not how an
integer value works in C, but it is how an array works. So treating the symbol as an array name
gives consistent results—with the exception that the value seems to have the wrong type. Don’t

try to access an element of the array. It doesn’t have any elements. The array “address” may not
be the address of actual storage.

The fact that the symbol is an array may lead to warnings where the variable is used. Insert
type casts to avoid the warnings. Here is an example; it takes advantage of the ANSI C feature
allowing macros that expand to use the same name as the macro itself.

GLOBALVALUEREF (int, ss$_normal);
GLOBALVALUEDEF (int, xyzzy,123);
#ifdef __GNUC__
#define ss$_normal ((int) ss$_normal)
#define xyzzy ((int) xyzzy)
#endif

Don’t use globaldef or globalref with a variable whose type is an enumeration type; this is
not implemented. Instead, make the variable an integer, and use a globalvaluedef for each of the
enumeration values. An example of this would be:

#ifdef __GNUC__
GLOBALDEF (int, color, 0);
GLOBALVALUEDEF (int, RED, 0);
GLOBALVALUEDEF (int, BLUE, 1);
GLOBALVALUEDEF (int, GREEN, 3);
#else
enum globaldef color {RED, BLUE, GREEN = 3};
#endif

10.3 Other VMS Issues

GNU CC automatically arranges for main to return 1 by default if you fail to specify an explicit
return value. This will be interpreted by VMS as a status code indicating a normal successful
completion. Version 1 of GNU CC did not provide this default.

Chapter 10: Using GNU CC on VMS 191

GNU CC on VMS works only with the GNU assembler, GAS. You need version 1.37 or later
of GAS in order to produce value debugging information for the VMS debugger. Use the ordinary
VMS linker with the object files produced by GAS.

Under previous versions of GNU CC, the generated code would occasionally give strange results
when linked to the sharable ‘VAXCRTL’ library. Now this should work.

A caveat for use of const global variables: the const modifier must be specified in every external
declaration of the variable in all of the source files that use that variable. Otherwise the linker will
issue warnings about conflicting attributes for the variable. Your program will still work despite
the warnings, but the variable will be placed in writable storage.

Although the VMS linker does distinguish between upper and lower case letters in global sym-
bols, most VMS compilers convert all such symbols into upper case and most run-time library
routines also have upper case names. To be able to reliably call such routines, GNU CC (by means
of the assembler GAS) converts global symbols into upper case like other VMS compilers. However,
since the usual practice in C is to distinguish case, GNU CC (via GAS) tries to preserve usual C
behavior by augmenting each name that is not all lower case. This means truncating the name to
at most 23 characters and then adding more characters at the end which encode the case pattern
of those 23. Names which contain at least one dollar sign are an exception; they are converted
directly into upper case without augmentation.

Name augmentation yields bad results for programs that use precompiled libraries (such as Xlib)
which were generated by another compiler. You can use the compiler option ‘/NOCASE_HACK’ to
inhibit augmentation; it makes external C functions and variables case-independent as is usual on
VMS. Alternatively, you could write all references to the functions and variables in such libraries
using lower case; this will work on VMS, but is not portable to other systems. The compiler option
‘/NAMES’ also provides control over global name handling.

Function and variable names are handled somewhat differently with GNU C++. The GNU C++
compiler performs name mangling on function names, which means that it adds information to the
function name to describe the data types of the arguments that the function takes. One result of
this is that the name of a function can become very long. Since the VMS linker only recognizes the
first 31 characters in a name, special action is taken to ensure that each function and variable has
a unique name that can be represented in 31 characters.

If the name (plus a name augmentation, if required) is less than 32 characters in length, then
no special action is performed. If the name is longer than 31 characters, the assembler (GAS) will
generate a hash string based upon the function name, truncate the function name to 23 characters,

192 Using and Porting GNU CC

and append the hash string to the truncated name. If the ‘/VERBOSE’ compiler option is used, the
assembler will print both the full and truncated names of each symbol that is truncated.

The ‘/NOCASE_HACK’ compiler option should not be used when you are compiling programs that
use libg++. libg++ has several instances of objects (i.e. Filebuf and filebuf) which become
indistinguishable in a case-insensitive environment. This leads to cases where you need to inhibit
augmentation selectively (if you were using libg++ and Xlib in the same program, for example).
There is no special feature for doing this, but you can get the result by defining a macro for each
mixed case symbol for which you wish to inhibit augmentation. The macro should expand into the
lower case equivalent of itself. For example:

#define StuDlyCapS studlycaps

These macro definitions can be placed in a header file to minimize the number of changes to
your source code.

Chapter 11: GNU CC and Portability 193

11 GNU CC and Portability

The main goal of GNU CC was to make a good, fast compiler for machines in the class that
the GNU system aims to run on: 32-bit machines that address 8-bit bytes and have several general
registers. Elegance, theoretical power and simplicity are only secondary.

GNU CC gets most of the information about the target machine from a machine description
which gives an algebraic formula for each of the machine’s instructions. This is a very clean way
to describe the target. But when the compiler needs information that is difficult to express in
this fashion, I have not hesitated to define an ad-hoc parameter to the machine description. The
purpose of portability is to reduce the total work needed on the compiler; it was not of interest for
its own sake.

GNU CC does not contain machine dependent code, but it does contain code that depends
on machine parameters such as endianness (whether the most significant byte has the highest or
lowest address of the bytes in a word) and the availability of autoincrement addressing. In the
RTL-generation pass, it is often necessary to have multiple strategies for generating code for a
particular kind of syntax tree, strategies that are usable for different combinations of parameters.
Often I have not tried to address all possible cases, but only the common ones or only the ones that
I have encountered. As a result, a new target may require additional strategies. You will know if
this happens because the compiler will call abort. Fortunately, the new strategies can be added in
a machine-independent fashion, and will affect only the target machines that need them.

194 Using and Porting GNU CC

Chapter 12: Interfacing to GNU CC Output 195

12 Interfacing to GNU CC Output

GNU CC is normally configured to use the same function calling convention normally in use on
the target system. This is done with the machine-description macros described (see Chapter 16
[Target Macros], page 307).

However, returning of structure and union values is done differently on some target machines.
As a result, functions compiled with PCC returning such types cannot be called from code compiled
with GNU CC, and vice versa. This does not cause trouble often because few Unix library routines
return structures or unions.

GNU CC code returns structures and unions that are 1, 2, 4 or 8 bytes long in the same
registers used for int or double return values. (GNU CC typically allocates variables of such types
in registers also.) Structures and unions of other sizes are returned by storing them into an address
passed by the caller (usually in a register). The machine-description macros STRUCT_VALUE and
STRUCT_INCOMING_VALUE tell GNU CC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size by copying
the data into an area of static storage, and then returning the address of that storage as if it were a
pointer value. The caller must copy the data from that memory area to the place where the value
is wanted. This is slower than the method used by GNU CC, and fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the standard system convention
is to pass to the subroutine the address of where to return the value. On these machines, GNU
CC has been configured to be compatible with the standard compiler, when this method is used.
It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GNU CC uses the system’s standard convention for passing arguments. On some machines,
the first few arguments are passed in registers; in others, all are passed on the stack. It would be
possible to use registers for argument passing on any machine, and this would probably result in a
significant speedup. But the result would be complete incompatibility with code that follows the
standard convention. So this change is practical only if you are switching to GNU CC as the sole
C compiler for the system. We may implement register argument passing on certain machines once
we have a complete GNU system so that we can compile the libraries with GNU CC.

On some machines (particularly the Sparc), certain types of arguments are passed “by invisible
reference”. This means that the value is stored in memory, and the address of the memory location
is passed to the subroutine.

196 Using and Porting GNU CC

If you use longjmp, beware of automatic variables. ANSI C says that automatic variables
that are not declared volatile have undefined values after a longjmp. And this is all GNU CC
promises to do, because it is very difficult to restore register variables correctly, and one of GNU
CC’s features is that it can put variables in registers without your asking it to.

If you want a variable to be unaltered by longjmp, and you don’t want to write volatile because
old C compilers don’t accept it, just take the address of the variable. If a variable’s address is ever
taken, even if just to compute it and ignore it, then the variable cannot go in a register:

{
int careful;
&careful;
. . .

}

Code compiled with GNU CC may call certain library routines. Most of them handle arith-
metic for which there are no instructions. This includes multiply and divide on some machines,
and floating point operations on any machine for which floating point support is disabled with
‘-msoft-float’. Some standard parts of the C library, such as bcopy or memcpy, are also called
automatically. The usual function call interface is used for calling the library routines.

These library routines should be defined in the library ‘libgcc.a’, which GNU CC automatically
searches whenever it links a program. On machines that have multiply and divide instructions, if
hardware floating point is in use, normally ‘libgcc.a’ is not needed, but it is searched just in case.

Each arithmetic function is defined in ‘libgcc1.c’ to use the corresponding C arithmetic oper-
ator. As long as the file is compiled with another C compiler, which supports all the C arithmetic
operators, this file will work portably. However, ‘libgcc1.c’ does not work if compiled with GNU
CC, because each arithmetic function would compile into a call to itself!

Chapter 13: Passes and Files of the Compiler 197

13 Passes and Files of the Compiler

The overall control structure of the compiler is in ‘toplev.c’. This file is responsible for initial-
ization, decoding arguments, opening and closing files, and sequencing the passes.

The parsing pass is invoked only once, to parse the entire input. The RTL intermediate code
for a function is generated as the function is parsed, a statement at a time. Each statement is read
in as a syntax tree and then converted to RTL; then the storage for the tree for the statement is
reclaimed. Storage for types (and the expressions for their sizes), declarations, and a representation
of the binding contours and how they nest, remain until the function is finished being compiled;
these are all needed to output the debugging information.

Each time the parsing pass reads a complete function definition or top-level declaration, it
calls either the function rest_of_compilation, or the function rest_of_decl_compilation in
‘toplev.c’, which are responsible for all further processing necessary, ending with output of the
assembler language. All other compiler passes run, in sequence, within rest_of_compilation.
When that function returns from compiling a function definition, the storage used for that function
definition’s compilation is entirely freed, unless it is an inline function (see Section 5.28 [An Inline
Function is As Fast As a Macro], page 132).

Here is a list of all the passes of the compiler and their source files. Also included is a description
of where debugging dumps can be requested with ‘-d’ options.

• Parsing. This pass reads the entire text of a function definition, constructing partial syntax
trees. This and RTL generation are no longer truly separate passes (formerly they were), but
it is easier to think of them as separate.

The tree representation does not entirely follow C syntax, because it is intended to support
other languages as well.

Language-specific data type analysis is also done in this pass, and every tree node that repre-
sents an expression has a data type attached. Variables are represented as declaration nodes.

Constant folding and some arithmetic simplifications are also done during this pass.

The language-independent source files for parsing are ‘stor-layout.c’, ‘fold-const.c’, and
‘tree.c’. There are also header files ‘tree.h’ and ‘tree.def’ which define the format of the
tree representation.

The source files to parse C are ‘c-parse.in’, ‘c-decl.c’, ‘c-typeck.c’, ‘c-aux-info.c’,
‘c-convert.c’, and ‘c-lang.c’ along with header files ‘c-lex.h’, and ‘c-tree.h’.

The source files for parsing C++ are ‘cp-parse.y’, ‘cp-class.c’,
‘cp-cvt.c’, ‘cp-decl.c’, ‘cp-decl2.c’, ‘cp-dem.c’, ‘cp-except.c’,

198 Using and Porting GNU CC

‘cp-expr.c’, ‘cp-init.c’, ‘cp-lex.c’, ‘cp-method.c’, ‘cp-ptree.c’,
‘cp-search.c’, ‘cp-tree.c’, ‘cp-type2.c’, and ‘cp-typeck.c’, along with header files
‘cp-tree.def’, ‘cp-tree.h’, and ‘cp-decl.h’.

The special source files for parsing Objective C are ‘objc-parse.y’, ‘objc-actions.c’,
‘objc-tree.def’, and ‘objc-actions.h’. Certain C-specific files are used for this as well.

The file ‘c-common.c’ is also used for all of the above languages.

• RTL generation. This is the conversion of syntax tree into RTL code. It is actually done
statement-by-statement during parsing, but for most purposes it can be thought of as a separate
pass.

This is where the bulk of target-parameter-dependent code is found, since often it is necessary
for strategies to apply only when certain standard kinds of instructions are available. The
purpose of named instruction patterns is to provide this information to the RTL generation
pass.

Optimization is done in this pass for if-conditions that are comparisons, boolean operations
or conditional expressions. Tail recursion is detected at this time also. Decisions are made
about how best to arrange loops and how to output switch statements.

The source files for RTL generation include ‘stmt.c’, ‘calls.c’, ‘expr.c’, ‘explow.c’,
‘expmed.c’, ‘function.c’, ‘optabs.c’ and ‘emit-rtl.c’. Also, the file ‘insn-emit.c’, gener-
ated from the machine description by the program genemit, is used in this pass. The header
file ‘expr.h’ is used for communication within this pass.

The header files ‘insn-flags.h’ and ‘insn-codes.h’, generated from the machine description
by the programs genflags and gencodes, tell this pass which standard names are available
for use and which patterns correspond to them.

Aside from debugging information output, none of the following passes refers to the tree struc-
ture representation of the function (only part of which is saved).

The decision of whether the function can and should be expanded inline in its subsequent
callers is made at the end of rtl generation. The function must meet certain criteria, currently
related to the size of the function and the types and number of parameters it has. Note that this
function may contain loops, recursive calls to itself (tail-recursive functions can be inlined!),
gotos, in short, all constructs supported by GNU CC. The file ‘integrate.c’ contains the code
to save a function’s rtl for later inlining and to inline that rtl when the function is called. The
header file ‘integrate.h’ is also used for this purpose.

The option ‘-dr’ causes a debugging dump of the RTL code after this pass. This dump file’s
name is made by appending ‘.rtl’ to the input file name.

• Jump optimization. This pass simplifies jumps to the following instruction, jumps across
jumps, and jumps to jumps. It deletes unreferenced labels and unreachable code, except that
unreachable code that contains a loop is not recognized as unreachable in this pass. (Such loops
are deleted later in the basic block analysis.) It also converts some code originally written with

Chapter 13: Passes and Files of the Compiler 199

jumps into sequences of instructions that directly set values from the results of comparisons,
if the machine has such instructions.

Jump optimization is performed two or three times. The first time is immediately following
RTL generation. The second time is after CSE, but only if CSE says repeated jump opti-
mization is needed. The last time is right before the final pass. That time, cross-jumping and
deletion of no-op move instructions are done together with the optimizations described above.

The source file of this pass is ‘jump.c’.

The option ‘-dj’ causes a debugging dump of the RTL code after this pass is run for the first
time. This dump file’s name is made by appending ‘.jump’ to the input file name.

• Register scan. This pass finds the first and last use of each register, as a guide for common
subexpression elimination. Its source is in ‘regclass.c’.

• Jump threading. This pass detects a condition jump that branches to an identical or inverse
test. Such jumps can be ‘threaded’ through the second conditional test. The source code for
this pass is in ‘jump.c’. This optimization is only performed if ‘-fthread-jumps’ is enabled.

• Common subexpression elimination. This pass also does constant propagation. Its source file
is ‘cse.c’. If constant propagation causes conditional jumps to become unconditional or to
become no-ops, jump optimization is run again when CSE is finished.

The option ‘-ds’ causes a debugging dump of the RTL code after this pass. This dump file’s
name is made by appending ‘.cse’ to the input file name.

• Loop optimization. This pass moves constant expressions out of loops, and optionally does
strength-reduction and loop unrolling as well. Its source files are ‘loop.c’ and ‘unroll.c’,
plus the header ‘loop.h’ used for communication between them. Loop unrolling uses some
functions in ‘integrate.c’ and the header ‘integrate.h’.

The option ‘-dL’ causes a debugging dump of the RTL code after this pass. This dump file’s
name is made by appending ‘.loop’ to the input file name.

• If ‘-frerun-cse-after-loop’ was enabled, a second common subexpression elimination pass
is performed after the loop optimization pass. Jump threading is also done again at this time
if it was specified.

The option ‘-dt’ causes a debugging dump of the RTL code after this pass. This dump file’s
name is made by appending ‘.cse2’ to the input file name.

• Stupid register allocation is performed at this point in a nonoptimizing compilation. It does a
little data flow analysis as well. When stupid register allocation is in use, the next pass executed
is the reloading pass; the others in between are skipped. The source file is ‘stupid.c’.

• Data flow analysis (‘flow.c’). This pass divides the program into basic blocks (and in the
process deletes unreachable loops); then it computes which pseudo-registers are live at each
point in the program, and makes the first instruction that uses a value point at the instruction
that computed the value.

This pass also deletes computations whose results are never used, and combines memory refer-
ences with add or subtract instructions to make autoincrement or autodecrement addressing.

200 Using and Porting GNU CC

The option ‘-df’ causes a debugging dump of the RTL code after this pass. This dump file’s
name is made by appending ‘.flow’ to the input file name. If stupid register allocation is in
use, this dump file reflects the full results of such allocation.

• Instruction combination (‘combine.c’). This pass attempts to combine groups of two or three
instructions that are related by data flow into single instructions. It combines the RTL expres-
sions for the instructions by substitution, simplifies the result using algebra, and then attempts
to match the result against the machine description.

The option ‘-dc’ causes a debugging dump of the RTL code after this pass. This dump file’s
name is made by appending ‘.combine’ to the input file name.

• Instruction scheduling (‘sched.c’). This pass looks for instructions whose output will not be
available by the time that it is used in subsequent instructions. (Memory loads and floating
point instructions often have this behavior on RISC machines). It re-orders instructions within
a basic block to try to separate the definition and use of items that otherwise would cause
pipeline stalls.

Instruction scheduling is performed twice. The first time is immediately after instruction
combination and the second is immediately after reload.

The option ‘-dS’ causes a debugging dump of the RTL code after this pass is run for the first
time. The dump file’s name is made by appending ‘.sched’ to the input file name.

• Register class preferencing. The RTL code is scanned to find out which register class is best
for each pseudo register. The source file is ‘regclass.c’.

• Local register allocation (‘local-alloc.c’). This pass allocates hard registers to pseudo reg-
isters that are used only within one basic block. Because the basic block is linear, it can use
fast and powerful techniques to do a very good job.

The option ‘-dl’ causes a debugging dump of the RTL code after this pass. This dump file’s
name is made by appending ‘.lreg’ to the input file name.

• Global register allocation (‘global.c’). This pass allocates hard registers for the remaining
pseudo registers (those whose life spans are not contained in one basic block).

• Reloading. This pass renumbers pseudo registers with the hardware registers numbers they
were allocated. Pseudo registers that did not get hard registers are replaced with stack slots.
Then it finds instructions that are invalid because a value has failed to end up in a register,
or has ended up in a register of the wrong kind. It fixes up these instructions by reloading
the problematical values temporarily into registers. Additional instructions are generated to
do the copying.

The reload pass also optionally eliminates the frame pointer and inserts instructions to save
and restore call-clobbered registers around calls.

Source files are ‘reload.c’ and ‘reload1.c’, plus the header ‘reload.h’ used for communica-
tion between them.

The option ‘-dg’ causes a debugging dump of the RTL code after this pass. This dump file’s
name is made by appending ‘.greg’ to the input file name.

Chapter 13: Passes and Files of the Compiler 201

• Instruction scheduling is repeated here to try to avoid pipeline stalls due to memory loads
generated for spilled pseudo registers.

The option ‘-dR’ causes a debugging dump of the RTL code after this pass. This dump file’s
name is made by appending ‘.sched2’ to the input file name.

• Jump optimization is repeated, this time including cross-jumping and deletion of no-op move
instructions.

The option ‘-dJ’ causes a debugging dump of the RTL code after this pass. This dump file’s
name is made by appending ‘.jump2’ to the input file name.

• Delayed branch scheduling. This optional pass attempts to find instructions that can go into
the delay slots of other instructions, usually jumps and calls. The source file name is ‘reorg.c’.

The option ‘-dd’ causes a debugging dump of the RTL code after this pass. This dump file’s
name is made by appending ‘.dbr’ to the input file name.

• Conversion from usage of some hard registers to usage of a register stack may be done at
this point. Currently, this is supported only for the floating-point registers of the Intel 80387
coprocessor. The source file name is ‘reg-stack.c’.

The options ‘-dk’ causes a debugging dump of the RTL code after this pass. This dump file’s
name is made by appending ‘.stack’ to the input file name.

• Final. This pass outputs the assembler code for the function. It is also responsible for iden-
tifying spurious test and compare instructions. Machine-specific peephole optimizations are
performed at the same time. The function entry and exit sequences are generated directly as
assembler code in this pass; they never exist as RTL.

The source files are ‘final.c’ plus ‘insn-output.c’; the latter is generated automatically from
the machine description by the tool ‘genoutput’. The header file ‘conditions.h’ is used for
communication between these files.

• Debugging information output. This is run after final because it must output the stack slot
offsets for pseudo registers that did not get hard registers. Source files are ‘dbxout.c’ for DBX
symbol table format, ‘sdbout.c’ for SDB symbol table format, and ‘dwarfout.c’ for DWARF
symbol table format.

Some additional files are used by all or many passes:

• Every pass uses ‘machmode.def’ and ‘machmode.h’ which define the machine modes.

• Several passes use ‘real.h’, which defines the default representation of floating point constants
and how to operate on them.

• All the passes that work with RTL use the header files ‘rtl.h’ and ‘rtl.def’, and subroutines
in file ‘rtl.c’. The tools gen* also use these files to read and work with the machine description
RTL.

202 Using and Porting GNU CC

• Several passes refer to the header file ‘insn-config.h’ which contains a few parameters (C
macro definitions) generated automatically from the machine description RTL by the tool
genconfig.

• Several passes use the instruction recognizer, which consists of ‘recog.c’ and ‘recog.h’, plus
the files ‘insn-recog.c’ and ‘insn-extract.c’ that are generated automatically from the
machine description by the tools ‘genrecog’ and ‘genextract’.

• Several passes use the header files ‘regs.h’ which defines the information recorded about
pseudo register usage, and ‘basic-block.h’ which defines the information recorded about
basic blocks.

• ‘hard-reg-set.h’ defines the type HARD_REG_SET, a bit-vector with a bit for each hard register,
and some macros to manipulate it. This type is just int if the machine has few enough hard
registers; otherwise it is an array of int and some of the macros expand into loops.

• Several passes use instruction attributes. A definition of the attributes defined for a particular
machine is in file ‘insn-attr.h’, which is generated from the machine description by the
program ‘genattr’. The file ‘insn-attrtab.c’ contains subroutines to obtain the attribute
values for insns. It is generated from the machine description by the program ‘genattrtab’.

Chapter 14: RTL Representation 203

14 RTL Representation

Most of the work of the compiler is done on an intermediate representation called register transfer
language. In this language, the instructions to be output are described, pretty much one by one,
in an algebraic form that describes what the instruction does.

RTL is inspired by Lisp lists. It has both an internal form, made up of structures that point at
other structures, and a textual form that is used in the machine description and in printed debugging
dumps. The textual form uses nested parentheses to indicate the pointers in the internal form.

14.1 RTL Object Types

RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors. Expres-
sions are the most important ones. An RTL expression (“RTX”, for short) is a C structure, but it
is usually referred to with a pointer; a type that is given the typedef name rtx.

An integer is simply an int; their written form uses decimal digits. A wide integer is an integral
object whose type is HOST_WIDE_INT (see Chapter 17 [Config], page 403); their written form uses
decimal digits.

A string is a sequence of characters. In core it is represented as a char * in usual C fashion, and
it is written in C syntax as well. However, strings in RTL may never be null. If you write an empty
string in a machine description, it is represented in core as a null pointer rather than as a pointer
to a null character. In certain contexts, these null pointers instead of strings are valid. Within RTL
code, strings are most commonly found inside symbol_ref expressions, but they appear in other
contexts in the RTL expressions that make up machine descriptions.

A vector contains an arbitrary number of pointers to expressions. The number of elements in the
vector is explicitly present in the vector. The written form of a vector consists of square brackets
(‘[. . .]’) surrounding the elements, in sequence and with whitespace separating them. Vectors of
length zero are not created; null pointers are used instead.

Expressions are classified by expression codes (also called RTX codes). The expression code
is a name defined in ‘rtl.def’, which is also (in upper case) a C enumeration constant. The
possible expression codes and their meanings are machine-independent. The code of an RTX can
be extracted with the macro GET_CODE (x) and altered with PUT_CODE (x, newcode).

204 Using and Porting GNU CC

The expression code determines how many operands the expression contains, and what kinds
of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand what kind of
object it is. Instead, you must know from its context—from the expression code of the containing
expression. For example, in an expression of code subreg, the first operand is to be regarded as
an expression and the second operand as an integer. In an expression of code plus, there are two
operands, both of which are to be regarded as expressions. In a symbol_ref expression, there is
one operand, which is to be regarded as a string.

Expressions are written as parentheses containing the name of the expression type, its flags and
machine mode if any, and then the operands of the expression (separated by spaces).

Expression code names in the ‘md’ file are written in lower case, but when they appear in C code
they are written in upper case. In this manual, they are shown as follows: const_int.

In a few contexts a null pointer is valid where an expression is normally wanted. The written
form of this is (nil).

14.2 Access to Operands

For each expression type ‘rtl.def’ specifies the number of contained objects and their kinds,
with four possibilities: ‘e’ for expression (actually a pointer to an expression), ‘i’ for integer, ‘w’
for wide integer, ‘s’ for string, and ‘E’ for vector of expressions. The sequence of letters for an
expression code is called its format. Thus, the format of subreg is ‘ei’.

A few other format characters are used occasionally:

u ‘u’ is equivalent to ‘e’ except that it is printed differently in debugging dumps. It is
used for pointers to insns.

n ‘n’ is equivalent to ‘i’ except that it is printed differently in debugging dumps. It is
used for the line number or code number of a note insn.

S ‘S’ indicates a string which is optional. In the RTL objects in core, ‘S’ is equivalent to
‘s’, but when the object is read, from an ‘md’ file, the string value of this operand may
be omitted. An omitted string is taken to be the null string.

V ‘V’ indicates a vector which is optional. In the RTL objects in core, ‘V’ is equivalent to
‘E’, but when the object is read from an ‘md’ file, the vector value of this operand may
be omitted. An omitted vector is effectively the same as a vector of no elements.

Chapter 14: RTL Representation 205

0 ‘0’ means a slot whose contents do not fit any normal category. ‘0’ slots are not printed
at all in dumps, and are often used in special ways by small parts of the compiler.

There are macros to get the number of operands, the format, and the class of an expression
code:

GET_RTX_LENGTH (code)

Number of operands of an RTX of code code.

GET_RTX_FORMAT (code)

The format of an RTX of code code, as a C string.

GET_RTX_CLASS (code)

A single character representing the type of RTX operation that code code performs.

The following classes are defined:

o An RTX code that represents an actual object, such as reg or mem. subreg
is not in this class.

< An RTX code for a comparison. The codes in this class are NE, EQ, LE, LT,
GE, GT, LEU, LTU, GEU, GTU.

1 An RTX code for a unary arithmetic operation, such as neg.

c An RTX code for a commutative binary operation, other than NE and EQ

(which have class ‘<’).

2 An RTX code for a noncommutative binary operation, such as MINUS.

b An RTX code for a bitfield operation, either ZERO_EXTRACT or SIGN_

EXTRACT.

3 An RTX code for other three input operations, such as IF_THEN_ELSE.

i An RTX code for a machine insn (INSN, JUMP_INSN, and CALL_INSN).

m An RTX code for something that matches in insns, such as MATCH_DUP.

x All other RTX codes.

Operands of expressions are accessed using the macros XEXP, XINT, XWINT and XSTR. Each of
these macros takes two arguments: an expression-pointer (RTX) and an operand number (counting
from zero). Thus,

XEXP (x, 2)

accesses operand 2 of expression x, as an expression.

206 Using and Porting GNU CC

XINT (x, 2)

accesses the same operand as an integer. XSTR, used in the same fashion, would access it as a string.

Any operand can be accessed as an integer, as an expression or as a string. You must choose
the correct method of access for the kind of value actually stored in the operand. You would do
this based on the expression code of the containing expression. That is also how you would know
how many operands there are.

For example, if x is a subreg expression, you know that it has two operands which can be
correctly accessed as XEXP (x, 0) and XINT (x, 1). If you did XINT (x, 0), you would get the
address of the expression operand but cast as an integer; that might occasionally be useful, but
it would be cleaner to write (int) XEXP (x, 0). XEXP (x, 1) would also compile without error,
and would return the second, integer operand cast as an expression pointer, which would probably
result in a crash when accessed. Nothing stops you from writing XEXP (x, 28) either, but this will
access memory past the end of the expression with unpredictable results.

Access to operands which are vectors is more complicated. You can use the macro XVEC to get
the vector-pointer itself, or the macros XVECEXP and XVECLEN to access the elements and length of
a vector.

XVEC (exp, idx)

Access the vector-pointer which is operand number idx in exp.

XVECLEN (exp, idx)

Access the length (number of elements) in the vector which is in operand number idx

in exp. This value is an int.

XVECEXP (exp, idx, eltnum)

Access element number eltnum in the vector which is in operand number idx in exp.
This value is an RTX.

It is up to you to make sure that eltnum is not negative and is less than XVECLEN (exp,

idx).

All the macros defined in this section expand into lvalues and therefore can be used to assign
the operands, lengths and vector elements as well as to access them.

Chapter 14: RTL Representation 207

14.3 Flags in an RTL Expression

RTL expressions contain several flags (one-bit bitfields) that are used in certain types of expres-
sion. Most often they are accessed with the following macros:

MEM_VOLATILE_P (x)

In mem expressions, nonzero for volatile memory references. Stored in the volatil field
and printed as ‘/v’.

MEM_IN_STRUCT_P (x)

In mem expressions, nonzero for reference to an entire structure, union or array, or to
a component of one. Zero for references to a scalar variable or through a pointer to a
scalar. Stored in the in_struct field and printed as ‘/s’.

REG_LOOP_TEST_P

In reg expressions, nonzero if this register’s entire life is contained in the exit test code
for some loop. Stored in the in_struct field and printed as ‘/s’.

REG_USERVAR_P (x)

In a reg, nonzero if it corresponds to a variable present in the user’s source code. Zero
for temporaries generated internally by the compiler. Stored in the volatil field and
printed as ‘/v’.

REG_FUNCTION_VALUE_P (x)

Nonzero in a reg if it is the place in which this function’s value is going to be returned.
(This happens only in a hard register.) Stored in the integrated field and printed as
‘/i’.

The same hard register may be used also for collecting the values of functions called
by this one, but REG_FUNCTION_VALUE_P is zero in this kind of use.

SUBREG_PROMOTED_VAR_P

Nonzero in a subreg if it was made when accessing an object that was promoted
to a wider mode in accord with the PROMOTED_MODE machine description macro (see
Section 16.3 [Storage Layout], page 314). In this case, the mode of the subreg is the
declared mode of the object and the mode of SUBREG_REG is the mode of the register
that holds the object. Promoted variables are always either sign- or zero-extended to
the wider mode on every assignment. Stored in the in_struct field and printed as
‘/s’.

SUBREG_PROMOTED_UNSIGNED_P

Nonzero in a subreg that has SUBREG_PROMOTED_VAR_P nonzero if the object being
referenced is kept zero-extended and zero if it is kept sign-extended. Stored in the
unchanging field and printed as ‘/u’.

208 Using and Porting GNU CC

RTX_UNCHANGING_P (x)

Nonzero in a reg or mem if the value is not changed. (This flag is not set for memory
references via pointers to constants. Such pointers only guarantee that the object will
not be changed explicitly by the current function. The object might be changed by
other functions or by aliasing.) Stored in the unchanging field and printed as ‘/u’.

RTX_INTEGRATED_P (insn)

Nonzero in an insn if it resulted from an in-line function call. Stored in the integrated
field and printed as ‘/i’. This may be deleted; nothing currently depends on it.

SYMBOL_REF_USED (x)

In a symbol_ref, indicates that x has been used. This is normally only used to ensure
that x is only declared external once. Stored in the used field.

SYMBOL_REF_FLAG (x)

In a symbol_ref, this is used as a flag for machine-specific purposes. Stored in the
volatil field and printed as ‘/v’.

LABEL_OUTSIDE_LOOP_P

In label_ref expressions, nonzero if this is a reference to a label that is outside the
innermost loop containing the reference to the label. Stored in the in_struct field and
printed as ‘/s’.

INSN_DELETED_P (insn)

In an insn, nonzero if the insn has been deleted. Stored in the volatil field and printed
as ‘/v’.

INSN_ANNULLED_BRANCH_P (insn)

In an insn in the delay slot of a branch insn, indicates that an annulling branch should
be used. See the discussion under sequence below. Stored in the unchanging field and
printed as ‘/u’.

INSN_FROM_TARGET_P (insn)

In an insn in a delay slot of a branch, indicates that the insn is from the target of the
branch. If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only
be executed if the branch is taken. For annulled branches with this bit clear, the insn
should be executed only if the branch is not taken. Stored in the in_struct field and
printed as ‘/s’.

CONSTANT_POOL_ADDRESS_P (x)

Nonzero in a symbol_ref if it refers to part of the current function’s “constants pool”.
These are addresses close to the beginning of the function, and GNU CC assumes
they can be addressed directly (perhaps with the help of base registers). Stored in the
unchanging field and printed as ‘/u’.

Chapter 14: RTL Representation 209

CONST_CALL_P (x)

In a call_insn, indicates that the insn represents a call to a const function. Stored in
the unchanging field and printed as ‘/u’.

LABEL_PRESERVE_P (x)

In a code_label, indicates that the label can never be deleted. Labels referenced by a
non-local goto will have this bit set. Stored in the in_struct field and printed as ‘/s’.

SCHED_GROUP_P (insn)

During instruction scheduling, in an insn, indicates that the previous insn must be
scheduled together with this insn. This is used to ensure that certain groups of in-
structions will not be split up by the instruction scheduling pass, for example, use

insns before a call_insn may not be separated from the call_insn. Stored in the
in_struct field and printed as ‘/s’.

These are the fields which the above macros refer to:

used Normally, this flag is used only momentarily, at the end of RTL generation for a func-
tion, to count the number of times an expression appears in insns. Expressions that
appear more than once are copied, according to the rules for shared structure (see
Section 14.17 [Sharing], page 243).

In a symbol_ref, it indicates that an external declaration for the symbol has already
been written.

In a reg, it is used by the leaf register renumbering code to ensure that each register
is only renumbered once.

volatil This flag is used in mem, symbol_ref and reg expressions and in insns. In RTL dump
files, it is printed as ‘/v’.

In a mem expression, it is 1 if the memory reference is volatile. Volatile memory refer-
ences may not be deleted, reordered or combined.

In a symbol_ref expression, it is used for machine-specific purposes.

In a reg expression, it is 1 if the value is a user-level variable. 0 indicates an internal
compiler temporary.

In an insn, 1 means the insn has been deleted.

in_struct

In mem expressions, it is 1 if the memory datum referred to is all or part of a structure
or array; 0 if it is (or might be) a scalar variable. A reference through a C pointer
has 0 because the pointer might point to a scalar variable. This information allows the
compiler to determine something about possible cases of aliasing.

In an insn in the delay slot of a branch, 1 means that this insn is from the target of
the branch.

210 Using and Porting GNU CC

During instruction scheduling, in an insn, 1 means that this insn must be scheduled as
part of a group together with the previous insn.

In reg expressions, it is 1 if the register has its entire life contained within the test
expression of some loop.

In subreg expressions, 1 means that the subreg is accessing an object that has had its
mode promoted from a wider mode.

In label_ref expressions, 1 means that the referenced label is outside the innermost
loop containing the insn in which the label_ref was found.

In code_label expressions, it is 1 if the label may never be deleted. This is used for
labels which are the target of non-local gotos.

In an RTL dump, this flag is represented as ‘/s’.

unchanging

In reg and mem expressions, 1 means that the value of the expression never changes.

In subreg expressions, it is 1 if the subreg references an unsigned object whose mode
has been promoted to a wider mode.

In an insn, 1 means that this is an annulling branch.

In a symbol_ref expression, 1 means that this symbol addresses something in the
per-function constants pool.

In a call_insn, 1 means that this instruction is a call to a const function.

In an RTL dump, this flag is represented as ‘/u’.

integrated

In some kinds of expressions, including insns, this flag means the rtl was produced by
procedure integration.

In a reg expression, this flag indicates the register containing the value to be returned
by the current function. On machines that pass parameters in registers, the same
register number may be used for parameters as well, but this flag is not set on such
uses.

14.4 Machine Modes

A machine mode describes a size of data object and the representation used for it. In the
C code, machine modes are represented by an enumeration type, enum machine_mode, defined in
‘machmode.def’. Each RTL expression has room for a machine mode and so do certain kinds of
tree expressions (declarations and types, to be precise).

In debugging dumps and machine descriptions, the machine mode of an RTL expression is
written after the expression code with a colon to separate them. The letters ‘mode’ which appear

Chapter 14: RTL Representation 211

at the end of each machine mode name are omitted. For example, (reg:SI 38) is a reg expression
with machine mode SImode. If the mode is VOIDmode, it is not written at all.

Here is a table of machine modes. The term “byte” below refers to an object of BITS_PER_UNIT
bits (see Section 16.3 [Storage Layout], page 314).

QImode “Quarter-Integer” mode represents a single byte treated as an integer.

HImode “Half-Integer” mode represents a two-byte integer.

PSImode “Partial Single Integer” mode represents an integer which occupies four bytes but which
doesn’t really use all four. On some machines, this is the right mode to use for pointers.

SImode “Single Integer” mode represents a four-byte integer.

PDImode “Partial Double Integer” mode represents an integer which occupies eight bytes but
which doesn’t really use all eight. On some machines, this is the right mode to use for
certain pointers.

DImode “Double Integer” mode represents an eight-byte integer.

TImode “Tetra Integer” (?) mode represents a sixteen-byte integer.

SFmode “Single Floating” mode represents a single-precision (four byte) floating point number.

DFmode “Double Floating” mode represents a double-precision (eight byte) floating point num-
ber.

XFmode “Extended Floating” mode represents a triple-precision (twelve byte) floating point
number. This mode is used for IEEE extended floating point.

TFmode “Tetra Floating” mode represents a quadruple-precision (sixteen byte) floating point
number.

CCmode “Condition Code” mode represents the value of a condition code, which is a machine-
specific set of bits used to represent the result of a comparison operation. Other
machine-specific modes may also be used for the condition code. These modes are not
used on machines that use cc0 (see see Section 16.12 [Condition Code], page 364).

BLKmode “Block” mode represents values that are aggregates to which none of the other modes
apply. In RTL, only memory references can have this mode, and only if they appear
in string-move or vector instructions. On machines which have no such instructions,
BLKmode will not appear in RTL.

VOIDmode Void mode means the absence of a mode or an unspecified mode. For example, RTL
expressions of code const_int have mode VOIDmode because they can be taken to
have whatever mode the context requires. In debugging dumps of RTL, VOIDmode is
expressed by the absence of any mode.

SCmode, DCmode, XCmode, TCmode

These modes stand for a complex number represented as a pair of floating point values.
The floating point values are in SFmode, DFmode, XFmode, and TFmode, respectively.

212 Using and Porting GNU CC

CQImode, CHImode, CSImode, CDImode, CTImode, COImode

These modes stand for a complex number represented as a pair of integer values. The
integer values are in QImode, HImode, SImode, DImode, TImode, and OImode, respec-
tively.

The machine description defines Pmode as a C macro which expands into the machine mode used
for addresses. Normally this is the mode whose size is BITS_PER_WORD, SImode on 32-bit machines.

The only modes which a machine description must support are QImode, and the modes corre-
sponding to BITS_PER_WORD, FLOAT_TYPE_SIZE and DOUBLE_TYPE_SIZE. The compiler will attempt
to use DImode for 8-byte structures and unions, but this can be prevented by overriding the defi-
nition of MAX_FIXED_MODE_SIZE. Alternatively, you can have the compiler use TImode for 16-byte
structures and unions. Likewise, you can arrange for the C type short int to avoid using HImode.

Very few explicit references to machine modes remain in the compiler and these few references
will soon be removed. Instead, the machine modes are divided into mode classes. These are
represented by the enumeration type enum mode_class defined in ‘machmode.h’. The possible
mode classes are:

MODE_INT Integer modes. By default these are QImode, HImode, SImode, DImode, and TImode.

MODE_PARTIAL_INT

The “partial integer” modes, PSImode and PDImode.

MODE_FLOAT

floating point modes. By default these are SFmode, DFmode, XFmode and TFmode.

MODE_COMPLEX_INT

Complex integer modes. (These are not currently implemented).

MODE_COMPLEX_FLOAT

Complex floating point modes. By default these are SCmode, DCmode, XCmode, and
TCmode.

MODE_FUNCTION

Algol or Pascal function variables including a static chain. (These are not currently
implemented).

MODE_CC Modes representing condition code values. These are CCmode plus any modes listed
in the EXTRA_CC_MODES macro. See Section 15.10 [Jump Patterns], page 279, also see
Section 16.12 [Condition Code], page 364.

MODE_RANDOM

This is a catchall mode class for modes which don’t fit into the above classes. Currently
VOIDmode and BLKmode are in MODE_RANDOM.

Chapter 14: RTL Representation 213

Here are some C macros that relate to machine modes:

GET_MODE (x)

Returns the machine mode of the RTX x.

PUT_MODE (x, newmode)

Alters the machine mode of the RTX x to be newmode.

NUM_MACHINE_MODES

Stands for the number of machine modes available on the target machine. This is one
greater than the largest numeric value of any machine mode.

GET_MODE_NAME (m)

Returns the name of mode m as a string.

GET_MODE_CLASS (m)

Returns the mode class of mode m.

GET_MODE_WIDER_MODE (m)

Returns the next wider natural mode. For example, the expression GET_MODE_WIDER_

MODE (QImode) returns HImode.

GET_MODE_SIZE (m)

Returns the size in bytes of a datum of mode m.

GET_MODE_BITSIZE (m)

Returns the size in bits of a datum of mode m.

GET_MODE_MASK (m)

Returns a bitmask containing 1 for all bits in a word that fit within mode m. This macro
can only be used for modes whose bitsize is less than or equal to HOST_BITS_PER_INT.

GET_MODE_ALIGNMENT (m))

Return the required alignment, in bits, for an object of mode m.

GET_MODE_UNIT_SIZE (m)

Returns the size in bytes of the subunits of a datum of mode m. This is the same as
GET_MODE_SIZE except in the case of complex modes. For them, the unit size is the
size of the real or imaginary part.

GET_MODE_NUNITS (m)

Returns the number of units contained in a mode, i.e., GET_MODE_SIZE divided by
GET_MODE_UNIT_SIZE.

GET_CLASS_NARROWEST_MODE (c)

Returns the narrowest mode in mode class c.

214 Using and Porting GNU CC

The global variables byte_mode and word_mode contain modes whose classes are MODE_INT and
whose bitsizes are either BITS_PER_UNIT or BITS_PER_WORD, respectively. On 32-bit machines,
these are QImode and SImode, respectively.

14.5 Constant Expression Types

The simplest RTL expressions are those that represent constant values.

(const_int i)

This type of expression represents the integer value i. i is customarily accessed with
the macro INTVAL as in INTVAL (exp), which is equivalent to XWINT (exp, 0).

There is only one expression object for the integer value zero; it is the value of the
variable const0_rtx. Likewise, the only expression for integer value one is found in
const1_rtx, the only expression for integer value two is found in const2_rtx, and the
only expression for integer value negative one is found in constm1_rtx. Any attempt
to create an expression of code const_int and value zero, one, two or negative one will
return const0_rtx, const1_rtx, const2_rtx or constm1_rtx as appropriate.

Similarly, there is only one object for the integer whose value is STORE_FLAG_VALUE.
It is found in const_true_rtx. If STORE_FLAG_VALUE is one, const_true_rtx and
const1_rtx will point to the same object. If STORE_FLAG_VALUE is -1, const_true_
rtx and constm1_rtx will point to the same object.

(const_double:m addr i0 i1 . . .)

Represents either a floating-point constant of mode m or an integer constant too large to
fit into HOST_BITS_PER_WIDE_INT bits but small enough to fit within twice that number
of bits (GNU CC does not provide a mechanism to represent even larger constants).
In the latter case, m will be VOIDmode.

addr is used to contain the mem expression that corresponds to the location in memory
that at which the constant can be found. If it has not been allocated a memory location,
but is on the chain of all const_double expressions in this compilation (maintained
using an undisplayed field), addr contains const0_rtx. If it is not on the chain, addr

contains cc0_rtx. addr is customarily accessed with the macro CONST_DOUBLE_MEM

and the chain field via CONST_DOUBLE_CHAIN.

If m is VOIDmode, the bits of the value are stored in i0 and i1. i0 is customarily accessed
with the macro CONST_DOUBLE_LOW and i1 with CONST_DOUBLE_HIGH.

If the constant is floating point (regardless of its precision), then the number of integers
used to store the value depends on the size of REAL_VALUE_TYPE (see Section 16.18
[Cross-compilation], page 394). The integers represent a floating point number, but not

Chapter 14: RTL Representation 215

precisely in the target machine’s or host machine’s floating point format. To convert
them to the precise bit pattern used by the target machine, use the macro REAL_VALUE_

TO_TARGET_DOUBLE and friends (see Section 16.16.2 [Data Output], page 374).

The macro CONST0_RTX (mode) refers to an expression with value 0 in mode mode. If
mode mode is of mode class MODE_INT, it returns const0_rtx. Otherwise, it returns
a CONST_DOUBLE expression in mode mode. Similarly, the macro CONST1_RTX (mode)

refers to an expression with value 1 in mode mode and similarly for CONST2_RTX.

(const_string str)

Represents a constant string with value str. Currently this is used only for insn at-
tributes (see Section 15.15 [Insn Attributes], page 292) since constant strings in C are
placed in memory.

(symbol_ref:mode symbol)

Represents the value of an assembler label for data. symbol is a string that describes
the name of the assembler label. If it starts with a ‘*’, the label is the rest of symbol

not including the ‘*’. Otherwise, the label is symbol, usually prefixed with ‘_’.

The symbol_ref contains a mode, which is usually Pmode. Usually that is the only
mode for which a symbol is directly valid.

(label_ref label)

Represents the value of an assembler label for code. It contains one operand, an
expression, which must be a code_label that appears in the instruction sequence to
identify the place where the label should go.

The reason for using a distinct expression type for code label references is so that jump
optimization can distinguish them.

(const:m exp)

Represents a constant that is the result of an assembly-time arithmetic computation.
The operand, exp, is an expression that contains only constants (const_int, symbol_
ref and label_ref expressions) combined with plus and minus. However, not all
combinations are valid, since the assembler cannot do arbitrary arithmetic on relocat-
able symbols.

m should be Pmode.

(high:m exp)

Represents the high-order bits of exp, usually a symbol_ref. The number of bits is
machine-dependent and is normally the number of bits specified in an instruction that
initializes the high order bits of a register. It is used with lo_sum to represent the
typical two-instruction sequence used in RISC machines to reference a global memory
location.

m should be Pmode.

216 Using and Porting GNU CC

14.6 Registers and Memory

Here are the RTL expression types for describing access to machine registers and to main
memory.

(reg:m n)

For small values of the integer n (those that are less than FIRST_PSEUDO_REGISTER),
this stands for a reference to machine register number n: a hard register. For larger
values of n, it stands for a temporary value or pseudo register. The compiler’s strategy
is to generate code assuming an unlimited number of such pseudo registers, and later
convert them into hard registers or into memory references.

m is the machine mode of the reference. It is necessary because machines can generally
refer to each register in more than one mode. For example, a register may contain a
full word but there may be instructions to refer to it as a half word or as a single byte,
as well as instructions to refer to it as a floating point number of various precisions.

Even for a register that the machine can access in only one mode, the mode must
always be specified.

The symbol FIRST_PSEUDO_REGISTER is defined by the machine description, since the
number of hard registers on the machine is an invariant characteristic of the machine.
Note, however, that not all of the machine registers must be general registers. All the
machine registers that can be used for storage of data are given hard register numbers,
even those that can be used only in certain instructions or can hold only certain types
of data.

A hard register may be accessed in various modes throughout one function, but each
pseudo register is given a natural mode and is accessed only in that mode. When it is
necessary to describe an access to a pseudo register using a nonnatural mode, a subreg

expression is used.

A reg expression with a machine mode that specifies more than one word of data
may actually stand for several consecutive registers. If in addition the register number
specifies a hardware register, then it actually represents several consecutive hardware
registers starting with the specified one.

Each pseudo register number used in a function’s RTL code is represented by a unique
reg expression.

Some pseudo register numbers, those within the range of FIRST_VIRTUAL_REGISTER
to LAST_VIRTUAL_REGISTER only appear during the RTL generation phase and are
eliminated before the optimization phases. These represent locations in the stack frame
that cannot be determined until RTL generation for the function has been completed.
The following virtual register numbers are defined:

Chapter 14: RTL Representation 217

VIRTUAL_INCOMING_ARGS_REGNUM

This points to the first word of the incoming arguments passed on the
stack. Normally these arguments are placed there by the caller, but the
callee may have pushed some arguments that were previously passed in
registers.

When RTL generation is complete, this virtual register is replaced by the
sum of the register given by ARG_POINTER_REGNUM and the value of FIRST_
PARM_OFFSET.

VIRTUAL_STACK_VARS_REGNUM

If FRAME_GROWS_DOWNWARD is defined, this points to immediately above the
first variable on the stack. Otherwise, it points to the first variable on the
stack.

VIRTUAL_STACK_VARS_REGNUM is replaced with the sum of the register given
by FRAME_POINTER_REGNUM and the value STARTING_FRAME_OFFSET.

VIRTUAL_STACK_DYNAMIC_REGNUM

This points to the location of dynamically allocated memory on the stack
immediately after the stack pointer has been adjusted by the amount of
memory desired.

This virtual register is replaced by the sum of the register given by STACK_

POINTER_REGNUM and the value STACK_DYNAMIC_OFFSET.

VIRTUAL_OUTGOING_ARGS_REGNUM

This points to the location in the stack at which outgoing arguments should
be written when the stack is pre-pushed (arguments pushed using push
insns should always use STACK_POINTER_REGNUM).

This virtual register is replaced by the sum of the register given by STACK_

POINTER_REGNUM and the value STACK_POINTER_OFFSET.

(subreg:m reg wordnum)

subreg expressions are used to refer to a register in a machine mode other than its
natural one, or to refer to one register of a multi-word reg that actually refers to several
registers.

Each pseudo-register has a natural mode. If it is necessary to operate on it in a different
mode—for example, to perform a fullword move instruction on a pseudo-register that
contains a single byte—the pseudo-register must be enclosed in a subreg. In such a
case, wordnum is zero.

Usually m is at least as narrow as the mode of reg, in which case it is restricting
consideration to only the bits of reg that are in m.

Sometimes m is wider than the mode of reg. These subreg expressions are often called
paradoxical. They are used in cases where we want to refer to an object in a wider

218 Using and Porting GNU CC

mode but do not care what value the additional bits have. The reload pass ensures
that paradoxical references are only made to hard registers.

The other use of subreg is to extract the individual registers of a multi-register value.
Machine modes such as DImode and TImode can indicate values longer than a word,
values which usually require two or more consecutive registers. To access one of the
registers, use a subreg with mode SImode and a wordnum that says which register.

Storing in a non-paradoxical subreg has undefined results for bits belonging to the
same word as the subreg. This laxity makes it easier to generate efficient code for such
instructions. To represent an instruction that preserves all the bits outside of those in
the subreg, use strict_low_part around the subreg.

The compilation parameter WORDS_BIG_ENDIAN, if set to 1, says that word number zero
is the most significant part; otherwise, it is the least significant part.

Between the combiner pass and the reload pass, it is possible to have a paradoxical
subreg which contains a mem instead of a reg as its first operand. After the reload
pass, it is also possible to have a non-paradoxical subreg which contains a mem; this
usually occurs when the mem is a stack slot which replaced a pseudo register.

Note that it is not valid to access a DFmode value in SFmode using a subreg. On some
machines the most significant part of a DFmode value does not have the same format as
a single-precision floating value.

It is also not valid to access a single word of a multi-word value in a hard register when
less registers can hold the value than would be expected from its size. For example,
some 32-bit machines have floating-point registers that can hold an entire DFmode value.
If register 10 were such a register (subreg:SI (reg:DF 10) 1) would be invalid because
there is no way to convert that reference to a single machine register. The reload pass
prevents subreg expressions such as these from being formed.

The first operand of a subreg expression is customarily accessed with the SUBREG_REG

macro and the second operand is customarily accessed with the SUBREG_WORD macro.

(scratch:m)

This represents a scratch register that will be required for the execution of a single
instruction and not used subsequently. It is converted into a reg by either the local
register allocator or the reload pass.

scratch is usually present inside a clobber operation (see Section 14.12 [Side Effects],
page 227).

(cc0) This refers to the machine’s condition code register. It has no operands and may not
have a machine mode. There are two ways to use it:

• To stand for a complete set of condition code flags. This is best on most machines,
where each comparison sets the entire series of flags.

With this technique, (cc0) may be validly used in only two contexts: as the
destination of an assignment (in test and compare instructions) and in compari-

Chapter 14: RTL Representation 219

son operators comparing against zero (const_int with value zero; that is to say,
const0_rtx).

• To stand for a single flag that is the result of a single condition. This is useful on
machines that have only a single flag bit, and in which comparison instructions
must specify the condition to test.

With this technique, (cc0) may be validly used in only two contexts: as the
destination of an assignment (in test and compare instructions) where the source is
a comparison operator, and as the first operand of if_then_else (in a conditional
branch).

There is only one expression object of code cc0; it is the value of the variable cc0_rtx.
Any attempt to create an expression of code cc0 will return cc0_rtx.

Instructions can set the condition code implicitly. On many machines, nearly all in-
structions set the condition code based on the value that they compute or store. It is
not necessary to record these actions explicitly in the RTL because the machine de-
scription includes a prescription for recognizing the instructions that do so (by means
of the macro NOTICE_UPDATE_CC). See Section 16.12 [Condition Code], page 364. Only
instructions whose sole purpose is to set the condition code, and instructions that use
the condition code, need mention (cc0).

On some machines, the condition code register is given a register number and a reg is
used instead of (cc0). This is usually the preferable approach if only a small subset
of instructions modify the condition code. Other machines store condition codes in
general registers; in such cases a pseudo register should be used.

Some machines, such as the Sparc and RS/6000, have two sets of arithmetic instruc-
tions, one that sets and one that does not set the condition code. This is best handled
by normally generating the instruction that does not set the condition code, and mak-
ing a pattern that both performs the arithmetic and sets the condition code register
(which would not be (cc0) in this case). For examples, search for ‘addcc’ and ‘andcc’
in ‘sparc.md’.

(pc) This represents the machine’s program counter. It has no operands and may not have
a machine mode. (pc) may be validly used only in certain specific contexts in jump
instructions.

There is only one expression object of code pc; it is the value of the variable pc_rtx.
Any attempt to create an expression of code pc will return pc_rtx.

All instructions that do not jump alter the program counter implicitly by incrementing
it, but there is no need to mention this in the RTL.

(mem:m addr)

This RTX represents a reference to main memory at an address represented by the
expression addr. m specifies how large a unit of memory is accessed.

220 Using and Porting GNU CC

14.7 RTL Expressions for Arithmetic

Unless otherwise specified, all the operands of arithmetic expressions must be valid for mode m.
An operand is valid for mode m if it has mode m, or if it is a const_int or const_double and m

is a mode of class MODE_INT.

For commutative binary operations, constants should be placed in the second operand.

(plus:m x y)

Represents the sum of the values represented by x and y carried out in machine mode
m.

(lo_sum:m x y)

Like plus, except that it represents that sum of x and the low-order bits of y. The
number of low order bits is machine-dependent but is normally the number of bits in a
Pmode item minus the number of bits set by the high code (see Section 14.5 [Constants],
page 214).

m should be Pmode.

(minus:m x y)

Like plus but represents subtraction.

(compare:m x y)

Represents the result of subtracting y from x for purposes of comparison. The result
is computed without overflow, as if with infinite precision.

Of course, machines can’t really subtract with infinite precision. However, they can
pretend to do so when only the sign of the result will be used, which is the case when the
result is stored in the condition code. And that is the only way this kind of expression
may validly be used: as a value to be stored in the condition codes.

The mode m is not related to the modes of x and y, but instead is the mode of the
condition code value. If (cc0) is used, it is VOIDmode. Otherwise it is some mode in
class MODE_CC, often CCmode. See Section 16.12 [Condition Code], page 364.

Normally, x and y must have the same mode. Otherwise, compare is valid only if the
mode of x is in class MODE_INT and y is a const_int or const_double with mode
VOIDmode. The mode of x determines what mode the comparison is to be done in; thus
it must not be VOIDmode.

If one of the operands is a constant, it should be placed in the second operand and the
comparison code adjusted as appropriate.

A compare specifying two VOIDmode constants is not valid since there is no way to
know in what mode the comparison is to be performed; the comparison must either be

Chapter 14: RTL Representation 221

folded during the compilation or the first operand must be loaded into a register while
its mode is still known.

(neg:m x)

Represents the negation (subtraction from zero) of the value represented by x, carried
out in mode m.

(mult:m x y)

Represents the signed product of the values represented by x and y carried out in
machine mode m.

Some machines support a multiplication that generates a product wider than the
operands. Write the pattern for this as

(mult:m (sign_extend:m x) (sign_extend:m y))

where m is wider than the modes of x and y, which need not be the same.

Write patterns for unsigned widening multiplication similarly using zero_extend.

(div:m x y)

Represents the quotient in signed division of x by y, carried out in machine mode m. If
m is a floating point mode, it represents the exact quotient; otherwise, the integerized
quotient.

Some machines have division instructions in which the operands and quotient widths
are not all the same; you should represent such instructions using truncate and sign_

extend as in,
(truncate:m1 (div:m2 x (sign_extend:m2 y)))

(udiv:m x y)

Like div but represents unsigned division.

(mod:m x y)

(umod:m x y)

Like div and udiv but represent the remainder instead of the quotient.

(smin:m x y)

(smax:m x y)

Represents the smaller (for smin) or larger (for smax) of x and y, interpreted as signed
integers in mode m.

(umin:m x y)

(umax:m x y)

Like smin and smax, but the values are interpreted as unsigned integers.

(not:m x)

Represents the bitwise complement of the value represented by x, carried out in mode
m, which must be a fixed-point machine mode.

222 Using and Porting GNU CC

(and:m x y)

Represents the bitwise logical-and of the values represented by x and y, carried out in
machine mode m, which must be a fixed-point machine mode.

(ior:m x y)

Represents the bitwise inclusive-or of the values represented by x and y, carried out in
machine mode m, which must be a fixed-point mode.

(xor:m x y)

Represents the bitwise exclusive-or of the values represented by x and y, carried out in
machine mode m, which must be a fixed-point mode.

(ashift:m x c)

Represents the result of arithmetically shifting x left by c places. x have mode m,
a fixed-point machine mode. c be a fixed-point mode or be a constant with mode
VOIDmode; which mode is determined by the mode called for in the machine description
entry for the left-shift instruction. For example, on the Vax, the mode of c is QImode

regardless of m.

(lshift:m x c)

Like ashift but for logical left shift. ashift and lshift are identical operations; we
customarily use ashift for both.

(lshiftrt:m x c)

(ashiftrt:m x c)

Like lshift and ashift but for right shift. Unlike the case for left shift, these two
operations are distinct.

(rotate:m x c)

(rotatert:m x c)

Similar but represent left and right rotate. If c is a constant, use rotate.

(abs:m x)

Represents the absolute value of x, computed in mode m.

(sqrt:m x)

Represents the square root of x, computed in mode m. Most often m will be a floating
point mode.

(ffs:m x)

Represents one plus the index of the least significant 1-bit in x, represented as an integer
of mode m. (The value is zero if x is zero.) The mode of x need not be m; depending
on the target machine, various mode combinations may be valid.

Chapter 14: RTL Representation 223

14.8 Comparison Operations

Comparison operators test a relation on two operands and are considered to represent a machine-
dependent nonzero value described by, but not necessarily equal to, STORE_FLAG_VALUE (see Sec-
tion 16.19 [Misc], page 397) if the relation holds, or zero if it does not. The mode of the comparison
operation is independent of the mode of the data being compared. If the comparison operation
is being tested (e.g., the first operand of an if_then_else), the mode must be VOIDmode. If
the comparison operation is producing data to be stored in some variable, the mode must be in
class MODE_INT. All comparison operations producing data must use the same mode, which is
machine-specific.

There are two ways that comparison operations may be used. The comparison operators may be
used to compare the condition codes (cc0) against zero, as in (eq (cc0) (const_int 0)). Such
a construct actually refers to the result of the preceding instruction in which the condition codes
were set. The instructing setting the condition code must be adjacent to the instruction using the
condition code; only note insns may separate them.

Alternatively, a comparison operation may directly compare two data objects. The mode of the
comparison is determined by the operands; they must both be valid for a common machine mode.
A comparison with both operands constant would be invalid as the machine mode could not be
deduced from it, but such a comparison should never exist in RTL due to constant folding.

In the example above, if (cc0) were last set to (compare x y), the comparison operation is
identical to (eq x y). Usually only one style of comparisons is supported on a particular machine,
but the combine pass will try to merge the operations to produce the eq shown in case it exists in
the context of the particular insn involved.

Inequality comparisons come in two flavors, signed and unsigned. Thus, there are distinct
expression codes gt and gtu for signed and unsigned greater-than. These can produce different
results for the same pair of integer values: for example, 1 is signed greater-than -1 but not unsigned
greater-than, because -1 when regarded as unsigned is actually 0xffffffff which is greater than
1.

The signed comparisons are also used for floating point values. Floating point comparisons are
distinguished by the machine modes of the operands.

(eq:m x y)

1 if the values represented by x and y are equal, otherwise 0.

224 Using and Porting GNU CC

(ne:m x y)

1 if the values represented by x and y are not equal, otherwise 0.

(gt:m x y)

1 if the x is greater than y. If they are fixed-point, the comparison is done in a signed
sense.

(gtu:m x y)

Like gt but does unsigned comparison, on fixed-point numbers only.

(lt:m x y)

(ltu:m x y)

Like gt and gtu but test for “less than”.

(ge:m x y)

(geu:m x y)

Like gt and gtu but test for “greater than or equal”.

(le:m x y)

(leu:m x y)

Like gt and gtu but test for “less than or equal”.

(if_then_else cond then else)

This is not a comparison operation but is listed here because it is always used in con-
junction with a comparison operation. To be precise, cond is a comparison expression.
This expression represents a choice, according to cond, between the value represented
by then and the one represented by else.

On most machines, if_then_else expressions are valid only to express conditional
jumps.

(cond [test1 value1 test2 value2 . . .] default)

Similar to if_then_else, but more general. Each of test1, test2, . . . is performed in
turn. The result of this expression is the value corresponding to the first non-zero test,
or default if none of the tests are non-zero expressions.

This is currently not valid for instruction patterns and is supported only for insn
attributes. See Section 15.15 [Insn Attributes], page 292.

14.9 Bit Fields

Special expression codes exist to represent bitfield instructions. These types of expressions are
lvalues in RTL; they may appear on the left side of an assignment, indicating insertion of a value
into the specified bit field.

Chapter 14: RTL Representation 225

(sign_extract:m loc size pos)

This represents a reference to a sign-extended bit field contained or starting in loc (a
memory or register reference). The bit field is size bits wide and starts at bit pos. The
compilation option BITS_BIG_ENDIAN says which end of the memory unit pos counts
from.

If loc is in memory, its mode must be a single-byte integer mode. If loc is in a register,
the mode to use is specified by the operand of the insv or extv pattern (see Section 15.7
[Standard Names], page 267) and is usually a full-word integer mode.

The mode of pos is machine-specific and is also specified in the insv or extv pattern.

The mode m is the same as the mode that would be used for loc if it were a register.

(zero_extract:m loc size pos)

Like sign_extract but refers to an unsigned or zero-extended bit field. The same
sequence of bits are extracted, but they are filled to an entire word with zeros instead
of by sign-extension.

14.10 Conversions

All conversions between machine modes must be represented by explicit conversion operations.
For example, an expression which is the sum of a byte and a full word cannot be written as (plus:SI
(reg:QI 34) (reg:SI 80)) because the plus operation requires two operands of the same machine
mode. Therefore, the byte-sized operand is enclosed in a conversion operation, as in

(plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))

The conversion operation is not a mere placeholder, because there may be more than one way
of converting from a given starting mode to the desired final mode. The conversion operation code
says how to do it.

For all conversion operations, x must not be VOIDmode because the mode in which to do the
conversion would not be known. The conversion must either be done at compile-time or x must be
placed into a register.

(sign_extend:m x)

Represents the result of sign-extending the value x to machine mode m. m must be a
fixed-point mode and x a fixed-point value of a mode narrower than m.

226 Using and Porting GNU CC

(zero_extend:m x)

Represents the result of zero-extending the value x to machine mode m. m must be a
fixed-point mode and x a fixed-point value of a mode narrower than m.

(float_extend:m x)

Represents the result of extending the value x to machine mode m. m must be a
floating point mode and x a floating point value of a mode narrower than m.

(truncate:m x)

Represents the result of truncating the value x to machine mode m. m must be a
fixed-point mode and x a fixed-point value of a mode wider than m.

(float_truncate:m x)

Represents the result of truncating the value x to machine mode m. m must be a
floating point mode and x a floating point value of a mode wider than m.

(float:m x)

Represents the result of converting fixed point value x, regarded as signed, to floating
point mode m.

(unsigned_float:m x)

Represents the result of converting fixed point value x, regarded as unsigned, to floating
point mode m.

(fix:m x)

When m is a fixed point mode, represents the result of converting floating point value x

to mode m, regarded as signed. How rounding is done is not specified, so this operation
may be used validly in compiling C code only for integer-valued operands.

(unsigned_fix:m x)

Represents the result of converting floating point value x to fixed point mode m, re-
garded as unsigned. How rounding is done is not specified.

(fix:m x)

When m is a floating point mode, represents the result of converting floating point
value x (valid for mode m) to an integer, still represented in floating point mode m, by
rounding towards zero.

14.11 Declarations

Declaration expression codes do not represent arithmetic operations but rather state assertions
about their operands.

Chapter 14: RTL Representation 227

(strict_low_part (subreg:m (reg:n r) 0))

This expression code is used in only one context: as the destination operand of a set

expression. In addition, the operand of this expression must be a non-paradoxical
subreg expression.

The presence of strict_low_part says that the part of the register which is meaningful
in mode n, but is not part of mode m, is not to be altered. Normally, an assignment
to such a subreg is allowed to have undefined effects on the rest of the register when m

is less than a word.

14.12 Side Effect Expressions

The expression codes described so far represent values, not actions. But machine instructions
never produce values; they are meaningful only for their side effects on the state of the machine.
Special expression codes are used to represent side effects.

The body of an instruction is always one of these side effect codes; the codes described above,
which represent values, appear only as the operands of these.

(set lval x)

Represents the action of storing the value of x into the place represented by lval. lval

must be an expression representing a place that can be stored in: reg (or subreg or
strict_low_part), mem, pc or cc0.

If lval is a reg, subreg or mem, it has a machine mode; then x must be valid for that
mode.

If lval is a reg whose machine mode is less than the full width of the register, then it
means that the part of the register specified by the machine mode is given the specified
value and the rest of the register receives an undefined value. Likewise, if lval is a
subreg whose machine mode is narrower than the mode of the register, the rest of the
register can be changed in an undefined way.

If lval is a strict_low_part of a subreg, then the part of the register specified by the
machine mode of the subreg is given the value x and the rest of the register is not
changed.

If lval is (cc0), it has no machine mode, and x may be either a compare expression or
a value that may have any mode. The latter case represents a “test” instruction. The
expression (set (cc0) (reg:m n)) is equivalent to (set (cc0) (compare (reg:m n)

(const_int 0))). Use the former expression to save space during the compilation.

228 Using and Porting GNU CC

If lval is (pc), we have a jump instruction, and the possibilities for x are very limited.
It may be a label_ref expression (unconditional jump). It may be an if_then_else

(conditional jump), in which case either the second or the third operand must be (pc)

(for the case which does not jump) and the other of the two must be a label_ref (for
the case which does jump). x may also be a mem or (plus:SI (pc) y), where y may
be a reg or a mem; these unusual patterns are used to represent jumps through branch
tables.

If lval is neither (cc0) nor (pc), the mode of lval must not be VOIDmode and the mode
of x must be valid for the mode of lval.

lval is customarily accessed with the SET_DEST macro and x with the SET_SRC macro.

(return) As the sole expression in a pattern, represents a return from the current function, on
machines where this can be done with one instruction, such as Vaxes. On machines
where a multi-instruction “epilogue” must be executed in order to return from the
function, returning is done by jumping to a label which precedes the epilogue, and the
return expression code is never used.

Inside an if_then_else expression, represents the value to be placed in pc to return
to the caller.

Note that an insn pattern of (return) is logically equivalent to (set (pc) (return)),
but the latter form is never used.

(call function nargs)

Represents a function call. function is a mem expression whose address is the address of
the function to be called. nargs is an expression which can be used for two purposes:
on some machines it represents the number of bytes of stack argument; on others, it
represents the number of argument registers.

Each machine has a standard machine mode which function must have. The machine
description defines macro FUNCTION_MODE to expand into the requisite mode name.
The purpose of this mode is to specify what kind of addressing is allowed, on machines
where the allowed kinds of addressing depend on the machine mode being addressed.

(clobber x)

Represents the storing or possible storing of an unpredictable, undescribed value into
x, which must be a reg, scratch or mem expression.

One place this is used is in string instructions that store standard values into particular
hard registers. It may not be worth the trouble to describe the values that are stored,
but it is essential to inform the compiler that the registers will be altered, lest it attempt
to keep data in them across the string instruction.

If x is (mem:BLK (const_int 0)), it means that all memory locations must be pre-
sumed clobbered.

Note that the machine description classifies certain hard registers as “call-clobbered”.
All function call instructions are assumed by default to clobber these registers, so there

Chapter 14: RTL Representation 229

is no need to use clobber expressions to indicate this fact. Also, each function call
is assumed to have the potential to alter any memory location, unless the function is
declared const.

If the last group of expressions in a parallel are each a clobber expression whose
arguments are reg or match_scratch (see Section 15.3 [RTL Template], page 247)
expressions, the combiner phase can add the appropriate clobber expressions to an
insn it has constructed when doing so will cause a pattern to be matched.

This feature can be used, for example, on a machine that whose multiply and add
instructions don’t use an MQ register but which has an add-accumulate instruction
that does clobber the MQ register. Similarly, a combined instruction might require a
temporary register while the constituent instructions might not.

When a clobber expression for a register appears inside a parallel with other side
effects, the register allocator guarantees that the register is unoccupied both before and
after that insn. However, the reload phase may allocate a register used for one of the
inputs unless the ‘&’ constraint is specified for the selected alternative (see Section 15.6.4
[Modifiers], page 261). You can clobber either a specific hard register, a pseudo register,
or a scratch expression; in the latter two cases, GNU CC will allocate a hard register
that is available there for use as a temporary.

For instructions that require a temporary register, you should use scratch instead of
a pseudo-register because this will allow the combiner phase to add the clobber when
required. You do this by coding (clobber (match_scratch . . .)). If you do clobber a
pseudo register, use one which appears nowhere else—generate a new one each time.
Otherwise, you may confuse CSE.

There is one other known use for clobbering a pseudo register in a parallel: when one
of the input operands of the insn is also clobbered by the insn. In this case, using the
same pseudo register in the clobber and elsewhere in the insn produces the expected
results.

(use x) Represents the use of the value of x. It indicates that the value in x at this point in the
program is needed, even though it may not be apparent why this is so. Therefore, the
compiler will not attempt to delete previous instructions whose only effect is to store
a value in x. x must be a reg expression.

During the delayed branch scheduling phase, x may be an insn. This indicates that
x previously was located at this place in the code and its data dependencies need
to be taken into account. These use insns will be deleted before the delayed branch
scheduling phase exits.

(parallel [x0 x1 . . .])

Represents several side effects performed in parallel. The square brackets stand for
a vector; the operand of parallel is a vector of expressions. x0, x1 and so on are

230 Using and Porting GNU CC

individual side effect expressions—expressions of code set, call, return, clobber or
use.

“In parallel” means that first all the values used in the individual side-effects are com-
puted, and second all the actual side-effects are performed. For example,

(parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))
(set (mem:SI (reg:SI 1)) (reg:SI 1))])

says unambiguously that the values of hard register 1 and the memory location ad-
dressed by it are interchanged. In both places where (reg:SI 1) appears as a memory
address it refers to the value in register 1 before the execution of the insn.

It follows that it is incorrect to use parallel and expect the result of one set to
be available for the next one. For example, people sometimes attempt to represent a
jump-if-zero instruction this way:

(parallel [(set (cc0) (reg:SI 34))
(set (pc) (if_then_else

(eq (cc0) (const_int 0))
(label_ref . . .)
(pc)))])

But this is incorrect, because it says that the jump condition depends on the condition
code value before this instruction, not on the new value that is set by this instruction.

Peephole optimization, which takes place together with final assembly code output, can
produce insns whose patterns consist of a parallel whose elements are the operands
needed to output the resulting assembler code—often reg, mem or constant expressions.
This would not be well-formed RTL at any other stage in compilation, but it is ok then
because no further optimization remains to be done. However, the definition of the
macro NOTICE_UPDATE_CC, if any, must deal with such insns if you define any peephole
optimizations.

(sequence [insns . . .])

Represents a sequence of insns. Each of the insns that appears in the vector is suitable
for appearing in the chain of insns, so it must be an insn, jump_insn, call_insn,
code_label, barrier or note.

A sequence RTX is never placed in an actual insn during RTL generation. It represents
the sequence of insns that result from a define_expand before those insns are passed to
emit_insn to insert them in the chain of insns. When actually inserted, the individual
sub-insns are separated out and the sequence is forgotten.

After delay-slot scheduling is completed, an insn and all the insns that reside in its
delay slots are grouped together into a sequence. The insn requiring the delay slot is
the first insn in the vector; subsequent insns are to be placed in the delay slot.

INSN_ANNULLED_BRANCH_P is set on an insn in a delay slot to indicate that a branch
insn should be used that will conditionally annul the effect of the insns in the delay
slots. In such a case, INSN_FROM_TARGET_P indicates that the insn is from the target

Chapter 14: RTL Representation 231

of the branch and should be executed only if the branch is taken; otherwise the insn
should be executed only if the branch is not taken. See Section 15.15.7 [Delay Slots],
page 301.

These expression codes appear in place of a side effect, as the body of an insn, though strictly
speaking they do not always describe side effects as such:

(asm_input s)

Represents literal assembler code as described by the string s.

(unspec [operands . . .] index)

(unspec_volatile [operands . . .] index)

Represents a machine-specific operation on operands. index selects between multi-
ple machine-specific operations. unspec_volatile is used for volatile operations and
operations that may trap; unspec is used for other operations.

These codes may appear inside a pattern of an insn, inside a parallel, or inside an
expression.

(addr_vec:m [lr0 lr1 . . .])

Represents a table of jump addresses. The vector elements lr0, etc., are label_ref

expressions. The mode m specifies how much space is given to each address; normally
m would be Pmode.

(addr_diff_vec:m base [lr0 lr1 . . .])

Represents a table of jump addresses expressed as offsets from base. The vector ele-
ments lr0, etc., are label_ref expressions and so is base. The mode m specifies how
much space is given to each address-difference.

14.13 Embedded Side-Effects on Addresses

Four special side-effect expression codes appear as memory addresses.

(pre_dec:m x)

Represents the side effect of decrementing x by a standard amount and represents also
the value that x has after being decremented. x must be a reg or mem, but most
machines allow only a reg. m must be the machine mode for pointers on the machine
in use. The amount x is decremented by is the length in bytes of the machine mode of
the containing memory reference of which this expression serves as the address. Here
is an example of its use:

232 Using and Porting GNU CC

(mem:DF (pre_dec:SI (reg:SI 39)))

This says to decrement pseudo register 39 by the length of a DFmode value and use the
result to address a DFmode value.

(pre_inc:m x)

Similar, but specifies incrementing x instead of decrementing it.

(post_dec:m x)

Represents the same side effect as pre_dec but a different value. The value represented
here is the value x has before being decremented.

(post_inc:m x)

Similar, but specifies incrementing x instead of decrementing it.

These embedded side effect expressions must be used with care. Instruction patterns may not
use them. Until the ‘flow’ pass of the compiler, they may occur only to represent pushes onto
the stack. The ‘flow’ pass finds cases where registers are incremented or decremented in one
instruction and used as an address shortly before or after; these cases are then transformed to use
pre- or post-increment or -decrement.

If a register used as the operand of these expressions is used in another address in an insn, the
original value of the register is used. Uses of the register outside of an address are not permitted
within the same insn as a use in an embedded side effect expression because such insns behave
differently on different machines and hence must be treated as ambiguous and disallowed.

An instruction that can be represented with an embedded side effect could also be represented
using parallel containing an additional set to describe how the address register is altered. This
is not done because machines that allow these operations at all typically allow them wherever a
memory address is called for. Describing them as additional parallel stores would require doubling
the number of entries in the machine description.

14.14 Assembler Instructions as Expressions

The RTX code asm_operands represents a value produced by a user-specified assembler instruc-
tion. It is used to represent an asm statement with arguments. An asm statement with a single
output operand, like this:

asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));

Chapter 14: RTL Representation 233

is represented using a single asm_operands RTX which represents the value that is stored in
outputvar:

(set rtx-for-outputvar
(asm_operands "foo %1,%2,%0" "a" 0

[rtx-for-addition-result rtx-for-*z]
[(asm_input:m1 "g")
(asm_input:m2 "di")]))

Here the operands of the asm_operands RTX are the assembler template string, the output-
operand’s constraint, the index-number of the output operand among the output operands specified,
a vector of input operand RTX’s, and a vector of input-operand modes and constraints. The mode
m1 is the mode of the sum x+y; m2 is that of *z.

When an asm statement has multiple output values, its insn has several such set RTX’s inside
of a parallel. Each set contains a asm_operands; all of these share the same assembler template
and vectors, but each contains the constraint for the respective output operand. They are also
distinguished by the output-operand index number, which is 0, 1, . . . for successive output operands.

14.15 Insns

The RTL representation of the code for a function is a doubly-linked chain of objects called
insns. Insns are expressions with special codes that are used for no other purpose. Some insns are
actual instructions; others represent dispatch tables for switch statements; others represent labels
to jump to or various sorts of declarative information.

In addition to its own specific data, each insn must have a unique id-number that distinguishes
it from all other insns in the current function (after delayed branch scheduling, copies of an insn
with the same id-number may be present in multiple places in a function, but these copies will
always be identical and will only appear inside a sequence), and chain pointers to the preceding
and following insns. These three fields occupy the same position in every insn, independent of the
expression code of the insn. They could be accessed with XEXP and XINT, but instead three special
macros are always used:

INSN_UID (i)

Accesses the unique id of insn i.

234 Using and Porting GNU CC

PREV_INSN (i)

Accesses the chain pointer to the insn preceding i. If i is the first insn, this is a null
pointer.

NEXT_INSN (i)

Accesses the chain pointer to the insn following i. If i is the last insn, this is a null
pointer.

The first insn in the chain is obtained by calling get_insns; the last insn is the result of calling
get_last_insn. Within the chain delimited by these insns, the NEXT_INSN and PREV_INSN pointers
must always correspond: if insn is not the first insn,

NEXT_INSN (PREV_INSN (insn)) == insn

is always true and if insn is not the last insn,

PREV_INSN (NEXT_INSN (insn)) == insn

is always true.

After delay slot scheduling, some of the insns in the chain might be sequence expressions, which
contain a vector of insns. The value of NEXT_INSN in all but the last of these insns is the next insn
in the vector; the value of NEXT_INSN of the last insn in the vector is the same as the value of
NEXT_INSN for the sequence in which it is contained. Similar rules apply for PREV_INSN.

This means that the above invariants are not necessarily true for insns inside sequence expres-
sions. Specifically, if insn is the first insn in a sequence, NEXT_INSN (PREV_INSN (insn)) is the
insn containing the sequence expression, as is the value of PREV_INSN (NEXT_INSN (insn)) is insn

is the last insn in the sequence expression. You can use these expressions to find the containing
sequence expression.

Every insn has one of the following six expression codes:

insn The expression code insn is used for instructions that do not jump and do not do
function calls. sequence expressions are always contained in insns with code insn

even if one of those insns should jump or do function calls.

Insns with code insn have four additional fields beyond the three mandatory ones listed
above. These four are described in a table below.

Chapter 14: RTL Representation 235

jump_insn

The expression code jump_insn is used for instructions that may jump (or, more gen-
erally, may contain label_ref expressions). If there is an instruction to return from
the current function, it is recorded as a jump_insn.

jump_insn insns have the same extra fields as insn insns, accessed in the same way
and in addition contains a field JUMP_LABEL which is defined once jump optimization
has completed.

For simple conditional and unconditional jumps, this field contains the code_label to
which this insn will (possibly conditionally) branch. In a more complex jump, JUMP_
LABEL records one of the labels that the insn refers to; the only way to find the others
is to scan the entire body of the insn.

Return insns count as jumps, but since they do not refer to any labels, they have zero
in the JUMP_LABEL field.

call_insn

The expression code call_insn is used for instructions that may do function calls. It
is important to distinguish these instructions because they imply that certain registers
and memory locations may be altered unpredictably.

A call_insn insn may be preceded by insns that contain a single use expression and
be followed by insns the contain a single clobber expression. If so, these use and
clobber expressions are treated as being part of the function call. There must not
even be a note between the call_insn and the use or clobber insns for this special
treatment to take place. This is somewhat of a kludge and will be removed in a later
version of GNU CC.

call_insn insns have the same extra fields as insn insns, accessed in the same way.

code_label

A code_label insn represents a label that a jump insn can jump to. It contains two
special fields of data in addition to the three standard ones. CODE_LABEL_NUMBER is
used to hold the label number, a number that identifies this label uniquely among all
the labels in the compilation (not just in the current function). Ultimately, the label
is represented in the assembler output as an assembler label, usually of the form ‘Ln’
where n is the label number.

When a code_label appears in an RTL expression, it normally appears within a label_
ref which represents the address of the label, as a number.

The field LABEL_NUSES is only defined once the jump optimization phase is completed
and contains the number of times this label is referenced in the current function.

barrier Barriers are placed in the instruction stream when control cannot flow past them.
They are placed after unconditional jump instructions to indicate that the jumps are
unconditional and after calls to volatile functions, which do not return (e.g., exit).
They contain no information beyond the three standard fields.

236 Using and Porting GNU CC

note note insns are used to represent additional debugging and declarative information.
They contain two nonstandard fields, an integer which is accessed with the macro
NOTE_LINE_NUMBER and a string accessed with NOTE_SOURCE_FILE.

If NOTE_LINE_NUMBER is positive, the note represents the position of a source line and
NOTE_SOURCE_FILE is the source file name that the line came from. These notes control
generation of line number data in the assembler output.

Otherwise, NOTE_LINE_NUMBER is not really a line number but a code with one of the
following values (and NOTE_SOURCE_FILE must contain a null pointer):

NOTE_INSN_DELETED

Such a note is completely ignorable. Some passes of the compiler delete
insns by altering them into notes of this kind.

NOTE_INSN_BLOCK_BEG

NOTE_INSN_BLOCK_END

These types of notes indicate the position of the beginning and end of a
level of scoping of variable names. They control the output of debugging
information.

NOTE_INSN_LOOP_BEG

NOTE_INSN_LOOP_END

These types of notes indicate the position of the beginning and end of a
while or for loop. They enable the loop optimizer to find loops quickly.

NOTE_INSN_LOOP_CONT

Appears at the place in a loop that continue statements jump to.

NOTE_INSN_LOOP_VTOP

This note indicates the place in a loop where the exit test begins for those
loops in which the exit test has been duplicated. This position becomes
another virtual start of the loop when considering loop invariants.

NOTE_INSN_FUNCTION_END

Appears near the end of the function body, just before the label that return
statements jump to (on machine where a single instruction does not suffice
for returning). This note may be deleted by jump optimization.

NOTE_INSN_SETJMP

Appears following each call to setjmp or a related function.

These codes are printed symbolically when they appear in debugging dumps.

The machine mode of an insn is normally VOIDmode, but some phases use the mode for various
purposes; for example, the reload pass sets it to HImode if the insn needs reloading but not register

Chapter 14: RTL Representation 237

elimination and QImode if both are required. The common subexpression elimination pass sets the
mode of an insn to QImode when it is the first insn in a block that has already been processed.

Here is a table of the extra fields of insn, jump_insn and call_insn insns:

PATTERN (i)

An expression for the side effect performed by this insn. This must be one of the
following codes: set, call, use, clobber, return, asm_input, asm_output, addr_

vec, addr_diff_vec, trap_if, unspec, unspec_volatile, parallel, or sequence.
If it is a parallel, each element of the parallel must be one these codes, except
that parallel expressions cannot be nested and addr_vec and addr_diff_vec are
not permitted inside a parallel expression.

INSN_CODE (i)

An integer that says which pattern in the machine description matches this insn, or -1
if the matching has not yet been attempted.

Such matching is never attempted and this field remains -1 on an insn whose pattern
consists of a single use, clobber, asm_input, addr_vec or addr_diff_vec expression.

Matching is also never attempted on insns that result from an asm statement. These
contain at least one asm_operands expression. The function asm_noperands returns a
non-negative value for such insns.

In the debugging output, this field is printed as a number followed by a symbolic
representation that locates the pattern in the ‘md’ file as some small positive or negative
offset from a named pattern.

LOG_LINKS (i)

A list (chain of insn_list expressions) giving information about dependencies between
instructions within a basic block. Neither a jump nor a label may come between the
related insns.

REG_NOTES (i)

A list (chain of expr_list and insn_list expressions) giving miscellaneous informa-
tion about the insn. It is often information pertaining to the registers used in this
insn.

The LOG_LINKS field of an insn is a chain of insn_list expressions. Each of these has two
operands: the first is an insn, and the second is another insn_list expression (the next one in the
chain). The last insn_list in the chain has a null pointer as second operand. The significant thing
about the chain is which insns appear in it (as first operands of insn_list expressions). Their
order is not significant.

238 Using and Porting GNU CC

This list is originally set up by the flow analysis pass; it is a null pointer until then. Flow
only adds links for those data dependencies which can be used for instruction combination. For
each insn, the flow analysis pass adds a link to insns which store into registers values that are
used for the first time in this insn. The instruction scheduling pass adds extra links so that every
dependence will be represented. Links represent data dependencies, antidependencies and output
dependencies; the machine mode of the link distinguishes these three types: antidependencies have
mode REG_DEP_ANTI, output dependencies have mode REG_DEP_OUTPUT, and data dependencies
have mode VOIDmode.

The REG_NOTES field of an insn is a chain similar to the LOG_LINKS field but it includes expr_

list expressions in addition to insn_list expressions. There are several kinds of register notes,
which are distinguished by the machine mode, which in a register note is really understood as being
an enum reg_note. The first operand op of the note is data whose meaning depends on the kind
of note.

The macro REG_NOTE_KIND (x) returns the kind of register note. Its counterpart, the macro
PUT_REG_NOTE_KIND (x, newkind) sets the register note type of x to be newkind.

Register notes are of three classes: They may say something about an input to an insn, they
may say something about an output of an insn, or they may create a linkage between two insns.
There are also a set of values that are only used in LOG_LINKS.

These register notes annotate inputs to an insn:

REG_DEAD The value in op dies in this insn; that is to say, altering the value immediately after
this insn would not affect the future behavior of the program.

This does not necessarily mean that the register op has no useful value after this insn
since it may also be an output of the insn. In such a case, however, a REG_DEAD note
would be redundant and is usually not present until after the reload pass, but no code
relies on this fact.

REG_INC The register op is incremented (or decremented; at this level there is no distinction)
by an embedded side effect inside this insn. This means it appears in a post_inc,
pre_inc, post_dec or pre_dec expression.

REG_NONNEG

The register op is known to have a nonnegative value when this insn is reached. This
is used so that decrement and branch until zero instructions, such as the m68k dbra,
can be matched.

The REG_NONNEG note is added to insns only if the machine description has a
‘decrement_and_branch_until_zero’ pattern.

Chapter 14: RTL Representation 239

REG_NO_CONFLICT

This insn does not cause a conflict between op and the item being set by this insn
even though it might appear that it does. In other words, if the destination register
and op could otherwise be assigned the same register, this insn does not prevent that
assignment.

Insns with this note are usually part of a block that begins with a clobber insn speci-
fying a multi-word pseudo register (which will be the output of the block), a group of
insns that each set one word of the value and have the REG_NO_CONFLICT note attached,
and a final insn that copies the output to itself with an attached REG_EQUAL note giv-
ing the expression being computed. This block is encapsulated with REG_LIBCALL and
REG_RETVAL notes on the first and last insns, respectively.

REG_LABEL

This insn uses op, a code_label, but is not a jump_insn. The presence of this note
allows jump optimization to be aware that op is, in fact, being used.

The following notes describe attributes of outputs of an insn:

REG_EQUIV

REG_EQUAL

This note is only valid on an insn that sets only one register and indicates that that
register will be equal to op at run time; the scope of this equivalence differs between
the two types of notes. The value which the insn explicitly copies into the register may
look different from op, but they will be equal at run time. If the output of the single
set is a strict_low_part expression, the note refers to the register that is contained
in SUBREG_REG of the subreg expression.

For REG_EQUIV, the register is equivalent to op throughout the entire function, and
could validly be replaced in all its occurrences by op. (“Validly” here refers to the data
flow of the program; simple replacement may make some insns invalid.) For example,
when a constant is loaded into a register that is never assigned any other value, this
kind of note is used.

When a parameter is copied into a pseudo-register at entry to a function, a note of this
kind records that the register is equivalent to the stack slot where the parameter was
passed. Although in this case the register may be set by other insns, it is still valid to
replace the register by the stack slot throughout the function.

In the case of REG_EQUAL, the register that is set by this insn will be equal to op at
run time at the end of this insn but not necessarily elsewhere in the function. In this
case, op is typically an arithmetic expression. For example, when a sequence of insns
such as a library call is used to perform an arithmetic operation, this kind of note is
attached to the insn that produces or copies the final value.

240 Using and Porting GNU CC

These two notes are used in different ways by the compiler passes. REG_EQUAL is used
by passes prior to register allocation (such as common subexpression elimination and
loop optimization) to tell them how to think of that value. REG_EQUIV notes are used
by register allocation to indicate that there is an available substitute expression (either
a constant or a mem expression for the location of a parameter on the stack) that may
be used in place of a register if insufficient registers are available.

Except for stack homes for parameters, which are indicated by a REG_EQUIV note and
are not useful to the early optimization passes and pseudo registers that are equivalent
to a memory location throughout there entire life, which is not detected until later in
the compilation, all equivalences are initially indicated by an attached REG_EQUAL note.
In the early stages of register allocation, a REG_EQUAL note is changed into a REG_EQUIV

note if op is a constant and the insn represents the only set of its destination register.

Thus, compiler passes prior to register allocation need only check for REG_EQUAL notes
and passes subsequent to register allocation need only check for REG_EQUIV notes.

REG_UNUSED

The register op being set by this insn will not be used in a subsequent insn. This
differs from a REG_DEAD note, which indicates that the value in an input will not be
used subsequently. These two notes are independent; both may be present for the same
register.

REG_WAS_0

The single output of this insn contained zero before this insn. op is the insn that set it
to zero. You can rely on this note if it is present and op has not been deleted or turned
into a note; its absence implies nothing.

These notes describe linkages between insns. They occur in pairs: one insn has one of a pair of
notes that points to a second insn, which has the inverse note pointing back to the first insn.

REG_RETVAL

This insn copies the value of a multi-insn sequence (for example, a library call), and
op is the first insn of the sequence (for a library call, the first insn that was generated
to set up the arguments for the library call).

Loop optimization uses this note to treat such a sequence as a single operation for code
motion purposes and flow analysis uses this note to delete such sequences whose results
are dead.

A REG_EQUAL note will also usually be attached to this insn to provide the expression
being computed by the sequence.

Chapter 14: RTL Representation 241

REG_LIBCALL

This is the inverse of REG_RETVAL: it is placed on the first insn of a multi-insn sequence,
and it points to the last one.

REG_CC_SETTER

REG_CC_USER

On machines that use cc0, the insns which set and use cc0 set and use cc0 are adjacent.
However, when branch delay slot filling is done, this may no longer be true. In this
case a REG_CC_USER note will be placed on the insn setting cc0 to point to the insn
using cc0 and a REG_CC_SETTER note will be placed on the insn using cc0 to point to
the insn setting cc0.

These values are only used in the LOG_LINKS field, and indicate the type of dependency that
each link represents. Links which indicate a data dependence (a read after write dependence) do
not use any code, they simply have mode VOIDmode, and are printed without any descriptive text.

REG_DEP_ANTI

This indicates an anti dependence (a write after read dependence).

REG_DEP_OUTPUT

This indicates an output dependence (a write after write dependence).

For convenience, the machine mode in an insn_list or expr_list is printed using these sym-
bolic codes in debugging dumps.

The only difference between the expression codes insn_list and expr_list is that the first
operand of an insn_list is assumed to be an insn and is printed in debugging dumps as the insn’s
unique id; the first operand of an expr_list is printed in the ordinary way as an expression.

14.16 RTL Representation of Function-Call Insns

Insns that call subroutines have the RTL expression code call_insn. These insns must satisfy
special rules, and their bodies must use a special RTL expression code, call.

A call expression has two operands, as follows:

(call (mem:fm addr) nbytes)

242 Using and Porting GNU CC

Here nbytes is an operand that represents the number of bytes of argument data being passed to
the subroutine, fm is a machine mode (which must equal as the definition of the FUNCTION_MODE

macro in the machine description) and addr represents the address of the subroutine.

For a subroutine that returns no value, the call expression as shown above is the entire body
of the insn, except that the insn might also contain use or clobber expressions.

For a subroutine that returns a value whose mode is not BLKmode, the value is returned in a
hard register. If this register’s number is r, then the body of the call insn looks like this:

(set (reg:m r)
(call (mem:fm addr) nbytes))

This RTL expression makes it clear (to the optimizer passes) that the appropriate register receives
a useful value in this insn.

When a subroutine returns a BLKmode value, it is handled by passing to the subroutine the
address of a place to store the value. So the call insn itself does not “return” any value, and it has
the same RTL form as a call that returns nothing.

On some machines, the call instruction itself clobbers some register, for example to contain
the return address. call_insn insns on these machines should have a body which is a parallel

that contains both the call expression and clobber expressions that indicate which registers are
destroyed. Similarly, if the call instruction requires some register other than the stack pointer that
is not explicitly mentioned it its RTL, a use subexpression should mention that register.

Functions that are called are assumed to modify all registers listed in the configuration macro
CALL_USED_REGISTERS (see Section 16.5.1 [Register Basics], page 322) and, with the exception of
const functions and library calls, to modify all of memory.

Insns containing just use expressions directly precede the call_insn insn to indicate which regis-
ters contain inputs to the function. Similarly, if registers other than those in CALL_USED_REGISTERS

are clobbered by the called function, insns containing a single clobber follow immediately after
the call to indicate which registers.

Chapter 14: RTL Representation 243

14.17 Structure Sharing Assumptions

The compiler assumes that certain kinds of RTL expressions are unique; there do not exist two
distinct objects representing the same value. In other cases, it makes an opposite assumption:
that no RTL expression object of a certain kind appears in more than one place in the containing
structure.

These assumptions refer to a single function; except for the RTL objects that describe global
variables and external functions, and a few standard objects such as small integer constants, no
RTL objects are common to two functions.

• Each pseudo-register has only a single reg object to represent it, and therefore only a single
machine mode.

• For any symbolic label, there is only one symbol_ref object referring to it.

• There is only one const_int expression with value 0, only one with value 1, and only one with
value −1. Some other integer values are also stored uniquely.

• There is only one pc expression.

• There is only one cc0 expression.

• There is only one const_double expression with value 0 for each floating point mode. Likewise
for values 1 and 2.

• No label_ref or scratch appears in more than one place in the RTL structure; in other
words, it is safe to do a tree-walk of all the insns in the function and assume that each time a
label_ref or scratch is seen it is distinct from all others that are seen.

• Only one mem object is normally created for each static variable or stack slot, so these objects
are frequently shared in all the places they appear. However, separate but equal objects for
these variables are occasionally made.

• When a single asm statement has multiple output operands, a distinct asm_operands expression
is made for each output operand. However, these all share the vector which contains the
sequence of input operands. This sharing is used later on to test whether two asm_operands

expressions come from the same statement, so all optimizations must carefully preserve the
sharing if they copy the vector at all.

• No RTL object appears in more than one place in the RTL structure except as described above.
Many passes of the compiler rely on this by assuming that they can modify RTL objects in
place without unwanted side-effects on other insns.

• During initial RTL generation, shared structure is freely introduced. After all the RTL
for a function has been generated, all shared structure is copied by unshare_all_rtl in
‘emit-rtl.c’, after which the above rules are guaranteed to be followed.

244 Using and Porting GNU CC

• During the combiner pass, shared structure within an insn can exist temporarily. However,
the shared structure is copied before the combiner is finished with the insn. This is done by
calling copy_rtx_if_shared, which is a subroutine of unshare_all_rtl.

14.18 Reading RTL

To read an RTL object from a file, call read_rtx. It takes one argument, a stdio stream, and
returns a single RTL object.

Reading RTL from a file is very slow. This is no currently not a problem because reading RTL
occurs only as part of building the compiler.

People frequently have the idea of using RTL stored as text in a file as an interface between a
language front end and the bulk of GNU CC. This idea is not feasible.

GNU CC was designed to use RTL internally only. Correct RTL for a given program is very
dependent on the particular target machine. And the RTL does not contain all the information
about the program.

The proper way to interface GNU CC to a new language front end is with the “tree” data
structure. There is no manual for this data structure, but it is described in the files ‘tree.h’ and
‘tree.def’.

Chapter 15: Machine Descriptions 245

15 Machine Descriptions

A machine description has two parts: a file of instruction patterns (‘.md’ file) and a C header
file of macro definitions.

The ‘.md’ file for a target machine contains a pattern for each instruction that the target machine
supports (or at least each instruction that is worth telling the compiler about). It may also contain
comments. A semicolon causes the rest of the line to be a comment, unless the semicolon is inside
a quoted string.

See the next chapter for information on the C header file.

15.1 Everything about Instruction Patterns

Each instruction pattern contains an incomplete RTL expression, with pieces to be filled in later,
operand constraints that restrict how the pieces can be filled in, and an output pattern or C code
to generate the assembler output, all wrapped up in a define_insn expression.

A define_insn is an RTL expression containing four or five operands:

1. An optional name. The presence of a name indicate that this instruction pattern can perform
a certain standard job for the RTL-generation pass of the compiler. This pass knows certain
names and will use the instruction patterns with those names, if the names are defined in the
machine description.

The absence of a name is indicated by writing an empty string where the name should go.
Nameless instruction patterns are never used for generating RTL code, but they may permit
several simpler insns to be combined later on.

Names that are not thus known and used in RTL-generation have no effect; they are equivalent
to no name at all.

2. The RTL template (see Section 15.3 [RTL Template], page 247) is a vector of incomplete RTL
expressions which show what the instruction should look like. It is incomplete because it may
contain match_operand, match_operator, and match_dup expressions that stand for operands
of the instruction.

If the vector has only one element, that element is the template for the instruction pattern.
If the vector has multiple elements, then the instruction pattern is a parallel expression
containing the elements described.

246 Using and Porting GNU CC

3. A condition. This is a string which contains a C expression that is the final test to decide
whether an insn body matches this pattern.

For a named pattern, the condition (if present) may not depend on the data in the insn being
matched, but only the target-machine-type flags. The compiler needs to test these conditions
during initialization in order to learn exactly which named instructions are available in a
particular run.

For nameless patterns, the condition is applied only when matching an individual insn, and
only after the insn has matched the pattern’s recognition template. The insn’s operands may
be found in the vector operands.

4. The output template: a string that says how to output matching insns as assembler code. ‘%’
in this string specifies where to substitute the value of an operand. See Section 15.4 [Output
Template], page 251.

When simple substitution isn’t general enough, you can specify a piece of C code to compute
the output. See Section 15.5 [Output Statement], page 253.

5. Optionally, a vector containing the values of attributes for insns matching this pattern. See
Section 15.15 [Insn Attributes], page 292.

15.2 Example of define_insn

Here is an actual example of an instruction pattern, for the 68000/68020.

(define_insn "tstsi"
[(set (cc0)

(match_operand:SI 0 "general_operand" "rm"))]
""
"*

{ if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
return \"tstl %0\";

return \"cmpl #0,%0\"; }")

This is an instruction that sets the condition codes based on the value of a general operand. It
has no condition, so any insn whose RTL description has the form shown may be handled according
to this pattern. The name ‘tstsi’ means “test a SImode value” and tells the RTL generation pass
that, when it is necessary to test such a value, an insn to do so can be constructed using this
pattern.

The output control string is a piece of C code which chooses which output template to return
based on the kind of operand and the specific type of CPU for which code is being generated.

Chapter 15: Machine Descriptions 247

‘"rm"’ is an operand constraint. Its meaning is explained below.

15.3 RTL Template

The RTL template is used to define which insns match the particular pattern and how to find
their operands. For named patterns, the RTL template also says how to construct an insn from
specified operands.

Construction involves substituting specified operands into a copy of the template. Matching
involves determining the values that serve as the operands in the insn being matched. Both of
these activities are controlled by special expression types that direct matching and substitution of
the operands.

(match_operand:m n predicate constraint)

This expression is a placeholder for operand number n of the insn. When constructing
an insn, operand number n will be substituted at this point. When matching an insn,
whatever appears at this position in the insn will be taken as operand number n; but
it must satisfy predicate or this instruction pattern will not match at all.

Operand numbers must be chosen consecutively counting from zero in each instruction
pattern. There may be only one match_operand expression in the pattern for each
operand number. Usually operands are numbered in the order of appearance in match_

operand expressions.

predicate is a string that is the name of a C function that accepts two arguments,
an expression and a machine mode. During matching, the function will be called
with the putative operand as the expression and m as the mode argument (if m is not
specified, VOIDmode will be used, which normally causes predicate to accept any mode).
If it returns zero, this instruction pattern fails to match. predicate may be an empty
string; then it means no test is to be done on the operand, so anything which occurs
in this position is valid.

Most of the time, predicate will reject modes other than m—but not always. For
example, the predicate address_operand uses m as the mode of memory ref that the
address should be valid for. Many predicates accept const_int nodes even though
their mode is VOIDmode.

constraint controls reloading and the choice of the best register class to use for a value,
as explained later (see Section 15.6 [Constraints], page 255).

People are often unclear on the difference between the constraint and the predicate.
The predicate helps decide whether a given insn matches the pattern. The constraint

248 Using and Porting GNU CC

plays no role in this decision; instead, it controls various decisions in the case of an
insn which does match.

On CISC machines, the most common predicate is "general_operand". This function
checks that the putative operand is either a constant, a register or a memory reference,
and that it is valid for mode m.

For an operand that must be a register, predicate should be "register_operand".
Using "general_operand" would be valid, since the reload pass would copy any non-
register operands through registers, but this would make GNU CC do extra work, it
would prevent invariant operands (such as constant) from being removed from loops,
and it would prevent the register allocator from doing the best possible job. On RISC
machines, it is usually most efficient to allow predicate to accept only objects that the
constraints allow.

For an operand that must be a constant, you must be sure to either use "immediate_

operand" for predicate, or make the instruction pattern’s extra condition require a
constant, or both. You cannot expect the constraints to do this work! If the constraints
allow only constants, but the predicate allows something else, the compiler will crash
when that case arises.

(match_scratch:m n constraint)

This expression is also a placeholder for operand number n and indicates that operand
must be a scratch or reg expression.

When matching patterns, this is completely equivalent to
(match_operand:m n "scratch_operand" pred)

but, when generating RTL, it produces a (scratch:m) expression.

If the last few expressions in a parallel are clobber expressions whose operands are
either a hard register or match_scratch, the combiner can add them when necessary.
See Section 14.12 [Side Effects], page 227.

(match_dup n)

This expression is also a placeholder for operand number n. It is used when the operand
needs to appear more than once in the insn.

In construction, match_dup acts just like match_operand: the operand is substituted
into the insn being constructed. But in matching, match_dup behaves differently. It
assumes that operand number n has already been determined by a match_operand

appearing earlier in the recognition template, and it matches only an identical-looking
expression.

(match_operator:m n predicate [operands. . .])

This pattern is a kind of placeholder for a variable RTL expression code.

When constructing an insn, it stands for an RTL expression whose expression code is
taken from that of operand n, and whose operands are constructed from the patterns
operands.

Chapter 15: Machine Descriptions 249

When matching an expression, it matches an expression if the function predicate re-
turns nonzero on that expression and the patterns operands match the operands of the
expression.

Suppose that the function commutative_operator is defined as follows, to match any
expression whose operator is one of the commutative arithmetic operators of RTL and
whose mode is mode:

int
commutative_operator (x, mode)

rtx x;
enum machine_mode mode;

{
enum rtx_code code = GET_CODE (x);
if (GET_MODE (x) != mode)

return 0;
return (GET_RTX_CLASS (code) == ’c’

|| code == EQ || code == NE);
}

Then the following pattern will match any RTL expression consisting of a commutative
operator applied to two general operands:

(match_operator:SI 3 "commutative_operator"
[(match_operand:SI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g")])

Here the vector [operands. . .] contains two patterns because the expressions to be
matched all contain two operands.

When this pattern does match, the two operands of the commutative operator are
recorded as operands 1 and 2 of the insn. (This is done by the two instances of
match_operand.) Operand 3 of the insn will be the entire commutative expression:
use GET_CODE (operands[3]) to see which commutative operator was used.

The machine mode m of match_operator works like that of match_operand: it is
passed as the second argument to the predicate function, and that function is solely
responsible for deciding whether the expression to be matched “has” that mode.

When constructing an insn, argument 3 of the gen-function will specify the operation
(i.e. the expression code) for the expression to be made. It should be an RTL ex-
pression, whose expression code is copied into a new expression whose operands are
arguments 1 and 2 of the gen-function. The subexpressions of argument 3 are not used;
only its expression code matters.

When match_operator is used in a pattern for matching an insn, it usually best if the
operand number of the match_operator is higher than that of the actual operands of
the insn. This improves register allocation because the register allocator often looks at
operands 1 and 2 of insns to see if it can do register tying.

There is no way to specify constraints in match_operator. The operand of the insn
which corresponds to the match_operator never has any constraints because it is never

250 Using and Porting GNU CC

reloaded as a whole. However, if parts of its operands are matched by match_operand

patterns, those parts may have constraints of their own.

(match_op_dup:m n[operands. . .])

Like match_dup, except that it applies to operators instead of operands. When con-
structing an insn, operand number n will be substituted at this point. But in matching,
match_op_dup behaves differently. It assumes that operand number n has already been
determined by a match_operator appearing earlier in the recognition template, and it
matches only an identical-looking expression.

(match_parallel n predicate [subpat. . .])

This pattern is a placeholder for an insn that consists of a parallel expression with
a variable number of elements. This expression should only appear at the top level of
an insn pattern.

When constructing an insn, operand number n will be substituted at this point. When
matching an insn, it matches if the body of the insn is a parallel expression with
at least as many elements as the vector of subpat expressions in the match_parallel,
if each subpat matches the corresponding element of the parallel, and the function
predicate returns nonzero on the parallel that is the body of the insn. It is the
responsibility of the predicate to validate elements of the parallel beyond those listed
in the match_parallel.

A typical use of match_parallel is to match load and store multiple expressions, which
can contains a variable number of elements in a parallel. For example,

(define_insn ""
[(match_parallel 0 "load_multiple_operation"

[(set (match_operand:SI 1 "gpc_reg_operand" "=r")
(match_operand:SI 2 "memory_operand" "m"))

(use (reg:SI 179))
(clobber (reg:SI 179))])]

""
"loadm 0,0,%1,%2")

This example comes from ‘a29k.md’. The function load_multiple_operations is
defined in ‘a29k.c’ and checks that subsequent elements in the parallel are the same
as the set in the pattern, except that they are referencing subsequent registers and
memory locations.

An insn that matches this pattern might look like:

Chapter 15: Machine Descriptions 251

(parallel
[(set (reg:SI 20) (mem:SI (reg:SI 100)))
(use (reg:SI 179))
(clobber (reg:SI 179))
(set (reg:SI 21)

(mem:SI (plus:SI (reg:SI 100)
(const_int 4))))

(set (reg:SI 22)
(mem:SI (plus:SI (reg:SI 100)

(const_int 8))))])

(match_par_dup n [subpat. . .])

Like match_op_dup, but for match_parallel instead of match_operator.

(address (match_operand:m n "address_operand" ""))

This complex of expressions is a placeholder for an operand number n in a “load
address” instruction: an operand which specifies a memory location in the usual way,
but for which the actual operand value used is the address of the location, not the
contents of the location.

address expressions never appear in RTL code, only in machine descriptions. And
they are used only in machine descriptions that do not use the operand constraint
feature. When operand constraints are in use, the letter ‘p’ in the constraint serves
this purpose.

m is the machine mode of the memory location being addressed, not the machine mode
of the address itself. That mode is always the same on a given target machine (it
is Pmode, which normally is SImode), so there is no point in mentioning it; thus, no
machine mode is written in the address expression. If some day support is added
for machines in which addresses of different kinds of objects appear differently or are
used differently (such as the PDP-10), different formats would perhaps need different
machine modes and these modes might be written in the address expression.

15.4 Output Templates and Operand Substitution

The output template is a string which specifies how to output the assembler code for an in-
struction pattern. Most of the template is a fixed string which is output literally. The character
‘%’ is used to specify where to substitute an operand; it can also be used to identify places where
different variants of the assembler require different syntax.

In the simplest case, a ‘%’ followed by a digit n says to output operand n at that point in the
string.

252 Using and Porting GNU CC

‘%’ followed by a letter and a digit says to output an operand in an alternate fashion. Four letters
have standard, built-in meanings described below. The machine description macro PRINT_OPERAND

can define additional letters with nonstandard meanings.

‘%cdigit’ can be used to substitute an operand that is a constant value without the syntax that
normally indicates an immediate operand.

‘%ndigit’ is like ‘%cdigit’ except that the value of the constant is negated before printing.

‘%adigit’ can be used to substitute an operand as if it were a memory reference, with the actual
operand treated as the address. This may be useful when outputting a “load address” instruction,
because often the assembler syntax for such an instruction requires you to write the operand as if
it were a memory reference.

‘%ldigit’ is used to substitute a label_ref into a jump instruction.

‘%=’ outputs a number which is unique to each instruction in the entire compilation. This is
useful for making local labels to be referred to more than once in a single template that generates
multiple assembler instructions.

‘%’ followed by a punctuation character specifies a substitution that does not use an operand.
Only one case is standard: ‘%%’ outputs a ‘%’ into the assembler code. Other nonstandard cases can
be defined in the PRINT_OPERAND macro. You must also define which punctuation characters are
valid with the PRINT_OPERAND_PUNCT_VALID_P macro.

The template may generate multiple assembler instructions. Write the text for the instructions,
with ‘\;’ between them.

When the RTL contains two operands which are required by constraint to match each other,
the output template must refer only to the lower-numbered operand. Matching operands are not
always identical, and the rest of the compiler arranges to put the proper RTL expression for printing
into the lower-numbered operand.

One use of nonstandard letters or punctuation following ‘%’ is to distinguish between different
assembler languages for the same machine; for example, Motorola syntax versus MIT syntax for
the 68000. Motorola syntax requires periods in most opcode names, while MIT syntax does not.
For example, the opcode ‘movel’ in MIT syntax is ‘move.l’ in Motorola syntax. The same file
of patterns is used for both kinds of output syntax, but the character sequence ‘%.’ is used in

Chapter 15: Machine Descriptions 253

each place where Motorola syntax wants a period. The PRINT_OPERAND macro for Motorola syntax
defines the sequence to output a period; the macro for MIT syntax defines it to do nothing.

As a special case, a template consisting of the single character # instructs the compiler to
first split the insn, and then output the resulting instructions separately. This helps eliminate
redundancy in the output templates. If you have a define_insn that needs to emit multiple
assembler instructions, and there is an matching define_split already defined, then you can
simply use # as the output template instead of writing an output template that emits the multiple
assembler instructions.

If ASSEMBLER_DIALECT is defined, you can use ‘{option0|option1|option2}’ constructs in the
templates. These describe multiple variants of assembler language syntax. See Section 16.16.7
[Instruction Output], page 383.

15.5 C Statements for Assembler Output

Often a single fixed template string cannot produce correct and efficient assembler code for all
the cases that are recognized by a single instruction pattern. For example, the opcodes may depend
on the kinds of operands; or some unfortunate combinations of operands may require extra machine
instructions.

If the output control string starts with a ‘@’, then it is actually a series of templates, each on
a separate line. (Blank lines and leading spaces and tabs are ignored.) The templates correspond
to the pattern’s constraint alternatives (see Section 15.6.2 [Multi-Alternative], page 259). For
example, if a target machine has a two-address add instruction ‘addr’ to add into a register and
another ‘addm’ to add a register to memory, you might write this pattern:

(define_insn "addsi3"
[(set (match_operand:SI 0 "general_operand" "=r,m")

(plus:SI (match_operand:SI 1 "general_operand" "0,0")
(match_operand:SI 2 "general_operand" "g,r")))]

""
"@
addr %2,%0
addm %2,%0")

If the output control string starts with a ‘*’, then it is not an output template but rather a piece
of C program that should compute a template. It should execute a return statement to return the
template-string you want. Most such templates use C string literals, which require doublequote

254 Using and Porting GNU CC

characters to delimit them. To include these doublequote characters in the string, prefix each one
with ‘\’.

The operands may be found in the array operands, whose C data type is rtx [].

It is very common to select different ways of generating assembler code based on whether an
immediate operand is within a certain range. Be careful when doing this, because the result of
INTVAL is an integer on the host machine. If the host machine has more bits in an int than the
target machine has in the mode in which the constant will be used, then some of the bits you get
from INTVAL will be superfluous. For proper results, you must carefully disregard the values of
those bits.

It is possible to output an assembler instruction and then go on to output or compute more of
them, using the subroutine output_asm_insn. This receives two arguments: a template-string and
a vector of operands. The vector may be operands, or it may be another array of rtx that you
declare locally and initialize yourself.

When an insn pattern has multiple alternatives in its constraints, often the appearance of the
assembler code is determined mostly by which alternative was matched. When this is so, the C
code can test the variable which_alternative, which is the ordinal number of the alternative that
was actually satisfied (0 for the first, 1 for the second alternative, etc.).

For example, suppose there are two opcodes for storing zero, ‘clrreg’ for registers and ‘clrmem’
for memory locations. Here is how a pattern could use which_alternative to choose between
them:

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,m")

(const_int 0))]
""
"*
return (which_alternative == 0

? \"clrreg %0\" : \"clrmem %0\");
")

The example above, where the assembler code to generate was solely determined by the al-
ternative, could also have been specified as follows, having the output control string start with a
‘@’:

Chapter 15: Machine Descriptions 255

(define_insn ""

[(set (match_operand:SI 0 "general_operand" "=r,m")

(const_int 0))]

""

"@

clrreg %0

clrmem %0")

15.6 Operand Constraints

Each match_operand in an instruction pattern can specify a constraint for the type of operands
allowed. Constraints can say whether an operand may be in a register, and which kinds of register;
whether the operand can be a memory reference, and which kinds of address; whether the operand
may be an immediate constant, and which possible values it may have. Constraints can also require
two operands to match.

15.6.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one kind of
operand that is permitted. Here are the letters that are allowed:

‘m’ A memory operand is allowed, with any kind of address that the machine supports in
general.

‘o’ A memory operand is allowed, but only if the address is offsettable. This means that
adding a small integer (actually, the width in bytes of the operand, as determined by
its machine mode) may be added to the address and the result is also a valid memory
address.

For example, an address which is constant is offsettable; so is an address that is the sum
of a register and a constant (as long as a slightly larger constant is also within the range
of address-offsets supported by the machine); but an autoincrement or autodecrement
address is not offsettable. More complicated indirect/indexed addresses may or may
not be offsettable depending on the other addressing modes that the machine supports.

Note that in an output operand which can be matched by another operand, the con-
straint letter ‘o’ is valid only when accompanied by both ‘<’ (if the target machine has
predecrement addressing) and ‘>’ (if the target machine has preincrement addressing).

‘V’ A memory operand that is not offsettable. In other words, anything that would fit the
‘m’ constraint but not the ‘o’ constraint.

256 Using and Porting GNU CC

‘<’ A memory operand with autodecrement addressing (either predecrement or postdecre-
ment) is allowed.

‘>’ A memory operand with autoincrement addressing (either preincrement or postincre-
ment) is allowed.

‘r’ A register operand is allowed provided that it is in a general register.

‘d’, ‘a’, ‘f’, . . .

Other letters can be defined in machine-dependent fashion to stand for particular classes
of registers. ‘d’, ‘a’ and ‘f’ are defined on the 68000/68020 to stand for data, address
and floating point registers.

‘i’ An immediate integer operand (one with constant value) is allowed. This includes
symbolic constants whose values will be known only at assembly time.

‘n’ An immediate integer operand with a known numeric value is allowed. Many systems
cannot support assembly-time constants for operands less than a word wide. Con-
straints for these operands should use ‘n’ rather than ‘i’.

‘I’, ‘J’, ‘K’, . . . ‘P’

Other letters in the range ‘I’ through ‘P’ may be defined in a machine-dependent fashion
to permit immediate integer operands with explicit integer values in specified ranges.
For example, on the 68000, ‘I’ is defined to stand for the range of values 1 to 8. This
is the range permitted as a shift count in the shift instructions.

‘E’ An immediate floating operand (expression code const_double) is allowed, but only if
the target floating point format is the same as that of the host machine (on which the
compiler is running).

‘F’ An immediate floating operand (expression code const_double) is allowed.

‘G’, ‘H’ ‘G’ and ‘H’ may be defined in a machine-dependent fashion to permit immediate floating
operands in particular ranges of values.

‘s’ An immediate integer operand whose value is not an explicit integer is allowed.

This might appear strange; if an insn allows a constant operand with a value not known
at compile time, it certainly must allow any known value. So why use ‘s’ instead of
‘i’? Sometimes it allows better code to be generated.

For example, on the 68000 in a fullword instruction it is possible to use an immediate
operand; but if the immediate value is between -128 and 127, better code results from
loading the value into a register and using the register. This is because the load into
the register can be done with a ‘moveq’ instruction. We arrange for this to happen by
defining the letter ‘K’ to mean “any integer outside the range -128 to 127”, and then
specifying ‘Ks’ in the operand constraints.

‘g’ Any register, memory or immediate integer operand is allowed, except for registers that
are not general registers.

Chapter 15: Machine Descriptions 257

‘X’ Any operand whatsoever is allowed, even if it does not satisfy general_operand. This
is normally used in the constraint of a match_scratch when certain alternatives will
not actually require a scratch register.

‘0’, ‘1’, ‘2’, . . . ‘9’

An operand that matches the specified operand number is allowed. If a digit is used
together with letters within the same alternative, the digit should come last.

This is called a matching constraint and what it really means is that the assembler
has only a single operand that fills two roles considered separate in the RTL insn. For
example, an add insn has two input operands and one output operand in the RTL, but
on most CISC machines an add instruction really has only two operands, one of them
an input-output operand:

addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two operands
that match must include one input-only operand and one output-only operand. More-
over, the digit must be a smaller number than the number of the operand that uses it
in the constraint.

For operands to match in a particular case usually means that they are identical-
looking RTL expressions. But in a few special cases specific kinds of dissimilarity are
allowed. For example, *x as an input operand will match *x++ as an output operand.
For proper results in such cases, the output template should always use the output-
operand’s number when printing the operand.

‘p’ An operand that is a valid memory address is allowed. This is for “load address” and
“push address” instructions.

‘p’ in the constraint must be accompanied by address_operand as the predicate in the
match_operand. This predicate interprets the mode specified in the match_operand

as the mode of the memory reference for which the address would be valid.

‘Q’, ‘R’, ‘S’, . . . ‘U’

Letters in the range ‘Q’ through ‘U’ may be defined in a machine-dependent fashion to
stand for arbitrary operand types. The machine description macro EXTRA_CONSTRAINT

is passed the operand as its first argument and the constraint letter as its second
operand.

A typical use for this would be to distinguish certain types of memory references that
affect other insn operands.

Do not define these constraint letters to accept register references (reg); the reload
pass does not expect this and would not handle it properly.

In order to have valid assembler code, each operand must satisfy its constraint. But a failure
to do so does not prevent the pattern from applying to an insn. Instead, it directs the compiler to

258 Using and Porting GNU CC

modify the code so that the constraint will be satisfied. Usually this is done by copying an operand
into a register.

Contrast, therefore, the two instruction patterns that follow:

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_dup 0)
(match_operand:SI 1 "general_operand" "r")))]

""
". . .")

which has two operands, one of which must appear in two places, and

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r")

(plus:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "r")))]

""
". . .")

which has three operands, two of which are required by a constraint to be identical. If we are
considering an insn of the form

(insn n prev next
(set (reg:SI 3)

(plus:SI (reg:SI 6) (reg:SI 109)))
. . .)

the first pattern would not apply at all, because this insn does not contain two identical subex-
pressions in the right place. The pattern would say, “That does not look like an add instruction;
try other patterns.” The second pattern would say, “Yes, that’s an add instruction, but there is
something wrong with it.” It would direct the reload pass of the compiler to generate additional
insns to make the constraint true. The results might look like this:

(insn n2 prev n
(set (reg:SI 3) (reg:SI 6))
. . .)

(insn n n2 next
(set (reg:SI 3)

(plus:SI (reg:SI 3) (reg:SI 109)))
. . .)

Chapter 15: Machine Descriptions 259

It is up to you to make sure that each operand, in each pattern, has constraints that can handle
any RTL expression that could be present for that operand. (When multiple alternatives are in
use, each pattern must, for each possible combination of operand expressions, have at least one
alternative which can handle that combination of operands.) The constraints don’t need to allow

any possible operand—when this is the case, they do not constrain—but they must at least point
the way to reloading any possible operand so that it will fit.

• If the constraint accepts whatever operands the predicate permits, there is no problem: reload-
ing is never necessary for this operand.

For example, an operand whose constraints permit everything except registers is safe provided
its predicate rejects registers.

An operand whose predicate accepts only constant values is safe provided its constraints include
the letter ‘i’. If any possible constant value is accepted, then nothing less than ‘i’ will do; if
the predicate is more selective, then the constraints may also be more selective.

• Any operand expression can be reloaded by copying it into a register. So if an operand’s
constraints allow some kind of register, it is certain to be safe. It need not permit all classes of
registers; the compiler knows how to copy a register into another register of the proper class
in order to make an instruction valid.

• A nonoffsettable memory reference can be reloaded by copying the address into a register. So
if the constraint uses the letter ‘o’, all memory references are taken care of.

• A constant operand can be reloaded by allocating space in memory to hold it as preinitialized
data. Then the memory reference can be used in place of the constant. So if the constraint
uses the letters ‘o’ or ‘m’, constant operands are not a problem.

• If the constraint permits a constant and a pseudo register used in an insn was not allocated to
a hard register and is equivalent to a constant, the register will be replaced with the constant.
If the predicate does not permit a constant and the insn is re-recognized for some reason, the
compiler will crash. Thus the predicate must always recognize any objects allowed by the
constraint.

If the operand’s predicate can recognize registers, but the constraint does not permit them, it
can make the compiler crash. When this operand happens to be a register, the reload pass will be
stymied, because it does not know how to copy a register temporarily into memory.

15.6.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For example,
on the 68000, a logical-or instruction can combine register or an immediate value into memory, or

260 Using and Porting GNU CC

it can combine any kind of operand into a register; but it cannot combine one memory location
into another.

These constraints are represented as multiple alternatives. An alternative can be described by
a series of letters for each operand. The overall constraint for an operand is made from the letters
for this operand from the first alternative, a comma, the letters for this operand from the second
alternative, a comma, and so on until the last alternative. Here is how it is done for fullword
logical-or on the 68000:

(define_insn "iorsi3"
[(set (match_operand:SI 0 "general_operand" "=m,d")

(ior:SI (match_operand:SI 1 "general_operand" "%0,0")
(match_operand:SI 2 "general_operand" "dKs,dmKs")))]

. . .)

The first alternative has ‘m’ (memory) for operand 0, ‘0’ for operand 1 (meaning it must match
operand 0), and ‘dKs’ for operand 2. The second alternative has ‘d’ (data register) for operand
0, ‘0’ for operand 1, and ‘dmKs’ for operand 2. The ‘=’ and ‘%’ in the constraints apply to all the
alternatives; their meaning is explained in the next section (see Section 15.6.3 [Class Preferences],
page 261).

If all the operands fit any one alternative, the instruction is valid. Otherwise, for each alternative,
the compiler counts how many instructions must be added to copy the operands so that that
alternative applies. The alternative requiring the least copying is chosen. If two alternatives need
the same amount of copying, the one that comes first is chosen. These choices can be altered with
the ‘?’ and ‘!’ characters:

? Disparage slightly the alternative that the ‘?’ appears in, as a choice when no alternative
applies exactly. The compiler regards this alternative as one unit more costly for each
‘?’ that appears in it.

! Disparage severely the alternative that the ‘!’ appears in. This alternative can still be
used if it fits without reloading, but if reloading is needed, some other alternative will
be used.

When an insn pattern has multiple alternatives in its constraints, often the appearance of the
assembler code is determined mostly by which alternative was matched. When this is so, the C
code for writing the assembler code can use the variable which_alternative, which is the ordinal
number of the alternative that was actually satisfied (0 for the first, 1 for the second alternative,
etc.). See Section 15.5 [Output Statement], page 253.

Chapter 15: Machine Descriptions 261

15.6.3 Register Class Preferences

The operand constraints have another function: they enable the compiler to decide which kind
of hardware register a pseudo register is best allocated to. The compiler examines the constraints
that apply to the insns that use the pseudo register, looking for the machine-dependent letters such
as ‘d’ and ‘a’ that specify classes of registers. The pseudo register is put in whichever class gets the
most “votes”. The constraint letters ‘g’ and ‘r’ also vote: they vote in favor of a general register.
The machine description says which registers are considered general.

Of course, on some machines all registers are equivalent, and no register classes are defined.
Then none of this complexity is relevant.

15.6.4 Constraint Modifier Characters

‘=’ Means that this operand is write-only for this instruction: the previous value is dis-
carded and replaced by output data.

‘+’ Means that this operand is both read and written by the instruction.

When the compiler fixes up the operands to satisfy the constraints, it needs to know
which operands are inputs to the instruction and which are outputs from it. ‘=’ identifies
an output; ‘+’ identifies an operand that is both input and output; all other operands
are assumed to be input only.

‘&’ Means (in a particular alternative) that this operand is written before the instruction
is finished using the input operands. Therefore, this operand may not lie in a register
that is used as an input operand or as part of any memory address.

‘&’ applies only to the alternative in which it is written. In constraints with multi-
ple alternatives, sometimes one alternative requires ‘&’ while others do not. See, for
example, the ‘movdf’ insn of the 68000.

‘&’ does not obviate the need to write ‘=’.

‘%’ Declares the instruction to be commutative for this operand and the following operand.
This means that the compiler may interchange the two operands if that is the cheapest
way to make all operands fit the constraints. This is often used in patterns for addition
instructions that really have only two operands: the result must go in one of the
arguments. Here for example, is how the 68000 halfword-add instruction is defined:

(define_insn "addhi3"
[(set (match_operand:HI 0 "general_operand" "=m,r")

(plus:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "di,g")))]

. . .)

262 Using and Porting GNU CC

‘#’ Says that all following characters, up to the next comma, are to be ignored as a con-
straint. They are significant only for choosing register preferences.

‘*’ Says that the following character should be ignored when choosing register preferences.
‘*’ has no effect on the meaning of the constraint as a constraint, and no effect on
reloading.

Here is an example: the 68000 has an instruction to sign-extend a halfword in a data
register, and can also sign-extend a value by copying it into an address register. While
either kind of register is acceptable, the constraints on an address-register destination
are less strict, so it is best if register allocation makes an address register its goal.
Therefore, ‘*’ is used so that the ‘d’ constraint letter (for data register) is ignored when
computing register preferences.

(define_insn "extendhisi2"
[(set (match_operand:SI 0 "general_operand" "=*d,a")

(sign_extend:SI
(match_operand:HI 1 "general_operand" "0,g")))]

. . .)

15.6.5 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint letters in asm arguments, since
they will convey meaning more readily to people reading your code. Failing that, use the constraint
letters that usually have very similar meanings across architectures. The most commonly used
constraints are ‘m’ and ‘r’ (for memory and general-purpose registers respectively; see Section 15.6.1
[Simple Constraints], page 255), and ‘I’, usually the letter indicating the most common immediate-
constant format.

For each machine architecture, the ‘config/machine.h’ file defines additional constraints. These
constraints are used by the compiler itself for instruction generation, as well as for asm statements;
therefore, some of the constraints are not particularly interesting for asm. The constraints are
defined through these macros:

REG_CLASS_FROM_LETTER

Register class constraints (usually lower case).

CONST_OK_FOR_LETTER_P

Immediate constant constraints, for non-floating point constants of word size or smaller
precision (usually upper case).

CONST_DOUBLE_OK_FOR_LETTER_P

Immediate constant constraints, for all floating point constants and for constants of
greater than word size precision (usually upper case).

Chapter 15: Machine Descriptions 263

EXTRA_CONSTRAINT

Special cases of registers or memory. This macro is not required, and is only defined
for some machines.

Inspecting these macro definitions in the compiler source for your machine is the best way to
be certain you have the right constraints. However, here is a summary of the machine-dependent
constraints available on some particular machines.

AMD 29000 family—‘a29k.h’

l Local register 0

b Byte Pointer (‘BP’) register

q ‘Q’ register

h Special purpose register

A First accumulator register

a Other accumulator register

f Floating point register

I Constant greater than 0, less than 0x100

J Constant greater than 0, less than 0x10000

K Constant whose high 24 bits are on (1)

L 16 bit constant whose high 8 bits are on (1)

M 32 bit constant whose high 16 bits are on (1)

N 32 bit negative constant that fits in 8 bits

O The constant 0x80000000 or, on the 29050, any 32 bit constant whose low
16 bits are 0.

P 16 bit negative constant that fits in 8 bits

G

H A floating point constant (in asm statements, use the machine independent
‘E’ or ‘F’ instead)

IBM RS6000—‘rs6000.h’

b Address base register

f Floating point register

h ‘MQ’, ‘CTR’, or ‘LINK’ register

q ‘MQ’ register

c ‘CTR’ register

l ‘LINK’ register

264 Using and Porting GNU CC

x ‘CR’ register (condition register) number 0

y ‘CR’ register (condition register)

I Signed 16 bit constant

J Constant whose low 16 bits are 0

K Constant whose high 16 bits are 0

L Constant suitable as a mask operand

M Constant larger than 31

N Exact power of 2

O Zero

P Constant whose negation is a signed 16 bit constant

G Floating point constant that can be loaded into a register with one instruc-
tion per word

Q Memory operand that is an offset from a register (‘m’ is preferable for asm
statements)

Intel 386—‘i386.h’

q ‘a’, b, c, or d register

f Floating point register

t First (top of stack) floating point register

u Second floating point register

a ‘a’ register

b ‘b’ register

c ‘c’ register

d ‘d’ register

D ‘di’ register

S ‘si’ register

I Constant in range 0 to 31 (for 32 bit shifts)

J Constant in range 0 to 63 (for 64 bit shifts)

K ‘0xff’

L ‘0xffff’

M 0, 1, 2, or 3 (shifts for lea instruction)

G Standard 80387 floating point constant

Intel 960—‘i960.h’

f Floating point register (fp0 to fp3)

l Local register (r0 to r15)

b Global register (g0 to g15)

Chapter 15: Machine Descriptions 265

d Any local or global register

I Integers from 0 to 31

J 0

K Integers from -31 to 0

G Floating point 0

H Floating point 1

MIPS—‘mips.h’

d General-purpose integer register

f Floating-point register (if available)

h ‘Hi’ register

l ‘Lo’ register

x ‘Hi’ or ‘Lo’ register

y General-purpose integer register

z Floating-point status register

I Signed 16 bit constant (for arithmetic instructions)

J Zero

K Zero-extended 16-bit constant (for logic instructions)

L Constant with low 16 bits zero (can be loaded with lui)

M 32 bit constant which requires two instructions to load (a constant which
is not ‘I’, ‘K’, or ‘L’)

N Negative 16 bit constant

O Exact power of two

P Positive 16 bit constant

G Floating point zero

Q Memory reference that can be loaded with more than one instruction (‘m’
is preferable for asm statements)

R Memory reference that can be loaded with one instruction (‘m’ is preferable
for asm statements)

S Memory reference in external OSF/rose PIC format (‘m’ is preferable for
asm statements)

Motorola 680x0—‘m68k.h’

a Address register

d Data register

f 68881 floating-point register, if available

x Sun FPA (floating-point) register, if available

266 Using and Porting GNU CC

y First 16 Sun FPA registers, if available

I Integer in the range 1 to 8

J 16 bit signed number

K Signed number whose magnitude is greater than 0x80

L Integer in the range -8 to -1

G Floating point constant that is not a 68881 constant

H Floating point constant that can be used by Sun FPA
SPARC—‘sparc.h’

f Floating-point register

I Signed 13 bit constant

J Zero

K 32 bit constant with the low 12 bits clear (a constant that can be loaded
with the sethi instruction)

G Floating-point zero

H Signed 13 bit constant, sign-extended to 32 or 64 bits

Q Memory reference that can be loaded with one instruction (‘m’ is more
appropriate for asm statements)

S Constant, or memory address

T Memory address aligned to an 8-byte boundary

U Even register

15.6.6 Not Using Constraints

Some machines are so clean that operand constraints are not required. For example, on the Vax,
an operand valid in one context is valid in any other context. On such a machine, every operand
constraint would be ‘g’, excepting only operands of “load address” instructions which are written
as if they referred to a memory location’s contents but actual refer to its address. They would have
constraint ‘p’.

For such machines, instead of writing ‘g’ and ‘p’ for all the constraints, you can choose to write a
description with empty constraints. Then you write ‘""’ for the constraint in every match_operand.
Address operands are identified by writing an address expression around the match_operand, not
by their constraints.

When the machine description has just empty constraints, certain parts of compilation are
skipped, making the compiler faster. However, few machines actually do not need constraints; all
machine descriptions now in existence use constraints.

Chapter 15: Machine Descriptions 267

15.7 Standard Pattern Names For Generation

Here is a table of the instruction names that are meaningful in the RTL generation pass of the
compiler. Giving one of these names to an instruction pattern tells the RTL generation pass that
it can use the pattern in to accomplish a certain task.

‘movm’ Here m stands for a two-letter machine mode name, in lower case. This instruction
pattern moves data with that machine mode from operand 1 to operand 0. For example,
‘movsi’ moves full-word data.

If operand 0 is a subreg with mode m of a register whose own mode is wider than m,
the effect of this instruction is to store the specified value in the part of the register
that corresponds to mode m. The effect on the rest of the register is undefined.

This class of patterns is special in several ways. First of all, each of these names must

be defined, because there is no other way to copy a datum from one place to another.

Second, these patterns are not used solely in the RTL generation pass. Even the reload
pass can generate move insns to copy values from stack slots into temporary registers.
When it does so, one of the operands is a hard register and the other is an operand
that can need to be reloaded into a register.

Therefore, when given such a pair of operands, the pattern must generate RTL which
needs no reloading and needs no temporary registers—no registers other than the
operands. For example, if you support the pattern with a define_expand, then in
such a case the define_expand mustn’t call force_reg or any other such function
which might generate new pseudo registers.

This requirement exists even for subword modes on a RISC machine where fetching
those modes from memory normally requires several insns and some temporary regis-
ters. Look in ‘spur.md’ to see how the requirement can be satisfied.

During reload a memory reference with an invalid address may be passed as an operand.
Such an address will be replaced with a valid address later in the reload pass. In this
case, nothing may be done with the address except to use it as it stands. If it is copied,
it will not be replaced with a valid address. No attempt should be made to make such
an address into a valid address and no routine (such as change_address) that will
do so may be called. Note that general_operand will fail when applied to such an
address.

The global variable reload_in_progress (which must be explicitly declared if re-
quired) can be used to determine whether such special handling is required.

The variety of operands that have reloads depends on the rest of the machine descrip-
tion, but typically on a RISC machine these can only be pseudo registers that did not
get hard registers, while on other machines explicit memory references will get optional
reloads.

268 Using and Porting GNU CC

If a scratch register is required to move an object to or from memory, it can be allocated
using gen_reg_rtx prior to reload. But this is impossible during and after reload. If
there are cases needing scratch registers after reload, you must define SECONDARY_

INPUT_RELOAD_CLASS and perhaps also SECONDARY_OUTPUT_RELOAD_CLASS to detect
them, and provide patterns ‘reload_inm’ or ‘reload_outm’ to handle them. See
Section 16.6 [Register Classes], page 329.

The constraints on a ‘movem’ must permit moving any hard register to any other hard
register provided that HARD_REGNO_MODE_OK permits mode m in both registers and
REGISTER_MOVE_COST applied to their classes returns a value of 2.

It is obligatory to support floating point ‘movem’ instructions into and out of any
registers that can hold fixed point values, because unions and structures (which have
modes SImode or DImode) can be in those registers and they may have floating point
members.

There may also be a need to support fixed point ‘movem’ instructions in and out of
floating point registers. Unfortunately, I have forgotten why this was so, and I don’t
know whether it is still true. If HARD_REGNO_MODE_OK rejects fixed point values in
floating point registers, then the constraints of the fixed point ‘movem’ instructions
must be designed to avoid ever trying to reload into a floating point register.

‘reload_inm’
‘reload_outm’

Like ‘movm’, but used when a scratch register is required to move between operand
0 and operand 1. Operand 2 describes the scratch register. See the discussion of the
SECONDARY_RELOAD_CLASS macro in see Section 16.6 [Register Classes], page 329.

‘movstrictm’

Like ‘movm’ except that if operand 0 is a subreg with mode m of a register whose
natural mode is wider, the ‘movstrictm’ instruction is guaranteed not to alter any of
the register except the part which belongs to mode m.

load_multiple

Load several consecutive memory locations into consecutive registers. Operand 0 is the
first of the consecutive registers, operand 1 is the first memory location, and operand
2 is a constant: the number of consecutive registers.

Define this only if the target machine really has such an instruction; do not define this
if the most efficient way of loading consecutive registers from memory is to do them
one at a time.

On some machines, there are restrictions as to which consecutive registers can be stored
into memory, such as particular starting or ending register numbers or only a range of
valid counts. For those machines, use a define_expand (see Section 15.13 [Expander
Definitions], page 286) and make the pattern fail if the restrictions are not met.

Chapter 15: Machine Descriptions 269

Write the generated insn as a parallel with elements being a set of one register from
the appropriate memory location (you may also need use or clobber elements). Use
a match_parallel (see Section 15.3 [RTL Template], page 247) to recognize the insn.
See ‘a29k.md’ and ‘rs6000.md’ for examples of the use of this insn pattern.

store_multiple

Similar to ‘load_multiple’, but store several consecutive registers into consecutive
memory locations. Operand 0 is the first of the consecutive memory locations, operand
1 is the first register, and operand 2 is a constant: the number of consecutive registers.

‘addm3’ Add operand 2 and operand 1, storing the result in operand 0. All operands must have
mode m. This can be used even on two-address machines, by means of constraints
requiring operands 1 and 0 to be the same location.

‘subm3’, ‘mulm3’
‘divm3’, ‘udivm3’, ‘modm3’, ‘umodm3’
‘sminm3’, ‘smaxm3’, ‘uminm3’, ‘umaxm3’
‘andm3’, ‘iorm3’, ‘xorm3’

Similar, for other arithmetic operations.

‘mulhisi3’

Multiply operands 1 and 2, which have mode HImode, and store a SImode product in
operand 0.

‘mulqihi3’, ‘mulsidi3’

Similar widening-multiplication instructions of other widths.

‘umulqihi3’, ‘umulhisi3’, ‘umulsidi3’

Similar widening-multiplication instructions that do unsigned multiplication.

‘divmodm4’

Signed division that produces both a quotient and a remainder. Operand 1 is divided
by operand 2 to produce a quotient stored in operand 0 and a remainder stored in
operand 3.

For machines with an instruction that produces both a quotient and a remainder,
provide a pattern for ‘divmodm4’ but do not provide patterns for ‘divm3’ and ‘modm3’.
This allows optimization in the relatively common case when both the quotient and
remainder are computed.

If an instruction that just produces a quotient or just a remainder exists and is more ef-
ficient than the instruction that produces both, write the output routine of ‘divmodm4’
to call find_reg_note and look for a REG_UNUSED note on the quotient or remainder
and generate the appropriate instruction.

‘udivmodm4’

Similar, but does unsigned division.

270 Using and Porting GNU CC

‘ashlm3’ Arithmetic-shift operand 1 left by a number of bits specified by operand 2, and store
the result in operand 0. Here m is the mode of operand 0 and operand 1; operand 2’s
mode is specified by the instruction pattern, and the compiler will convert the operand
to that mode before generating the instruction.

‘ashrm3’, ‘lshlm3’, ‘lshrm3’, ‘rotlm3’, ‘rotrm3’

Other shift and rotate instructions, analogous to the ashlm3 instructions.

Logical and arithmetic left shift are the same. Machines that do not allow negative
shift counts often have only one instruction for shifting left. On such machines, you
should define a pattern named ‘ashlm3’ and leave ‘lshlm3’ undefined.

‘negm2’ Negate operand 1 and store the result in operand 0.

‘absm2’ Store the absolute value of operand 1 into operand 0.

‘sqrtm2’ Store the square root of operand 1 into operand 0.

The sqrt built-in function of C always uses the mode which corresponds to the C data
type double.

‘ffsm2’ Store into operand 0 one plus the index of the least significant 1-bit of operand 1.
If operand 1 is zero, store zero. m is the mode of operand 0; operand 1’s mode is
specified by the instruction pattern, and the compiler will convert the operand to that
mode before generating the instruction.

The ffs built-in function of C always uses the mode which corresponds to the C data
type int.

‘one_cmplm2’

Store the bitwise-complement of operand 1 into operand 0.

‘cmpm’ Compare operand 0 and operand 1, and set the condition codes. The RTL pattern
should look like this:

(set (cc0) (compare (match_operand:m 0 . . .)
(match_operand:m 1 . . .)))

‘tstm’ Compare operand 0 against zero, and set the condition codes. The RTL pattern should
look like this:

(set (cc0) (match_operand:m 0 . . .))

‘tstm’ patterns should not be defined for machines that do not use (cc0). Doing so
would confuse the optimizer since it would no longer be clear which set operations
were comparisons. The ‘cmpm’ patterns should be used instead.

‘movstrm’ Block move instruction. The addresses of the destination and source strings are the
first two operands, and both are in mode Pmode. The number of bytes to move is the
third operand, in mode m.

The fourth operand is the known shared alignment of the source and destination, in the
form of a const_int rtx. Thus, if the compiler knows that both source and destination
are word-aligned, it may provide the value 4 for this operand.

Chapter 15: Machine Descriptions 271

These patterns need not give special consideration to the possibility that the source
and destination strings might overlap.

‘cmpstrm’ Block compare instruction, with five operands. Operand 0 is the output; it has mode
m. The remaining four operands are like the operands of ‘movstrm’. The two memory
blocks specified are compared byte by byte in lexicographic order. The effect of the
instruction is to store a value in operand 0 whose sign indicates the result of the
comparison.

Compute the length of a string, with three operands. Operand 0 is the result (of mode
m), operand 1 is a mem referring to the first character of the string, operand 2 is the
character to search for (normally zero), and operand 3 is a constant describing the
known alignment of the beginning of the string.

‘floatmn2’

Convert signed integer operand 1 (valid for fixed point mode m) to floating point mode
n and store in operand 0 (which has mode n).

‘floatunsmn2’

Convert unsigned integer operand 1 (valid for fixed point mode m) to floating point
mode n and store in operand 0 (which has mode n).

‘fixmn2’ Convert operand 1 (valid for floating point mode m) to fixed point mode n as a signed
number and store in operand 0 (which has mode n). This instruction’s result is defined
only when the value of operand 1 is an integer.

‘fixunsmn2’

Convert operand 1 (valid for floating point mode m) to fixed point mode n as an
unsigned number and store in operand 0 (which has mode n). This instruction’s result
is defined only when the value of operand 1 is an integer.

‘ftruncm2’

Convert operand 1 (valid for floating point mode m) to an integer value, still represented
in floating point mode m, and store it in operand 0 (valid for floating point mode m).

‘fix_truncmn2’

Like ‘fixmn2’ but works for any floating point value of mode m by converting the value
to an integer.

‘fixuns_truncmn2’

Like ‘fixunsmn2’ but works for any floating point value of mode m by converting the
value to an integer.

‘truncmn’ Truncate operand 1 (valid for mode m) to mode n and store in operand 0 (which has
mode n). Both modes must be fixed point or both floating point.

‘extendmn’

Sign-extend operand 1 (valid for mode m) to mode n and store in operand 0 (which
has mode n). Both modes must be fixed point or both floating point.

272 Using and Porting GNU CC

‘zero_extendmn’

Zero-extend operand 1 (valid for mode m) to mode n and store in operand 0 (which
has mode n). Both modes must be fixed point.

‘extv’ Extract a bit field from operand 1 (a register or memory operand), where operand
2 specifies the width in bits and operand 3 the starting bit, and store it in operand
0. Operand 0 must have mode word_mode. Operand 1 may have mode byte_mode or
word_mode; often word_mode is allowed only for registers. Operands 2 and 3 must be
valid for word_mode.

The RTL generation pass generates this instruction only with constants for operands
2 and 3.

The bit-field value is sign-extended to a full word integer before it is stored in operand
0.

‘extzv’ Like ‘extv’ except that the bit-field value is zero-extended.

‘insv’ Store operand 3 (which must be valid for word_mode) into a bit field in operand 0,
where operand 1 specifies the width in bits and operand 2 the starting bit. Operand 0
may have mode byte_mode or word_mode; often word_mode is allowed only for registers.
Operands 1 and 2 must be valid for word_mode.

The RTL generation pass generates this instruction only with constants for operands
1 and 2.

‘scond’ Store zero or nonzero in the operand according to the condition codes. Value stored
is nonzero iff the condition cond is true. cond is the name of a comparison operation
expression code, such as eq, lt or leu.

You specify the mode that the operand must have when you write the match_operand

expression. The compiler automatically sees which mode you have used and supplies
an operand of that mode.

The value stored for a true condition must have 1 as its low bit, or else must be negative.
Otherwise the instruction is not suitable and you should omit it from the machine
description. You describe to the compiler exactly which value is stored by defining the
macro STORE_FLAG_VALUE (see Section 16.19 [Misc], page 397). If a description cannot
be found that can be used for all the ‘scond’ patterns, you should omit those operations
from the machine description.

These operations may fail, but should do so only in relatively uncommon cases; if they
would fail for common cases involving integer comparisons, it is best to omit these
patterns.

If these operations are omitted, the compiler will usually generate code that copies the
constant one to the target and branches around an assignment of zero to the target. If
this code is more efficient than the potential instructions used for the ‘scond’ pattern
followed by those required to convert the result into a 1 or a zero in SImode, you should
omit the ‘scond’ operations from the machine description.

Chapter 15: Machine Descriptions 273

‘bcond’ Conditional branch instruction. Operand 0 is a label_ref that refers to the label to
jump to. Jump if the condition codes meet condition cond.

Some machines do not follow the model assumed here where a comparison instruction
is followed by a conditional branch instruction. In that case, the ‘cmpm’ (and ‘tstm’)
patterns should simply store the operands away and generate all the required insns in a
define_expand (see Section 15.13 [Expander Definitions], page 286) for the conditional
branch operations. All calls to expand ‘bcond’ patterns are immediately preceded by
calls to expand either a ‘cmpm’ pattern or a ‘tstm’ pattern.

Machines that use a pseudo register for the condition code value, or where the mode
used for the comparison depends on the condition being tested, should also use the
above mechanism. See Section 15.10 [Jump Patterns], page 279

The above discussion also applies to ‘scond’ patterns.

‘call’ Subroutine call instruction returning no value. Operand 0 is the function to call;
operand 1 is the number of bytes of arguments pushed (in mode SImode, except it is
normally a const_int); operand 2 is the number of registers used as operands.

On most machines, operand 2 is not actually stored into the RTL pattern. It is sup-
plied for the sake of some RISC machines which need to put this information into the
assembler code; they can put it in the RTL instead of operand 1.

Operand 0 should be a mem RTX whose address is the address of the function. Note,
however, that this address can be a symbol_ref expression even if it would not be a
legitimate memory address on the target machine. If it is also not a valid argument
for a call instruction, the pattern for this operation should be a define_expand (see
Section 15.13 [Expander Definitions], page 286) that places the address into a register
and uses that register in the call instruction.

‘call_value’

Subroutine call instruction returning a value. Operand 0 is the hard register in which
the value is returned. There are three more operands, the same as the three operands
of the ‘call’ instruction (but with numbers increased by one).

Subroutines that return BLKmode objects use the ‘call’ insn.

‘call_pop’, ‘call_value_pop’

Similar to ‘call’ and ‘call_value’, except used if defined and if RETURN_POPS_ARGS
is non-zero. They should emit a parallel that contains both the function call and a
set to indicate the adjustment made to the frame pointer.

For machines where RETURN_POPS_ARGS can be non-zero, the use of these patterns
increases the number of functions for which the frame pointer can be eliminated, if
desired.

‘untyped_call’

Subroutine call instruction returning a value of any type. Operand 0 is the function
to call; operand 1 is a memory location where the result of calling the function is to

274 Using and Porting GNU CC

be stored; operand 2 is a parallel expression where each element is a set expression
that indicates the saving of a function return value into the result block.

This instruction pattern should be defined to support __builtin_apply on machines
where special instructions are needed to call a subroutine with arbitrary arguments or
to save the value returned. This instruction pattern is required on machines that have
multiple registers that can hold a return value (i.e. FUNCTION_VALUE_REGNO_P is true
for more than one register).

‘return’ Subroutine return instruction. This instruction pattern name should be defined only if
a single instruction can do all the work of returning from a function.

Like the ‘movm’ patterns, this pattern is also used after the RTL generation phase. In
this case it is to support machines where multiple instructions are usually needed to
return from a function, but some class of functions only requires one instruction to
implement a return. Normally, the applicable functions are those which do not need
to save any registers or allocate stack space.

For such machines, the condition specified in this pattern should only be true when
reload_completed is non-zero and the function’s epilogue would only be a single in-
struction. For machines with register windows, the routine leaf_function_p may be
used to determine if a register window push is required.

Machines that have conditional return instructions should define patterns such as

(define_insn ""
[(set (pc)

(if_then_else (match_operator
0 "comparison_operator"
[(cc0) (const_int 0)])

(return)
(pc)))]

"condition"
". . .")

where condition would normally be the same condition specified on the named ‘return’
pattern.

‘untyped_return’

Untyped subroutine return instruction. This instruction pattern should be defined
to support __builtin_return on machines where special instructions are needed to
return a value of any type.

Operand 0 is a memory location where the result of calling a function with __builtin_

apply is stored; operand 1 is a parallel expression where each element is a set

expression that indicates the restoring of a function return value from the result block.

‘nop’ No-op instruction. This instruction pattern name should always be defined to output
a no-op in assembler code. (const_int 0) will do as an RTL pattern.

Chapter 15: Machine Descriptions 275

‘indirect_jump’

An instruction to jump to an address which is operand zero. This pattern name is
mandatory on all machines.

‘casesi’ Instruction to jump through a dispatch table, including bounds checking. This instruc-
tion takes five operands:

1. The index to dispatch on, which has mode SImode.

2. The lower bound for indices in the table, an integer constant.

3. The total range of indices in the table—the largest index minus the smallest one
(both inclusive).

4. A label that precedes the table itself.

5. A label to jump to if the index has a value outside the bounds. (If the machine-
description macro CASE_DROPS_THROUGH is defined, then an out-of-bounds index
drops through to the code following the jump table instead of jumping to this
label. In that case, this label is not actually used by the ‘casesi’ instruction, but
it is always provided as an operand.)

The table is a addr_vec or addr_diff_vec inside of a jump_insn. The number of
elements in the table is one plus the difference between the upper bound and the lower
bound.

‘tablejump’

Instruction to jump to a variable address. This is a low-level capability which can be
used to implement a dispatch table when there is no ‘casesi’ pattern.

This pattern requires two operands: the address or offset, and a label which should
immediately precede the jump table. If the macro CASE_VECTOR_PC_RELATIVE is de-
fined then the first operand is an offset which counts from the address of the table;
otherwise, it is an absolute address to jump to. In either case, the first operand has
mode Pmode.

The ‘tablejump’ insn is always the last insn before the jump table it uses. Its assembler
code normally has no need to use the second operand, but you should incorporate it in
the RTL pattern so that the jump optimizer will not delete the table as unreachable
code.

‘save_stack_block’
‘save_stack_function’
‘save_stack_nonlocal’
‘restore_stack_block’
‘restore_stack_function’
‘restore_stack_nonlocal’

Most machines save and restore the stack pointer by copying it to or from an object of
mode Pmode. Do not define these patterns on such machines.

276 Using and Porting GNU CC

Some machines require special handling for stack pointer saves and restores. On those
machines, define the patterns corresponding to the non-standard cases by using a
define_expand (see Section 15.13 [Expander Definitions], page 286) that produces
the required insns. The three types of saves and restores are:

1. ‘save_stack_block’ saves the stack pointer at the start of a block that allocates a
variable-sized object, and ‘restore_stack_block’ restores the stack pointer when
the block is exited.

2. ‘save_stack_function’ and ‘restore_stack_function’ do a similar job for the
outermost block of a function and are used when the function allocates variable-
sized objects or calls alloca. Only the epilogue uses the restored stack pointer,
allowing a simpler save or restore sequence on some machines.

3. ‘save_stack_nonlocal’ is used in functions that contain labels branched to by
nested functions. It saves the stack pointer in such a way that the inner function
can use ‘restore_stack_nonlocal’ to restore the stack pointer. The compiler
generates code to restore the frame and argument pointer registers, but some
machines require saving and restoring additional data such as register window
information or stack backchains. Place insns in these patterns to save and restore
any such required data.

When saving the stack pointer, operand 0 is the save area and operand 1 is the stack
pointer. The mode used to allocate the save area is the mode of operand 0. You must
specify an integral mode, or VOIDmode if no save area is needed for a particular type
of save (either because no save is needed or because a machine-specific save area can
be used). Operand 0 is the stack pointer and operand 1 is the save area for restore
operations. If ‘save_stack_block’ is defined, operand 0 must not be VOIDmode since
these saves can be arbitrarily nested.

A save area is a mem that is at a constant offset from virtual_stack_vars_rtx when
the stack pointer is saved for use by nonlocal gotos and a reg in the other two cases.

‘allocate_stack’

Subtract (or add if STACK_GROWS_DOWNWARD is undefined) operand 0 from the stack
pointer to create space for dynamically allocated data.

Do not define this pattern if all that must be done is the subtraction. Some machines
require other operations such as stack probes or maintaining the back chain. Define
this pattern to emit those operations in addition to updating the stack pointer.

15.8 When the Order of Patterns Matters

Sometimes an insn can match more than one instruction pattern. Then the pattern that appears
first in the machine description is the one used. Therefore, more specific patterns (patterns that

Chapter 15: Machine Descriptions 277

will match fewer things) and faster instructions (those that will produce better code when they do
match) should usually go first in the description.

In some cases the effect of ordering the patterns can be used to hide a pattern when it is not
valid. For example, the 68000 has an instruction for converting a fullword to floating point and
another for converting a byte to floating point. An instruction converting an integer to floating
point could match either one. We put the pattern to convert the fullword first to make sure that one
will be used rather than the other. (Otherwise a large integer might be generated as a single-byte
immediate quantity, which would not work.) Instead of using this pattern ordering it would be
possible to make the pattern for convert-a-byte smart enough to deal properly with any constant
value.

15.9 Interdependence of Patterns

Every machine description must have a named pattern for each of the conditional branch names
‘bcond’. The recognition template must always have the form

(set (pc)
(if_then_else (cond (cc0) (const_int 0))

(label_ref (match_operand 0 "" ""))
(pc)))

In addition, every machine description must have an anonymous pattern for each of the possible
reverse-conditional branches. Their templates look like

(set (pc)
(if_then_else (cond (cc0) (const_int 0))

(pc)
(label_ref (match_operand 0 "" ""))))

They are necessary because jump optimization can turn direct-conditional branches into reverse-
conditional branches.

It is often convenient to use the match_operator construct to reduce the number of patterns
that must be specified for branches. For example,

278 Using and Porting GNU CC

(define_insn ""
[(set (pc)

(if_then_else (match_operator 0 "comparison_operator"
[(cc0) (const_int 0)])

(pc)
(label_ref (match_operand 1 "" ""))))]

"condition"
". . .")

In some cases machines support instructions identical except for the machine mode of one or more
operands. For example, there may be “sign-extend halfword” and “sign-extend byte” instructions
whose patterns are

(set (match_operand:SI 0 . . .)
(extend:SI (match_operand:HI 1 . . .)))

(set (match_operand:SI 0 . . .)
(extend:SI (match_operand:QI 1 . . .)))

Constant integers do not specify a machine mode, so an instruction to extend a constant value
could match either pattern. The pattern it actually will match is the one that appears first in the
file. For correct results, this must be the one for the widest possible mode (HImode, here). If the
pattern matches the QImode instruction, the results will be incorrect if the constant value does not
actually fit that mode.

Such instructions to extend constants are rarely generated because they are optimized away, but
they do occasionally happen in nonoptimized compilations.

If a constraint in a pattern allows a constant, the reload pass may replace a register with a
constant permitted by the constraint in some cases. Similarly for memory references. You must
ensure that the predicate permits all objects allowed by the constraints to prevent the compiler
from crashing.

Because of this substitution, you should not provide separate patterns for increment and decre-
ment instructions. Instead, they should be generated from the same pattern that supports register-
register add insns by examining the operands and generating the appropriate machine instruction.

Chapter 15: Machine Descriptions 279

15.10 Defining Jump Instruction Patterns

For most machines, GNU CC assumes that the machine has a condition code. A comparison
insn sets the condition code, recording the results of both signed and unsigned comparison of the
given operands. A separate branch insn tests the condition code and branches or not according its
value. The branch insns come in distinct signed and unsigned flavors. Many common machines,
such as the Vax, the 68000 and the 32000, work this way.

Some machines have distinct signed and unsigned compare instructions, and only one set of
conditional branch instructions. The easiest way to handle these machines is to treat them just
like the others until the final stage where assembly code is written. At this time, when outputting
code for the compare instruction, peek ahead at the following branch using next_cc0_user (insn).
(The variable insn refers to the insn being output, in the output-writing code in an instruction
pattern.) If the RTL says that is an unsigned branch, output an unsigned compare; otherwise
output a signed compare. When the branch itself is output, you can treat signed and unsigned
branches identically.

The reason you can do this is that GNU CC always generates a pair of consecutive RTL insns,
possibly separated by note insns, one to set the condition code and one to test it, and keeps the
pair inviolate until the end.

To go with this technique, you must define the machine-description macro NOTICE_UPDATE_CC

to do CC_STATUS_INIT; in other words, no compare instruction is superfluous.

Some machines have compare-and-branch instructions and no condition code. A similar tech-
nique works for them. When it is time to “output” a compare instruction, record its operands
in two static variables. When outputting the branch-on-condition-code instruction that follows,
actually output a compare-and-branch instruction that uses the remembered operands.

It also works to define patterns for compare-and-branch instructions. In optimizing compilation,
the pair of compare and branch instructions will be combined according to these patterns. But this
does not happen if optimization is not requested. So you must use one of the solutions above in
addition to any special patterns you define.

In many RISC machines, most instructions do not affect the condition code and there may not
even be a separate condition code register. On these machines, the restriction that the defini-
tion and use of the condition code be adjacent insns is not necessary and can prevent important
optimizations. For example, on the IBM RS/6000, there is a delay for taken branches unless the
condition code register is set three instructions earlier than the conditional branch. The instruction

280 Using and Porting GNU CC

scheduler cannot perform this optimization if it is not permitted to separate the definition and use
of the condition code register.

On these machines, do not use (cc0), but instead use a register to represent the condition code.
If there is a specific condition code register in the machine, use a hard register. If the condition
code or comparison result can be placed in any general register, or if there are multiple condition
registers, use a pseudo register.

On some machines, the type of branch instruction generated may depend on the way the con-
dition code was produced; for example, on the 68k and Sparc, setting the condition code directly
from an add or subtract instruction does not clear the overflow bit the way that a test instruction
does, so a different branch instruction must be used for some conditional branches. For machines
that use (cc0), the set and use of the condition code must be adjacent (separated only by note

insns) allowing flags in cc_status to be used. (See Section 16.12 [Condition Code], page 364.)
Also, the comparison and branch insns can be located from each other by using the functions
prev_cc0_setter and next_cc0_user.

However, this is not true on machines that do not use (cc0). On those machines, no assumptions
can be made about the adjacency of the compare and branch insns and the above methods cannot
be used. Instead, we use the machine mode of the condition code register to record different formats
of the condition code register.

Registers used to store the condition code value should have a mode that is in class MODE_CC.
Normally, it will be CCmode. If additional modes are required (as for the add example mentioned
above in the Sparc), define the macro EXTRA_CC_MODES to list the additional modes required (see
Section 16.12 [Condition Code], page 364). Also define EXTRA_CC_NAMES to list the names of those
modes and SELECT_CC_MODE to choose a mode given an operand of a compare.

If it is known during RTL generation that a different mode will be required (for example, if
the machine has separate compare instructions for signed and unsigned quantities, like most IBM
processors), they can be specified at that time.

If the cases that require different modes would be made by instruction combination, the macro
SELECT_CC_MODE determines which machine mode should be used for the comparison result. The
patterns should be written using that mode. To support the case of the add on the Sparc discussed
above, we have the pattern

Chapter 15: Machine Descriptions 281

(define_insn ""
[(set (reg:CC_NOOV 0)

(compare:CC_NOOV
(plus:SI (match_operand:SI 0 "register_operand" "%r")

(match_operand:SI 1 "arith_operand" "rI"))
(const_int 0)))]

""
". . .")

The SELECT_CC_MODE macro on the Sparc returns CC_NOOVmode for comparisons whose argument
is a plus.

15.11 Canonicalization of Instructions

There are often cases where multiple RTL expressions could represent an operation performed by
a single machine instruction. This situation is most commonly encountered with logical, branch, and
multiply-accumulate instructions. In such cases, the compiler attempts to convert these multiple
RTL expressions into a single canonical form to reduce the number of insn patterns required.

In addition to algebraic simplifications, following canonicalizations are performed:

• For commutative and comparison operators, a constant is always made the second operand. If
a machine only supports a constant as the second operand, only patterns that match a constant
in the second operand need be supplied.

For these operators, if only one operand is a neg, not, mult, plus, or minus expression, it will
be the first operand.

• For the compare operator, a constant is always the second operand on machines where cc0 is
used (see Section 15.10 [Jump Patterns], page 279). On other machines, there are rare cases
where the compiler might want to construct a compare with a constant as the first operand.
However, these cases are not common enough for it to be worthwhile to provide a pattern
matching a constant as the first operand unless the machine actually has such an instruction.

An operand of neg, not, mult, plus, or minus is made the first operand under the same
conditions as above.

• (minus x (const_int n)) is converted to (plus x (const_int -n)).

• Within address computations (i.e., inside mem), a left shift is converted into the appropriate
multiplication by a power of two.

De‘Morgan’s Law is used to move bitwise negation inside a bitwise logical-and or logical-or
operation. If this results in only one operand being a not expression, it will be the first one.

282 Using and Porting GNU CC

A machine that has an instruction that performs a bitwise logical-and of one operand with the
bitwise negation of the other should specify the pattern for that instruction as

(define_insn ""
[(set (match_operand:m 0 . . .)

(and:m (not:m (match_operand:m 1 . . .))
(match_operand:m 2 . . .)))]

". . ."
". . .")

Similarly, a pattern for a “NAND” instruction should be written

(define_insn ""
[(set (match_operand:m 0 . . .)

(ior:m (not:m (match_operand:m 1 . . .))
(not:m (match_operand:m 2 . . .))))]

". . ."
". . .")

In both cases, it is not necessary to include patterns for the many logically equivalent RTL
expressions.

• The only possible RTL expressions involving both bitwise exclusive-or and bitwise negation
are (xor:m x y) and (not:m (xor:m x y)).

• The sum of three items, one of which is a constant, will only appear in the form

(plus:m (plus:m x y) constant)

• On machines that do not use cc0, (compare x (const_int 0)) will be converted to x.

• Equality comparisons of a group of bits (usually a single bit) with zero will be written using
zero_extract rather than the equivalent and or sign_extract operations.

15.12 Machine-Specific Peephole Optimizers

In addition to instruction patterns the ‘md’ file may contain definitions of machine-specific peep-
hole optimizations.

The combiner does not notice certain peephole optimizations when the data flow in the program
does not suggest that it should try them. For example, sometimes two consecutive insns related in
purpose can be combined even though the second one does not appear to use a register computed
in the first one. A machine-specific peephole optimizer can detect such opportunities.

A definition looks like this:

Chapter 15: Machine Descriptions 283

(define_peephole
[insn-pattern-1
insn-pattern-2
. . .]
"condition"
"template"
"optional insn-attributes")

The last string operand may be omitted if you are not using any machine-specific information in
this machine description. If present, it must obey the same rules as in a define_insn.

In this skeleton, insn-pattern-1 and so on are patterns to match consecutive insns. The opti-
mization applies to a sequence of insns when insn-pattern-1 matches the first one, insn-pattern-2

matches the next, and so on.

Each of the insns matched by a peephole must also match a define_insn. Peepholes are
checked only at the last stage just before code generation, and only optionally. Therefore, any insn
which would match a peephole but no define_insn will cause a crash in code generation in an
unoptimized compilation, or at various optimization stages.

The operands of the insns are matched with match_operands, match_operator, and match_

dup, as usual. What is not usual is that the operand numbers apply to all the insn patterns in the
definition. So, you can check for identical operands in two insns by using match_operand in one
insn and match_dup in the other.

The operand constraints used in match_operand patterns do not have any direct effect on the
applicability of the peephole, but they will be validated afterward, so make sure your constraints
are general enough to apply whenever the peephole matches. If the peephole matches but the
constraints are not satisfied, the compiler will crash.

It is safe to omit constraints in all the operands of the peephole; or you can write constraints
which serve as a double-check on the criteria previously tested.

Once a sequence of insns matches the patterns, the condition is checked. This is a C expression
which makes the final decision whether to perform the optimization (we do so if the expression is
nonzero). If condition is omitted (in other words, the string is empty) then the optimization is
applied to every sequence of insns that matches the patterns.

284 Using and Porting GNU CC

The defined peephole optimizations are applied after register allocation is complete. Therefore,
the peephole definition can check which operands have ended up in which kinds of registers, just
by looking at the operands.

The way to refer to the operands in condition is to write operands[i] for operand number i (as
matched by (match_operand i . . .)). Use the variable insn to refer to the last of the insns being
matched; use prev_nonnote_insn to find the preceding insns.

When optimizing computations with intermediate results, you can use condition to match only
when the intermediate results are not used elsewhere. Use the C expression dead_or_set_p (insn,

op), where insn is the insn in which you expect the value to be used for the last time (from the
value of insn, together with use of prev_nonnote_insn), and op is the intermediate value (from
operands[i]).

Applying the optimization means replacing the sequence of insns with one new insn. The
template controls ultimate output of assembler code for this combined insn. It works exactly like
the template of a define_insn. Operand numbers in this template are the same ones used in
matching the original sequence of insns.

The result of a defined peephole optimizer does not need to match any of the insn patterns
in the machine description; it does not even have an opportunity to match them. The peephole
optimizer definition itself serves as the insn pattern to control how the insn is output.

Defined peephole optimizers are run as assembler code is being output, so the insns they produce
are never combined or rearranged in any way.

Here is an example, taken from the 68000 machine description:

(define_peephole
[(set (reg:SI 15) (plus:SI (reg:SI 15) (const_int 4)))
(set (match_operand:DF 0 "register_operand" "=f")

(match_operand:DF 1 "register_operand" "ad"))]
"FP_REG_P (operands[0]) && ! FP_REG_P (operands[1])"
"*

{
rtx xoperands[2];
xoperands[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);

#ifdef MOTOROLA
output_asm_insn (\"move.l %1,(sp)\", xoperands);
output_asm_insn (\"move.l %1,-(sp)\", operands);
return \"fmove.d (sp)+,%0\";

Chapter 15: Machine Descriptions 285

#else
output_asm_insn (\"movel %1,sp@\", xoperands);
output_asm_insn (\"movel %1,sp@-\", operands);
return \"fmoved sp@+,%0\";

#endif
}
")

The effect of this optimization is to change

jbsr _foobar

addql #4,sp

movel d1,sp@-

movel d0,sp@-

fmoved sp@+,fp0

into

jbsr _foobar

movel d1,sp@

movel d0,sp@-

fmoved sp@+,fp0

insn-pattern-1 and so on look almost like the second operand of define_insn. There is one
important difference: the second operand of define_insn consists of one or more RTX’s enclosed
in square brackets. Usually, there is only one: then the same action can be written as an element
of a define_peephole. But when there are multiple actions in a define_insn, they are implicitly
enclosed in a parallel. Then you must explicitly write the parallel, and the square brackets
within it, in the define_peephole. Thus, if an insn pattern looks like this,

(define_insn "divmodsi4"
[(set (match_operand:SI 0 "general_operand" "=d")

(div:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dmsK")))

(set (match_operand:SI 3 "general_operand" "=d")
(mod:SI (match_dup 1) (match_dup 2)))]

"TARGET_68020"
"divsl%.l %2,%3:%0")

then the way to mention this insn in a peephole is as follows:

286 Using and Porting GNU CC

(define_peephole
[. . .
(parallel
[(set (match_operand:SI 0 "general_operand" "=d")

(div:SI (match_operand:SI 1 "general_operand" "0")
(match_operand:SI 2 "general_operand" "dmsK")))

(set (match_operand:SI 3 "general_operand" "=d")
(mod:SI (match_dup 1) (match_dup 2)))])

. . .]
. . .)

15.13 Defining RTL Sequences for Code Generation

On some target machines, some standard pattern names for RTL generation cannot be handled
with single insn, but a sequence of RTL insns can represent them. For these target machines, you
can write a define_expand to specify how to generate the sequence of RTL.

A define_expand is an RTL expression that looks almost like a define_insn; but, unlike the
latter, a define_expand is used only for RTL generation and it can produce more than one RTL
insn.

A define_expand RTX has four operands:

• The name. Each define_expand must have a name, since the only use for it is to refer to it
by name.

• The RTL template. This is just like the RTL template for a define_peephole in that it is a
vector of RTL expressions each being one insn.

• The condition, a string containing a C expression. This expression is used to express how the
availability of this pattern depends on subclasses of target machine, selected by command-line
options when GNU CC is run. This is just like the condition of a define_insn that has a
standard name.

• The preparation statements, a string containing zero or more C statements which are to be
executed before RTL code is generated from the RTL template.

Usually these statements prepare temporary registers for use as internal operands in the RTL
template, but they can also generate RTL insns directly by calling routines such as emit_insn,
etc. Any such insns precede the ones that come from the RTL template.

Chapter 15: Machine Descriptions 287

Every RTL insn emitted by a define_expand must match some define_insn in the machine
description. Otherwise, the compiler will crash when trying to generate code for the insn or trying
to optimize it.

The RTL template, in addition to controlling generation of RTL insns, also describes the
operands that need to be specified when this pattern is used. In particular, it gives a predicate for
each operand.

A true operand, which needs to be specified in order to generate RTL from the pattern, should
be described with a match_operand in its first occurrence in the RTL template. This enters
information on the operand’s predicate into the tables that record such things. GNU CC uses the
information to preload the operand into a register if that is required for valid RTL code. If the
operand is referred to more than once, subsequent references should use match_dup.

The RTL template may also refer to internal “operands” which are temporary registers or labels
used only within the sequence made by the define_expand. Internal operands are substituted into
the RTL template with match_dup, never with match_operand. The values of the internal operands
are not passed in as arguments by the compiler when it requests use of this pattern. Instead, they
are computed within the pattern, in the preparation statements. These statements compute the
values and store them into the appropriate elements of operands so that match_dup can find them.

There are two special macros defined for use in the preparation statements: DONE and FAIL. Use
them with a following semicolon, as a statement.

DONE Use the DONE macro to end RTL generation for the pattern. The only RTL insns
resulting from the pattern on this occasion will be those already emitted by explicit
calls to emit_insn within the preparation statements; the RTL template will not be
generated.

FAIL Make the pattern fail on this occasion. When a pattern fails, it means that the pattern
was not truly available. The calling routines in the compiler will try other strategies
for code generation using other patterns.

Failure is currently supported only for binary (addition, multiplication, shifting, etc.)
and bitfield (extv, extzv, and insv) operations.

Here is an example, the definition of left-shift for the SPUR chip:

(define_expand "ashlsi3"

[(set (match_operand:SI 0 "register_operand" "")

(ashift:SI

288 Using and Porting GNU CC

(match_operand:SI 1 "register_operand" "")

(match_operand:SI 2 "nonmemory_operand" "")))]

""

"

{

if (GET_CODE (operands[2]) != CONST_INT

|| (unsigned) INTVAL (operands[2]) > 3)

FAIL;

}")

This example uses define_expand so that it can generate an RTL insn for shifting when the shift-
count is in the supported range of 0 to 3 but fail in other cases where machine insns aren’t available.
When it fails, the compiler tries another strategy using different patterns (such as, a library call).

If the compiler were able to handle nontrivial condition-strings in patterns with names, then it
would be possible to use a define_insn in that case. Here is another case (zero-extension on the
68000) which makes more use of the power of define_expand:

(define_expand "zero_extendhisi2"
[(set (match_operand:SI 0 "general_operand" "")

(const_int 0))
(set (strict_low_part

(subreg:HI
(match_dup 0)
0))

(match_operand:HI 1 "general_operand" ""))]
""
"operands[1] = make_safe_from (operands[1], operands[0]);")

Here two RTL insns are generated, one to clear the entire output operand and the other to copy
the input operand into its low half. This sequence is incorrect if the input operand refers to [the old
value of] the output operand, so the preparation statement makes sure this isn’t so. The function
make_safe_from copies the operands[1] into a temporary register if it refers to operands[0]. It
does this by emitting another RTL insn.

Finally, a third example shows the use of an internal operand. Zero-extension on the SPUR chip
is done by and-ing the result against a halfword mask. But this mask cannot be represented by a
const_int because the constant value is too large to be legitimate on this machine. So it must be
copied into a register with force_reg and then the register used in the and.

Chapter 15: Machine Descriptions 289

(define_expand "zero_extendhisi2"
[(set (match_operand:SI 0 "register_operand" "")

(and:SI (subreg:SI
(match_operand:HI 1 "register_operand" "")
0)

(match_dup 2)))]
""
"operands[2]

= force_reg (SImode, gen_rtx (CONST_INT,
VOIDmode, 65535)); ")

Note: If the define_expand is used to serve a standard binary or unary arithmetic operation
or a bitfield operation, then the last insn it generates must not be a code_label, barrier or note.
It must be an insn, jump_insn or call_insn. If you don’t need a real insn at the end, emit an
insn to copy the result of the operation into itself. Such an insn will generate no code, but it can
avoid problems in the compiler.

15.14 Defining How to Split Instructions

There are two cases where you should specify how to split a pattern into multiple insns. On
machines that have instructions requiring delay slots (see Section 15.15.7 [Delay Slots], page 301)
or that have instructions whose output is not available for multiple cycles (see Section 15.15.8
[Function Units], page 303), the compiler phases that optimize these cases need to be able to move
insns into one-instruction delay slots. However, some insns may generate more than one machine
instruction. These insns cannot be placed into a delay slot.

Often you can rewrite the single insn as a list of individual insns, each corresponding to one
machine instruction. The disadvantage of doing so is that it will cause the compilation to be
slower and require more space. If the resulting insns are too complex, it may also suppress some
optimizations. The compiler splits the insn if there is a reason to believe that it might improve
instruction or delay slot scheduling.

The insn combiner phase also splits putative insns. If three insns are merged into one insn with
a complex expression that cannot be matched by some define_insn pattern, the combiner phase
attempts to split the complex pattern into two insns that are recognized. Usually it can break the
complex pattern into two patterns by splitting out some subexpression. However, in some other
cases, such as performing an addition of a large constant in two insns on a RISC machine, the way
to split the addition into two insns is machine-dependent.

290 Using and Porting GNU CC

The define_split definition tells the compiler how to split a complex insn into several simpler
insns. It looks like this:

(define_split
[insn-pattern]
"condition"
[new-insn-pattern-1
new-insn-pattern-2
. . .]
"preparation statements")

insn-pattern is a pattern that needs to be split and condition is the final condition to be tested,
as in a define_insn. When an insn matching insn-pattern and satisfying condition is found, it is
replaced in the insn list with the insns given by new-insn-pattern-1, new-insn-pattern-2, etc.

The preparation statements are similar to those statements that are specified for define_expand
(see Section 15.13 [Expander Definitions], page 286) and are executed before the new RTL is
generated to prepare for the generated code or emit some insns whose pattern is not fixed. Unlike
those in define_expand, however, these statements must not generate any new pseudo-registers.
Once reload has completed, they also must not allocate any space in the stack frame.

Patterns are matched against insn-pattern in two different circumstances. If an insn needs to be
split for delay slot scheduling or insn scheduling, the insn is already known to be valid, which means
that it must have been matched by some define_insn and, if reload_completed is non-zero, is
known to satisfy the constraints of that define_insn. In that case, the new insn patterns must
also be insns that are matched by some define_insn and, if reload_completed is non-zero, must
also satisfy the constraints of those definitions.

As an example of this usage of define_split, consider the following example from ‘a29k.md’,
which splits a sign_extend from HImode to SImode into a pair of shift insns:

(define_split
[(set (match_operand:SI 0 "gen_reg_operand" "")

(sign_extend:SI (match_operand:HI 1 "gen_reg_operand" "")))]
""
[(set (match_dup 0)

(ashift:SI (match_dup 1)
(const_int 16)))

(set (match_dup 0)
(ashiftrt:SI (match_dup 0)

(const_int 16)))]
"

{ operands[1] = gen_lowpart (SImode, operands[1]); }")

Chapter 15: Machine Descriptions 291

When the combiner phase tries to split an insn pattern, it is always the case that the pattern
is not matched by any define_insn. The combiner pass first tries to split a single set expression
and then the same set expression inside a parallel, but followed by a clobber of a pseudo-reg
to use as a scratch register. In these cases, the combiner expects exactly two new insn patterns to
be generated. It will verify that these patterns match some define_insn definitions, so you need
not do this test in the define_split (of course, there is no point in writing a define_split that
will never produce insns that match).

Here is an example of this use of define_split, taken from ‘rs6000.md’:

(define_split
[(set (match_operand:SI 0 "gen_reg_operand" "")

(plus:SI (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "non_add_cint_operand" "")))]

""
[(set (match_dup 0) (plus:SI (match_dup 1) (match_dup 3)))
(set (match_dup 0) (plus:SI (match_dup 0) (match_dup 4)))]

"
{

int low = INTVAL (operands[2]) & 0xffff;
int high = (unsigned) INTVAL (operands[2]) >> 16;

if (low & 0x8000)
high++, low |= 0xffff0000;

operands[3] = gen_rtx (CONST_INT, VOIDmode, high << 16);
operands[4] = gen_rtx (CONST_INT, VOIDmode, low);

}")

Here the predicate non_add_cint_operand matches any const_int that is not a valid operand
of a single add insn. The add with the smaller displacement is written so that it can be substituted
into the address of a subsequent operation.

An example that uses a scratch register, from the same file, generates an equality comparison
of a register and a large constant:

292 Using and Porting GNU CC

(define_split
[(set (match_operand:CC 0 "cc_reg_operand" "")

(compare:CC (match_operand:SI 1 "gen_reg_operand" "")
(match_operand:SI 2 "non_short_cint_operand" "")))

(clobber (match_operand:SI 3 "gen_reg_operand" ""))]
"find_single_use (operands[0], insn, 0)
&& (GET_CODE (*find_single_use (operands[0], insn, 0)) == EQ

|| GET_CODE (*find_single_use (operands[0], insn, 0)) == NE)"
[(set (match_dup 3) (xor:SI (match_dup 1) (match_dup 4)))
(set (match_dup 0) (compare:CC (match_dup 3) (match_dup 5)))]
"

{
/* Get the constant we are comparing against, C, and see what it

looks like sign-extended to 16 bits. Then see what constant
could be XOR’ed with C to get the sign-extended value. */

int c = INTVAL (operands[2]);
int sextc = (c << 16) >> 16;
int xorv = c ^ sextc;

operands[4] = gen_rtx (CONST_INT, VOIDmode, xorv);
operands[5] = gen_rtx (CONST_INT, VOIDmode, sextc);

}")

To avoid confusion, don’t write a single define_split that accepts some insns that match
some define_insn as well as some insns that don’t. Instead, write two separate define_split

definitions, one for the insns that are valid and one for the insns that are not valid.

15.15 Instruction Attributes

In addition to describing the instruction supported by the target machine, the ‘md’ file also
defines a group of attributes and a set of values for each. Every generated insn is assigned a value
for each attribute. One possible attribute would be the effect that the insn has on the machine’s
condition code. This attribute can then be used by NOTICE_UPDATE_CC to track the condition codes.

15.15.1 Defining Attributes and their Values

The define_attr expression is used to define each attribute required by the target machine. It
looks like:

(define_attr name list-of-values default)

Chapter 15: Machine Descriptions 293

name is a string specifying the name of the attribute being defined.

list-of-values is either a string that specifies a comma-separated list of values that can be assigned
to the attribute, or a null string to indicate that the attribute takes numeric values.

default is an attribute expression that gives the value of this attribute for insns that match
patterns whose definition does not include an explicit value for this attribute. See Section 15.15.4
[Attr Example], page 298, for more information on the handling of defaults. See Section 15.15.6
[Constant Attributes], page 301, for information on attributes that do not depend on any particular
insn.

For each defined attribute, a number of definitions are written to the ‘insn-attr.h’ file. For
cases where an explicit set of values is specified for an attribute, the following are defined:

• A ‘#define’ is written for the symbol ‘HAVE_ATTR_name’.

• An enumeral class is defined for ‘attr_name’ with elements of the form ‘upper-name_upper-

value’ where the attribute name and value are first converted to upper case.

• A function ‘get_attr_name’ is defined that is passed an insn and returns the attribute value
for that insn.

For example, if the following is present in the ‘md’ file:

(define_attr "type" "branch,fp,load,store,arith" . . .)

the following lines will be written to the file ‘insn-attr.h’.

#define HAVE_ATTR_type
enum attr_type {TYPE_BRANCH, TYPE_FP, TYPE_LOAD,

TYPE_STORE, TYPE_ARITH};
extern enum attr_type get_attr_type ();

If the attribute takes numeric values, no enum type will be defined and the function to obtain
the attribute’s value will return int.

294 Using and Porting GNU CC

15.15.2 Attribute Expressions

RTL expressions used to define attributes use the codes described above plus a few specific
to attribute definitions, to be discussed below. Attribute value expressions must have one of the
following forms:

(const_int i)

The integer i specifies the value of a numeric attribute. i must be non-negative.

The value of a numeric attribute can be specified either with a const_int or as an
integer represented as a string in const_string, eq_attr (see below), and set_attr

(see Section 15.15.3 [Tagging Insns], page 296) expressions.

(const_string value)

The string value specifies a constant attribute value. If value is specified as ‘"*"’, it
means that the default value of the attribute is to be used for the insn containing this
expression. ‘"*"’ obviously cannot be used in the default expression of a define_attr.

If the attribute whose value is being specified is numeric, value must be a string contain-
ing a non-negative integer (normally const_int would be used in this case). Otherwise,
it must contain one of the valid values for the attribute.

(if_then_else test true-value false-value)

test specifies an attribute test, whose format is defined below. The value of this ex-
pression is true-value if test is true, otherwise it is false-value.

(cond [test1 value1 . . .] default)

The first operand of this expression is a vector containing an even number of expressions
and consisting of pairs of test and value expressions. The value of the cond expression
is that of the value corresponding to the first true test expression. If none of the test

expressions are true, the value of the cond expression is that of the default expression.

test expressions can have one of the following forms:

(const_int i)

This test is true if i is non-zero and false otherwise.

(not test)

(ior test1 test2)

(and test1 test2)

These tests are true if the indicated logical function is true.

Chapter 15: Machine Descriptions 295

(match_operand:m n pred constraints)

This test is true if operand n of the insn whose attribute value is being determined has
mode m (this part of the test is ignored if m is VOIDmode) and the function specified
by the string pred returns a non-zero value when passed operand n and mode m (this
part of the test is ignored if pred is the null string).

The constraints operand is ignored and should be the null string.

(le arith1 arith2)

(leu arith1 arith2)

(lt arith1 arith2)

(ltu arith1 arith2)

(gt arith1 arith2)

(gtu arith1 arith2)

(ge arith1 arith2)

(geu arith1 arith2)

(ne arith1 arith2)

(eq arith1 arith2)

These tests are true if the indicated comparison of the two arithmetic expressions is
true. Arithmetic expressions are formed with plus, minus, mult, div, mod, abs, neg,
and, ior, xor, not, lshift, ashift, lshiftrt, and ashiftrt expressions.

const_int and symbol_ref are always valid terms (see Section 15.15.5 [Insn Lengths],
page 299,for additional forms). symbol_ref is a string denoting a C expression that
yields an int when evaluated by the ‘get_attr_. . .’ routine. It should normally be a
global variable.

(eq_attr name value)

name is a string specifying the name of an attribute.

value is a string that is either a valid value for attribute name, a comma-separated list
of values, or ‘!’ followed by a value or list. If value does not begin with a ‘!’, this test
is true if the value of the name attribute of the current insn is in the list specified by
value. If value begins with a ‘!’, this test is true if the attribute’s value is not in the
specified list.

For example,
(eq_attr "type" "load,store")

is equivalent to
(ior (eq_attr "type" "load") (eq_attr "type" "store"))

If name specifies an attribute of ‘alternative’, it refers to the value of the compiler
variable which_alternative (see Section 15.5 [Output Statement], page 253) and the
values must be small integers. For example,

(eq_attr "alternative" "2,3")

is equivalent to

296 Using and Porting GNU CC

(ior (eq (symbol_ref "which_alternative") (const_int 2))
(eq (symbol_ref "which_alternative") (const_int 3)))

Note that, for most attributes, an eq_attr test is simplified in cases where the value
of the attribute being tested is known for all insns matching a particular pattern. This
is by far the most common case.

(attr_flag name)

The value of an attr_flag expression is true if the flag specified by name is true for
the insn currently being scheduled.

name is a string specifying one of a fixed set of flags to test. Test the flags forward

and backward to determine the direction of a conditional branch. Test the flags very_
likely, likely, very_unlikely, and unlikely to determine if a conditional branch
is expected to be taken.

If the very_likely flag is true, then the likely flag is also true. Likewise for the
very_unlikely and unlikely flags.

This example describes a conditional branch delay slot which can be nullified for forward
branches that are taken (annul-true) or for backward branches which are not taken
(annul-false).

(define_delay (eq_attr "type" "cbranch")
[(eq_attr "in_branch_delay" "true")
(and (eq_attr "in_branch_delay" "true")

(attr_flag "forward"))
(and (eq_attr "in_branch_delay" "true")

(attr_flag "backward"))])

The forward and backward flags are false if the current insn being scheduled is not a
conditional branch.

The very_likely and likely flags are true if the insn being scheduled is not a condi-
tional branch. The The very_unlikely and unlikely flags are false if the insn being
scheduled is not a conditional branch.

attr_flag is only used during delay slot scheduling and has no meaning to other passes
of the compiler.

15.15.3 Assigning Attribute Values to Insns

The value assigned to an attribute of an insn is primarily determined by which pattern is matched
by that insn (or which define_peephole generated it). Every define_insn and define_peephole

can have an optional last argument to specify the values of attributes for matching insns. The value
of any attribute not specified in a particular insn is set to the default value for that attribute, as
specified in its define_attr. Extensive use of default values for attributes permits the specification

Chapter 15: Machine Descriptions 297

of the values for only one or two attributes in the definition of most insn patterns, as seen in the
example in the next section.

The optional last argument of define_insn and define_peephole is a vector of expressions,
each of which defines the value for a single attribute. The most general way of assigning an
attribute’s value is to use a set expression whose first operand is an attr expression giving the
name of the attribute being set. The second operand of the set is an attribute expression (see
Section 15.15.2 [Expressions], page 294) giving the value of the attribute.

When the attribute value depends on the ‘alternative’ attribute (i.e., which is the applicable
alternative in the constraint of the insn), the set_attr_alternative expression can be used. It
allows the specification of a vector of attribute expressions, one for each alternative.

When the generality of arbitrary attribute expressions is not required, the simpler set_attr

expression can be used, which allows specifying a string giving either a single attribute value or a
list of attribute values, one for each alternative.

The form of each of the above specifications is shown below. In each case, name is a string
specifying the attribute to be set.

(set_attr name value-string)

value-string is either a string giving the desired attribute value, or a string containing
a comma-separated list giving the values for succeeding alternatives. The number of
elements must match the number of alternatives in the constraint of the insn pattern.

Note that it may be useful to specify ‘*’ for some alternative, in which case the attribute
will assume its default value for insns matching that alternative.

(set_attr_alternative name [value1 value2 . . .])

Depending on the alternative of the insn, the value will be one of the specified values.
This is a shorthand for using a cond with tests on the ‘alternative’ attribute.

(set (attr name) value)

The first operand of this set must be the special RTL expression attr, whose sole
operand is a string giving the name of the attribute being set. value is the value of the
attribute.

The following shows three different ways of representing the same attribute value specification:

(set_attr "type" "load,store,arith")

298 Using and Porting GNU CC

(set_attr_alternative "type"
[(const_string "load") (const_string "store")
(const_string "arith")])

(set (attr "type")
(cond [(eq_attr "alternative" "1") (const_string "load")

(eq_attr "alternative" "2") (const_string "store")]
(const_string "arith")))

The define_asm_attributes expression provides a mechanism to specify the attributes as-
signed to insns produced from an asm statement. It has the form:

(define_asm_attributes [attr-sets])

where attr-sets is specified the same as for both the define_insn and the define_peephole ex-
pressions.

These values will typically be the “worst case” attribute values. For example, they might indicate
that the condition code will be clobbered.

A specification for a length attribute is handled specially. The way to compute the length of
an asm insn is to multiply the length specified in the expression define_asm_attributes by the
number of machine instructions specified in the asm statement, determined by counting the number
of semicolons and newlines in the string. Therefore, the value of the length attribute specified in a
define_asm_attributes should be the maximum possible length of a single machine instruction.

15.15.4 Example of Attribute Specifications

The judicious use of defaulting is important in the efficient use of insn attributes. Typically,
insns are divided into types and an attribute, customarily called type, is used to represent this
value. This attribute is normally used only to define the default value for other attributes. An
example will clarify this usage.

Assume we have a RISC machine with a condition code and in which only full-word operations
are performed in registers. Let us assume that we can divide all insns into loads, stores, (integer)
arithmetic operations, floating point operations, and branches.

Here we will concern ourselves with determining the effect of an insn on the condition code and
will limit ourselves to the following possible effects: The condition code can be set unpredictably

Chapter 15: Machine Descriptions 299

(clobbered), not be changed, be set to agree with the results of the operation, or only changed if
the item previously set into the condition code has been modified.

Here is part of a sample ‘md’ file for such a machine:

(define_attr "type" "load,store,arith,fp,branch" (const_string "arith"))

(define_attr "cc" "clobber,unchanged,set,change0"
(cond [(eq_attr "type" "load")

(const_string "change0")
(eq_attr "type" "store,branch")

(const_string "unchanged")
(eq_attr "type" "arith")

(if_then_else (match_operand:SI 0 "" "")
(const_string "set")
(const_string "clobber"))]

(const_string "clobber")))

(define_insn ""
[(set (match_operand:SI 0 "general_operand" "=r,r,m")

(match_operand:SI 1 "general_operand" "r,m,r"))]
""
"@
move %0,%1
load %0,%1
store %0,%1"
[(set_attr "type" "arith,load,store")])

Note that we assume in the above example that arithmetic operations performed on quantities
smaller than a machine word clobber the condition code since they will set the condition code to a
value corresponding to the full-word result.

15.15.5 Computing the Length of an Insn

For many machines, multiple types of branch instructions are provided, each for different length
branch displacements. In most cases, the assembler will choose the correct instruction to use. How-
ever, when the assembler cannot do so, GCC can when a special attribute, the ‘length’ attribute,
is defined. This attribute must be defined to have numeric values by specifying a null string in its
define_attr.

In the case of the ‘length’ attribute, two additional forms of arithmetic terms are allowed in
test expressions:

300 Using and Porting GNU CC

(match_dup n)

This refers to the address of operand n of the current insn, which must be a label_ref.

(pc) This refers to the address of the current insn. It might have been more consistent
with other usage to make this the address of the next insn but this would be confusing
because the length of the current insn is to be computed.

For normal insns, the length will be determined by value of the ‘length’ attribute. In the case
of addr_vec and addr_diff_vec insn patterns, the length is computed as the number of vectors
multiplied by the size of each vector.

Lengths are measured in addressable storage units (bytes).

The following macros can be used to refine the length computation:

FIRST_INSN_ADDRESS

When the length insn attribute is used, this macro specifies the value to be assigned
to the address of the first insn in a function. If not specified, 0 is used.

ADJUST_INSN_LENGTH (insn, length)

If defined, modifies the length assigned to instruction insn as a function of the context
in which it is used. length is an lvalue that contains the initially computed length of
the insn and should be updated with the correct length of the insn. If updating is
required, insn must not be a varying-length insn.

This macro will normally not be required. A case in which it is required is the ROMP.
On this machine, the size of an addr_vec insn must be increased by two to compensate
for the fact that alignment may be required.

The routine that returns get_attr_length (the value of the length attribute) can be used by
the output routine to determine the form of the branch instruction to be written, as the example
below illustrates.

As an example of the specification of variable-length branches, consider the IBM 360. If we
adopt the convention that a register will be set to the starting address of a function, we can jump
to labels within 4k of the start using a four-byte instruction. Otherwise, we need a six-byte sequence
to load the address from memory and then branch to it.

On such a machine, a pattern for a branch instruction might be specified as follows:

Chapter 15: Machine Descriptions 301

(define_insn "jump"
[(set (pc)

(label_ref (match_operand 0 "" "")))]
""
"*

{
return (get_attr_length (insn) == 4

? \"b %l0\" : \"l r15,=a(%l0); br r15\");
}"

[(set (attr "length") (if_then_else (lt (match_dup 0) (const_int 4096))
(const_int 4)
(const_int 6)))])

15.15.6 Constant Attributes

A special form of define_attr, where the expression for the default value is a const expression,
indicates an attribute that is constant for a given run of the compiler. Constant attributes may be
used to specify which variety of processor is used. For example,

(define_attr "cpu" "m88100,m88110,m88000"
(const
(cond [(symbol_ref "TARGET_88100") (const_string "m88100")

(symbol_ref "TARGET_88110") (const_string "m88110")]
(const_string "m88000"))))

(define_attr "memory" "fast,slow"
(const
(if_then_else (symbol_ref "TARGET_FAST_MEM")

(const_string "fast")
(const_string "slow"))))

The routine generated for constant attributes has no parameters as it does not depend on any
particular insn. RTL expressions used to define the value of a constant attribute may use the
symbol_ref form, but may not use either the match_operand form or eq_attr forms involving
insn attributes.

15.15.7 Delay Slot Scheduling

The insn attribute mechanism can be used to specify the requirements for delay slots, if any,
on a target machine. An instruction is said to require a delay slot if some instructions that are
physically after the instruction are executed as if they were located before it. Classic examples are

302 Using and Porting GNU CC

branch and call instructions, which often execute the following instruction before the branch or call
is performed.

On some machines, conditional branch instructions can optionally annul instructions in the
delay slot. This means that the instruction will not be executed for certain branch outcomes. Both
instructions that annul if the branch is true and instructions that annul if the branch is false are
supported.

Delay slot scheduling differs from instruction scheduling in that determining whether an instruc-
tion needs a delay slot is dependent only on the type of instruction being generated, not on data
flow between the instructions. See the next section for a discussion of data-dependent instruction
scheduling.

The requirement of an insn needing one or more delay slots is indicated via the define_delay

expression. It has the following form:

(define_delay test
[delay-1 annul-true-1 annul-false-1
delay-2 annul-true-2 annul-false-2
. . .])

test is an attribute test that indicates whether this define_delay applies to a particular insn.
If so, the number of required delay slots is determined by the length of the vector specified as the
second argument. An insn placed in delay slot n must satisfy attribute test delay-n. annul-true-n is
an attribute test that specifies which insns may be annulled if the branch is true. Similarly, annul-

false-n specifies which insns in the delay slot may be annulled if the branch is false. If annulling is
not supported for that delay slot, (nil) should be coded.

For example, in the common case where branch and call insns require a single delay slot, which
may contain any insn other than a branch or call, the following would be placed in the ‘md’ file:

(define_delay (eq_attr "type" "branch,call")
[(eq_attr "type" "!branch,call") (nil) (nil)])

Multiple define_delay expressions may be specified. In this case, each such expression specifies
different delay slot requirements and there must be no insn for which tests in two define_delay

expressions are both true.

Chapter 15: Machine Descriptions 303

For example, if we have a machine that requires one delay slot for branches but two for calls,
no delay slot can contain a branch or call insn, and any valid insn in the delay slot for the branch
can be annulled if the branch is true, we might represent this as follows:

(define_delay (eq_attr "type" "branch")
[(eq_attr "type" "!branch,call")
(eq_attr "type" "!branch,call")
(nil)])

(define_delay (eq_attr "type" "call")
[(eq_attr "type" "!branch,call") (nil) (nil)
(eq_attr "type" "!branch,call") (nil) (nil)])

15.15.8 Specifying Function Units

On most RISC machines, there are instructions whose results are not available for a specific
number of cycles. Common cases are instructions that load data from memory. On many machines,
a pipeline stall will result if the data is referenced too soon after the load instruction.

In addition, many newer microprocessors have multiple function units, usually one for integer
and one for floating point, and often will incur pipeline stalls when a result that is needed is not
yet ready.

The descriptions in this section allow the specification of how much time must elapse between
the execution of an instruction and the time when its result is used. It also allows specification of
when the execution of an instruction will delay execution of similar instructions due to function
unit conflicts.

For the purposes of the specifications in this section, a machine is divided into function units,
each of which execute a specific class of instructions in first-in-first-out order. Function units that
accept one instruction each cycle and allow a result to be used in the succeeding instruction (usually
via forwarding) need not be specified. Classic RISC microprocessors will normally have a single
function unit, which we can call ‘memory’. The newer “superscalar” processors will often have
function units for floating point operations, usually at least a floating point adder and multiplier.

Each usage of a function units by a class of insns is specified with a define_function_unit

expression, which looks like this:

304 Using and Porting GNU CC

(define_function_unit name multiplicity simultaneity
test ready-delay issue-delay
[conflict-list])

name is a string giving the name of the function unit.

multiplicity is an integer specifying the number of identical units in the processor. If more than
one unit is specified, they will be scheduled independently. Only truly independent units should
be counted; a pipelined unit should be specified as a single unit. (The only common example of a
machine that has multiple function units for a single instruction class that are truly independent
and not pipelined are the two multiply and two increment units of the CDC 6600.)

simultaneity specifies the maximum number of insns that can be executing in each instance of
the function unit simultaneously or zero if the unit is pipelined and has no limit.

All define_function_unit definitions referring to function unit name must have the same
name and values for multiplicity and simultaneity.

test is an attribute test that selects the insns we are describing in this definition. Note that an
insn may use more than one function unit and a function unit may be specified in more than one
define_function_unit.

ready-delay is an integer that specifies the number of cycles after which the result of the in-
struction can be used without introducing any stalls.

issue-delay is an integer that specifies the number of cycles after the instruction matching the
test expression begins using this unit until a subsequent instruction can begin. A cost of N indicates
an N-1 cycle delay. A subsequent instruction may also be delayed if an earlier instruction has a
longer ready-delay value. This blocking effect is computed using the simultaneity, ready-delay,
issue-delay, and conflict-list terms. For a normal non-pipelined function unit, simultaneity is one,
the unit is taken to block for the ready-delay cycles of the executing insn, and smaller values of
issue-delay are ignored.

conflict-list is an optional list giving detailed conflict costs for this unit. If specified, it is a list of
condition test expressions to be applied to insns chosen to execute in name following the particular
insn matching test that is already executing in name. For each insn in the list, issue-delay specifies
the conflict cost; for insns not in the list, the cost is zero. If not specified, conflict-list defaults to
all instructions that use the function unit.

Chapter 15: Machine Descriptions 305

Typical uses of this vector are where a floating point function unit can pipeline either single-
or double-precision operations, but not both, or where a memory unit can pipeline loads, but not
stores, etc.

As an example, consider a classic RISC machine where the result of a load instruction is not
available for two cycles (a single “delay” instruction is required) and where only one load instruction
can be executed simultaneously. This would be specified as:

(define_function_unit "memory" 1 1 (eq_attr "type" "load") 2 0)

For the case of a floating point function unit that can pipeline either single or double precision,
but not both, the following could be specified:

(define_function_unit
"fp" 1 0 (eq_attr "type" "sp_fp") 4 4 [(eq_attr "type" "dp_fp")])

(define_function_unit
"fp" 1 0 (eq_attr "type" "dp_fp") 4 4 [(eq_attr "type" "sp_fp")])

Note: The scheduler attempts to avoid function unit conflicts and uses all the specifications in the
define_function_unit expression. It has recently come to our attention that these specifications
may not allow modeling of some of the newer “superscalar” processors that have insns using multiple
pipelined units. These insns will cause a potential conflict for the second unit used during their
execution and there is no way of representing that conflict. We welcome any examples of how
function unit conflicts work in such processors and suggestions for their representation.

306 Using and Porting GNU CC

Chapter 16: Target Description Macros 307

16 Target Description Macros

In addition to the file ‘machine.md’, a machine description includes a C header file conventionally
given the name ‘machine.h’. This header file defines numerous macros that convey the information
about the target machine that does not fit into the scheme of the ‘.md’ file. The file ‘tm.h’ should
be a link to ‘machine.h’. The header file ‘config.h’ includes ‘tm.h’ and most compiler source files
include ‘config.h’.

16.1 Controlling the Compilation Driver, ‘gcc’

SWITCH_TAKES_ARG (char)

A C expression which determines whether the option ‘-char’ takes arguments. The
value should be the number of arguments that option takes–zero, for many options.

By default, this macro is defined to handle the standard options properly. You need
not define it unless you wish to add additional options which take arguments.

WORD_SWITCH_TAKES_ARG (name)

A C expression which determines whether the option ‘-name’ takes arguments. The
value should be the number of arguments that option takes–zero, for many options.
This macro rather than SWITCH_TAKES_ARG is used for multi-character option names.

By default, this macro is defined as DEFAULT_WORD_SWITCH_TAKES_ARG, which handles
the standard options properly. You need not define WORD_SWITCH_TAKES_ARG unless
you wish to add additional options which take arguments. Any redefinition should call
DEFAULT_WORD_SWITCH_TAKES_ARG and then check for additional options.

SWITCHES_NEED_SPACES

A string-valued C expression which is nonempty if the linker needs a space between
the ‘-L’ or ‘-o’ option and its argument.

If this macro is not defined, the default value is 0.

CPP_SPEC A C string constant that tells the GNU CC driver program options to pass to CPP. It
can also specify how to translate options you give to GNU CC into options for GNU
CC to pass to the CPP.

Do not define this macro if it does not need to do anything.

NO_BUILTIN_SIZE_TYPE

If this macro is defined, the preprocessor will not define the builtin macro __SIZE_

TYPE__. The macro __SIZE_TYPE__ must then be defined by CPP_SPEC instead.

This should be defined if SIZE_TYPE depends on target dependent flags which are not
accessible to the preprocessor. Otherwise, it should not be defined.

308 Using and Porting GNU CC

NO_BUILTIN_PTRDIFF_TYPE

If this macro is defined, the preprocessor will not define the builtin macro __PTRDIFF_

TYPE__. The macro __PTRDIFF_TYPE__ must then be defined by CPP_SPEC instead.

This should be defined if PTRDIFF_TYPE depends on target dependent flags which are
not accessible to the preprocessor. Otherwise, it should not be defined.

SIGNED_CHAR_SPEC

A C string constant that tells the GNU CC driver program options to pass to CPP.
By default, this macro is defined to pass the option ‘-D__CHAR_UNSIGNED__’ to CPP if
char will be treated as unsigned char by cc1.

Do not define this macro unless you need to override the default definition.

CC1_SPEC A C string constant that tells the GNU CC driver program options to pass to cc1. It
can also specify how to translate options you give to GNU CC into options for GNU
CC to pass to the cc1.

Do not define this macro if it does not need to do anything.

CC1PLUS_SPEC

A C string constant that tells the GNU CC driver program options to pass to cc1plus.
It can also specify how to translate options you give to GNU CC into options for GNU
CC to pass to the cc1plus.

Do not define this macro if it does not need to do anything.

ASM_SPEC A C string constant that tells the GNU CC driver program options to pass to the
assembler. It can also specify how to translate options you give to GNU CC into
options for GNU CC to pass to the assembler. See the file ‘sun3.h’ for an example of
this.

Do not define this macro if it does not need to do anything.

ASM_FINAL_SPEC

A C string constant that tells the GNU CC driver program how to run any programs
which cleanup after the normal assembler. Normally, this is not needed. See the file
‘mips.h’ for an example of this.

Do not define this macro if it does not need to do anything.

LINK_SPEC

A C string constant that tells the GNU CC driver program options to pass to the
linker. It can also specify how to translate options you give to GNU CC into options
for GNU CC to pass to the linker.

Do not define this macro if it does not need to do anything.

LIB_SPEC Another C string constant used much like LINK_SPEC. The difference between the two
is that LIB_SPEC is used at the end of the command given to the linker.

If this macro is not defined, a default is provided that loads the standard C library
from the usual place. See ‘gcc.c’.

Chapter 16: Target Description Macros 309

STARTFILE_SPEC

Another C string constant used much like LINK_SPEC. The difference between the two
is that STARTFILE_SPEC is used at the very beginning of the command given to the
linker.

If this macro is not defined, a default is provided that loads the standard C startup file
from the usual place. See ‘gcc.c’.

ENDFILE_SPEC

Another C string constant used much like LINK_SPEC. The difference between the two
is that ENDFILE_SPEC is used at the very end of the command given to the linker.

Do not define this macro if it does not need to do anything.

LINK_LIBGCC_SPECIAL

Define this macro meaning that gcc should find the library ‘libgcc.a’ by hand, rather
than passing the argument ‘-lgcc’ to tell the linker to do the search; also, gcc should
not generate ‘-L’ options to pass to the linker (as it normally does).

LINK_LIBGCC_SPECIAL_1

Define this macro meaning that gcc should find the library ‘libgcc.a’ by hand, rather
than passing the argument ‘-lgcc’ to tell the linker to do the search.

RELATIVE_PREFIX_NOT_LINKDIR

Define this macro to tell gcc that it should only translate a ‘-B’ prefix into a ‘-L’ linker
option if the prefix indicates an absolute file name.

STANDARD_EXEC_PREFIX

Define this macro as a C string constant if you wish to override the standard choice
of ‘/usr/local/lib/gcc-lib/’ as the default prefix to try when searching for the
executable files of the compiler.

MD_EXEC_PREFIX

If defined, this macro is an additional prefix to try after STANDARD_EXEC_PREFIX. MD_
EXEC_PREFIX is not searched when the ‘-b’ option is used, or the compiler is built as a
cross compiler.

STANDARD_STARTFILE_PREFIX

Define this macro as a C string constant if you wish to override the standard choice of
‘/usr/local/lib/’ as the default prefix to try when searching for startup files such as
‘crt0.o’.

MD_STARTFILE_PREFIX

If defined, this macro supplies an additional prefix to try after the standard prefixes.
MD_EXEC_PREFIX is not searched when the ‘-b’ option is used, or when the compiler is
built as a cross compiler.

310 Using and Porting GNU CC

MD_STARTFILE_PREFIX_1

If defined, this macro supplies yet another prefix to try after the standard prefixes. It
is not searched when the ‘-b’ option is used, or when the compiler is built as a cross
compiler.

LOCAL_INCLUDE_DIR

Define this macro as a C string constant if you wish to override the standard choice
of ‘/usr/local/include’ as the default prefix to try when searching for local header
files. LOCAL_INCLUDE_DIR comes before SYSTEM_INCLUDE_DIR in the search order.

Cross compilers do not use this macro and do not search either ‘/usr/local/include’
or its replacement.

SYSTEM_INCLUDE_DIR

Define this macro as a C string constant if you wish to specify a system-specific directory
to search for header files before the standard directory. SYSTEM_INCLUDE_DIR comes
before STANDARD_INCLUDE_DIR in the search order.

Cross compilers do not use this macro and do not search the directory specified.

STANDARD_INCLUDE_DIR

Define this macro as a C string constant if you wish to override the standard choice of
‘/usr/include’ as the default prefix to try when searching for header files.

Cross compilers do not use this macro and do not search either ‘/usr/include’ or its
replacement.

INCLUDE_DEFAULTS

Define this macro if you wish to override the entire default search path for in-
clude files. The default search path includes GCC_INCLUDE_DIR, LOCAL_INCLUDE_DIR,
SYSTEM_INCLUDE_DIR, GPLUSPLUS_INCLUDE_DIR, and STANDARD_INCLUDE_DIR. In ad-
dition, GPLUSPLUS_INCLUDE_DIR and GCC_INCLUDE_DIR are defined automatically by
‘Makefile’, and specify private search areas for GCC. The directory GPLUSPLUS_

INCLUDE_DIR is used only for C++ programs.

The definition should be an initializer for an array of structures. Each array element
should have two elements: the directory name (a string constant) and a flag for C++-
only directories. Mark the end of the array with a null element. For example, here is
the definition used for VMS:

#define INCLUDE_DEFAULTS \
{ \
{ "GNU_GXX_INCLUDE:", 1}, \
{ "GNU_CC_INCLUDE:", 0}, \
{ "SYS$SYSROOT:[SYSLIB.]", 0}, \
{ ".", 0}, \
{ 0, 0} \

}

Chapter 16: Target Description Macros 311

Here is the order of prefixes tried for exec files:

1. Any prefixes specified by the user with ‘-B’.

2. The environment variable GCC_EXEC_PREFIX, if any.

3. The directories specified by the environment variable COMPILER_PATH.

4. The macro STANDARD_EXEC_PREFIX.

5. ‘/usr/lib/gcc/’.

6. The macro MD_EXEC_PREFIX, if any.

Here is the order of prefixes tried for startfiles:

1. Any prefixes specified by the user with ‘-B’.

2. The environment variable GCC_EXEC_PREFIX, if any.

3. The directories specified by the environment variable LIBRARY_PATH.

4. The macro STANDARD_EXEC_PREFIX.

5. ‘/usr/lib/gcc/’.

6. The macro MD_EXEC_PREFIX, if any.

7. The macro MD_STARTFILE_PREFIX, if any.

8. The macro STANDARD_STARTFILE_PREFIX.

9. ‘/lib/’.

10. ‘/usr/lib/’.

16.2 Run-time Target Specification

CPP_PREDEFINES

Define this to be a string constant containing ‘-D’ options to define the predefined
macros that identify this machine and system. These macros will be predefined unless
the ‘-ansi’ option is specified.

In addition, a parallel set of macros are predefined, whose names are made by appending
‘__’ at the beginning and at the end. These ‘__’ macros are permitted by the ANSI
standard, so they are predefined regardless of whether ‘-ansi’ is specified.

For example, on the Sun, one can use the following value:
"-Dmc68000 -Dsun -Dunix"

The result is to define the macros __mc68000__, __sun__ and __unix__ uncondition-
ally, and the macros mc68000, sun and unix provided ‘-ansi’ is not specified.

312 Using and Porting GNU CC

STDC_VALUE

Define the value to be assigned to the built-in macro __STDC__. The default is the
value ‘1’.

extern int target_flags;

This declaration should be present.

TARGET_. . .

This series of macros is to allow compiler command arguments to enable or disable the
use of optional features of the target machine. For example, one machine description
serves both the 68000 and the 68020; a command argument tells the compiler whether
it should use 68020-only instructions or not. This command argument works by means
of a macro TARGET_68020 that tests a bit in target_flags.

Define a macro TARGET_featurename for each such option. Its definition should test a
bit in target_flags; for example:

#define TARGET_68020 (target_flags & 1)

One place where these macros are used is in the condition-expressions of instruction
patterns. Note how TARGET_68020 appears frequently in the 68000 machine description
file, ‘m68k.md’. Another place they are used is in the definitions of the other macros in
the ‘machine.h’ file.

TARGET_SWITCHES

This macro defines names of command options to set and clear bits in target_flags.
Its definition is an initializer with a subgrouping for each command option.

Each subgrouping contains a string constant, that defines the option name, and a
number, which contains the bits to set in target_flags. A negative number says to
clear bits instead; the negative of the number is which bits to clear. The actual option
name is made by appending ‘-m’ to the specified name.

One of the subgroupings should have a null string. The number in this grouping is the
default value for target_flags. Any target options act starting with that value.

Here is an example which defines ‘-m68000’ and ‘-m68020’ with opposite meanings, and
picks the latter as the default:

#define TARGET_SWITCHES \
{ { "68020", 1}, \

{ "68000", -1}, \
{ "", 1}}

TARGET_OPTIONS

This macro is similar to TARGET_SWITCHES but defines names of command options that
have values. Its definition is an initializer with a subgrouping for each command option.

Each subgrouping contains a string constant, that defines the fixed part of the option
name, and the address of a variable. The variable, type char *, is set to the variable

Chapter 16: Target Description Macros 313

part of the given option if the fixed part matches. The actual option name is made by
appending ‘-m’ to the specified name.

Here is an example which defines ‘-mshort-data-number’. If the given option is
‘-mshort-data-512’, the variable m88k_short_data will be set to the string "512".

extern char *m88k_short_data;
#define TARGET_OPTIONS \
{ { "short-data-", &m88k_short_data } }

TARGET_VERSION

This macro is a C statement to print on stderr a string describing the particular
machine description choice. Every machine description should define TARGET_VERSION.
For example:

#ifdef MOTOROLA
#define TARGET_VERSION \
fprintf (stderr, " (68k, Motorola syntax)");

#else
#define TARGET_VERSION \
fprintf (stderr, " (68k, MIT syntax)");

#endif

OVERRIDE_OPTIONS

Sometimes certain combinations of command options do not make sense on a particular
target machine. You can define a macro OVERRIDE_OPTIONS to take account of this.
This macro, if defined, is executed once just after all the command options have been
parsed.

Don’t use this macro to turn on various extra optimizations for ‘-O’. That is what
OPTIMIZATION_OPTIONS is for.

OPTIMIZATION_OPTIONS (level)

Some machines may desire to change what optimizations are performed for various
optimization levels. This macro, if defined, is executed once just after the optimization
level is determined and before the remainder of the command options have been parsed.
Values set in this macro are used as the default values for the other command line
options.

level is the optimization level specified; 2 if -O2 is specified, 1 if -O is specified, and 0
if neither is specified.

Do not examine write_symbols in this macro! The debugging options are not supposed
to alter the generated code.

314 Using and Porting GNU CC

16.3 Storage Layout

Note that the definitions of the macros in this table which are sizes or alignments measured in
bits do not need to be constant. They can be C expressions that refer to static variables, such as
the target_flags. See Section 16.2 [Run-time Target], page 311.

BITS_BIG_ENDIAN

Define this macro to be the value 1 if the most significant bit in a byte has the lowest
number; otherwise define it to be the value zero. This means that bit-field instructions
count from the most significant bit. If the machine has no bit-field instructions, then
this must still be defined, but it doesn’t matter which value it is defined to.

This macro does not affect the way structure fields are packed into bytes or words; that
is controlled by BYTES_BIG_ENDIAN.

BYTES_BIG_ENDIAN

Define this macro to be 1 if the most significant byte in a word has the lowest number.

WORDS_BIG_ENDIAN

Define this macro to be 1 if, in a multiword object, the most significant word has
the lowest number. This applies to both memory locations and registers; GNU CC
fundamentally assumes that the order of words in memory is the same as the order in
registers.

FLOAT_WORDS_BIG_ENDIAN

Define this macro to be 1 if DFmode, XFmode or TFmode floating point numbers are stored
in memory with the word containing the sign bit at the lowest address; otherwise define
it to be 0.

You need not define this macro if the ordering is the same as for multi-word integers.

BITS_PER_UNIT

Define this macro to be the number of bits in an addressable storage unit (byte);
normally 8.

BITS_PER_WORD

Number of bits in a word; normally 32.

MAX_BITS_PER_WORD

Maximum number of bits in a word. If this is undefined, the default is BITS_PER_WORD.
Otherwise, it is the constant value that is the largest value that BITS_PER_WORD can
have at run-time.

UNITS_PER_WORD

Number of storage units in a word; normally 4.

Chapter 16: Target Description Macros 315

MAX_UNITS_PER_WORD

Maximum number of units in a word. If this is undefined, the default is UNITS_PER_

WORD. Otherwise, it is the constant value that is the largest value that UNITS_PER_WORD
can have at run-time.

POINTER_SIZE

Width of a pointer, in bits.

PROMOTE_MODE (m, unsignedp, type)

A macro to update m and unsignedp when an object whose type is type and which
has the specified mode and signedness is to be stored in a register. This macro is only
called when type is a scalar type.

On most RISC machines, which only have operations that operate on a full register,
define this macro to set m to word_mode if m is an integer mode narrower than BITS_

PER_WORD. In most cases, only integer modes should be widened because wider-precision
floating-point operations are usually more expensive than their narrower counterparts.

For most machines, the macro definition does not change unsignedp. However, some
machines, have instructions that preferentially handle either signed or unsigned quan-
tities of certain modes. For example, on the DEC Alpha, 32-bit loads from memory
and 32-bit add instructions sign-extend the result to 64 bits. On such machines, set
unsignedp according to which kind of extension is more efficient.

Do not define this macro if it would never modify m.

PROMOTE_FUNCTION_ARGS

Define this macro if the promotion described by PROMOTE_MODE should also be done for
outgoing function arguments.

PROMOTE_FUNCTION_RETURN

Define this macro if the promotion described by PROMOTE_MODE should also be done for
the return value of functions.

If this macro is defined, FUNCTION_VALUE must perform the same promotions done by
PROMOTE_MODE.

PARM_BOUNDARY

Normal alignment required for function parameters on the stack, in bits. All stack
parameters receive at least this much alignment regardless of data type. On most
machines, this is the same as the size of an integer.

STACK_BOUNDARY

Define this macro if you wish to preserve a certain alignment for the stack pointer. The
definition is a C expression for the desired alignment (measured in bits).

If PUSH_ROUNDING is not defined, the stack will always be aligned to the specified
boundary. If PUSH_ROUNDING is defined and specifies a less strict alignment than STACK_

BOUNDARY, the stack may be momentarily unaligned while pushing arguments.

316 Using and Porting GNU CC

FUNCTION_BOUNDARY

Alignment required for a function entry point, in bits.

BIGGEST_ALIGNMENT

Biggest alignment that any data type can require on this machine, in bits.

BIGGEST_FIELD_ALIGNMENT

Biggest alignment that any structure field can require on this machine, in bits. If
defined, this overrides BIGGEST_ALIGNMENT for structure fields only.

MAX_OFILE_ALIGNMENT

Biggest alignment supported by the object file format of this machine. Use this macro
to limit the alignment which can be specified using the __attribute__ ((aligned

(n))) construct. If not defined, the default value is BIGGEST_ALIGNMENT.

DATA_ALIGNMENT (type, basic-align)

If defined, a C expression to compute the alignment for a static variable. type is the
data type, and basic-align is the alignment that the object would ordinarily have. The
value of this macro is used instead of that alignment to align the object.

If this macro is not defined, then basic-align is used.

One use of this macro is to increase alignment of medium-size data to make it all fit
in fewer cache lines. Another is to cause character arrays to be word-aligned so that
strcpy calls that copy constants to character arrays can be done inline.

CONSTANT_ALIGNMENT (constant, basic-align)

If defined, a C expression to compute the alignment given to a constant that is being
placed in memory. constant is the constant and basic-align is the alignment that the
object would ordinarily have. The value of this macro is used instead of that alignment
to align the object.

If this macro is not defined, then basic-align is used.

The typical use of this macro is to increase alignment for string constants to be word
aligned so that strcpy calls that copy constants can be done inline.

EMPTY_FIELD_BOUNDARY

Alignment in bits to be given to a structure bit field that follows an empty field such
as int : 0;.

Note that PCC_BITFIELD_TYPE_MATTERS also affects the alignment that results from
an empty field.

STRUCTURE_SIZE_BOUNDARY

Number of bits which any structure or union’s size must be a multiple of. Each structure
or union’s size is rounded up to a multiple of this.

If you do not define this macro, the default is the same as BITS_PER_UNIT.

Chapter 16: Target Description Macros 317

STRICT_ALIGNMENT

Define this macro to be the value 1 if instructions will fail to work if given data not on
the nominal alignment. If instructions will merely go slower in that case, define this
macro as 0.

PCC_BITFIELD_TYPE_MATTERS

Define this if you wish to imitate the way many other C compilers handle alignment of
bitfields and the structures that contain them.

The behavior is that the type written for a bitfield (int, short, or other integer type)
imposes an alignment for the entire structure, as if the structure really did contain an
ordinary field of that type. In addition, the bitfield is placed within the structure so
that it would fit within such a field, not crossing a boundary for it.

Thus, on most machines, a bitfield whose type is written as int would not cross a
four-byte boundary, and would force four-byte alignment for the whole structure. (The
alignment used may not be four bytes; it is controlled by the other alignment parame-
ters.)

If the macro is defined, its definition should be a C expression; a nonzero value for the
expression enables this behavior.

Note that if this macro is not defined, or its value is zero, some bitfields may cross
more than one alignment boundary. The compiler can support such references if there
are ‘insv’, ‘extv’, and ‘extzv’ insns that can directly reference memory.

The other known way of making bitfields work is to define STRUCTURE_SIZE_BOUNDARY

as large as BIGGEST_ALIGNMENT. Then every structure can be accessed with fullwords.

Unless the machine has bitfield instructions or you define STRUCTURE_SIZE_BOUNDARY

that way, you must define PCC_BITFIELD_TYPE_MATTERS to have a nonzero value.

If your aim is to make GNU CC use the same conventions for laying out bitfields as
are used by another compiler, here is how to investigate what the other compiler does.
Compile and run this program:

struct foo1
{
char x;
char :0;
char y;

};

struct foo2
{
char x;
int :0;
char y;

};

main ()

318 Using and Porting GNU CC

{
printf ("Size of foo1 is %d\n",

sizeof (struct foo1));
printf ("Size of foo2 is %d\n",

sizeof (struct foo2));
exit (0);

}

If this prints 2 and 5, then the compiler’s behavior is what you would get from PCC_

BITFIELD_TYPE_MATTERS.

BITFIELD_NBYTES_LIMITED

Like PCC BITFIELD TYPE MATTERS except that its effect is limited to aligning a
bitfield within the structure.

ROUND_TYPE_SIZE (struct, size, align)

Define this macro as an expression for the overall size of a structure (given by struct as
a tree node) when the size computed from the fields is size and the alignment is align.

The default is to round size up to a multiple of align.

ROUND_TYPE_ALIGN (struct, computed, specified)

Define this macro as an expression for the alignment of a structure (given by struct as a
tree node) if the alignment computed in the usual way is computed and the alignment
explicitly specified was specified.

The default is to use specified if it is larger; otherwise, use the smaller of computed

and BIGGEST_ALIGNMENT

MAX_FIXED_MODE_SIZE

An integer expression for the size in bits of the largest integer machine mode that
should actually be used. All integer machine modes of this size or smaller can be
used for structures and unions with the appropriate sizes. If this macro is undefined,
GET_MODE_BITSIZE (DImode) is assumed.

CHECK_FLOAT_VALUE (mode, value)

A C statement to validate the value value (of type double) for mode mode. This means
that you check whether value fits within the possible range of values for mode mode

on this target machine. The mode mode is always SFmode or DFmode.

If value is not valid, you should call error to print an error message and then assign
some valid value to value. Allowing an invalid value to go through the compiler can
produce incorrect assembler code which may even cause Unix assemblers to crash.

This macro need not be defined if there is no work for it to do.

TARGET_FLOAT_FORMAT

A code distinguishing the floating point format of the target machine. There are three
defined values:

Chapter 16: Target Description Macros 319

IEEE_FLOAT_FORMAT

This code indicates IEEE floating point. It is the default; there is no need
to define this macro when the format is IEEE.

VAX_FLOAT_FORMAT

This code indicates the peculiar format used on the Vax.

UNKNOWN_FLOAT_FORMAT

This code indicates any other format.

The value of this macro is compared with HOST_FLOAT_FORMAT (see Chapter 17 [Config],
page 403) to determine whether the target machine has the same format as the host
machine. If any other formats are actually in use on supported machines, new codes
should be defined for them.

The ordering of the component words of floating point values stored in memory is con-
trolled by FLOAT_WORDS_BIG_ENDIAN for the target machine and HOST_FLOAT_WORDS_

BIG_ENDIAN for the host.

16.4 Layout of Source Language Data Types

These macros define the sizes and other characteristics of the standard basic data types used
in programs being compiled. Unlike the macros in the previous section, these apply to specific
features of C and related languages, rather than to fundamental aspects of storage layout.

INT_TYPE_SIZE

A C expression for the size in bits of the type int on the target machine. If you don’t
define this, the default is one word.

MAX_INT_TYPE_SIZE

Maximum number for the size in bits of the type int on the target machine. If this
is undefined, the default is INT_TYPE_SIZE. Otherwise, it is the constant value that is
the largest value that INT_TYPE_SIZE can have at run-time. This is used in cpp.

SHORT_TYPE_SIZE

A C expression for the size in bits of the type short on the target machine. If you
don’t define this, the default is half a word. (If this would be less than one storage
unit, it is rounded up to one unit.)

LONG_TYPE_SIZE

A C expression for the size in bits of the type long on the target machine. If you don’t
define this, the default is one word.

320 Using and Porting GNU CC

MAX_LONG_TYPE_SIZE

Maximum number for the size in bits of the type long on the target machine. If this
is undefined, the default is LONG_TYPE_SIZE. Otherwise, it is the constant value that
is the largest value that LONG_TYPE_SIZE can have at run-time. This is used in cpp.

LONG_LONG_TYPE_SIZE

A C expression for the size in bits of the type long long on the target machine. If you
don’t define this, the default is two words.

CHAR_TYPE_SIZE

A C expression for the size in bits of the type char on the target machine. If you don’t
define this, the default is one quarter of a word. (If this would be less than one storage
unit, it is rounded up to one unit.)

MAX_CHAR_TYPE_SIZE

Maximum number for the size in bits of the type char on the target machine. If this
is undefined, the default is CHAR_TYPE_SIZE. Otherwise, it is the constant value that
is the largest value that CHAR_TYPE_SIZE can have at run-time. This is used in cpp.

FLOAT_TYPE_SIZE

A C expression for the size in bits of the type float on the target machine. If you
don’t define this, the default is one word.

DOUBLE_TYPE_SIZE

A C expression for the size in bits of the type double on the target machine. If you
don’t define this, the default is two words.

LONG_DOUBLE_TYPE_SIZE

A C expression for the size in bits of the type long double on the target machine. If
you don’t define this, the default is two words.

DEFAULT_SIGNED_CHAR

An expression whose value is 1 or 0, according to whether the type char should be
signed or unsigned by default. The user can always override this default with the
options ‘-fsigned-char’ and ‘-funsigned-char’.

DEFAULT_SHORT_ENUMS

A C expression to determine whether to give an enum type only as many bytes as it
takes to represent the range of possible values of that type. A nonzero value means to
do that; a zero value means all enum types should be allocated like int.

If you don’t define the macro, the default is 0.

SIZE_TYPE

A C expression for a string describing the name of the data type to use for size values.
The typedef name size_t is defined using the contents of the string.

Chapter 16: Target Description Macros 321

The string can contain more than one keyword. If so, separate them with spaces,
and write first any length keyword, then unsigned if appropriate, and finally int.
The string must exactly match one of the data type names defined in the function
init_decl_processing in the file ‘c-decl.c’. You may not omit int or change the
order—that would cause the compiler to crash on startup.

If you don’t define this macro, the default is "long unsigned int".

PTRDIFF_TYPE

A C expression for a string describing the name of the data type to use for the result of
subtracting two pointers. The typedef name ptrdiff_t is defined using the contents
of the string. See SIZE_TYPE above for more information.

If you don’t define this macro, the default is "long int".

WCHAR_TYPE

A C expression for a string describing the name of the data type to use for wide
characters. The typedef name wchar_t is defined using the contents of the string. See
SIZE_TYPE above for more information.

If you don’t define this macro, the default is "int".

WCHAR_TYPE_SIZE

A C expression for the size in bits of the data type for wide characters. This is used in
cpp, which cannot make use of WCHAR_TYPE.

MAX_WCHAR_TYPE_SIZE

Maximum number for the size in bits of the data type for wide characters. If this is
undefined, the default is WCHAR_TYPE_SIZE. Otherwise, it is the constant value that is
the largest value that WCHAR_TYPE_SIZE can have at run-time. This is used in cpp.

OBJC_INT_SELECTORS

Define this macro if the type of Objective C selectors should be int.

If this macro is not defined, then selectors should have the type struct objc_selector

*.

OBJC_SELECTORS_WITHOUT_LABELS

Define this macro if the compiler can group all the selectors together into a vector and
use just one label at the beginning of the vector. Otherwise, the compiler must give
each selector its own assembler label.

On certain machines, it is important to have a separate label for each selector because
this enables the linker to eliminate duplicate selectors.

TARGET_BELL

A C constant expression for the integer value for escape sequence ‘\a’.

322 Using and Porting GNU CC

TARGET_BS

TARGET_TAB

TARGET_NEWLINE

C constant expressions for the integer values for escape sequences ‘\b’, ‘\t’ and ‘\n’.

TARGET_VT

TARGET_FF

TARGET_CR

C constant expressions for the integer values for escape sequences ‘\v’, ‘\f’ and ‘\r’.

16.5 Register Usage

This section explains how to describe what registers the target machine has, and how (in general)
they can be used.

The description of which registers a specific instruction can use is done with register classes; see
Section 16.6 [Register Classes], page 329. For information on using registers to access a stack frame,
see Section 16.7.2 [Frame Registers], page 337. For passing values in registers, see Section 16.7.5
[Register Arguments], page 342. For returning values in registers, see Section 16.7.6 [Scalar Return],
page 345.

16.5.1 Basic Characteristics of Registers

FIRST_PSEUDO_REGISTER

Number of hardware registers known to the compiler. They receive numbers 0 through
FIRST_PSEUDO_REGISTER-1; thus, the first pseudo register’s number really is assigned
the number FIRST_PSEUDO_REGISTER.

FIXED_REGISTERS

An initializer that says which registers are used for fixed purposes all throughout the
compiled code and are therefore not available for general allocation. These would
include the stack pointer, the frame pointer (except on machines where that can be
used as a general register when no frame pointer is needed), the program counter
on machines where that is considered one of the addressable registers, and any other
numbered register with a standard use.

This information is expressed as a sequence of numbers, separated by commas and
surrounded by braces. The nth number is 1 if register n is fixed, 0 otherwise.

Chapter 16: Target Description Macros 323

The table initialized from this macro, and the table initialized by the following
one, may be overridden at run time either automatically, by the actions of the
macro CONDITIONAL_REGISTER_USAGE, or by the user with the command options
‘-ffixed-reg ’, ‘-fcall-used-reg ’ and ‘-fcall-saved-reg ’.

CALL_USED_REGISTERS

Like FIXED_REGISTERS but has 1 for each register that is clobbered (in general) by
function calls as well as for fixed registers. This macro therefore identifies the registers
that are not available for general allocation of values that must live across function
calls.

If a register has 0 in CALL_USED_REGISTERS, the compiler automatically saves it on
function entry and restores it on function exit, if the register is used within the function.

CONDITIONAL_REGISTER_USAGE

Zero or more C statements that may conditionally modify two variables fixed_regs

and call_used_regs (both of type char []) after they have been initialized from the
two preceding macros.

This is necessary in case the fixed or call-clobbered registers depend on target flags.

You need not define this macro if it has no work to do.

If the usage of an entire class of registers depends on the target flags, you may indicate
this to GCC by using this macro to modify fixed_regs and call_used_regs to 1 for
each of the registers in the classes which should not be used by GCC. Also define the
macro REG_CLASS_FROM_LETTER to return NO_REGS if it is called with a letter for a class
that shouldn’t be used.

(However, if this class is not included in GENERAL_REGS and all of the insn patterns
whose constraints permit this class are controlled by target switches, then GCC will
automatically avoid using these registers when the target switches are opposed to them.)

NON_SAVING_SETJMP

If this macro is defined and has a nonzero value, it means that setjmp and related func-
tions fail to save the registers, or that longjmp fails to restore them. To compensate,
the compiler avoids putting variables in registers in functions that use setjmp.

INCOMING_REGNO (out)

Define this macro if the target machine has register windows. This C expression returns
the register number as seen by the called function corresponding to the register number
out as seen by the calling function. Return out if register number out is not an outbound
register.

OUTGOING_REGNO (in)

Define this macro if the target machine has register windows. This C expression returns
the register number as seen by the calling function corresponding to the register number

324 Using and Porting GNU CC

in as seen by the called function. Return in if register number in is not an inbound
register.

16.5.2 Order of Allocation of Registers

REG_ALLOC_ORDER

If defined, an initializer for a vector of integers, containing the numbers of hard registers
in the order in which GNU CC should prefer to use them (from most preferred to least).

If this macro is not defined, registers are used lowest numbered first (all else being
equal).

One use of this macro is on machines where the highest numbered registers must
always be saved and the save-multiple-registers instruction supports only sequences of
consecutive registers. On such machines, define REG_ALLOC_ORDER to be an initializer
that lists the highest numbered allocatable register first.

ORDER_REGS_FOR_LOCAL_ALLOC

A C statement (sans semicolon) to choose the order in which to allocate hard registers
for pseudo-registers local to a basic block.

Store the desired register order in the array reg_alloc_order. Element 0 should be
the register to allocate first; element 1, the next register; and so on.

The macro body should not assume anything about the contents of reg_alloc_order
before execution of the macro.

On most machines, it is not necessary to define this macro.

16.5.3 How Values Fit in Registers

This section discusses the macros that describe which kinds of values (specifically, which machine
modes) each register can hold, and how many consecutive registers are needed for a given mode.

HARD_REGNO_NREGS (regno, mode)

A C expression for the number of consecutive hard registers, starting at register number
regno, required to hold a value of mode mode.

On a machine where all registers are exactly one word, a suitable definition of this
macro is

#define HARD_REGNO_NREGS(REGNO, MODE) \
((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
/ UNITS_PER_WORD))

Chapter 16: Target Description Macros 325

HARD_REGNO_MODE_OK (regno, mode)

A C expression that is nonzero if it is permissible to store a value of mode mode in hard
register number regno (or in several registers starting with that one). For a machine
where all registers are equivalent, a suitable definition is

#define HARD_REGNO_MODE_OK(REGNO, MODE) 1

It is not necessary for this macro to check for the numbers of fixed registers, because
the allocation mechanism considers them to be always occupied.

On some machines, double-precision values must be kept in even/odd register pairs.
The way to implement that is to define this macro to reject odd register numbers for
such modes.

The minimum requirement for a mode to be OK in a register is that the ‘movmode’
instruction pattern support moves between the register and any other hard register for
which the mode is OK; and that moving a value into the register and back out not
alter it.

Since the same instruction used to move SImode will work for all narrower integer
modes, it is not necessary on any machine for HARD_REGNO_MODE_OK to distinguish
between these modes, provided you define patterns ‘movhi’, etc., to take advantage
of this. This is useful because of the interaction between HARD_REGNO_MODE_OK and
MODES_TIEABLE_P; it is very desirable for all integer modes to be tieable.

Many machines have special registers for floating point arithmetic. Often people assume
that floating point machine modes are allowed only in floating point registers. This is
not true. Any registers that can hold integers can safely hold a floating point machine
mode, whether or not floating arithmetic can be done on it in those registers. Integer
move instructions can be used to move the values.

On some machines, though, the converse is true: fixed-point machine modes may not
go in floating registers. This is true if the floating registers normalize any value stored
in them, because storing a non-floating value there would garble it. In this case, HARD_
REGNO_MODE_OK should reject fixed-point machine modes in floating registers. But if
the floating registers do not automatically normalize, if you can store any bit pattern
in one and retrieve it unchanged without a trap, then any machine mode may go in a
floating register, so you can define this macro to say so.

On some machines, such as the Sparc and the Mips, we get better code by defining
HARD_REGNO_MODE_OK to forbid integers in floating registers, even though the hard-
ware is capable of handling them. This is because transferring values between floating
registers and general registers is so slow that it is better to keep the integer in memory.

The primary significance of special floating registers is rather that they are the registers
acceptable in floating point arithmetic instructions. However, this is of no concern
to HARD_REGNO_MODE_OK. You handle it by writing the proper constraints for those
instructions.

326 Using and Porting GNU CC

On some machines, the floating registers are especially slow to access, so that it is better
to store a value in a stack frame than in such a register if floating point arithmetic is
not being done. As long as the floating registers are not in class GENERAL_REGS, they
will not be used unless some pattern’s constraint asks for one.

MODES_TIEABLE_P (mode1, mode2)

A C expression that is nonzero if it is desirable to choose register allocation so as to
avoid move instructions between a value of mode mode1 and a value of mode mode2.

If HARD_REGNO_MODE_OK (r, mode1) and HARD_REGNO_MODE_OK (r, mode2) are ever
different for any r, then MODES_TIEABLE_P (mode1, mode2) must be zero.

16.5.4 Handling Leaf Functions

On some machines, a leaf function (i.e., one which makes no calls) can run more efficiently if it
does not make its own register window. Often this means it is required to receive its arguments in
the registers where they are passed by the caller, instead of the registers where they would normally
arrive.

The special treatment for leaf functions generally applies only when other conditions are met;
for example, often they may use only those registers for its own variables and temporaries. We
use the term “leaf function” to mean a function that is suitable for this special handling, so that
functions with no calls are not necessarily “leaf functions”.

GNU CC assigns register numbers before it knows whether the function is suitable for leaf
function treatment. So it needs to renumber the registers in order to output a leaf function. The
following macros accomplish this.

LEAF_REGISTERS

A C initializer for a vector, indexed by hard register number, which contains 1 for a
register that is allowable in a candidate for leaf function treatment.

If leaf function treatment involves renumbering the registers, then the registers marked
here should be the ones before renumbering—those that GNU CC would ordinarily
allocate. The registers which will actually be used in the assembler code, after renum-
bering, should not be marked with 1 in this vector.

Define this macro only if the target machine offers a way to optimize the treatment of
leaf functions.

Chapter 16: Target Description Macros 327

LEAF_REG_REMAP (regno)

A C expression whose value is the register number to which regno should be renum-
bered, when a function is treated as a leaf function.

If regno is a register number which should not appear in a leaf function before renum-
bering, then the expression should yield -1, which will cause the compiler to abort.

Define this macro only if the target machine offers a way to optimize the treatment of
leaf functions, and registers need to be renumbered to do this.

REG_LEAF_ALLOC_ORDER

If defined, an initializer for a vector of integers, containing the numbers of hard registers
in the order in which the GNU CC should prefer to use them (from most preferred to
least) in a leaf function. If this macro is not defined, REG ALLOC ORDER is used
for both non-leaf and leaf-functions.

Normally, FUNCTION_PROLOGUE and FUNCTION_EPILOGUE must treat leaf functions specially. It
can test the C variable leaf_function which is nonzero for leaf functions. (The variable leaf_

function is defined only if LEAF_REGISTERS is defined.)

16.5.5 Registers That Form a Stack

There are special features to handle computers where some of the “registers” form a stack, as
in the 80387 coprocessor for the 80386. Stack registers are normally written by pushing onto the
stack, and are numbered relative to the top of the stack.

Currently, GNU CC can only handle one group of stack-like registers, and they must be consec-
utively numbered.

STACK_REGS

Define this if the machine has any stack-like registers.

FIRST_STACK_REG

The number of the first stack-like register. This one is the top of the stack.

LAST_STACK_REG

The number of the last stack-like register. This one is the bottom of the stack.

328 Using and Porting GNU CC

16.5.6 Obsolete Macros for Controlling Register Usage

These features do not work very well. They exist because they used to be required to generate
correct code for the 80387 coprocessor of the 80386. They are no longer used by that machine
description and may be removed in a later version of the compiler. Don’t use them!

OVERLAPPING_REGNO_P (regno)

If defined, this is a C expression whose value is nonzero if hard register number regno is
an overlapping register. This means a hard register which overlaps a hard register with
a different number. (Such overlap is undesirable, but occasionally it allows a machine
to be supported which otherwise could not be.) This macro must return nonzero for all

the registers which overlap each other. GNU CC can use an overlapping register only
in certain limited ways. It can be used for allocation within a basic block, and may be
spilled for reloading; that is all.

If this macro is not defined, it means that none of the hard registers overlap each other.
This is the usual situation.

INSN_CLOBBERS_REGNO_P (insn, regno)

If defined, this is a C expression whose value should be nonzero if the insn insn has
the effect of mysteriously clobbering the contents of hard register number regno. By
“mysterious” we mean that the insn’s RTL expression doesn’t describe such an effect.

If this macro is not defined, it means that no insn clobbers registers mysteriously. This
is the usual situation; all else being equal, it is best for the RTL expression to show all
the activity.

PRESERVE_DEATH_INFO_REGNO_P (regno)

If defined, this is a C expression whose value is nonzero if accurate REG_DEAD notes are
needed for hard register number regno at the time of outputting the assembler code.
When this is so, a few optimizations that take place after register allocation and could
invalidate the death notes are not done when this register is involved.

You would arrange to preserve death info for a register when some of the code in the
machine description which is executed to write the assembler code looks at the death
notes. This is necessary only when the actual hardware feature which GNU CC thinks
of as a register is not actually a register of the usual sort. (It might, for example, be a
hardware stack.)

If this macro is not defined, it means that no death notes need to be preserved. This
is the usual situation.

Chapter 16: Target Description Macros 329

16.6 Register Classes

On many machines, the numbered registers are not all equivalent. For example, certain registers
may not be allowed for indexed addressing; certain registers may not be allowed in some instructions.
These machine restrictions are described to the compiler using register classes.

You define a number of register classes, giving each one a name and saying which of the registers
belong to it. Then you can specify register classes that are allowed as operands to particular
instruction patterns.

In general, each register will belong to several classes. In fact, one class must be named ALL_

REGS and contain all the registers. Another class must be named NO_REGS and contain no registers.
Often the union of two classes will be another class; however, this is not required.

One of the classes must be named GENERAL_REGS. There is nothing terribly special about the
name, but the operand constraint letters ‘r’ and ‘g’ specify this class. If GENERAL_REGS is the same
as ALL_REGS, just define it as a macro which expands to ALL_REGS.

Order the classes so that if class x is contained in class y then x has a lower class number than
y.

The way classes other than GENERAL_REGS are specified in operand constraints is through
machine-dependent operand constraint letters. You can define such letters to correspond to various
classes, then use them in operand constraints.

You should define a class for the union of two classes whenever some instruction allows both
classes. For example, if an instruction allows either a floating point (coprocessor) register or a
general register for a certain operand, you should define a class FLOAT_OR_GENERAL_REGS which
includes both of them. Otherwise you will get suboptimal code.

You must also specify certain redundant information about the register classes: for each class,
which classes contain it and which ones are contained in it; for each pair of classes, the largest class
contained in their union.

When a value occupying several consecutive registers is expected in a certain class, all the
registers used must belong to that class. Therefore, register classes cannot be used to enforce a
requirement for a register pair to start with an even-numbered register. The way to specify this
requirement is with HARD_REGNO_MODE_OK.

330 Using and Porting GNU CC

Register classes used for input-operands of bitwise-and or shift instructions have a special re-
quirement: each such class must have, for each fixed-point machine mode, a subclass whose registers
can transfer that mode to or from memory. For example, on some machines, the operations for
single-byte values (QImode) are limited to certain registers. When this is so, each register class that
is used in a bitwise-and or shift instruction must have a subclass consisting of registers from which
single-byte values can be loaded or stored. This is so that PREFERRED_RELOAD_CLASS can always
have a possible value to return.

enum reg_class

An enumeral type that must be defined with all the register class names as enumeral
values. NO_REGS must be first. ALL_REGS must be the last register class, followed by
one more enumeral value, LIM_REG_CLASSES, which is not a register class but rather
tells how many classes there are.

Each register class has a number, which is the value of casting the class name to type
int. The number serves as an index in many of the tables described below.

N_REG_CLASSES

The number of distinct register classes, defined as follows:
#define N_REG_CLASSES (int) LIM_REG_CLASSES

REG_CLASS_NAMES

An initializer containing the names of the register classes as C string constants. These
names are used in writing some of the debugging dumps.

REG_CLASS_CONTENTS

An initializer containing the contents of the register classes, as integers which are bit
masks. The nth integer specifies the contents of class n. The way the integer mask is
interpreted is that register r is in the class if mask & (1 << r) is 1.

When the machine has more than 32 registers, an integer does not suffice. Then the
integers are replaced by sub-initializers, braced groupings containing several integers.
Each sub-initializer must be suitable as an initializer for the type HARD_REG_SET which
is defined in ‘hard-reg-set.h’.

REGNO_REG_CLASS (regno)

A C expression whose value is a register class containing hard register regno. In general
there is more than one such class; choose a class which is minimal, meaning that no
smaller class also contains the register.

BASE_REG_CLASS

A macro whose definition is the name of the class to which a valid base register must
belong. A base register is one used in an address which is the register value plus a
displacement.

Chapter 16: Target Description Macros 331

INDEX_REG_CLASS

A macro whose definition is the name of the class to which a valid index register must
belong. An index register is one used in an address where its value is either multiplied
by a scale factor or added to another register (as well as added to a displacement).

REG_CLASS_FROM_LETTER (char)

A C expression which defines the machine-dependent operand constraint letters for reg-
ister classes. If char is such a letter, the value should be the register class corresponding
to it. Otherwise, the value should be NO_REGS. The register letter ‘r’, corresponding
to class GENERAL_REGS, will not be passed to this macro; you do not need to handle it.

REGNO_OK_FOR_BASE_P (num)

A C expression which is nonzero if register number num is suitable for use as a base
register in operand addresses. It may be either a suitable hard register or a pseudo
register that has been allocated such a hard register.

REGNO_OK_FOR_INDEX_P (num)

A C expression which is nonzero if register number num is suitable for use as an index
register in operand addresses. It may be either a suitable hard register or a pseudo
register that has been allocated such a hard register.

The difference between an index register and a base register is that the index register
may be scaled. If an address involves the sum of two registers, neither one of them
scaled, then either one may be labeled the “base” and the other the “index”; but
whichever labeling is used must fit the machine’s constraints of which registers may
serve in each capacity. The compiler will try both labelings, looking for one that is
valid, and will reload one or both registers only if neither labeling works.

PREFERRED_RELOAD_CLASS (x, class)

A C expression that places additional restrictions on the register class to use when it
is necessary to copy value x into a register in class class. The value is a register class;
perhaps class, or perhaps another, smaller class. On many machines, the following
definition is safe:

#define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS

Sometimes returning a more restrictive class makes better code. For example, on the
68000, when x is an integer constant that is in range for a ‘moveq’ instruction, the
value of this macro is always DATA_REGS as long as class includes the data registers.
Requiring a data register guarantees that a ‘moveq’ will be used.

If x is a const_double, by returning NO_REGS you can force x into a memory constant.
This is useful on certain machines where immediate floating values cannot be loaded
into certain kinds of registers.

PREFERRED_OUTPUT_RELOAD_CLASS (x, class)

Like PREFERRED_RELOAD_CLASS, but for output reloads instead of input reloads. If you
don’t define this macro, the default is to use class, unchanged.

332 Using and Porting GNU CC

LIMIT_RELOAD_CLASS (mode, class)

A C expression that places additional restrictions on the register class to use when it is
necessary to be able to hold a value of mode mode in a reload register for which class
class would ordinarily be used.

Unlike PREFERRED_RELOAD_CLASS, this macro should be used when there are certain
modes that simply can’t go in certain reload classes.

The value is a register class; perhaps class, or perhaps another, smaller class.

Don’t define this macro unless the target machine has limitations which require the
macro to do something nontrivial.

SECONDARY_RELOAD_CLASS (class, mode, x)

SECONDARY_INPUT_RELOAD_CLASS (class, mode, x)

SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x)

Many machines have some registers that cannot be copied directly to or from memory
or even from other types of registers. An example is the ‘MQ’ register, which on most
machines, can only be copied to or from general registers, but not memory. Some
machines allow copying all registers to and from memory, but require a scratch register
for stores to some memory locations (e.g., those with symbolic address on the RT, and
those with certain symbolic address on the Sparc when compiling PIC). In some cases,
both an intermediate and a scratch register are required.

You should define these macros to indicate to the reload phase that it may need to
allocate at least one register for a reload in addition to the register to contain the data.
Specifically, if copying x to a register class in mode requires an intermediate register,
you should define SECONDARY_INPUT_RELOAD_CLASS to return the largest register class
all of whose registers can be used as intermediate registers or scratch registers.

If copying a register class in mode to x requires an intermediate or scratch register,
SECONDARY_OUTPUT_RELOAD_CLASS should be defined to return the largest register class
required. If the requirements for input and output reloads are the same, the macro
SECONDARY_RELOAD_CLASS should be used instead of defining both macros identically.

The values returned by these macros are often GENERAL_REGS. Return NO_REGS if no
spare register is needed; i.e., if x can be directly copied to or from a register of class in
mode without requiring a scratch register. Do not define this macro if it would always
return NO_REGS.

If a scratch register is required (either with or without an intermediate register),
you should define patterns for ‘reload_inm’ or ‘reload_outm’, as required (see Sec-
tion 15.7 [Standard Names], page 267. These patterns, which will normally be imple-
mented with a define_expand, should be similar to the ‘movm’ patterns, except that
operand 2 is the scratch register.

Define constraints for the reload register and scratch register that contain a single
register class. If the original reload register (whose class is class) can meet the constraint

Chapter 16: Target Description Macros 333

given in the pattern, the value returned by these macros is used for the class of the
scratch register. Otherwise, two additional reload registers are required. Their classes
are obtained from the constraints in the insn pattern.

x might be a pseudo-register or a subreg of a pseudo-register, which could either be
in a hard register or in memory. Use true_regnum to find out; it will return -1 if the
pseudo is in memory and the hard register number if it is in a register.

These macros should not be used in the case where a particular class of registers can
only be copied to memory and not to another class of registers. In that case, secondary
reload registers are not needed and would not be helpful. Instead, a stack location must
be used to perform the copy and the movm pattern should use memory as a intermediate
storage. This case often occurs between floating-point and general registers.

SECONDARY_MEMORY_NEEDED (class1, class2, m)

Certain machines have the property that some registers cannot be copied to some
other registers without using memory. Define this macro on those machines to be a C
expression that is non-zero if objects of mode m in registers of class1 can only be copied
to registers of class class2 by storing a register of class1 into memory and loading that
memory location into a register of class2.

Do not define this macro if its value would always be zero.

SECONDARY_MEMORY_NEEDED_RTX (mode)

Normally, when SECONDARY_MEMORY_NEEDED is defined, the compiler will allocate a
stack slot when a memory location for a register copy is needed. If this macro is
defined, the compiler instead uses the memory location defined by this macro.

SMALL_REGISTER_CLASSES

Normally the compiler will avoid choosing spill registers from registers that have been
explicitly mentioned in the rtl (these registers are normally those used to pass parame-
ters and return values). However, some machines have so few registers of certain classes
that there would not be enough registers to use as spill registers if this were done.

You should define SMALL_REGISTER_CLASSES on those machines. When it is defined,
the compiler allows registers explicitly used in the rtl to be used as spill registers but
prevents the compiler from extending the lifetime of these registers.

Defining this macro is always safe, but unnecessarily defining this macro will reduce
the amount of optimizations that can be performed in some cases. If this macro is not
defined but needs to be, the compiler will run out of reload registers and print a fatal
error message.

For most machines, this macro should not be defined.

CLASS_LIKELY_SPILLED_P (class)

A C expression whose value is nonzero if pseudos that have been assigned to registers of
class class would likely be spilled because registers of class are needed for spill registers.

334 Using and Porting GNU CC

The default value of this macro returns 1 if class has exactly one register and zero
otherwise. On most machines, this default should be used. Only define this macro
to some other expression if pseudo allocated by ‘local-alloc.c’ end up in memory
because their hard registers were needed for spill regisers. If this macro returns nonzero
for those classes, those pseudos will only be allocated by ‘global.c’, which knows how
to reallocate the pseudo to another register. If there would not be another register
available for reallocation, you should not change the definition of this macro since the
only effect of such a definition would be to slow down register allocation.

CLASS_MAX_NREGS (class, mode)

A C expression for the maximum number of consecutive registers of class class needed
to hold a value of mode mode.

This is closely related to the macro HARD_REGNO_NREGS. In fact, the value of the macro
CLASS_MAX_NREGS (class, mode) should be the maximum value of HARD_REGNO_NREGS
(regno, mode) for all regno values in the class class.

This macro helps control the handling of multiple-word values in the reload pass.

Three other special macros describe which operands fit which constraint letters.

CONST_OK_FOR_LETTER_P (value, c)

A C expression that defines the machine-dependent operand constraint letters that
specify particular ranges of integer values. If c is one of those letters, the expression
should check that value, an integer, is in the appropriate range and return 1 if so, 0
otherwise. If c is not one of those letters, the value should be 0 regardless of value.

CONST_DOUBLE_OK_FOR_LETTER_P (value, c)

A C expression that defines the machine-dependent operand constraint letters that
specify particular ranges of const_double values.

If c is one of those letters, the expression should check that value, an RTX of code
const_double, is in the appropriate range and return 1 if so, 0 otherwise. If c is not
one of those letters, the value should be 0 regardless of value.

const_double is used for all floating-point constants and for DImode fixed-point con-
stants. A given letter can accept either or both kinds of values. It can use GET_MODE

to distinguish between these kinds.

EXTRA_CONSTRAINT (value, c)

A C expression that defines the optional machine-dependent constraint letters that
can be used to segregate specific types of operands, usually memory references, for
the target machine. Normally this macro will not be defined. If it is required for a
particular target machine, it should return 1 if value corresponds to the operand type

Chapter 16: Target Description Macros 335

represented by the constraint letter c. If c is not defined as an extra constraint, the
value returned should be 0 regardless of value.

For example, on the ROMP, load instructions cannot have their output in r0 if the
memory reference contains a symbolic address. Constraint letter ‘Q’ is defined as repre-
senting a memory address that does not contain a symbolic address. An alternative is
specified with a ‘Q’ constraint on the input and ‘r’ on the output. The next alternative
specifies ‘m’ on the input and a register class that does not include r0 on the output.

16.7 Stack Layout and Calling Conventions

16.7.1 Basic Stack Layout

STACK_GROWS_DOWNWARD

Define this macro if pushing a word onto the stack moves the stack pointer to a smaller
address.

When we say, “define this macro if . . .,” it means that the compiler checks this macro
only with #ifdef so the precise definition used does not matter.

FRAME_GROWS_DOWNWARD

Define this macro if the addresses of local variable slots are at negative offsets from the
frame pointer.

ARGS_GROW_DOWNWARD

Define this macro if successive arguments to a function occupy decreasing addresses on
the stack.

STARTING_FRAME_OFFSET

Offset from the frame pointer to the first local variable slot to be allocated.

If FRAME_GROWS_DOWNWARD, find the next slot’s offset by subtracting the first slot’s
length from STARTING_FRAME_OFFSET. Otherwise, it is found by adding the length of
the first slot to the value STARTING_FRAME_OFFSET.

STACK_POINTER_OFFSET

Offset from the stack pointer register to the first location at which outgoing arguments
are placed. If not specified, the default value of zero is used. This is the proper value
for most machines.

If ARGS_GROW_DOWNWARD, this is the offset to the location above the first location at
which outgoing arguments are placed.

336 Using and Porting GNU CC

FIRST_PARM_OFFSET (fundecl)

Offset from the argument pointer register to the first argument’s address. On some
machines it may depend on the data type of the function.

If ARGS_GROW_DOWNWARD, this is the offset to the location above the first argument’s
address.

STACK_DYNAMIC_OFFSET (fundecl)

Offset from the stack pointer register to an item dynamically allocated on the stack,
e.g., by alloca.

The default value for this macro is STACK_POINTER_OFFSET plus the length of the
outgoing arguments. The default is correct for most machines. See ‘function.c’ for
details.

DYNAMIC_CHAIN_ADDRESS (frameaddr)

A C expression whose value is RTL representing the address in a stack frame where the
pointer to the caller’s frame is stored. Assume that frameaddr is an RTL expression
for the address of the stack frame itself.

If you don’t define this macro, the default is to return the value of frameaddr—that is,
the stack frame address is also the address of the stack word that points to the previous
frame.

SERTUP_FRAME_ADDRESSES ()

If defined, a C expression that produces the machine-specific code to setup the stack
so that arbitrary frames can be accessed. For example, on the Sparc, we must flush all
of the register windows to the stack before we can access arbitrary stack frames. This
macro will seldom need to be defined.

RETURN_ADDR_RTX (count, frameaddr)

A C expression whose value is RTL representing the value of the return address for
the frame count steps up from the current frame. frameaddr is the frame pointer of
the count frame, or the frame pointer of the count − 1 frame if RETURN_ADDR_IN_

PREVIOUS_FRAME is defined.

RETURN_ADDR_IN_PREVIOUS_FRAME

Define this if the return address of a particular stack frame is accessed from the frame
pointer of the previous stack frame.

Chapter 16: Target Description Macros 337

16.7.2 Registers That Address the Stack Frame

STACK_POINTER_REGNUM

The register number of the stack pointer register, which must also be a fixed register
according to FIXED_REGISTERS. On most machines, the hardware determines which
register this is.

FRAME_POINTER_REGNUM

The register number of the frame pointer register, which is used to access automatic
variables in the stack frame. On some machines, the hardware determines which register
this is. On other machines, you can choose any register you wish for this purpose.

HARD_FRAME_POINTER_REGNUM

On some machines the offset between the frame pointer and starting offset of the auto-
matic variables is not known until after register allocation has been done (for example,
because the saved registers are between these two locations). On those machines,
FRAME_POINTER_REGNUM as a special, fixed register to be used internally until the offset
is known, and define HARD_FRAME_POINTER_REGNUM to be the hard register used for the
frame pointer.

You should define this macro only in the very rare circumstances when it is not possible
to calculate the offset between the frame pointer and the automatic variables until
after register allocation has been completed. When this macro is defined, you must
also indicate in your definition of ELIMINABLE_REGS how to eliminate FRAME_POINTER_
REGNUM into either HARD_FRAME_POINTER_REGNUM or STACK_POINTER_REGNUM.

Do not define this macro if it would be the same as FRAME_POINTER_REGNUM.

ARG_POINTER_REGNUM

The register number of the arg pointer register, which is used to access the function’s
argument list. On some machines, this is the same as the frame pointer register. On
some machines, the hardware determines which register this is. On other machines, you
can choose any register you wish for this purpose. If this is not the same register as the
frame pointer register, then you must mark it as a fixed register according to FIXED_

REGISTERS, or arrange to be able to eliminate it (see Section 16.7.3 [Elimination],
page 338).

STATIC_CHAIN_REGNUM

STATIC_CHAIN_INCOMING_REGNUM

Register numbers used for passing a function’s static chain pointer. If register win-
dows are used, the register number as seen by the called function is STATIC_CHAIN_

338 Using and Porting GNU CC

INCOMING_REGNUM, while the register number as seen by the calling function is STATIC_
CHAIN_REGNUM. If these registers are the same, STATIC_CHAIN_INCOMING_REGNUM need
not be defined.

The static chain register need not be a fixed register.

If the static chain is passed in memory, these macros should not be defined; instead,
the next two macros should be defined.

STATIC_CHAIN

STATIC_CHAIN_INCOMING

If the static chain is passed in memory, these macros provide rtx giving mem expressions
that denote where they are stored. STATIC_CHAIN and STATIC_CHAIN_INCOMING give
the locations as seen by the calling and called functions, respectively. Often the former
will be at an offset from the stack pointer and the latter at an offset from the frame
pointer.

The variables stack_pointer_rtx, frame_pointer_rtx, and arg_pointer_rtx will
have been initialized prior to the use of these macros and should be used to refer to
those items.

If the static chain is passed in a register, the two previous macros should be defined
instead.

16.7.3 Eliminating Frame Pointer and Arg Pointer

FRAME_POINTER_REQUIRED

A C expression which is nonzero if a function must have and use a frame pointer. This
expression is evaluated in the reload pass. If its value is nonzero the function will have
a frame pointer.

The expression can in principle examine the current function and decide according to
the facts, but on most machines the constant 0 or the constant 1 suffices. Use 0 when
the machine allows code to be generated with no frame pointer, and doing so saves
some time or space. Use 1 when there is no possible advantage to avoiding a frame
pointer.

In certain cases, the compiler does not know how to produce valid code without a frame
pointer. The compiler recognizes those cases and automatically gives the function a
frame pointer regardless of what FRAME_POINTER_REQUIRED says. You don’t need to
worry about them.

In a function that does not require a frame pointer, the frame pointer register can
be allocated for ordinary usage, unless you mark it as a fixed register. See FIXED_

REGISTERS for more information.

Chapter 16: Target Description Macros 339

This macro is ignored and you do not need to define it if the function ELIMINABLE_REGS

is defined.

INITIAL_FRAME_POINTER_OFFSET (depth-var)

A C statement to store in the variable depth-var the difference between the frame
pointer and the stack pointer values immediately after the function prologue. The
value would be computed from information such as the result of get_frame_size ()

and the tables of registers regs_ever_live and call_used_regs.

If ELIMINABLE_REGS is defined, this macro will be not be used and need not be defined.
Otherwise, it must be defined even if FRAME_POINTER_REQUIRED is defined to always
be true; in that case, you may set depth-var to anything.

ELIMINABLE_REGS

If defined, this macro specifies a table of register pairs used to eliminate unneeded
registers that point into the stack frame. If it is not defined, the only elimination
attempted by the compiler is to replace references to the frame pointer with references
to the stack pointer.

The definition of this macro is a list of structure initializations, each of which specifies
an original and replacement register.

On some machines, the position of the argument pointer is not known until the com-
pilation is completed. In such a case, a separate hard register must be used for the
argument pointer. This register can be eliminated by replacing it with either the frame
pointer or the argument pointer, depending on whether or not the frame pointer has
been eliminated.

In this case, you might specify:
#define ELIMINABLE_REGS \
{{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}

Note that the elimination of the argument pointer with the stack pointer is specified
first since that is the preferred elimination.

CAN_ELIMINATE (from-reg, to-reg)

A C expression that returns non-zero if the compiler is allowed to try to replace register
number from-reg with register number to-reg. This macro need only be defined if
ELIMINABLE_REGS is defined, and will usually be the constant 1, since most of the cases
preventing register elimination are things that the compiler already knows about.

INITIAL_ELIMINATION_OFFSET (from-reg, to-reg, offset-var)

This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It specifies the initial differ-
ence between the specified pair of registers. This macro must be defined if ELIMINABLE_
REGS is defined.

340 Using and Porting GNU CC

LONGJMP_RESTORE_FROM_STACK

Define this macro if the longjmp function restores registers from the stack frames,
rather than from those saved specifically by setjmp. Certain quantities must not be
kept in registers across a call to setjmp on such machines.

16.7.4 Passing Function Arguments on the Stack

The macros in this section control how arguments are passed on the stack. See the following
section for other macros that control passing certain arguments in registers.

PROMOTE_PROTOTYPES

Define this macro if an argument declared in a prototype as an integral type smaller
than int should actually be passed as an int. In addition to avoiding errors in certain
cases of mismatch, it also makes for better code on certain machines.

PUSH_ROUNDING (npushed)

A C expression that is the number of bytes actually pushed onto the stack when an
instruction attempts to push npushed bytes.

If the target machine does not have a push instruction, do not define this macro. That
directs GNU CC to use an alternate strategy: to allocate the entire argument block
and then store the arguments into it.

On some machines, the definition
#define PUSH_ROUNDING(BYTES) (BYTES)

will suffice. But on other machines, instructions that appear to push one byte actually
push two bytes in an attempt to maintain alignment. Then the definition should be

#define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1)

ACCUMULATE_OUTGOING_ARGS

If defined, the maximum amount of space required for outgoing arguments will be
computed and placed into the variable current_function_outgoing_args_size. No
space will be pushed onto the stack for each call; instead, the function prologue should
increase the stack frame size by this amount.

Defining both PUSH_ROUNDING and ACCUMULATE_OUTGOING_ARGS is not proper.

REG_PARM_STACK_SPACE (fndecl)

Define this macro if functions should assume that stack space has been allocated for
arguments even when their values are passed in registers.

The value of this macro is the size, in bytes, of the area reserved for arguments passed
in registers for the function represented by fndecl.

Chapter 16: Target Description Macros 341

This space can be allocated by the caller, or be a part of the machine-dependent stack
frame: OUTGOING_REG_PARM_STACK_SPACE says which.

MAYBE_REG_PARM_STACK_SPACE

FINAL_REG_PARM_STACK_SPACE (const˙size, var˙size)

Define these macros in addition to the one above if functions might allocate stack
space for arguments even when their values are passed in registers. These should be
used when the stack space allocated for arguments in registers is not a simple constant
independent of the function declaration.

The value of the first macro is the size, in bytes, of the area that we should initially
assume would be reserved for arguments passed in registers.

The value of the second macro is the actual size, in bytes, of the area that will be
reserved for arguments passed in registers. This takes two arguments: an integer
representing the number of bytes of fixed sized arguments on the stack, and a tree
representing the number of bytes of variable sized arguments on the stack.

When these macros are defined, REG_PARM_STACK_SPACE will only be called for libcall
functions, the current function, or for a function being called when it is known that
such stack space must be allocated. In each case this value can be easily computed.

When deciding whether a called function needs such stack space, and how much space
to reserve, GNU CC uses these two macros instead of REG_PARM_STACK_SPACE.

OUTGOING_REG_PARM_STACK_SPACE

Define this if it is the responsibility of the caller to allocate the area reserved for
arguments passed in registers.

If ACCUMULATE_OUTGOING_ARGS is defined, this macro controls whether the space for
these arguments counts in the value of current_function_outgoing_args_size.

STACK_PARMS_IN_REG_PARM_AREA

Define this macro if REG_PARM_STACK_SPACE is defined, but the stack parameters don’t
skip the area specified by it.

Normally, when a parameter is not passed in registers, it is placed on the stack beyond
the REG_PARM_STACK_SPACE area. Defining this macro suppresses this behavior and
causes the parameter to be passed on the stack in its natural location.

RETURN_POPS_ARGS (funtype, stack-size)

A C expression that should indicate the number of bytes of its own arguments that a
function pops on returning, or 0 if the function pops no arguments and the caller must
therefore pop them all after the function returns.

funtype is a C variable whose value is a tree node that describes the function in question.
Normally it is a node of type FUNCTION_TYPE that describes the data type of the
function. From this it is possible to obtain the data types of the value and arguments
(if known).

342 Using and Porting GNU CC

When a call to a library function is being considered, funtype will contain an identifier
node for the library function. Thus, if you need to distinguish among various library
functions, you can do so by their names. Note that “library function” in this context
means a function used to perform arithmetic, whose name is known specially in the
compiler and was not mentioned in the C code being compiled.

stack-size is the number of bytes of arguments passed on the stack. If a variable number
of bytes is passed, it is zero, and argument popping will always be the responsibility of
the calling function.

On the Vax, all functions always pop their arguments, so the definition of this macro is
stack-size. On the 68000, using the standard calling convention, no functions pop their
arguments, so the value of the macro is always 0 in this case. But an alternative calling
convention is available in which functions that take a fixed number of arguments pop
them but other functions (such as printf) pop nothing (the caller pops all). When
this convention is in use, funtype is examined to determine whether a function takes a
fixed number of arguments.

16.7.5 Passing Arguments in Registers

This section describes the macros which let you control how various types of arguments are
passed in registers or how they are arranged in the stack.

FUNCTION_ARG (cum, mode, type, named)

A C expression that controls whether a function argument is passed in a register, and
which register.

The arguments are cum, which summarizes all the previous arguments; mode, the
machine mode of the argument; type, the data type of the argument as a tree node or
0 if that is not known (which happens for C support library functions); and named,
which is 1 for an ordinary argument and 0 for nameless arguments that correspond to
‘. . .’ in the called function’s prototype.

The value of the expression should either be a reg RTX for the hard register in which
to pass the argument, or zero to pass the argument on the stack.

For machines like the Vax and 68000, where normally all arguments are pushed, zero
suffices as a definition.

The usual way to make the ANSI library ‘stdarg.h’ work on a machine where some
arguments are usually passed in registers, is to cause nameless arguments to be passed
on the stack instead. This is done by making FUNCTION_ARG return 0 whenever named

is 0.

Chapter 16: Target Description Macros 343

You may use the macro MUST_PASS_IN_STACK (mode, type) in the definition of this
macro to determine if this argument is of a type that must be passed in the stack. If
REG_PARM_STACK_SPACE is not defined and FUNCTION_ARG returns non-zero for such an
argument, the compiler will abort. If REG_PARM_STACK_SPACE is defined, the argument
will be computed in the stack and then loaded into a register.

FUNCTION_INCOMING_ARG (cum, mode, type, named)

Define this macro if the target machine has “register windows”, so that the register in
which a function sees an arguments is not necessarily the same as the one in which the
caller passed the argument.

For such machines, FUNCTION_ARG computes the register in which the caller passes the
value, and FUNCTION_INCOMING_ARG should be defined in a similar fashion to tell the
function being called where the arguments will arrive.

If FUNCTION_INCOMING_ARG is not defined, FUNCTION_ARG serves both purposes.

FUNCTION_ARG_PARTIAL_NREGS (cum, mode, type, named)

A C expression for the number of words, at the beginning of an argument, must be put
in registers. The value must be zero for arguments that are passed entirely in registers
or that are entirely pushed on the stack.

On some machines, certain arguments must be passed partially in registers and partially
in memory. On these machines, typically the first n words of arguments are passed in
registers, and the rest on the stack. If a multi-word argument (a double or a structure)
crosses that boundary, its first few words must be passed in registers and the rest must
be pushed. This macro tells the compiler when this occurs, and how many of the words
should go in registers.

FUNCTION_ARG for these arguments should return the first register to be used by the
caller for this argument; likewise FUNCTION_INCOMING_ARG, for the called function.

FUNCTION_ARG_PASS_BY_REFERENCE (cum, mode, type, named)

A C expression that indicates when an argument must be passed by reference. If
nonzero for an argument, a copy of that argument is made in memory and a pointer
to the argument is passed instead of the argument itself. The pointer is passed in
whatever way is appropriate for passing a pointer to that type.

On machines where REG_PARM_STACK_SPACE is not defined, a suitable definition of this
macro might be

#define FUNCTION_ARG_PASS_BY_REFERENCE\
(CUM, MODE, TYPE, NAMED) \
MUST_PASS_IN_STACK (MODE, TYPE)

FUNCTION_ARG_CALLEE_COPIES (cum, mode, type, named)

If defined, a C expression that indicates when it is the called function’s responsibil-
ity to make a copy of arguments passed by invisible reference. Normally, the caller
makes a copy and passes the address of the copy to the routine being called. When

344 Using and Porting GNU CC

FUNCTION ARG CALLEE COPIES is defined and is nonzero, the caller does not
make a copy. Instead, it passes a pointer to the “live” value. The called function must
not modify this value. If it can be determined that the value won’t be modified, it need
not make a copy; otherwise a copy must be made.

CUMULATIVE_ARGS

A C type for declaring a variable that is used as the first argument of FUNCTION_ARG
and other related values. For some target machines, the type int suffices and can hold
the number of bytes of argument so far.

There is no need to record in CUMULATIVE_ARGS anything about the arguments that
have been passed on the stack. The compiler has other variables to keep track of that.
For target machines on which all arguments are passed on the stack, there is no need
to store anything in CUMULATIVE_ARGS; however, the data structure must exist and
should not be empty, so use int.

INIT_CUMULATIVE_ARGS (cum, fntype, libname)

A C statement (sans semicolon) for initializing the variable cum for the state at the
beginning of the argument list. The variable has type CUMULATIVE_ARGS. The value of
fntype is the tree node for the data type of the function which will receive the args, or
0 if the args are to a compiler support library function.

When processing a call to a compiler support library function, libname identifies which
one. It is a symbol_ref rtx which contains the name of the function, as a string.
libname is 0 when an ordinary C function call is being processed. Thus, each time this
macro is called, either libname or fntype is nonzero, but never both of them at once.

INIT_CUMULATIVE_INCOMING_ARGS (cum, fntype, libname)

Like INIT_CUMULATIVE_ARGS but overrides it for the purposes of finding the arguments
for the function being compiled. If this macro is undefined, INIT_CUMULATIVE_ARGS is
used instead.

The value passed for libname is always 0, since library routines with special calling con-
ventions are never compiled with GNU CC. The argument libname exists for symmetry
with INIT_CUMULATIVE_ARGS.

FUNCTION_ARG_ADVANCE (cum, mode, type, named)

A C statement (sans semicolon) to update the summarizer variable cum to advance
past an argument in the argument list. The values mode, type and named describe that
argument. Once this is done, the variable cum is suitable for analyzing the following

argument with FUNCTION_ARG, etc.

This macro need not do anything if the argument in question was passed on the stack.
The compiler knows how to track the amount of stack space used for arguments without
any special help.

Chapter 16: Target Description Macros 345

FUNCTION_ARG_PADDING (mode, type)

If defined, a C expression which determines whether, and in which direction, to pad out
an argument with extra space. The value should be of type enum direction: either
upward to pad above the argument, downward to pad below, or none to inhibit padding.

The amount of padding is always just enough to reach the next multiple of FUNCTION_
ARG_BOUNDARY; this macro does not control it.

This macro has a default definition which is right for most systems. For little-endian
machines, the default is to pad upward. For big-endian machines, the default is to pad
downward for an argument of constant size shorter than an int, and upward otherwise.

FUNCTION_ARG_BOUNDARY (mode, type)

If defined, a C expression that gives the alignment boundary, in bits, of an argument
with the specified mode and type. If it is not defined, PARM_BOUNDARY is used for all
arguments.

FUNCTION_ARG_REGNO_P (regno)

A C expression that is nonzero if regno is the number of a hard register in which function
arguments are sometimes passed. This does not include implicit arguments such as the
static chain and the structure-value address. On many machines, no registers can be
used for this purpose since all function arguments are pushed on the stack.

16.7.6 How Scalar Function Values Are Returned

This section discusses the macros that control returning scalars as values—values that can fit
in registers.

TRADITIONAL_RETURN_FLOAT

Define this macro if ‘-traditional’ should not cause functions declared to return
float to convert the value to double.

FUNCTION_VALUE (valtype, func)

A C expression to create an RTX representing the place where a function returns a
value of data type valtype. valtype is a tree node representing a data type. Write
TYPE_MODE (valtype) to get the machine mode used to represent that type. On many
machines, only the mode is relevant. (Actually, on most machines, scalar values are
returned in the same place regardless of mode).

If PROMOTE_FUNCTION_RETURN is defined, you must apply the same promotion rules
specified in PROMOTE_MODE if valtype is a scalar type.

346 Using and Porting GNU CC

If the precise function being called is known, func is a tree node (FUNCTION_DECL) for
it; otherwise, func is a null pointer. This makes it possible to use a different value-
returning convention for specific functions when all their calls are known.

FUNCTION_VALUE is not used for return vales with aggregate data types, because these
are returned in another way. See STRUCT_VALUE_REGNUM and related macros, below.

FUNCTION_OUTGOING_VALUE (valtype, func)

Define this macro if the target machine has “register windows” so that the register in
which a function returns its value is not the same as the one in which the caller sees
the value.

For such machines, FUNCTION_VALUE computes the register in which the caller will see
the value. FUNCTION_OUTGOING_VALUE should be defined in a similar fashion to tell the
function where to put the value.

If FUNCTION_OUTGOING_VALUE is not defined, FUNCTION_VALUE serves both purposes.

FUNCTION_OUTGOING_VALUE is not used for return vales with aggregate data types,
because these are returned in another way. See STRUCT_VALUE_REGNUM and related
macros, below.

LIBCALL_VALUE (mode)

A C expression to create an RTX representing the place where a library function returns
a value of mode mode. If the precise function being called is known, func is a tree node
(FUNCTION_DECL) for it; otherwise, func is a null pointer. This makes it possible to
use a different value-returning convention for specific functions when all their calls are
known.

Note that “library function” in this context means a compiler support routine, used
to perform arithmetic, whose name is known specially by the compiler and was not
mentioned in the C code being compiled.

The definition of LIBRARY_VALUE need not be concerned aggregate data types, because
none of the library functions returns such types.

FUNCTION_VALUE_REGNO_P (regno)

A C expression that is nonzero if regno is the number of a hard register in which the
values of called function may come back.

A register whose use for returning values is limited to serving as the second of a pair
(for a value of type double, say) need not be recognized by this macro. So for most
machines, this definition suffices:

#define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)

If the machine has register windows, so that the caller and the called function use
different registers for the return value, this macro should recognize only the caller’s
register numbers.

Chapter 16: Target Description Macros 347

APPLY_RESULT_SIZE

Define this macro if ‘untyped_call’ and ‘untyped_return’ need more space than is im-
plied by FUNCTION_VALUE_REGNO_P for saving and restoring an arbitrary return value.

16.7.7 How Large Values Are Returned

When a function value’s mode is BLKmode (and in some other cases), the value is not returned
according to FUNCTION_VALUE (see Section 16.7.6 [Scalar Return], page 345). Instead, the caller
passes the address of a block of memory in which the value should be stored. This address is called
the structure value address.

This section describes how to control returning structure values in memory.

RETURN_IN_MEMORY (type)

A C expression which can inhibit the returning of certain function values in registers,
based on the type of value. A nonzero value says to return the function value in
memory, just as large structures are always returned. Here type will be a C expression
of type tree, representing the data type of the value.

Note that values of mode BLKmode must be explicitly handled by this macro. Also, the
option ‘-fpcc-struct-return’ takes effect regardless of this macro. On most systems,
it is possible to leave the macro undefined; this causes a default definition to be used,
whose value is the constant 1 for BLKmode values, and 0 otherwise.

Do not use this macro to indicate that structures and unions should always be returned
in memory. You should instead use DEFAULT_PCC_STRUCT_RETURN to indicate this.

DEFAULT_PCC_STRUCT_RETURN

Define this macro to be 1 if all structure and union return values must be in memory.
Since this results in slower code, this should be defined only if needed for compatibility
with other compilers or with an ABI. If you define this macro to be 0, then the conven-
tions used for structure and union return values are decided by the RETURN_IN_MEMORY
macro.

If not defined, this defaults to the value 1.

STRUCT_VALUE_REGNUM

If the structure value address is passed in a register, then STRUCT_VALUE_REGNUM should
be the number of that register.

348 Using and Porting GNU CC

STRUCT_VALUE

If the structure value address is not passed in a register, define STRUCT_VALUE as an
expression returning an RTX for the place where the address is passed. If it returns 0,
the address is passed as an “invisible” first argument.

STRUCT_VALUE_INCOMING_REGNUM

On some architectures the place where the structure value address is found by the
called function is not the same place that the caller put it. This can be due to register
windows, or it could be because the function prologue moves it to a different place.

If the incoming location of the structure value address is in a register, define this macro
as the register number.

STRUCT_VALUE_INCOMING

If the incoming location is not a register, then you should define STRUCT_VALUE_

INCOMING as an expression for an RTX for where the called function should find the
value. If it should find the value on the stack, define this to create a mem which refers to
the frame pointer. A definition of 0 means that the address is passed as an “invisible”
first argument.

PCC_STATIC_STRUCT_RETURN

Define this macro if the usual system convention on the target machine for returning
structures and unions is for the called function to return the address of a static variable
containing the value.

Do not define this if the usual system convention is for the caller to pass an address to
the subroutine.

This macro has effect in ‘-fpcc-struct-return’ mode, but it does nothing when you
use ‘-freg-struct-return’ mode.

16.7.8 Caller-Saves Register Allocation

If you enable it, GNU CC can save registers around function calls. This makes it possible to
use call-clobbered registers to hold variables that must live across calls.

DEFAULT_CALLER_SAVES

Define this macro if function calls on the target machine do not preserve any registers;
in other words, if CALL_USED_REGISTERS has 1 for all registers. This macro enables
‘-fcaller-saves’ by default. Eventually that option will be enabled by default on all
machines and both the option and this macro will be eliminated.

Chapter 16: Target Description Macros 349

CALLER_SAVE_PROFITABLE (refs, calls)

A C expression to determine whether it is worthwhile to consider placing a pseudo-
register in a call-clobbered hard register and saving and restoring it around each func-
tion call. The expression should be 1 when this is worth doing, and 0 otherwise.

If you don’t define this macro, a default is used which is good on most machines: 4 *

calls < refs.

16.7.9 Function Entry and Exit

This section describes the macros that output function entry (prologue) and exit (epilogue)
code.

FUNCTION_PROLOGUE (file, size)

A C compound statement that outputs the assembler code for entry to a function. The
prologue is responsible for setting up the stack frame, initializing the frame pointer
register, saving registers that must be saved, and allocating size additional bytes of
storage for the local variables. size is an integer. file is a stdio stream to which the
assembler code should be output.

The label for the beginning of the function need not be output by this macro. That
has already been done when the macro is run.

To determine which registers to save, the macro can refer to the array regs_ever_

live: element r is nonzero if hard register r is used anywhere within the function.
This implies the function prologue should save register r, provided it is not one of the
call-used registers. (FUNCTION_EPILOGUE must likewise use regs_ever_live.)

On machines that have “register windows”, the function entry code does not save on the
stack the registers that are in the windows, even if they are supposed to be preserved
by function calls; instead it takes appropriate steps to “push” the register stack, if any
non-call-used registers are used in the function.

On machines where functions may or may not have frame-pointers, the function entry
code must vary accordingly; it must set up the frame pointer if one is wanted, and not
otherwise. To determine whether a frame pointer is in wanted, the macro can refer to
the variable frame_pointer_needed. The variable’s value will be 1 at run time in a
function that needs a frame pointer. See Section 16.7.3 [Elimination], page 338.

The function entry code is responsible for allocating any stack space required for the
function. This stack space consists of the regions listed below. In most cases, these
regions are allocated in the order listed, with the last listed region closest to the top
of the stack (the lowest address if STACK_GROWS_DOWNWARD is defined, and the highest

350 Using and Porting GNU CC

address if it is not defined). You can use a different order for a machine if doing so is
more convenient or required for compatibility reasons. Except in cases where required
by standard or by a debugger, there is no reason why the stack layout used by GCC
need agree with that used by other compilers for a machine.

• A region of current_function_pretend_args_size bytes of uninitialized space
just underneath the first argument arriving on the stack. (This may not be at
the very start of the allocated stack region if the calling sequence has pushed
anything else since pushing the stack arguments. But usually, on such machines,
nothing else has been pushed yet, because the function prologue itself does all
the pushing.) This region is used on machines where an argument may be passed
partly in registers and partly in memory, and, in some cases to support the features
in ‘varargs.h’ and ‘stdargs.h’.

• An area of memory used to save certain registers used by the function. The size
of this area, which may also include space for such things as the return address
and pointers to previous stack frames, is machine-specific and usually depends on
which registers have been used in the function. Machines with register windows
often do not require a save area.

• A region of at least size bytes, possibly rounded up to an allocation boundary, to
contain the local variables of the function. On some machines, this region and the
save area may occur in the opposite order, with the save area closer to the top of
the stack.

• Optionally, when ACCUMULATE_OUTGOING_ARGS is defined, a region of current_

function_outgoing_args_size bytes to be used for outgoing argument lists of
the function. See Section 16.7.4 [Stack Arguments], page 340.

Normally, it is necessary for the macros FUNCTION_PROLOGUE and FUNCTION_EPILOGUE

to treat leaf functions specially. The C variable leaf_function is nonzero for such a
function.

EXIT_IGNORE_STACK

Define this macro as a C expression that is nonzero if the return instruction or the
function epilogue ignores the value of the stack pointer; in other words, if it is safe to
delete an instruction to adjust the stack pointer before a return from the function.

Note that this macro’s value is relevant only for functions for which frame pointers are
maintained. It is never safe to delete a final stack adjustment in a function that has
no frame pointer, and the compiler knows this regardless of EXIT_IGNORE_STACK.

FUNCTION_EPILOGUE (file, size)

A C compound statement that outputs the assembler code for exit from a function. The
epilogue is responsible for restoring the saved registers and stack pointer to their values
when the function was called, and returning control to the caller. This macro takes

Chapter 16: Target Description Macros 351

the same arguments as the macro FUNCTION_PROLOGUE, and the registers to restore are
determined from regs_ever_live and CALL_USED_REGISTERS in the same way.

On some machines, there is a single instruction that does all the work of returning from
the function. On these machines, give that instruction the name ‘return’ and do not
define the macro FUNCTION_EPILOGUE at all.

Do not define a pattern named ‘return’ if you want the FUNCTION_EPILOGUE to be used.
If you want the target switches to control whether return instructions or epilogues are
used, define a ‘return’ pattern with a validity condition that tests the target switches
appropriately. If the ‘return’ pattern’s validity condition is false, epilogues will be
used.

On machines where functions may or may not have frame-pointers, the function exit
code must vary accordingly. Sometimes the code for these two cases is completely
different. To determine whether a frame pointer is wanted, the macro can refer to
the variable frame_pointer_needed. The variable’s value will be 1 when compiling a
function that needs a frame pointer.

Normally, FUNCTION_PROLOGUE and FUNCTION_EPILOGUE must treat leaf functions spe-
cially. The C variable leaf_function is nonzero for such a function. See Section 16.5.4
[Leaf Functions], page 326.

On some machines, some functions pop their arguments on exit while others leave that
for the caller to do. For example, the 68020 when given ‘-mrtd’ pops arguments in
functions that take a fixed number of arguments.

Your definition of the macro RETURN_POPS_ARGS decides which functions pop their own
arguments. FUNCTION_EPILOGUE needs to know what was decided. The variable that
is called current_function_pops_args is the number of bytes of its arguments that
a function should pop. See Section 16.7.6 [Scalar Return], page 345.

DELAY_SLOTS_FOR_EPILOGUE

Define this macro if the function epilogue contains delay slots to which instructions
from the rest of the function can be “moved”. The definition should be a C expression
whose value is an integer representing the number of delay slots there.

ELIGIBLE_FOR_EPILOGUE_DELAY (insn, n)

A C expression that returns 1 if insn can be placed in delay slot number n of the
epilogue.

The argument n is an integer which identifies the delay slot now being considered
(since different slots may have different rules of eligibility). It is never negative and is
always less than the number of epilogue delay slots (what DELAY_SLOTS_FOR_EPILOGUE
returns). If you reject a particular insn for a given delay slot, in principle, it may be
reconsidered for a subsequent delay slot. Also, other insns may (at least in principle)
be considered for the so far unfilled delay slot.

352 Using and Porting GNU CC

The insns accepted to fill the epilogue delay slots are put in an RTL list made with
insn_list objects, stored in the variable current_function_epilogue_delay_list.
The insn for the first delay slot comes first in the list. Your definition of the macro
FUNCTION_EPILOGUE should fill the delay slots by outputting the insns in this list,
usually by calling final_scan_insn.

You need not define this macro if you did not define DELAY_SLOTS_FOR_EPILOGUE.

16.7.10 Generating Code for Profiling

These macros will help you generate code for profiling.

FUNCTION_PROFILER (file, labelno)

A C statement or compound statement to output to file some assembler code to call the
profiling subroutine mcount. Before calling, the assembler code must load the address
of a counter variable into a register where mcount expects to find the address. The
name of this variable is ‘LP’ followed by the number labelno, so you would generate the
name using ‘LP%d’ in a fprintf.

The details of how the address should be passed to mcount are determined by your
operating system environment, not by GNU CC. To figure them out, compile a small
program for profiling using the system’s installed C compiler and look at the assembler
code that results.

PROFILE_BEFORE_PROLOGUE

Define this macro if the code for function profiling should come before the function
prologue. Normally, the profiling code comes after.

FUNCTION_BLOCK_PROFILER (file, labelno)

A C statement or compound statement to output to file some assembler code to ini-
tialize basic-block profiling for the current object module. This code should call the
subroutine __bb_init_func once per object module, passing it as its sole argument
the address of a block allocated in the object module.

The name of the block is a local symbol made with this statement:
ASM_GENERATE_INTERNAL_LABEL (buffer, "LPBX", 0);

Of course, since you are writing the definition of ASM_GENERATE_INTERNAL_LABEL as
well as that of this macro, you can take a short cut in the definition of this macro and
use the name that you know will result.

The first word of this block is a flag which will be nonzero if the object module has
already been initialized. So test this word first, and do not call __bb_init_func if the
flag is nonzero.

Chapter 16: Target Description Macros 353

BLOCK_PROFILER (file, blockno)

A C statement or compound statement to increment the count associated with the
basic block number blockno. Basic blocks are numbered separately from zero within
each compilation. The count associated with block number blockno is at index blockno

in a vector of words; the name of this array is a local symbol made with this statement:
ASM_GENERATE_INTERNAL_LABEL (buffer, "LPBX", 2);

Of course, since you are writing the definition of ASM_GENERATE_INTERNAL_LABEL as
well as that of this macro, you can take a short cut in the definition of this macro and
use the name that you know will result.

BLOCK_PROFILER_CODE

A C function or functions which are needed in the library to support block profiling.

16.8 Implementing the Varargs Macros

GNU CC comes with an implementation of ‘varargs.h’ and ‘stdarg.h’ that work without
change on machines that pass arguments on the stack. Other machines require their own imple-
mentations of varargs, and the two machine independent header files must have conditionals to
include it.

ANSI ‘stdarg.h’ differs from traditional ‘varargs.h’ mainly in the calling convention for va_

start. The traditional implementation takes just one argument, which is the variable in which
to store the argument pointer. The ANSI implementation of va_start takes an additional second
argument. The user is supposed to write the last named argument of the function here.

However, va_start should not use this argument. The way to find the end of the named
arguments is with the built-in functions described below.

__builtin_saveregs ()

Use this built-in function to save the argument registers in memory so that the varargs
mechanism can access them. Both ANSI and traditional versions of va_start must use
__builtin_saveregs, unless you use SETUP_INCOMING_VARARGS (see below) instead.

On some machines, __builtin_saveregs is open-coded under the control of the macro
EXPAND_BUILTIN_SAVEREGS. On other machines, it calls a routine written in assembler
language, found in ‘libgcc2.c’.

Code generated for the call to __builtin_saveregs appears at the beginning of the
function, as opposed to where the call to __builtin_saveregs is written, regardless

354 Using and Porting GNU CC

of what the code is. This is because the registers must be saved before the function
starts to use them for its own purposes.

__builtin_args_info (category)

Use this built-in function to find the first anonymous arguments in registers.

In general, a machine may have several categories of registers used for arguments, each
for a particular category of data types. (For example, on some machines, floating-point
registers are used for floating-point arguments while other arguments are passed in the
general registers.) To make non-varargs functions use the proper calling convention,
you have defined the CUMULATIVE_ARGS data type to record how many registers in each
category have been used so far

__builtin_args_info accesses the same data structure of type CUMULATIVE_ARGS after
the ordinary argument layout is finished with it, with category specifying which word
to access. Thus, the value indicates the first unused register in a given category.

Normally, you would use __builtin_args_info in the implementation of va_start,
accessing each category just once and storing the value in the va_list object. This is
because va_list will have to update the values, and there is no way to alter the values
accessed by __builtin_args_info.

__builtin_next_arg ()

This is the equivalent of __builtin_args_info, for stack arguments. It returns the ad-
dress of the first anonymous stack argument, as type void *. If ARGS_GROW_DOWNWARD,
it returns the address of the location above the first anonymous stack argument. Use
it in va_start to initialize the pointer for fetching arguments from the stack.

__builtin_classify_type (object)

Since each machine has its own conventions for which data types are passed in which
kind of register, your implementation of va_arg has to embody these conventions. The
easiest way to categorize the specified data type is to use __builtin_classify_type

together with sizeof and __alignof__.

__builtin_classify_type ignores the value of object, considering only its data type.
It returns an integer describing what kind of type that is—integer, floating, pointer,
structure, and so on.

The file ‘typeclass.h’ defines an enumeration that you can use to interpret the values
of __builtin_classify_type.

These machine description macros help implement varargs:

EXPAND_BUILTIN_SAVEREGS (args)

If defined, is a C expression that produces the machine-specific code for a call to __

builtin_saveregs. This code will be moved to the very beginning of the function,

Chapter 16: Target Description Macros 355

before any parameter access are made. The return value of this function should be an
RTX that contains the value to use as the return of __builtin_saveregs.

The argument args is a tree_list containing the arguments that were passed to __

builtin_saveregs.

If this macro is not defined, the compiler will output an ordinary call to the library
function ‘__builtin_saveregs’.

SETUP_INCOMING_VARARGS (args˙so˙far, mode, type,

pretend args size, second time) This macro offers an alternative to using __builtin_

saveregs and defining the macro EXPAND_BUILTIN_SAVEREGS. Use it to store the
anonymous register arguments into the stack so that all the arguments appear to have
been passed consecutively on the stack. Once this is done, you can use the standard
implementation of varargs that works for machines that pass all their arguments on
the stack.

The argument args so far is the CUMULATIVE_ARGS data structure, containing the values
that obtain after processing of the named arguments. The arguments mode and type

describe the last named argument—its machine mode and its data type as a tree node.

The macro implementation should do two things: first, push onto the stack all the
argument registers not used for the named arguments, and second, store the size of the
data thus pushed into the int-valued variable whose name is supplied as the argument
pretend args size. The value that you store here will serve as additional offset for
setting up the stack frame.

Because you must generate code to push the anonymous arguments at compile time
without knowing their data types, SETUP_INCOMING_VARARGS is only useful on machines
that have just a single category of argument register and use it uniformly for all data
types.

If the argument second time is nonzero, it means that the arguments of the function are
being analyzed for the second time. This happens for an inline function, which is not
actually compiled until the end of the source file. The macro SETUP_INCOMING_VARARGS

should not generate any instructions in this case.

16.9 Trampolines for Nested Functions

A trampoline is a small piece of code that is created at run time when the address of a nested
function is taken. It normally resides on the stack, in the stack frame of the containing function.
These macros tell GNU CC how to generate code to allocate and initialize a trampoline.

The instructions in the trampoline must do two things: load a constant address into the static
chain register, and jump to the real address of the nested function. On CISC machines such as the

356 Using and Porting GNU CC

m68k, this requires two instructions, a move immediate and a jump. Then the two addresses exist
in the trampoline as word-long immediate operands. On RISC machines, it is often necessary to
load each address into a register in two parts. Then pieces of each address form separate immediate
operands.

The code generated to initialize the trampoline must store the variable parts—the static chain
value and the function address—into the immediate operands of the instructions. On a CISC
machine, this is simply a matter of copying each address to a memory reference at the proper offset
from the start of the trampoline. On a RISC machine, it may be necessary to take out pieces of
the address and store them separately.

TRAMPOLINE_TEMPLATE (file)

A C statement to output, on the stream file, assembler code for a block of data that
contains the constant parts of a trampoline. This code should not include a label—the
label is taken care of automatically.

TRAMPOLINE_SECTION

The name of a subroutine to switch to the section in which the trampoline template
is to be placed (see Section 16.14 [Sections], page 369). The default is a value of
‘readonly_data_section’, which places the trampoline in the section containing read-
only data.

TRAMPOLINE_SIZE

A C expression for the size in bytes of the trampoline, as an integer.

TRAMPOLINE_ALIGNMENT

Alignment required for trampolines, in bits.

If you don’t define this macro, the value of BIGGEST_ALIGNMENT is used for aligning
trampolines.

INITIALIZE_TRAMPOLINE (addr, fnaddr, static˙chain)

A C statement to initialize the variable parts of a trampoline. addr is an RTX for the
address of the trampoline; fnaddr is an RTX for the address of the nested function;
static chain is an RTX for the static chain value that should be passed to the function
when it is called.

ALLOCATE_TRAMPOLINE (fp)

A C expression to allocate run-time space for a trampoline. The expression value
should be an RTX representing a memory reference to the space for the trampoline.

If this macro is not defined, by default the trampoline is allocated as a stack slot.
This default is right for most machines. The exceptions are machines where it is
impossible to execute instructions in the stack area. On such machines, you may have to

Chapter 16: Target Description Macros 357

implement a separate stack, using this macro in conjunction with FUNCTION_PROLOGUE

and FUNCTION_EPILOGUE.

fp points to a data structure, a struct function, which describes the compilation
status of the immediate containing function of the function which the trampoline is
for. Normally (when ALLOCATE_TRAMPOLINE is not defined), the stack slot for the
trampoline is in the stack frame of this containing function. Other allocation strategies
probably must do something analogous with this information.

Implementing trampolines is difficult on many machines because they have separate instruction
and data caches. Writing into a stack location fails to clear the memory in the instruction cache,
so when the program jumps to that location, it executes the old contents.

Here are two possible solutions. One is to clear the relevant parts of the instruction cache
whenever a trampoline is set up. The other is to make all trampolines identical, by having them
jump to a standard subroutine. The former technique makes trampoline execution faster; the latter
makes initialization faster.

To clear the instruction cache when a trampoline is initialized, define the following macros which
describe the shape of the cache.

INSN_CACHE_SIZE

The total size in bytes of the cache.

INSN_CACHE_LINE_WIDTH

The length in bytes of each cache line. The cache is divided into cache lines which
are disjoint slots, each holding a contiguous chunk of data fetched from memory. Each
time data is brought into the cache, an entire line is read at once. The data loaded
into a cache line is always aligned on a boundary equal to the line size.

INSN_CACHE_DEPTH

The number of alternative cache lines that can hold any particular memory location.

Alternatively, if the machine has system calls or instructions to clear the instruction cache
directly, you can define the following macro.

If defined, expands to a C expression clearing the instruction cache in the specified
interval. If it is not defined, and the macro INSN CACHE SIZE is defined, some generic
code is generated to clear the cache. The definition of this macro would typically be a
series of asm statements. Both BEG and END are both pointer expressions.

358 Using and Porting GNU CC

To use a standard subroutine, define the following macro. In addition, you must make sure that
the instructions in a trampoline fill an entire cache line with identical instructions, or else ensure
that the beginning of the trampoline code is always aligned at the same point in its cache line.
Look in ‘m68k.h’ as a guide.

TRANSFER_FROM_TRAMPOLINE

Define this macro if trampolines need a special subroutine to do their work. The macro
should expand to a series of asm statements which will be compiled with GNU CC. They
go in a library function named __transfer_from_trampoline.

If you need to avoid executing the ordinary prologue code of a compiled C function
when you jump to the subroutine, you can do so by placing a special label of your
own in the assembler code. Use one asm statement to generate an assembler label, and
another to make the label global. Then trampolines can use that label to jump directly
to your special assembler code.

16.10 Implicit Calls to Library Routines

MULSI3_LIBCALL

A C string constant giving the name of the function to call for multiplication of one
signed full-word by another. If you do not define this macro, the default name is used,
which is __mulsi3, a function defined in ‘libgcc.a’.

DIVSI3_LIBCALL

A C string constant giving the name of the function to call for division of one signed
full-word by another. If you do not define this macro, the default name is used, which
is __divsi3, a function defined in ‘libgcc.a’.

UDIVSI3_LIBCALL

A C string constant giving the name of the function to call for division of one unsigned
full-word by another. If you do not define this macro, the default name is used, which
is __udivsi3, a function defined in ‘libgcc.a’.

MODSI3_LIBCALL

A C string constant giving the name of the function to call for the remainder in division
of one signed full-word by another. If you do not define this macro, the default name
is used, which is __modsi3, a function defined in ‘libgcc.a’.

UMODSI3_LIBCALL

A C string constant giving the name of the function to call for the remainder in division
of one unsigned full-word by another. If you do not define this macro, the default name
is used, which is __umodsi3, a function defined in ‘libgcc.a’.

Chapter 16: Target Description Macros 359

MULDI3_LIBCALL

A C string constant giving the name of the function to call for multiplication of one
signed double-word by another. If you do not define this macro, the default name is
used, which is __muldi3, a function defined in ‘libgcc.a’.

DIVDI3_LIBCALL

A C string constant giving the name of the function to call for division of one signed
double-word by another. If you do not define this macro, the default name is used,
which is __divdi3, a function defined in ‘libgcc.a’.

UDIVDI3_LIBCALL

A C string constant giving the name of the function to call for division of one unsigned
full-word by another. If you do not define this macro, the default name is used, which
is __udivdi3, a function defined in ‘libgcc.a’.

MODDI3_LIBCALL

A C string constant giving the name of the function to call for the remainder in division
of one signed double-word by another. If you do not define this macro, the default name
is used, which is __moddi3, a function defined in ‘libgcc.a’.

UMODDI3_LIBCALL

A C string constant giving the name of the function to call for the remainder in division
of one unsigned full-word by another. If you do not define this macro, the default name
is used, which is __umoddi3, a function defined in ‘libgcc.a’.

TARGET_EDOM

The value of EDOM on the target machine, as a C integer constant expression. If you
don’t define this macro, GNU CC does not attempt to deposit the value of EDOM into
errno directly. Look in ‘/usr/include/errno.h’ to find the value of EDOM on your
system.

If you do not define TARGET_EDOM, then compiled code reports domain errors by call-
ing the library function and letting it report the error. If mathematical functions on
your system use matherr when there is an error, then you should leave TARGET_EDOM

undefined so that matherr is used normally.

GEN_ERRNO_RTX

Define this macro as a C expression to create an rtl expression that refers to the global
“variable” errno. (On certain systems, errno may not actually be a variable.) If you
don’t define this macro, a reasonable default is used.

TARGET_MEM_FUNCTIONS

Define this macro if GNU CC should generate calls to the System V (and ANSI C)
library functions memcpy and memset rather than the BSD functions bcopy and bzero.

360 Using and Porting GNU CC

LIBGCC_NEEDS_DOUBLE

Define this macro if only float arguments cannot be passed to library routines (so they
must be converted to double). This macro affects both how library calls are generated
and how the library routines in ‘libgcc1.c’ accept their arguments. It is useful on
machines where floating and fixed point arguments are passed differently, such as the
i860.

FLOAT_ARG_TYPE

Define this macro to override the type used by the library routines to pick up arguments
of type float. (By default, they use a union of float and int.)

The obvious choice would be float—but that won’t work with traditional C compilers
that expect all arguments declared as float to arrive as double. To avoid this con-
version, the library routines ask for the value as some other type and then treat it as
a float.

On some systems, no other type will work for this. For these systems, you must use
LIBGCC_NEEDS_DOUBLE instead, to force conversion of the values double before they
are passed.

FLOATIFY (passed-value)

Define this macro to override the way library routines redesignate a float argument
as a float instead of the type it was passed as. The default is an expression which
takes the float field of the union.

FLOAT_VALUE_TYPE

Define this macro to override the type used by the library routines to return values
that ought to have type float. (By default, they use int.)

The obvious choice would be float—but that won’t work with traditional C compilers
gratuitously convert values declared as float into double.

INTIFY (float-value)

Define this macro to override the way the value of a float-returning library routine
should be packaged in order to return it. These functions are actually declared to
return type FLOAT_VALUE_TYPE (normally int).

These values can’t be returned as type float because traditional C compilers would
gratuitously convert the value to a double.

A local variable named intify is always available when the macro INTIFY is used. It is
a union of a float field named f and a field named i whose type is FLOAT_VALUE_TYPE
or int.

If you don’t define this macro, the default definition works by copying the value through
that union.

Chapter 16: Target Description Macros 361

nongcc_SI_type

Define this macro as the name of the data type corresponding to SImode in the system’s
own C compiler.

You need not define this macro if that type is long int, as it usually is.

nongcc_word_type

Define this macro as the name of the data type corresponding to the word mode in the
system’s own C compiler.

You need not define this macro if that type is long int, as it usually is.

perform_. . .

Define these macros to supply explicit C statements to carry out various arithmetic
operations on types float and double in the library routines in ‘libgcc1.c’. See that
file for a full list of these macros and their arguments.

On most machines, you don’t need to define any of these macros, because the C compiler
that comes with the system takes care of doing them.

NEXT_OBJC_RUNTIME

Define this macro to generate code for Objective C message sending using the calling
convention of the NeXT system. This calling convention involves passing the object, the
selector and the method arguments all at once to the method-lookup library function.

The default calling convention passes just the object and the selector to the lookup
function, which returns a pointer to the method.

16.11 Addressing Modes

HAVE_POST_INCREMENT

Define this macro if the machine supports post-increment addressing.

HAVE_PRE_INCREMENT

HAVE_POST_DECREMENT

HAVE_PRE_DECREMENT

Similar for other kinds of addressing.

CONSTANT_ADDRESS_P (x)

A C expression that is 1 if the RTX x is a constant which is a valid address. On
most machines, this can be defined as CONSTANT_P (x), but a few machines are more
restrictive in which constant addresses are supported.

CONSTANT_P accepts integer-values expressions whose values are not explicitly known,
such as symbol_ref, label_ref, and high expressions and const arithmetic expres-
sions, in addition to const_int and const_double expressions.

362 Using and Porting GNU CC

MAX_REGS_PER_ADDRESS

A number, the maximum number of registers that can appear in a valid memory ad-
dress. Note that it is up to you to specify a value equal to the maximum number that
GO_IF_LEGITIMATE_ADDRESS would ever accept.

GO_IF_LEGITIMATE_ADDRESS (mode, x, label)

A C compound statement with a conditional goto label; executed if x (an RTX) is
a legitimate memory address on the target machine for a memory operand of mode
mode.

It usually pays to define several simpler macros to serve as subroutines for this one.
Otherwise it may be too complicated to understand.

This macro must exist in two variants: a strict variant and a non-strict one. The strict
variant is used in the reload pass. It must be defined so that any pseudo-register that
has not been allocated a hard register is considered a memory reference. In contexts
where some kind of register is required, a pseudo-register with no hard register must
be rejected.

The non-strict variant is used in other passes. It must be defined to accept all pseudo-
registers in every context where some kind of register is required.

Compiler source files that want to use the strict variant of this macro define the macro
REG_OK_STRICT. You should use an #ifdef REG_OK_STRICT conditional to define the
strict variant in that case and the non-strict variant otherwise.

Subroutines to check for acceptable registers for various purposes (one for base registers,
one for index registers, and so on) are typically among the subroutines used to define GO_
IF_LEGITIMATE_ADDRESS. Then only these subroutine macros need have two variants;
the higher levels of macros may be the same whether strict or not.

Normally, constant addresses which are the sum of a symbol_ref and an integer are
stored inside a const RTX to mark them as constant. Therefore, there is no need to
recognize such sums specifically as legitimate addresses. Normally you would simply
recognize any const as legitimate.

Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant sums that are not
marked with const. It assumes that a naked plus indicates indexing. If so, then you
must reject such naked constant sums as illegitimate addresses, so that none of them
will be given to PRINT_OPERAND_ADDRESS.

On some machines, whether a symbolic address is legitimate depends on the section
that the address refers to. On these machines, define the macro ENCODE_SECTION_INFO

to store the information into the symbol_ref, and then check for it here. When you see
a const, you will have to look inside it to find the symbol_ref in order to determine
the section. See Section 16.16 [Assembler Format], page 372.

The best way to modify the name string is by adding text to the beginning, with
suitable punctuation to prevent any ambiguity. Allocate the new name in saveable_

Chapter 16: Target Description Macros 363

obstack. You will have to modify ASM_OUTPUT_LABELREF to remove and decode the
added text and output the name accordingly, and define STRIP_NAME_ENCODING to
access the original name string.

You can check the information stored here into the symbol_ref in the definitions of
the macros GO_IF_LEGITIMATE_ADDRESS and PRINT_OPERAND_ADDRESS.

REG_OK_FOR_BASE_P (x)

A C expression that is nonzero if x (assumed to be a reg RTX) is valid for use as a
base register. For hard registers, it should always accept those which the hardware
permits and reject the others. Whether the macro accepts or rejects pseudo registers
must be controlled by REG_OK_STRICT as described above. This usually requires two
variant definitions, of which REG_OK_STRICT controls the one actually used.

REG_OK_FOR_INDEX_P (x)

A C expression that is nonzero if x (assumed to be a reg RTX) is valid for use as an
index register.

The difference between an index register and a base register is that the index register
may be scaled. If an address involves the sum of two registers, neither one of them
scaled, then either one may be labeled the “base” and the other the “index”; but
whichever labeling is used must fit the machine’s constraints of which registers may
serve in each capacity. The compiler will try both labelings, looking for one that is
valid, and will reload one or both registers only if neither labeling works.

LEGITIMIZE_ADDRESS (x, oldx, mode, win)

A C compound statement that attempts to replace x with a valid memory address for
an operand of mode mode. win will be a C statement label elsewhere in the code; the
macro definition may use

GO_IF_LEGITIMATE_ADDRESS (mode, x, win);

to avoid further processing if the address has become legitimate.

x will always be the result of a call to break_out_memory_refs, and oldx will be the
operand that was given to that function to produce x.

The code generated by this macro should not alter the substructure of x. If it transforms
x into a more legitimate form, it should assign x (which will always be a C variable) a
new value.

It is not necessary for this macro to come up with a legitimate address. The compiler
has standard ways of doing so in all cases. In fact, it is safe for this macro to do
nothing. But often a machine-dependent strategy can generate better code.

GO_IF_MODE_DEPENDENT_ADDRESS (addr, label)

A C statement or compound statement with a conditional goto label; executed if
memory address x (an RTX) can have different meanings depending on the machine
mode of the memory reference it is used for or if the address is valid for some modes
but not others.

364 Using and Porting GNU CC

Autoincrement and autodecrement addresses typically have mode-dependent effects
because the amount of the increment or decrement is the size of the operand being ad-
dressed. Some machines have other mode-dependent addresses. Many RISC machines
have no mode-dependent addresses.

You may assume that addr is a valid address for the machine.

LEGITIMATE_CONSTANT_P (x)

A C expression that is nonzero if x is a legitimate constant for an immediate operand
on the target machine. You can assume that x satisfies CONSTANT_P, so you need not
check this. In fact, ‘1’ is a suitable definition for this macro on machines where anything
CONSTANT_P is valid.

16.12 Condition Code Status

The file ‘conditions.h’ defines a variable cc_status to describe how the condition code was
computed (in case the interpretation of the condition code depends on the instruction that it was
set by). This variable contains the RTL expressions on which the condition code is currently based,
and several standard flags.

Sometimes additional machine-specific flags must be defined in the machine description header
file. It can also add additional machine-specific information by defining CC_STATUS_MDEP.

CC_STATUS_MDEP

C code for a data type which is used for declaring the mdep component of cc_status.
It defaults to int.

This macro is not used on machines that do not use cc0.

CC_STATUS_MDEP_INIT

A C expression to initialize the mdep field to “empty”. The default definition does
nothing, since most machines don’t use the field anyway. If you want to use the field,
you should probably define this macro to initialize it.

This macro is not used on machines that do not use cc0.

NOTICE_UPDATE_CC (exp, insn)

A C compound statement to set the components of cc_status appropriately for an
insn insn whose body is exp. It is this macro’s responsibility to recognize insns that
set the condition code as a byproduct of other activity as well as those that explicitly
set (cc0).

This macro is not used on machines that do not use cc0.

Chapter 16: Target Description Macros 365

If there are insns that do not set the condition code but do alter other machine registers,
this macro must check to see whether they invalidate the expressions that the condition
code is recorded as reflecting. For example, on the 68000, insns that store in address
registers do not set the condition code, which means that usually NOTICE_UPDATE_CC

can leave cc_status unaltered for such insns. But suppose that the previous insn set
the condition code based on location ‘a4@(102)’ and the current insn stores a new value
in ‘a4’. Although the condition code is not changed by this, it will no longer be true
that it reflects the contents of ‘a4@(102)’. Therefore, NOTICE_UPDATE_CC must alter
cc_status in this case to say that nothing is known about the condition code value.

The definition of NOTICE_UPDATE_CC must be prepared to deal with the results of
peephole optimization: insns whose patterns are parallel RTXs containing various
reg, mem or constants which are just the operands. The RTL structure of these insns is
not sufficient to indicate what the insns actually do. What NOTICE_UPDATE_CC should
do when it sees one is just to run CC_STATUS_INIT.

A possible definition of NOTICE_UPDATE_CC is to call a function that looks at an at-
tribute (see Section 15.15 [Insn Attributes], page 292) named, for example, ‘cc’. This
avoids having detailed information about patterns in two places, the ‘md’ file and in
NOTICE_UPDATE_CC.

EXTRA_CC_MODES

A list of names to be used for additional modes for condition code values in registers (see
Section 15.10 [Jump Patterns], page 279). These names are added to enum machine_

mode and all have class MODE_CC. By convention, they should start with ‘CC’ and end
with ‘mode’.

You should only define this macro if your machine does not use cc0 and only if addi-
tional modes are required.

EXTRA_CC_NAMES

A list of C strings giving the names for the modes listed in EXTRA_CC_MODES. For
example, the Sparc defines this macro and EXTRA_CC_MODES as

#define EXTRA_CC_MODES CC_NOOVmode, CCFPmode
#define EXTRA_CC_NAMES "CC_NOOV", "CCFP"

This macro is not required if EXTRA_CC_MODES is not defined.

SELECT_CC_MODE (op, x, y)

Returns a mode from class MODE_CC to be used when comparison operation code op

is applied to rtx x and y. For example, on the Sparc, SELECT_CC_MODE is defined as
(see see Section 15.10 [Jump Patterns], page 279 for a description of the reason for this
definition)

366 Using and Porting GNU CC

#define SELECT_CC_MODE(OP,X,Y) \
(GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT \
? ((OP == EQ || OP == NE) ? CCFPmode : CCFPEmode) \
: ((GET_CODE (X) == PLUS || GET_CODE (X) == MINUS \

|| GET_CODE (X) == NEG) \
? CC_NOOVmode : CCmode))

This macro is not required if EXTRA_CC_MODES is not defined.

16.13 Describing Relative Costs of Operations

These macros let you describe the relative speed of various operations on the target machine.

CONST_COSTS (x, code, outer˙code)

A part of a C switch statement that describes the relative costs of constant RTL expres-
sions. It must contain case labels for expression codes const_int, const, symbol_ref,
label_ref and const_double. Each case must ultimately reach a return statement
to return the relative cost of the use of that kind of constant value in an expression.
The cost may depend on the precise value of the constant, which is available for ex-
amination in x, and the rtx code of the expression in which it is contained, found in
outer code.

code is the expression code—redundant, since it can be obtained with GET_CODE (x).

RTX_COSTS (x, code, outer˙code)

Like CONST_COSTS but applies to nonconstant RTL expressions. This can be used, for
example, to indicate how costly a multiply instruction is. In writing this macro, you
can use the construct COSTS_N_INSNS (n) to specify a cost equal to n fast instructions.
outer code is the code of the expression in which x is contained.

This macro is optional; do not define it if the default cost assumptions are adequate
for the target machine.

ADDRESS_COST (address)

An expression giving the cost of an addressing mode that contains address. If not
defined, the cost is computed from the address expression and the CONST_COSTS values.

For most CISC machines, the default cost is a good approximation of the true cost of
the addressing mode. However, on RISC machines, all instructions normally have the
same length and execution time. Hence all addresses will have equal costs.

In cases where more than one form of an address is known, the form with the lowest
cost will be used. If multiple forms have the same, lowest, cost, the one that is the
most complex will be used.

Chapter 16: Target Description Macros 367

For example, suppose an address that is equal to the sum of a register and a constant
is used twice in the same basic block. When this macro is not defined, the address will
be computed in a register and memory references will be indirect through that register.
On machines where the cost of the addressing mode containing the sum is no higher
than that of a simple indirect reference, this will produce an additional instruction and
possibly require an additional register. Proper specification of this macro eliminates
this overhead for such machines.

Similar use of this macro is made in strength reduction of loops.

address need not be valid as an address. In such a case, the cost is not relevant and
can be any value; invalid addresses need not be assigned a different cost.

On machines where an address involving more than one register is as cheap as an
address computation involving only one register, defining ADDRESS_COST to reflect this
can cause two registers to be live over a region of code where only one would have been
if ADDRESS_COST were not defined in that manner. This effect should be considered
in the definition of this macro. Equivalent costs should probably only be given to
addresses with different numbers of registers on machines with lots of registers.

This macro will normally either not be defined or be defined as a constant.

REGISTER_MOVE_COST (from, to)

A C expression for the cost of moving data from a register in class from to one in class
to. The classes are expressed using the enumeration values such as GENERAL_REGS. A
value of 4 is the default; other values are interpreted relative to that.

It is not required that the cost always equal 2 when from is the same as to; on some
machines it is expensive to move between registers if they are not general registers.

If reload sees an insn consisting of a single set between two hard registers, and if
REGISTER_MOVE_COST applied to their classes returns a value of 2, reload does not
check to ensure that the constraints of the insn are met. Setting a cost of other than
2 will allow reload to verify that the constraints are met. You should do this if the
‘movm’ pattern’s constraints do not allow such copying.

MEMORY_MOVE_COST (m)

A C expression for the cost of moving data of mode m between a register and memory.
A value of 2 is the default; this cost is relative to those in REGISTER_MOVE_COST.

If moving between registers and memory is more expensive than between two registers,
you should define this macro to express the relative cost.

BRANCH_COST

A C expression for the cost of a branch instruction. A value of 1 is the default; other
values are interpreted relative to that.

368 Using and Porting GNU CC

Here are additional macros which do not specify precise relative costs, but only that certain
actions are more expensive than GNU CC would ordinarily expect.

SLOW_BYTE_ACCESS

Define this macro as a C expression which is nonzero if accessing less than a word of
memory (i.e. a char or a short) is no faster than accessing a word of memory, i.e., if
such access require more than one instruction or if there is no difference in cost between
byte and (aligned) word loads.

When this macro is not defined, the compiler will access a field by finding the smallest
containing object; when it is defined, a fullword load will be used if alignment permits.
Unless bytes accesses are faster than word accesses, using word accesses is preferable
since it may eliminate subsequent memory access if subsequent accesses occur to other
fields in the same word of the structure, but to different bytes.

SLOW_ZERO_EXTEND

Define this macro if zero-extension (of a char or short to an int) can be done faster
if the destination is a register that is known to be zero.

If you define this macro, you must have instruction patterns that recognize RTL struc-
tures like this:

(set (strict_low_part (subreg:QI (reg:SI . . .) 0)) . . .)

and likewise for HImode.

SLOW_UNALIGNED_ACCESS

Define this macro to be the value 1 if unaligned accesses have a cost many times greater
than aligned accesses, for example if they are emulated in a trap handler.

When this macro is non-zero, the compiler will act as if STRICT_ALIGNMENT were non-
zero when generating code for block moves. This can cause significantly more instruc-
tions to be produced. Therefore, do not set this macro non-zero if unaligned accesses
only add a cycle or two to the time for a memory access.

If the value of this macro is always zero, it need not be defined.

DONT_REDUCE_ADDR

Define this macro to inhibit strength reduction of memory addresses. (On some ma-
chines, such strength reduction seems to do harm rather than good.)

MOVE_RATIO

The number of scalar move insns which should be generated instead of a string move
insn or a library call. Increasing the value will always make code faster, but eventually
incurs high cost in increased code size.

If you don’t define this, a reasonable default is used.

Chapter 16: Target Description Macros 369

NO_FUNCTION_CSE

Define this macro if it is as good or better to call a constant function address than to
call an address kept in a register.

NO_RECURSIVE_FUNCTION_CSE

Define this macro if it is as good or better for a function to call itself with an explicit
address than to call an address kept in a register.

ADJUST_COST (insn, link, dep˙insn, cost)

A C statement (sans semicolon) to update the integer variable cost based on the re-
lationship between insn that is dependent on dep insn through the dependence link.
The default is to make no adjustment to cost. This can be used for example to specify
to the scheduler that an output- or anti-dependence does not incur the same cost as a
data-dependence.

16.14 Dividing the Output into Sections (Texts, Data, . . .)

An object file is divided into sections containing different types of data. In the most common
case, there are three sections: the text section, which holds instructions and read-only data; the
data section, which holds initialized writable data; and the bss section, which holds uninitialized
data. Some systems have other kinds of sections.

The compiler must tell the assembler when to switch sections. These macros control what
commands to output to tell the assembler this. You can also define additional sections.

TEXT_SECTION_ASM_OP

A C expression whose value is a string containing the assembler operation that should
precede instructions and read-only data. Normally ".text" is right.

DATA_SECTION_ASM_OP

A C expression whose value is a string containing the assembler operation to identify
the following data as writable initialized data. Normally ".data" is right.

SHARED_SECTION_ASM_OP

if defined, a C expression whose value is a string containing the assembler operation to
identify the following data as shared data. If not defined, DATA_SECTION_ASM_OP will
be used.

INIT_SECTION_ASM_OP

if defined, a C expression whose value is a string containing the assembler operation to
identify the following data as initialization code. If not defined, GNU CC will assume
such a section does not exist.

370 Using and Porting GNU CC

EXTRA_SECTIONS

A list of names for sections other than the standard two, which are in_text and in_

data. You need not define this macro on a system with no other sections (that GCC
needs to use).

EXTRA_SECTION_FUNCTIONS

One or more functions to be defined in ‘varasm.c’. These functions should do jobs
analogous to those of text_section and data_section, for your additional sections.
Do not define this macro if you do not define EXTRA_SECTIONS.

READONLY_DATA_SECTION

On most machines, read-only variables, constants, and jump tables are placed in the
text section. If this is not the case on your machine, this macro should be defined to be
the name of a function (either data_section or a function defined in EXTRA_SECTIONS)
that switches to the section to be used for read-only items.

If these items should be placed in the text section, this macro should not be defined.

SELECT_SECTION (exp, reloc)

A C statement or statements to switch to the appropriate section for output of exp.
You can assume that exp is either a VAR_DECL node or a constant of some sort. reloc

indicates whether the initial value of exp requires link-time relocations. Select the
section by calling text_section or one of the alternatives for other sections.

Do not define this macro if you put all read-only variables and constants in the read-
only data section (usually the text section).

SELECT_RTX_SECTION (mode, rtx)

A C statement or statements to switch to the appropriate section for output of rtx in
mode mode. You can assume that rtx is some kind of constant in RTL. The argument
mode is redundant except in the case of a const_int rtx. Select the section by calling
text_section or one of the alternatives for other sections.

Do not define this macro if you put all constants in the read-only data section.

JUMP_TABLES_IN_TEXT_SECTION

Define this macro if jump tables (for tablejump insns) should be output in the text
section, along with the assembler instructions. Otherwise, the readonly data section is
used.

This macro is irrelevant if there is no separate readonly data section.

ENCODE_SECTION_INFO (decl)

Define this macro if references to a symbol must be treated differently depending on
something about the variable or function named by the symbol (such as what section
it is in).

Chapter 16: Target Description Macros 371

The macro definition, if any, is executed immediately after the rtl for decl has been
created and stored in DECL_RTL (decl). The value of the rtl will be a mem whose address
is a symbol_ref.

The usual thing for this macro to do is to record a flag in the symbol_ref (such as
SYMBOL_REF_FLAG) or to store a modified name string in the symbol_ref (if one bit is
not enough information).

STRIP_NAME_ENCODING (var, sym˙name)

Decode sym name and store the real name part in var, sans the characters that encode
section info. Define this macro if ENCODE_SECTION_INFO alters the symbol’s name
string.

16.15 Position Independent Code

This section describes macros that help implement generation of position independent code.
Simply defining these macros is not enough to generate valid PIC; you must also add support to
the macros GO_IF_LEGITIMATE_ADDRESS and PRINT_OPERAND_ADDRESS, as well as LEGITIMIZE_

ADDRESS. You must modify the definition of ‘movsi’ to do something appropriate when the source
operand contains a symbolic address. You may also need to alter the handling of switch statements
so that they use relative addresses.

PIC_OFFSET_TABLE_REGNUM

The register number of the register used to address a table of static data addresses
in memory. In some cases this register is defined by a processor’s “application binary
interface” (ABI). When this macro is defined, RTL is generated for this register once,
as with the stack pointer and frame pointer registers. If this macro is not defined, it is
up to the machine-dependent files to allocate such a register (if necessary).

FINALIZE_PIC

By generating position-independent code, when two different programs (A and B) share
a common library (libC.a), the text of the library can be shared whether or not the
library is linked at the same address for both programs. In some of these environments,
position-independent code requires not only the use of different addressing modes, but
also special code to enable the use of these addressing modes.

The FINALIZE_PIC macro serves as a hook to emit these special codes once the function
is being compiled into assembly code, but not before. (It is not done before, because
in the case of compiling an inline function, it would lead to multiple PIC prologues
being included in functions which used inline functions and were compiled to assembly
language.)

372 Using and Porting GNU CC

LEGITIMATE_PIC_OPERAND_P (x)

A C expression that is nonzero if x is a legitimate immediate operand on the target
machine when generating position independent code. You can assume that x satisfies
CONSTANT_P, so you need not check this. You can also assume flag pic is true, so you
need not check it either. You need not define this macro if all constants (including
SYMBOL_REF) can be immediate operands when generating position independent code.

16.16 Defining the Output Assembler Language

This section describes macros whose principal purpose is to describe how to write instructions
in assembler language–rather than what the instructions do.

16.16.1 The Overall Framework of an Assembler File

ASM_FILE_START (stream)

A C expression which outputs to the stdio stream stream some appropriate text to go
at the start of an assembler file.

Normally this macro is defined to output a line containing ‘#NO_APP’, which is a com-
ment that has no effect on most assemblers but tells the GNU assembler that it can
save time by not checking for certain assembler constructs.

On systems that use SDB, it is necessary to output certain commands; see ‘attasm.h’.

ASM_FILE_END (stream)

A C expression which outputs to the stdio stream stream some appropriate text to go
at the end of an assembler file.

If this macro is not defined, the default is to output nothing special at the end of the
file. Most systems don’t require any definition.

On systems that use SDB, it is necessary to output certain commands; see ‘attasm.h’.

ASM_IDENTIFY_GCC (file)

A C statement to output assembler commands which will identify the object file as
having been compiled with GNU CC (or another GNU compiler).

If you don’t define this macro, the string ‘gcc_compiled.:’ is output. This string is
calculated to define a symbol which, on BSD systems, will never be defined for any
other reason. GDB checks for the presence of this symbol when reading the symbol
table of an executable.

Chapter 16: Target Description Macros 373

On non-BSD systems, you must arrange communication with GDB in some other fash-
ion. If GDB is not used on your system, you can define this macro with an empty
body.

ASM_COMMENT_START

A C string constant describing how to begin a comment in the target assembler lan-
guage. The compiler assumes that the comment will end at the end of the line.

ASM_APP_ON

A C string constant for text to be output before each asm statement or group of
consecutive ones. Normally this is "#APP", which is a comment that has no effect on
most assemblers but tells the GNU assembler that it must check the lines that follow
for all valid assembler constructs.

ASM_APP_OFF

A C string constant for text to be output after each asm statement or group of con-
secutive ones. Normally this is "#NO_APP", which tells the GNU assembler to resume
making the time-saving assumptions that are valid for ordinary compiler output.

ASM_OUTPUT_SOURCE_FILENAME (stream, name)

A C statement to output COFF information or DWARF debugging information which
indicates that filename name is the current source file to the stdio stream stream.

This macro need not be defined if the standard form of output for the file format in
use is appropriate.

ASM_OUTPUT_SOURCE_LINE (stream, line)

A C statement to output DBX or SDB debugging information before code for line
number line of the current source file to the stdio stream stream.

This macro need not be defined if the standard form of debugging information for the
debugger in use is appropriate.

ASM_OUTPUT_IDENT (stream, string)

A C statement to output something to the assembler file to handle a ‘#ident’ directive
containing the text string. If this macro is not defined, nothing is output for a ‘#ident’
directive.

OBJC_PROLOGUE

A C statement to output any assembler statements which are required to precede any
Objective C object definitions or message sending. The statement is executed only
when compiling an Objective C program.

374 Using and Porting GNU CC

16.16.2 Output of Data

ASM_OUTPUT_LONG_DOUBLE (stream, value)

ASM_OUTPUT_DOUBLE (stream, value)

ASM_OUTPUT_FLOAT (stream, value)

A C statement to output to the stdio stream stream an assembler instruction to assem-
ble a floating-point constant of TFmode, DFmode or SFmode, respectively, whose value
is value. value will be a C expression of type REAL_VALUE_TYPE. Macros such as
REAL_VALUE_TO_TARGET_DOUBLE are useful for writing these definitions.

ASM_OUTPUT_QUADRUPLE_INT (stream, exp)

ASM_OUTPUT_DOUBLE_INT (stream, exp)

ASM_OUTPUT_INT (stream, exp)

ASM_OUTPUT_SHORT (stream, exp)

ASM_OUTPUT_CHAR (stream, exp)

A C statement to output to the stdio stream stream an assembler instruction to as-
semble an integer of 16, 8, 4, 2 or 1 bytes, respectively, whose value is value. The
argument exp will be an RTL expression which represents a constant value. Use
‘output_addr_const (stream, exp)’ to output this value as an assembler expression.

For sizes larger than UNITS_PER_WORD, if the action of a macro would be identical to
repeatedly calling the macro corresponding to a size of UNITS_PER_WORD, once for each
word, you need not define the macro.

ASM_OUTPUT_BYTE (stream, value)

A C statement to output to the stdio stream stream an assembler instruction to as-
semble a single byte containing the number value.

ASM_BYTE_OP

A C string constant giving the pseudo-op to use for a sequence of single-byte constants.
If this macro is not defined, the default is "byte".

ASM_OUTPUT_ASCII (stream, ptr, len)

A C statement to output to the stdio stream stream an assembler instruction to as-
semble a string constant containing the len bytes at ptr. ptr will be a C expression of
type char * and len a C expression of type int.

If the assembler has a .ascii pseudo-op as found in the Berkeley Unix assembler, do
not define the macro ASM_OUTPUT_ASCII.

ASM_OUTPUT_POOL_PROLOGUE (file funname fundecl size)

A C statement to output assembler commands to define the start of the constant pool
for a function. funname is a string giving the name of the function. Should the return

Chapter 16: Target Description Macros 375

type of the function be required, it can be obtained via fundecl. size is the size, in
bytes, of the constant pool that will be written immediately after this call.

If no constant-pool prefix is required, the usual case, this macro need not be defined.

ASM_OUTPUT_SPECIAL_POOL_ENTRY (file, x, mode, align, labelno, jumpto)

A C statement (with or without semicolon) to output a constant in the constant pool,
if it needs special treatment. (This macro need not do anything for RTL expressions
that can be output normally.)

The argument file is the standard I/O stream to output the assembler code on. x is
the RTL expression for the constant to output, and mode is the machine mode (in case
x is a ‘const_int’). align is the required alignment for the value x; you should output
an assembler directive to force this much alignment.

The argument labelno is a number to use in an internal label for the address of this pool
entry. The definition of this macro is responsible for outputting the label definition at
the proper place. Here is how to do this:

ASM_OUTPUT_INTERNAL_LABEL (file, "LC", labelno);

When you output a pool entry specially, you should end with a goto to the label
jumpto. This will prevent the same pool entry from being output a second time in the
usual manner.

You need not define this macro if it would do nothing.

ASM_OPEN_PAREN

ASM_CLOSE_PAREN

These macros are defined as C string constant, describing the syntax in the assembler
for grouping arithmetic expressions. The following definitions are correct for most
assemblers:

#define ASM_OPEN_PAREN "("
#define ASM_CLOSE_PAREN ")"

These macros are provided by ‘real.h’ for writing the definitions of ASM_OUTPUT_DOUBLE and
the like:

REAL_VALUE_TO_TARGET_SINGLE (x, l)

REAL_VALUE_TO_TARGET_DOUBLE (x, l)

REAL_VALUE_TO_TARGET_LONG_DOUBLE (x, l)

These translate x, of type REAL_VALUE_TYPE, to the target’s floating point representa-
tion, and store its bit pattern in the array of long int whose address is l. The number
of elements in the output array is determined by the size of the desired target floating
point data type: 32 bits of it go in each long int array element. Each array element
holds 32 bits of the result, even if long int is wider than 32 bits on the host machine.

376 Using and Porting GNU CC

The array element values are designed so that you can print them out using fprintf

in the order they should appear in the target machine’s memory.

REAL_VALUE_TO_DECIMAL (x, format, string)

This macro converts x, of type REAL_VALUE_TYPE, to a decimal number and stores it
as a string into string. You must pass, as string, the address of a long enough block of
space to hold the result.

The argument format is a printf-specification that serves as a suggestion for how to
format the output string.

16.16.3 Output of Uninitialized Variables

Each of the macros in this section is used to do the whole job of outputting a single uninitialized
variable.

ASM_OUTPUT_COMMON (stream, name, size, rounded)

A C statement (sans semicolon) to output to the stdio stream stream the assembler
definition of a common-label named name whose size is size bytes. The variable rounded

is the size rounded up to whatever alignment the caller wants.

Use the expression assemble_name (stream, name) to output the name itself; before
and after that, output the additional assembler syntax for defining the name, and a
newline.

This macro controls how the assembler definitions of uninitialized global variables are
output.

ASM_OUTPUT_ALIGNED_COMMON (stream, name, size, alignment)

Like ASM_OUTPUT_COMMON except takes the required alignment as a separate, explicit
argument. If you define this macro, it is used in place of ASM_OUTPUT_COMMON, and
gives you more flexibility in handling the required alignment of the variable.

ASM_OUTPUT_SHARED_COMMON (stream, name, size, rounded)

If defined, it is similar to ASM_OUTPUT_COMMON, except that it is used when name is
shared. If not defined, ASM_OUTPUT_COMMON will be used.

ASM_OUTPUT_LOCAL (stream, name, size, rounded)

A C statement (sans semicolon) to output to the stdio stream stream the assembler
definition of a local-common-label named name whose size is size bytes. The variable
rounded is the size rounded up to whatever alignment the caller wants.

Use the expression assemble_name (stream, name) to output the name itself; before
and after that, output the additional assembler syntax for defining the name, and a
newline.

Chapter 16: Target Description Macros 377

This macro controls how the assembler definitions of uninitialized static variables are
output.

ASM_OUTPUT_ALIGNED_LOCAL (stream, name, size, alignment)

Like ASM_OUTPUT_LOCAL except takes the required alignment as a separate, explicit
argument. If you define this macro, it is used in place of ASM_OUTPUT_LOCAL, and gives
you more flexibility in handling the required alignment of the variable.

ASM_OUTPUT_SHARED_LOCAL (stream, name, size, rounded)

If defined, it is similar to ASM_OUTPUT_LOCAL, except that it is used when name is
shared. If not defined, ASM_OUTPUT_LOCAL will be used.

16.16.4 Output and Generation of Labels

ASM_OUTPUT_LABEL (stream, name)

A C statement (sans semicolon) to output to the stdio stream stream the assembler
definition of a label named name. Use the expression assemble_name (stream, name)

to output the name itself; before and after that, output the additional assembler syntax
for defining the name, and a newline.

ASM_DECLARE_FUNCTION_NAME (stream, name, decl)

A C statement (sans semicolon) to output to the stdio stream stream any text necessary
for declaring the name name of a function which is being defined. This macro is
responsible for outputting the label definition (perhaps using ASM_OUTPUT_LABEL). The
argument decl is the FUNCTION_DECL tree node representing the function.

If this macro is not defined, then the function name is defined in the usual manner as
a label (by means of ASM_OUTPUT_LABEL).

ASM_DECLARE_FUNCTION_SIZE (stream, name, decl)

A C statement (sans semicolon) to output to the stdio stream stream any text necessary
for declaring the size of a function which is being defined. The argument name is the
name of the function. The argument decl is the FUNCTION_DECL tree node representing
the function.

If this macro is not defined, then the function size is not defined.

ASM_DECLARE_OBJECT_NAME (stream, name, decl)

A C statement (sans semicolon) to output to the stdio stream stream any text nec-
essary for declaring the name name of an initialized variable which is being defined.
This macro must output the label definition (perhaps using ASM_OUTPUT_LABEL). The
argument decl is the VAR_DECL tree node representing the variable.

If this macro is not defined, then the variable name is defined in the usual manner as
a label (by means of ASM_OUTPUT_LABEL).

378 Using and Porting GNU CC

ASM_FINISH_DECLARE_OBJECT (stream, decl, toplevel, atend)

A C statement (sans semicolon) to finish up declaring a variable name once the compiler
has processed its initializer fully and thus has had a chance to determine the size of an
array when controlled by an initializer. This is used on systems where it’s necessary to
declare something about the size of the object.

If you don’t define this macro, that is equivalent to defining it to do nothing.

ASM_GLOBALIZE_LABEL (stream, name)

A C statement (sans semicolon) to output to the stdio stream stream some commands
that will make the label name global; that is, available for reference from other files.
Use the expression assemble_name (stream, name) to output the name itself; before
and after that, output the additional assembler syntax for making that name global,
and a newline.

ASM_OUTPUT_EXTERNAL (stream, decl, name)

A C statement (sans semicolon) to output to the stdio stream stream any text necessary
for declaring the name of an external symbol named name which is referenced in this
compilation but not defined. The value of decl is the tree node for the declaration.

This macro need not be defined if it does not need to output anything. The GNU
assembler and most Unix assemblers don’t require anything.

ASM_OUTPUT_EXTERNAL_LIBCALL (stream, symref)

A C statement (sans semicolon) to output on stream an assembler pseudo-op to declare
a library function name external. The name of the library function is given by symref,
which has type rtx and is a symbol_ref.

This macro need not be defined if it does not need to output anything. The GNU
assembler and most Unix assemblers don’t require anything.

ASM_OUTPUT_LABELREF (stream, name)

A C statement (sans semicolon) to output to the stdio stream stream a reference in
assembler syntax to a label named name. This should add ‘_’ to the front of the name,
if that is customary on your operating system, as it is in most Berkeley Unix systems.
This macro is used in assemble_name.

ASM_OUTPUT_INTERNAL_LABEL (stream, prefix, num)

A C statement to output to the stdio stream stream a label whose name is made from
the string prefix and the number num.

It is absolutely essential that these labels be distinct from the labels used for user-level
functions and variables. Otherwise, certain programs will have name conflicts with
internal labels.

It is desirable to exclude internal labels from the symbol table of the object file. Most
assemblers have a naming convention for labels that should be excluded; on many

Chapter 16: Target Description Macros 379

systems, the letter ‘L’ at the beginning of a label has this effect. You should find out
what convention your system uses, and follow it.

The usual definition of this macro is as follows:
fprintf (stream, "L%s%d:\n", prefix, num)

ASM_GENERATE_INTERNAL_LABEL (string, prefix, num)

A C statement to store into the string string a label whose name is made from the
string prefix and the number num.

This string, when output subsequently by assemble_name, should produce the output
that ASM_OUTPUT_INTERNAL_LABEL would produce with the same prefix and num.

If the string begins with ‘*’, then assemble_name will output the rest of the string
unchanged. It is often convenient for ASM_GENERATE_INTERNAL_LABEL to use ‘*’ in this
way. If the string doesn’t start with ‘*’, then ASM_OUTPUT_LABELREF gets to output
the string, and may change it. (Of course, ASM_OUTPUT_LABELREF is also part of your
machine description, so you should know what it does on your machine.)

ASM_FORMAT_PRIVATE_NAME (outvar, name, number)

A C expression to assign to outvar (which is a variable of type char *) a newly allo-
cated string made from the string name and the number number, with some suitable
punctuation added. Use alloca to get space for the string.

The string will be used as an argument to ASM_OUTPUT_LABELREF to produce an as-
sembler label for an internal static variable whose name is name. Therefore, the string
must be such as to result in valid assembler code. The argument number is different
each time this macro is executed; it prevents conflicts between similarly-named internal
static variables in different scopes.

Ideally this string should not be a valid C identifier, to prevent any conflict with
the user’s own symbols. Most assemblers allow periods or percent signs in assembler
symbols; putting at least one of these between the name and the number will suffice.

OBJC_GEN_METHOD_LABEL (buf, is˙inst, class˙name, cat˙name, sel˙name)

Define this macro to override the default assembler names used for Objective C meth-
ods.

The default name is a unique method number followed by the name of the class (e.g.
‘_1_Foo’). For methods in categories, the name of the category is also included in the
assembler name (e.g. ‘_1_Foo_Bar’).

These names are safe on most systems, but make debugging difficult since the method’s
selector is not present in the name. Therefore, particular systems define other ways of
computing names.

buf is an expression of type char * which gives you a buffer in which to store the
name; its length is as long as class name, cat name and sel name put together, plus 50
characters extra.

380 Using and Porting GNU CC

The argument is inst specifies whether the method is an instance method or a class
method; class name is the name of the class; cat name is the name of the category (or
NULL if the method is not in a category); and sel name is the name of the selector.

On systems where the assembler can handle quoted names, you can use this macro to
provide more human-readable names.

16.16.5 How Initialization Functions Are Handled

The compiled code for certain languages includes constructors (also called initialization rou-

tines)—functions to initialize data in the program when the program is started. These functions
need to be called before the program is “started”—that is to say, before main is called.

Compiling some languages generates destructors (also called termination routines) that should
be called when the program terminates.

To make the initialization and termination functions work, the compiler must output something
in the assembler code to cause those functions to be called at the appropriate time. When you port
the compiler to a new system, you need to specify how to do this.

There are two major ways that GCC currently supports the execution of initialization and
termination functions. Each way has two variants. Much of the structure is common to all four
variations.

The linker must build two lists of these functions—a list of initialization functions, called __

CTOR_LIST__, and a list of termination functions, called __DTOR_LIST__.

Each list always begins with an ignored function pointer (which may hold 0, −1, or a count of
the function pointers after it, depending on the environment). This is followed by a series of zero or
more function pointers to constructors (or destructors), followed by a function pointer containing
zero.

Depending on the operating system and its executable file format, either ‘crtstuff.c’ or
‘libgcc2.c’ traverses these lists at startup time and exit time. Constructors are called in for-
ward order of the list; destructors in reverse order.

The best way to handle static constructors works only for object file formats which provide
arbitrarily-named sections. A section is set aside for a list of constructors, and another for a list of
destructors. Traditionally these are called ‘.ctors’ and ‘.dtors’. Each object file that defines an

Chapter 16: Target Description Macros 381

initialization function also puts a word in the constructor section to point to that function. The
linker accumulates all these words into one contiguous ‘.ctors’ section. Termination functions are
handled similarly.

To use this method, you need appropriate definitions of the macros ASM_OUTPUT_CONSTRUCTOR

and ASM_OUTPUT_DESTRUCTOR. Usually you can get them by including ‘svr4.h’.

When arbitrary sections are available, there are two variants, depending upon how the code
in ‘crtstuff.c’ is called. On systems that support an init section which is executed at program
startup, parts of ‘crtstuff.c’ are compiled into that section. The program is linked by the gcc

driver like this:

ld -o output file crtbegin.o . . . crtend.o -lgcc

The head of a function (__do_global_ctors) appears in the init section of ‘crtbegin.o’; the
remainder of the function appears in the init section of ‘crtend.o’. The linker will pull these
two parts of the section together, making a whole function. If any of the user’s object files linked
into the middle of it contribute code, then that code will be executed as part of the body of
__do_global_ctors.

To use this variant, you must define the INIT_SECTION_ASM_OP macro properly.

If no init section is available, do not define INIT_SECTION_ASM_OP. Then __do_global_ctors

is built into the text section like all other functions, and resides in ‘libgcc.a’. When GCC
compiles any function called main, it inserts a procedure call to __main as the first executable
code after the function prologue. The __main function, also defined in ‘libgcc2.c’, simply calls
‘__do_global_ctors’.

In file formats that don’t support arbitrary sections, there are again two variants. In the
simplest variant, the GNU linker (GNU ld) and an ‘a.out’ format must be used. In this case,
ASM_OUTPUT_CONSTRUCTOR is defined to produce a .stabs entry of type ‘N_SETT’, referencing the
name __CTOR_LIST__, and with the address of the void function containing the initialization code
as its value. The GNU linker recognizes this as a request to add the value to a “set”; the values
are accumulated, and are eventually placed in the executable as a vector in the format described
above, with a leading (ignored) count and a trailing zero element. ASM_OUTPUT_DESTRUCTOR is
handled similarly. Since no init section is available, the absence of INIT_SECTION_ASM_OP causes
the compilation of main to call __main as above, starting the initialization process.

382 Using and Porting GNU CC

The last variant uses neither arbitrary sections nor the GNU linker. This is preferable when you
want to do dynamic linking and when using file formats which the GNU linker does not support,
such as ‘ECOFF’. In this case, ASM_OUTPUT_CONSTRUCTOR does not produce an N_SETT symbol;
initialization and termination functions are recognized simply by their names. This requires an
extra program in the linkage step, called collect2. This program pretends to be the linker, for
use with GNU CC; it does its job by running the ordinary linker, but also arranges to include
the vectors of initialization and termination functions. These functions are called via __main as
described above.

Choosing among these configuration options has been simplified by a set of operating-system-
dependent files in the ‘config’ subdirectory. These files define all of the relevant parameters.
Usually it is sufficient to include one into your specific machine-dependent configuration file. These
files are:

‘aoutos.h’

For operating systems using the ‘a.out’ format.

‘next.h’ For operating systems using the ‘MachO’ format.

‘svr3.h’ For System V Release 3 and similar systems using ‘COFF’ format.

‘svr4.h’ For System V Release 4 and similar systems using ‘ELF’ format.

‘vms.h’ For the VMS operating system.

16.16.6 Macros Controlling Initialization Routines

Here are the macros that control how the compiler handles initialization and termination func-
tions:

INIT_SECTION_ASM_OP

If defined, a C string constant for the assembler operation to identify the following data
as initialization code. If not defined, GNU CC will assume such a section does not exist.
When you are using special sections for initialization and termination functions, this
macro also controls how ‘crtstuff.c’ and ‘libgcc2.c’ arrange to run the initialization
functions.

ASM_OUTPUT_CONSTRUCTOR (stream, name)

Define this macro as a C statement to output on the stream stream the assembler code
to arrange to call the function named name at initialization time.

Assume that name is the name of a C function generated automatically by the compiler.
This function takes no arguments. Use the function assemble_name to output the name

Chapter 16: Target Description Macros 383

name; this performs any system-specific syntactic transformations such as adding an
underscore.

If you don’t define this macro, nothing special is output to arrange to call the function.
This is correct when the function will be called in some other manner—for example, by
means of the collect2 program, which looks through the symbol table to find these
functions by their names.

ASM_OUTPUT_DESTRUCTOR (stream, name)

This is like ASM_OUTPUT_CONSTRUCTOR but used for termination functions rather than
initialization functions.

If your system uses collect2 as the means of processing constructors, then that program nor-
mally uses nm to scan an object file for constructor functions to be called. On certain kinds of
systems, you can define these macros to make collect2 work faster (and, in some cases, make it
work at all):

OBJECT_FORMAT_COFF

Define this macro if the system uses COFF (Common Object File Format) object files,
so that collect2 can assume this format and scan object files directly for dynamic
constructor/destructor functions.

OBJECT_FORMAT_ROSE

Define this macro if the system uses ROSE format object files, so that collect2 can
assume this format and scan object files directly for dynamic constructor/destructor
functions.

These macros are effective only in a native compiler; collect2 as part of a cross compiler always
uses nm.

REAL_NM_FILE_NAME

Define this macro as a C string constant containing the file name to use to execute nm.
The default is to search the path normally for nm.

16.16.7 Output of Assembler Instructions

REGISTER_NAMES

A C initializer containing the assembler’s names for the machine registers, each one
as a C string constant. This is what translates register numbers in the compiler into
assembler language.

384 Using and Porting GNU CC

ADDITIONAL_REGISTER_NAMES

If defined, a C initializer for an array of structures containing a name and a register
number. This macro defines additional names for hard registers, thus allowing the asm

option in declarations to refer to registers using alternate names.

ASM_OUTPUT_OPCODE (stream, ptr)

Define this macro if you are using an unusual assembler that requires different names
for the machine instructions.

The definition is a C statement or statements which output an assembler instruction
opcode to the stdio stream stream. The macro-operand ptr is a variable of type char

* which points to the opcode name in its “internal” form—the form that is written
in the machine description. The definition should output the opcode name to stream,
performing any translation you desire, and increment the variable ptr to point at the
end of the opcode so that it will not be output twice.

In fact, your macro definition may process less than the entire opcode name, or more
than the opcode name; but if you want to process text that includes ‘%’-sequences to
substitute operands, you must take care of the substitution yourself. Just be sure to
increment ptr over whatever text should not be output normally.

If you need to look at the operand values, they can be found as the elements of recog_
operand.

If the macro definition does nothing, the instruction is output in the usual way.

FINAL_PRESCAN_INSN (insn, opvec, noperands)

If defined, a C statement to be executed just prior to the output of assembler code for
insn, to modify the extracted operands so they will be output differently.

Here the argument opvec is the vector containing the operands extracted from insn,
and noperands is the number of elements of the vector which contain meaningful data
for this insn. The contents of this vector are what will be used to convert the insn
template into assembler code, so you can change the assembler output by changing the
contents of the vector.

This macro is useful when various assembler syntaxes share a single file of instruction
patterns; by defining this macro differently, you can cause a large class of instructions
to be output differently (such as with rearranged operands). Naturally, variations in
assembler syntax affecting individual insn patterns ought to be handled by writing
conditional output routines in those patterns.

If this macro is not defined, it is equivalent to a null statement.

PRINT_OPERAND (stream, x, code)

A C compound statement to output to stdio stream stream the assembler syntax for
an instruction operand x. x is an RTL expression.

Chapter 16: Target Description Macros 385

code is a value that can be used to specify one of several ways of printing the operand.
It is used when identical operands must be printed differently depending on the context.
code comes from the ‘%’ specification that was used to request printing of the operand.
If the specification was just ‘%digit’ then code is 0; if the specification was ‘%ltr digit’
then code is the ASCII code for ltr.

If x is a register, this macro should print the register’s name. The names can be
found in an array reg_names whose type is char *[]. reg_names is initialized from
REGISTER_NAMES.

When the machine description has a specification ‘%punct’ (a ‘%’ followed by a punc-
tuation character), this macro is called with a null pointer for x and the punctuation
character for code.

PRINT_OPERAND_PUNCT_VALID_P (code)

A C expression which evaluates to true if code is a valid punctuation character for
use in the PRINT_OPERAND macro. If PRINT_OPERAND_PUNCT_VALID_P is not defined,
it means that no punctuation characters (except for the standard one, ‘%’) are used in
this way.

PRINT_OPERAND_ADDRESS (stream, x)

A C compound statement to output to stdio stream stream the assembler syntax for
an instruction operand that is a memory reference whose address is x. x is an RTL
expression.

On some machines, the syntax for a symbolic address depends on the section that the
address refers to. On these machines, define the macro ENCODE_SECTION_INFO to store
the information into the symbol_ref, and then check for it here. See Section 16.16
[Assembler Format], page 372.

DBR_OUTPUT_SEQEND(file)

A C statement, to be executed after all slot-filler instructions have been output. If nec-
essary, call dbr_sequence_length to determine the number of slots filled in a sequence
(zero if not currently outputting a sequence), to decide how many no-ops to output, or
whatever.

Don’t define this macro if it has nothing to do, but it is helpful in reading assembly
output if the extent of the delay sequence is made explicit (e.g. with white space).

Note that output routines for instructions with delay slots must be prepared to deal
with not being output as part of a sequence (i.e. when the scheduling pass is not run,
or when no slot fillers could be found.) The variable final_sequence is null when not
processing a sequence, otherwise it contains the sequence rtx being output.

386 Using and Porting GNU CC

REGISTER_PREFIX

LOCAL_LABEL_PREFIX

USER_LABEL_PREFIX

IMMEDIATE_PREFIX

If defined, C string expressions to be used for the ‘%R’, ‘%L’, ‘%U’, and ‘%I’ options of
asm_fprintf (see ‘final.c’). These are useful when a single ‘md’ file must support
multiple assembler formats. In that case, the various ‘tm.h’ files can define these macros
differently.

ASSEMBLER_DIALECT

If your target supports multiple dialects of assembler language (such as different op-
codes), define this macro as a C expression that gives the numeric index of the assembler
langauge dialect to use, with zero as the first variant.

If this macro is defined, you may use ‘{option0|option1|option2. . .}’ constructs in
the output templates of patterns (see Section 15.4 [Output Template], page 251) or in
the first argument of asm_fprintf. This construct outputs ‘option0’, ‘option1’ or
‘option2’, etc., if the value of ASSEMBLER_DIALECT is zero, one or two, etc. Any special
characters within these strings retain their usual meaning.

If you do not define this macro, the characters ‘{’, ‘|’ and ‘}’ do not have any special
meaning when used in templates or operands to asm_fprintf.

Define the macros REGISTER_PREFIX, LOCAL_LABEL_PREFIX, USER_LABEL_PREFIX and
IMMEDIATE_PREFIX if you can express the variations in assemble language syntax with
that mechanism. Define ASSEMBLER_DIALECT and use the ‘{option0|option1}’ syntax
if the syntax variant are larger and involve such things as different opcodes or operand
order.

ASM_OUTPUT_REG_PUSH (stream, regno)

A C expression to output to stream some assembler code which will push hard register
number regno onto the stack. The code need not be optimal, since this macro is used
only when profiling.

ASM_OUTPUT_REG_POP (stream, regno)

A C expression to output to stream some assembler code which will pop hard register
number regno off of the stack. The code need not be optimal, since this macro is used
only when profiling.

16.16.8 Output of Dispatch Tables

ASM_OUTPUT_ADDR_DIFF_ELT (stream, value, rel)

This macro should be provided on machines where the addresses in a dispatch table
are relative to the table’s own address.

Chapter 16: Target Description Macros 387

The definition should be a C statement to output to the stdio stream stream an as-
sembler pseudo-instruction to generate a difference between two labels. value and rel

are the numbers of two internal labels. The definitions of these labels are output using
ASM_OUTPUT_INTERNAL_LABEL, and they must be printed in the same way here. For
example,

fprintf (stream, "\t.word L%d-L%d\n",
value, rel)

ASM_OUTPUT_ADDR_VEC_ELT (stream, value)

This macro should be provided on machines where the addresses in a dispatch table
are absolute.

The definition should be a C statement to output to the stdio stream stream an as-
sembler pseudo-instruction to generate a reference to a label. value is the number of
an internal label whose definition is output using ASM_OUTPUT_INTERNAL_LABEL. For
example,

fprintf (stream, "\t.word L%d\n", value)

ASM_OUTPUT_CASE_LABEL (stream, prefix, num, table)

Define this if the label before a jump-table needs to be output specially. The first three
arguments are the same as for ASM_OUTPUT_INTERNAL_LABEL; the fourth argument is
the jump-table which follows (a jump_insn containing an addr_vec or addr_diff_

vec).

This feature is used on system V to output a swbeg statement for the table.

If this macro is not defined, these labels are output with ASM_OUTPUT_INTERNAL_LABEL.

ASM_OUTPUT_CASE_END (stream, num, table)

Define this if something special must be output at the end of a jump-table. The
definition should be a C statement to be executed after the assembler code for the
table is written. It should write the appropriate code to stdio stream stream. The
argument table is the jump-table insn, and num is the label-number of the preceding
label.

If this macro is not defined, nothing special is output at the end of the jump-table.

16.16.9 Assembler Commands for Alignment

ASM_OUTPUT_ALIGN_CODE (file)

A C expression to output text to align the location counter in the way that is desirable
at a point in the code that is reached only by jumping.

This macro need not be defined if you don’t want any special alignment to be done at
such a time. Most machine descriptions do not currently define the macro.

388 Using and Porting GNU CC

ASM_OUTPUT_LOOP_ALIGN (file)

A C expression to output text to align the location counter in the way that is desirable
at the beginning of a loop.

This macro need not be defined if you don’t want any special alignment to be done at
such a time. Most machine descriptions do not currently define the macro.

ASM_OUTPUT_SKIP (stream, nbytes)

A C statement to output to the stdio stream stream an assembler instruction to advance
the location counter by nbytes bytes. Those bytes should be zero when loaded. nbytes

will be a C expression of type int.

ASM_NO_SKIP_IN_TEXT

Define this macro if ASM_OUTPUT_SKIP should not be used in the text section because
it fails put zeros in the bytes that are skipped. This is true on many Unix systems,
where the pseudo–op to skip bytes produces no-op instructions rather than zeros when
used in the text section.

ASM_OUTPUT_ALIGN (stream, power)

A C statement to output to the stdio stream stream an assembler command to advance
the location counter to a multiple of 2 to the power bytes. power will be a C expression
of type int.

16.17 Controlling Debugging Information Format

16.17.1 Macros Affecting All Debugging Formats

DBX_REGISTER_NUMBER (regno)

A C expression that returns the DBX register number for the compiler register number
regno. In simple cases, the value of this expression may be regno itself. But sometimes
there are some registers that the compiler knows about and DBX does not, or vice
versa. In such cases, some register may need to have one number in the compiler and
another for DBX.

If two registers have consecutive numbers inside GNU CC, and they can be used as a
pair to hold a multiword value, then they must have consecutive numbers after renum-
bering with DBX_REGISTER_NUMBER. Otherwise, debuggers will be unable to access
such a pair, because they expect register pairs to be consecutive in their own number-
ing scheme.

Chapter 16: Target Description Macros 389

If you find yourself defining DBX_REGISTER_NUMBER in way that does not preserve reg-
ister pairs, then what you must do instead is redefine the actual register numbering
scheme.

DEBUGGER_AUTO_OFFSET (x)

A C expression that returns the integer offset value for an automatic variable having
address x (an RTL expression). The default computation assumes that x is based on
the frame-pointer and gives the offset from the frame-pointer. This is required for
targets that produce debugging output for DBX or COFF-style debugging output for
SDB and allow the frame-pointer to be eliminated when the ‘-g’ options is used.

DEBUGGER_ARG_OFFSET (offset, x)

A C expression that returns the integer offset value for an argument having address x

(an RTL expression). The nominal offset is offset.

PREFERRED_DEBUGGING_TYPE

A C expression that returns the type of debugging output GNU CC produces when
the user specifies ‘-g’ or ‘-ggdb’. Define this if you have arranged for GNU CC to
support more than one format of debugging output. Currently, the allowable values
are DBX_DEBUG, SDB_DEBUG, DWARF_DEBUG, and XCOFF_DEBUG.

The value of this macro only affects the default debugging output; the user can always
get a specific type of output by using ‘-gstabs’, ‘-gcoff’, ‘-gdwarf’, or ‘-gxcoff’.

16.17.2 Specific Options for DBX Output

DBX_DEBUGGING_INFO

Define this macro if GNU CC should produce debugging output for DBX in response
to the ‘-g’ option.

XCOFF_DEBUGGING_INFO

Define this macro if GNU CC should produce XCOFF format debugging output in
response to the ‘-g’ option. This is a variant of DBX format.

DEFAULT_GDB_EXTENSIONS

Define this macro to control whether GNU CC should by default generate GDB’s
extended version of DBX debugging information (assuming DBX-format debugging
information is enabled at all). If you don’t define the macro, the default is 1: always
generate the extended information if there is any occasion to.

DEBUG_SYMS_TEXT

Define this macro if all .stabs commands should be output while in the text section.

390 Using and Porting GNU CC

ASM_STABS_OP

A C string constant naming the assembler pseudo op to use instead of .stabs to define
an ordinary debugging symbol. If you don’t define this macro, .stabs is used. This
macro applies only to DBX debugging information format.

ASM_STABD_OP

A C string constant naming the assembler pseudo op to use instead of .stabd to define
a debugging symbol whose value is the current location. If you don’t define this macro,
.stabd is used. This macro applies only to DBX debugging information format.

ASM_STABN_OP

A C string constant naming the assembler pseudo op to use instead of .stabn to define
a debugging symbol with no name. If you don’t define this macro, .stabn is used.
This macro applies only to DBX debugging information format.

DBX_NO_XREFS

Define this macro if DBX on your system does not support the construct ‘xstagname’.
On some systems, this construct is used to describe a forward reference to a structure
named tagname. On other systems, this construct is not supported at all.

DBX_CONTIN_LENGTH

A symbol name in DBX-format debugging information is normally continued (split
into two separate .stabs directives) when it exceeds a certain length (by default,
80 characters). On some operating systems, DBX requires this splitting; on others,
splitting must not be done. You can inhibit splitting by defining this macro with the
value zero. You can override the default splitting-length by defining this macro as an
expression for the length you desire.

DBX_CONTIN_CHAR

Normally continuation is indicated by adding a ‘\’ character to the end of a .stabs

string when a continuation follows. To use a different character instead, define this
macro as a character constant for the character you want to use. Do not define this
macro if backslash is correct for your system.

DBX_STATIC_STAB_DATA_SECTION

Define this macro if it is necessary to go to the data section before outputting the
‘.stabs’ pseudo-op for a non-global static variable.

DBX_TYPE_DECL_STABS_CODE

The value to use in the “code” field of the .stabs directive for a typedef. The default
is N_LSYM.

DBX_STATIC_CONST_VAR_CODE

The value to use in the “code” field of the .stabs directive for a static variable located
in the text section. DBX format does not provide any “right” way to do this. The
default is N_FUN.

Chapter 16: Target Description Macros 391

DBX_REGPARM_STABS_CODE

The value to use in the “code” field of the .stabs directive for a parameter passed in
registers. DBX format does not provide any “right” way to do this. The default is
N_RSYM.

DBX_REGPARM_STABS_LETTER

The letter to use in DBX symbol data to identify a symbol as a parameter passed in
registers. DBX format does not customarily provide any way to do this. The default
is ’P’.

DBX_MEMPARM_STABS_LETTER

The letter to use in DBX symbol data to identify a symbol as a stack parameter. The
default is ’p’.

DBX_FUNCTION_FIRST

Define this macro if the DBX information for a function and its arguments should
precede the assembler code for the function. Normally, in DBX format, the debugging
information entirely follows the assembler code.

DBX_LBRAC_FIRST

Define this macro if the N_LBRAC symbol for a block should precede the debugging
information for variables and functions defined in that block. Normally, in DBX format,
the N_LBRAC symbol comes first.

16.17.3 Open-Ended Hooks for DBX Format

DBX_OUTPUT_LBRAC (stream, name)

Define this macro to say how to output to stream the debugging information for the
start of a scope level for variable names. The argument name is the name of an
assembler symbol (for use with assemble_name) whose value is the address where the
scope begins.

DBX_OUTPUT_RBRAC (stream, name)

Like DBX_OUTPUT_LBRAC, but for the end of a scope level.

DBX_OUTPUT_ENUM (stream, type)

Define this macro if the target machine requires special handling to output an enu-
meration type. The definition should be a C statement (sans semicolon) to output the
appropriate information to stream for the type type.

DBX_OUTPUT_FUNCTION_END (stream, function)

Define this macro if the target machine requires special output at the end of the de-
bugging information for a function. The definition should be a C statement (sans semi-

392 Using and Porting GNU CC

colon) to output the appropriate information to stream. function is the FUNCTION_DECL
node for the function.

DBX_OUTPUT_STANDARD_TYPES (syms)

Define this macro if you need to control the order of output of the standard data types
at the beginning of compilation. The argument syms is a tree which is a chain of all
the predefined global symbols, including names of data types.

Normally, DBX output starts with definitions of the types for integers and characters,
followed by all the other predefined types of the particular language in no particular
order.

On some machines, it is necessary to output different particular types first. To do this,
define DBX_OUTPUT_STANDARD_TYPES to output those symbols in the necessary order.
Any predefined types that you don’t explicitly output will be output afterward in no
particular order.

Be careful not to define this macro so that it works only for C. There are no global
variables to access most of the built-in types, because another language may have
another set of types. The way to output a particular type is to look through syms to
see if you can find it. Here is an example:

{
tree decl;
for (decl = syms; decl; decl = TREE_CHAIN (decl))

if (!strcmp (IDENTIFIER_POINTER (DECL_NAME (decl)),
"long int"))

dbxout_symbol (decl);
. . .

}

This does nothing if the expected type does not exist.

See the function init_decl_processing in ‘c-decl.c’ to find the names to use for all
the built-in C types.

Here is another way of finding a particular type:
{
tree decl;
for (decl = syms; decl; decl = TREE_CHAIN (decl))

if (TREE_CODE (decl) == TYPE_DECL
&& (TREE_CODE (TREE_TYPE (decl))

== INTEGER_CST)
&& TYPE_PRECISION (TREE_TYPE (decl)) == 16
&& TYPE_UNSIGNED (TREE_TYPE (decl)))

/* This must be unsigned short. */

dbxout_symbol (decl);

. . .

}

Chapter 16: Target Description Macros 393

16.17.4 File Names in DBX Format

DBX_WORKING_DIRECTORY

Define this if DBX wants to have the current directory recorded in each object file.

Note that the working directory is always recorded if GDB extensions are enabled.

DBX_OUTPUT_MAIN_SOURCE_FILENAME (stream, name)

A C statement to output DBX debugging information to the stdio stream stream which
indicates that file name is the main source file—the file specified as the input file for
compilation. This macro is called only once, at the beginning of compilation.

This macro need not be defined if the standard form of output for DBX debugging
information is appropriate.

DBX_OUTPUT_MAIN_SOURCE_DIRECTORY (stream, name)

A C statement to output DBX debugging information to the stdio stream stream which
indicates that the current directory during compilation is named name.

This macro need not be defined if the standard form of output for DBX debugging
information is appropriate.

DBX_OUTPUT_MAIN_SOURCE_FILE_END (stream, name)

A C statement to output DBX debugging information at the end of compilation of the
main source file name.

If you don’t define this macro, nothing special is output at the end of compilation,
which is correct for most machines.

DBX_OUTPUT_SOURCE_FILENAME (stream, name)

A C statement to output DBX debugging information to the stdio stream stream which
indicates that file name is the current source file. This output is generated each time
input shifts to a different source file as a result of ‘#include’, the end of an included
file, or a ‘#line’ command.

This macro need not be defined if the standard form of output for DBX debugging
information is appropriate.

16.17.5 Macros for SDB and DWARF Output

SDB_DEBUGGING_INFO

Define this macro if GNU CC should produce COFF-style debugging output for SDB
in response to the ‘-g’ option.

394 Using and Porting GNU CC

DWARF_DEBUGGING_INFO

Define this macro if GNU CC should produce dwarf format debugging output in re-
sponse to the ‘-g’ option.

PUT_SDB_. . .

Define these macros to override the assembler syntax for the special SDB assembler
directives. See ‘sdbout.c’ for a list of these macros and their arguments. If the standard
syntax is used, you need not define them yourself.

SDB_DELIM

Some assemblers do not support a semicolon as a delimiter, even between SDB assem-
bler directives. In that case, define this macro to be the delimiter to use (usually ‘\n’).
It is not necessary to define a new set of PUT_SDB_op macros if this is the only change
required.

SDB_GENERATE_FAKE

Define this macro to override the usual method of constructing a dummy name for
anonymous structure and union types. See ‘sdbout.c’ for more information.

SDB_ALLOW_UNKNOWN_REFERENCES

Define this macro to allow references to unknown structure, union, or enumeration tags
to be emitted. Standard COFF does not allow handling of unknown references, MIPS
ECOFF has support for it.

SDB_ALLOW_FORWARD_REFERENCES

Define this macro to allow references to structure, union, or enumeration tags that have
not yet been seen to be handled. Some assemblers choke if forward tags are used, while
some require it.

16.18 Cross Compilation and Floating Point

While all modern machines use 2’s complement representation for integers, there are a variety of
representations for floating point numbers. This means that in a cross-compiler the representation
of floating point numbers in the compiled program may be different from that used in the machine
doing the compilation.

Because different representation systems may offer different amounts of range and precision, the
cross compiler cannot safely use the host machine’s floating point arithmetic. Therefore, floating
point constants must be represented in the target machine’s format. This means that the cross
compiler cannot use atof to parse a floating point constant; it must have its own special routine
to use instead. Also, constant folding must emulate the target machine’s arithmetic (or must not
be done at all).

Chapter 16: Target Description Macros 395

The macros in the following table should be defined only if you are cross compiling between
different floating point formats.

Otherwise, don’t define them. Then default definitions will be set up which use double as the
data type, == to test for equality, etc.

You don’t need to worry about how many times you use an operand of any of these macros.
The compiler never uses operands which have side effects.

REAL_VALUE_TYPE

A macro for the C data type to be used to hold a floating point value in the target
machine’s format. Typically this would be a struct containing an array of int.

REAL_VALUES_EQUAL (x, y)

A macro for a C expression which compares for equality the two values, x and y, both
of type REAL_VALUE_TYPE.

REAL_VALUES_LESS (x, y)

A macro for a C expression which tests whether x is less than y, both values be-
ing of type REAL_VALUE_TYPE and interpreted as floating point numbers in the target
machine’s representation.

REAL_VALUE_LDEXP (x, scale)

A macro for a C expression which performs the standard library function ldexp, but
using the target machine’s floating point representation. Both x and the value of the
expression have type REAL_VALUE_TYPE. The second argument, scale, is an integer.

REAL_VALUE_FIX (x)

A macro whose definition is a C expression to convert the target-machine floating point
value x to a signed integer. x has type REAL_VALUE_TYPE.

REAL_VALUE_UNSIGNED_FIX (x)

A macro whose definition is a C expression to convert the target-machine floating point
value x to an unsigned integer. x has type REAL_VALUE_TYPE.

REAL_VALUE_RNDZINT (x)

A macro whose definition is a C expression to round the target-machine floating point
value x towards zero to an integer value (but still as a floating point number). x has
type REAL_VALUE_TYPE, and so does the value.

REAL_VALUE_UNSIGNED_RNDZINT (x)

A macro whose definition is a C expression to round the target-machine floating point
value x towards zero to an unsigned integer value (but still represented as a floating
point number). x has type REAL_VALUE_TYPE, and so does the value.

396 Using and Porting GNU CC

REAL_VALUE_ATOF (string, mode)

A macro for a C expression which converts string, an expression of type char *, into
a floating point number in the target machine’s representation for mode mode. The
value has type REAL_VALUE_TYPE.

REAL_INFINITY

Define this macro if infinity is a possible floating point value, and therefore division by
0 is legitimate.

REAL_VALUE_ISINF (x)

A macro for a C expression which determines whether x, a floating point value, is
infinity. The value has type int. By default, this is defined to call isinf.

REAL_VALUE_ISNAN (x)

A macro for a C expression which determines whether x, a floating point value, is a
“nan” (not-a-number). The value has type int. By default, this is defined to call
isnan.

Define the following additional macros if you want to make floating point constant folding work
while cross compiling. If you don’t define them, cross compilation is still possible, but constant
folding will not happen for floating point values.

REAL_ARITHMETIC (output, code, x, y)

A macro for a C statement which calculates an arithmetic operation of the two floating
point values x and y, both of type REAL_VALUE_TYPE in the target machine’s repre-
sentation, to produce a result of the same type and representation which is stored in
output (which will be a variable).

The operation to be performed is specified by code, a tree code which will always
be one of the following: PLUS_EXPR, MINUS_EXPR, MULT_EXPR, RDIV_EXPR, MAX_EXPR,
MIN_EXPR.

The expansion of this macro is responsible for checking for overflow. If overflow hap-
pens, the macro expansion should execute the statement return 0;, which indicates
the inability to perform the arithmetic operation requested.

REAL_VALUE_NEGATE (x)

A macro for a C expression which returns the negative of the floating point value x.
Both x and the value of the expression have type REAL_VALUE_TYPE and are in the
target machine’s floating point representation.

There is no way for this macro to report overflow, since overflow can’t happen in the
negation operation.

REAL_VALUE_TRUNCATE (mode, x)

A macro for a C expression which converts the floating point value x to mode mode.

Chapter 16: Target Description Macros 397

Both x and the value of the expression are in the target machine’s floating point
representation and have type REAL_VALUE_TYPE. However, the value should have an
appropriate bit pattern to be output properly as a floating constant whose precision
accords with mode mode.

There is no way for this macro to report overflow.

REAL_VALUE_TO_INT (low, high, x)

A macro for a C expression which converts a floating point value x into a double-
precision integer which is then stored into low and high, two variables of type int.

REAL_VALUE_FROM_INT (x, low, high)

A macro for a C expression which converts a double-precision integer found in low and
high, two variables of type int, into a floating point value which is then stored into x.

16.19 Miscellaneous Parameters

PREDICATE_CODES

Define this if you have defined special-purpose predicates in the file ‘machine.c’. This
macro is called within an initializer of an array of structures. The first field in the
structure is the name of a predicate and the second field is an array of rtl codes. For
each predicate, list all rtl codes that can be in expressions matched by the predicate.
The list should have a trailing comma. Here is an example of two entries in the list for
a typical RISC machine:

#define PREDICATE_CODES \
{"gen_reg_rtx_operand", {SUBREG, REG}}, \
{"reg_or_short_cint_operand", {SUBREG, REG, CONST_INT}},

Defining this macro does not affect the generated code (however, incorrect definitions
that omit an rtl code that may be matched by the predicate can cause the compiler to
malfunction). Instead, it allows the table built by ‘genrecog’ to be more compact and
efficient, thus speeding up the compiler. The most important predicates to include in
the list specified by this macro are thoses used in the most insn patterns.

CASE_VECTOR_MODE

An alias for a machine mode name. This is the machine mode that elements of a
jump-table should have.

CASE_VECTOR_PC_RELATIVE

Define this macro if jump-tables should contain relative addresses.

CASE_DROPS_THROUGH

Define this if control falls through a case insn when the index value is out of range.
This means the specified default-label is actually ignored by the case insn proper.

398 Using and Porting GNU CC

CASE_VALUES_THRESHOLD

Define this to be the smallest number of different values for which it is best to use a
jump-table instead of a tree of conditional branches. The default is four for machines
with a casesi instruction and five otherwise. This is best for most machines.

WORD_REGISTER_OPERATIONS

Define this macro if operations between registers with integral mode smaller than a
word are always performed on the entire register. Most RISC machines have this
property and most CISC machines do not.

LOAD_EXTEND_OP (mode)

Define this macro to be a C expression indicating when insns that read memory in mode,
an integral mode narrower than a word, set the bits outside of mode to be either the
sign-extension or the zero-extension of the data read. Return SIGN_EXTEND for values
of mode for which the insn sign-extends, ZERO_EXTEND for which it zero-extends, and
NIL for other modes.

This macro is not called with mode non-integral or with a width greater than or equal
to BITS_PER_WORD, so you may return any value in this case. Do not define this macro
if it would always return NIL. On machines where this macro is defined, you will
normally define it as the constant SIGN_EXTEND or ZERO_EXTEND.

IMPLICIT_FIX_EXPR

An alias for a tree code that should be used by default for conversion of floating point
values to fixed point. Normally, FIX_ROUND_EXPR is used.

FIXUNS_TRUNC_LIKE_FIX_TRUNC

Define this macro if the same instructions that convert a floating point number to a
signed fixed point number also convert validly to an unsigned one.

EASY_DIV_EXPR

An alias for a tree code that is the easiest kind of division to compile code for in
the general case. It may be TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR or
ROUND_DIV_EXPR. These four division operators differ in how they round the result to
an integer. EASY_DIV_EXPR is used when it is permissible to use any of those kinds of
division and the choice should be made on the basis of efficiency.

MOVE_MAX The maximum number of bytes that a single instruction can move quickly from memory
to memory.

MAX_MOVE_MAX

The maximum number of bytes that a single instruction can move quickly from memory
to memory. If this is undefined, the default is MOVE_MAX. Otherwise, it is the constant
value that is the largest value that MOVE_MAX can have at run-time.

Chapter 16: Target Description Macros 399

SHIFT_COUNT_TRUNCATED

A C expression that is nonzero if on this machine the number of bits actually used for
the count of a shift operation is equal to the number of bits needed to represent the size
of the object being shifted. When this macro is non-zero, the compiler will assume that
it is safe to omit a sign-extend, zero-extend, and certain bitwise ‘and’ instructions that
truncates the count of a shift operation. On machines that have instructions that act
on bitfields at variable positions, which may include ‘bit test’ instructions, a nonzero
SHIFT_COUNT_TRUNCATED also enables deletion of truncations of the values that serve
as arguments to bitfield instructions.

If both types of instructions truncate the count (for shifts) and position (for bitfield
operations), or if no variable-position bitfield instructions exist, you should define this
macro.

However, on some machines, such as the 80386 and the 680x0, truncation only applies
to shift operations and not the (real or pretended) bitfield operations. Define SHIFT_

COUNT_TRUNCATED to be zero on such machines. Instead, add patterns to the ‘md’ file
that include the implied truncation of the shift instructions.

You need not define this macro if it would always have the value of zero.

TRULY_NOOP_TRUNCATION (outprec, inprec)

A C expression which is nonzero if on this machine it is safe to “convert” an integer
of inprec bits to one of outprec bits (where outprec is smaller than inprec) by merely
operating on it as if it had only outprec bits.

On many machines, this expression can be 1.

When TRULY_NOOP_TRUNCATION returns 1 for a pair of sizes for modes for which MODES_

TIEABLE_P is 0, suboptimal code can result. If this is the case, making TRULY_NOOP_

TRUNCATION return 0 in such cases may improve things.

STORE_FLAG_VALUE

A C expression describing the value returned by a comparison operator with an integral
mode and stored by a store-flag instruction (‘scond’) when the condition is true. This
description must apply to all the ‘scond’ patterns and all the comparison operators
whose results have a MODE_INT mode.

A value of 1 or -1 means that the instruction implementing the comparison operator
returns exactly 1 or -1 when the comparison is true and 0 when the comparison is false.
Otherwise, the value indicates which bits of the result are guaranteed to be 1 when the
comparison is true. This value is interpreted in the mode of the comparison operation,
which is given by the mode of the first operand in the ‘scond’ pattern. Either the low
bit or the sign bit of STORE_FLAG_VALUE be on. Presently, only those bits are used by
the compiler.

If STORE_FLAG_VALUE is neither 1 or -1, the compiler will generate code that depends
only on the specified bits. It can also replace comparison operators with equivalent

400 Using and Porting GNU CC

operations if they cause the required bits to be set, even if the remaining bits are
undefined. For example, on a machine whose comparison operators return an SImode

value and where STORE_FLAG_VALUE is defined as ‘0x80000000’, saying that just the
sign bit is relevant, the expression

(ne:SI (and:SI x (const_int power-of-2)) (const_int 0))

can be converted to
(ashift:SI x (const_int n))

where n is the appropriate shift count to move the bit being tested into the sign bit.

There is no way to describe a machine that always sets the low-order bit for a true
value, but does not guarantee the value of any other bits, but we do not know of any
machine that has such an instruction. If you are trying to port GNU CC to such a
machine, include an instruction to perform a logical-and of the result with 1 in the
pattern for the comparison operators and let us know (see Section 8.3 [How to Report
Bugs], page 177).

Often, a machine will have multiple instructions that obtain a value from a comparison
(or the condition codes). Here are rules to guide the choice of value for STORE_FLAG_

VALUE, and hence the instructions to be used:

• Use the shortest sequence that yields a valid definition for STORE_FLAG_VALUE. It
is more efficient for the compiler to “normalize” the value (convert it to, e.g., 1 or
0) than for the comparison operators to do so because there may be opportunities
to combine the normalization with other operations.

• For equal-length sequences, use a value of 1 or -1, with -1 being slightly preferred
on machines with expensive jumps and 1 preferred on other machines.

• As a second choice, choose a value of ‘0x80000001’ if instructions exist that set
both the sign and low-order bits but do not define the others.

• Otherwise, use a value of ‘0x80000000’.

Many machines can produce both the value chosen for STORE_FLAG_VALUE and its
negation in the same number of instructions. On those machines, you should also
define a pattern for those cases, e.g., one matching

(set A (neg:m (ne:m B C)))

Some machines can also perform and or plus operations on condition code values with
less instructions than the corresponding ‘scond’ insn followed by and or plus. On
those machines, define the appropriate patterns. Use the names incscc and decscc,
respectively, for the the patterns which perform plus or minus operations on condition
code values. See ‘rs6000.md’ for some examples. The GNU Superoptizer can be used
to find such instruction sequences on other machines.

You need not define STORE_FLAG_VALUE if the machine has no store-flag instructions.

Chapter 16: Target Description Macros 401

FLOAT_STORE_FLAG_VALUE

A C expression that gives a non-zero floating point value that is returned when com-
parison operators with floating-point results are true. Define this macro on machine
that have comparison operations that return floating-point values. If there are no such
operations, do not define this macro.

Pmode An alias for the machine mode for pointers. Normally the definition can be

#define Pmode SImode

FUNCTION_MODE

An alias for the machine mode used for memory references to functions being called,
in call RTL expressions. On most machines this should be QImode.

INTEGRATE_THRESHOLD (decl)

A C expression for the maximum number of instructions above which the function decl

should not be inlined. decl is a FUNCTION_DECL node.

The default definition of this macro is 64 plus 8 times the number of arguments that
the function accepts. Some people think a larger threshold should be used on RISC
machines.

SCCS_DIRECTIVE

Define this if the preprocessor should ignore #sccs directives and print no error mes-
sage.

NO_IMPLICIT_EXTERN_C

Define this macro if the system header files support C++ as well as C. This macro
inhibits the usual method of using system header files in C++, which is to pretend that
the file’s contents are enclosed in ‘extern "C" {. . .}’.

HANDLE_PRAGMA (stream)

Define this macro if you want to implement any pragmas. If defined, it should be a
C statement to be executed when #pragma is seen. The argument stream is the stdio
input stream from which the source text can be read.

It is generally a bad idea to implement new uses of #pragma. The only reason to define
this macro is for compatibility with other compilers that do support #pragma for the
sake of any user programs which already use it.

DOLLARS_IN_IDENTIFIERS

Define this macro to control use of the character ‘$’ in identifier names. The value
should be 0, 1, or 2. 0 means ‘$’ is not allowed by default; 1 means it is allowed by
default if ‘-traditional’ is used; 2 means it is allowed by default provided ‘-ansi’ is
not used. 1 is the default; there is no need to define this macro in that case.

402 Using and Porting GNU CC

NO_DOLLAR_IN_LABEL

Define this macro if the assembler does not accept the character ‘$’ in label names. By
default constructors and destructors in G++ have ‘$’ in the identifiers. If this macro is
defined, ‘.’ is used instead.

NO_DOT_IN_LABEL

Define this macro if the assembler does not accept the character ‘.’ in label names. By
default constructors and destructors in G++ have names that use ‘.’. If this macro is
defined, these names are rewritten to avoid ‘.’.

DEFAULT_MAIN_RETURN

Define this macro if the target system expects every program’s main function to return
a standard “success” value by default (if no other value is explicitly returned).

The definition should be a C statement (sans semicolon) to generate the appropriate
rtl instructions. It is used only when compiling the end of main.

HAVE_ATEXIT

Define this if the target system supports the function atexit from the ANSI C stan-
dard. If this is not defined, and INIT_SECTION_ASM_OP is not defined, a default exit

function will be provided to support C++.

EXIT_BODY

Define this if your exit function needs to do something besides calling an external func-
tion _cleanup before terminating with _exit. The EXIT_BODY macro is only needed if
netiher HAVE_ATEXIT nor INIT_SECTION_ASM_OP are defined.

INSN_SETS_ARE_DELAYED (insn)

Define this macro as a C expression that is nonzero if it is safe for the delay slot
scheduler to place instructions in the delay slot of insn, even if they appear to use
a resource set or clobbered in insn. insn is always a jump_insn or an insn; GNU
CC knows that every call_insn has this behavior. On machines where some insn or
jump_insn is really a function call and hence has this behavior, you should define this
macro.

You need not define this macro if it would always return zero.

INSN_REFERENCES_ARE_DELAYED (insn)

Define this macro as a C expression that is nonzero if it is safe for the delay slot
scheduler to place instructions in the delay slot of insn, even if they appear to set or
clobber a resource referenced in insn. insn is always a jump_insn or an insn. On
machines where some insn or jump_insn is really a function call and its operands are
registers whose use is actually in the subroutine it calls, you should define this macro.
Doing so allows the delay slot scheduler to move instructions which copy arguments
into the argument registers into the delay slot of insn.

You need not define this macro if it would always return zero.

Chapter 17: The Configuration File 403

17 The Configuration File

The configuration file ‘xm-machine.h’ contains macro definitions that describe the machine and
system on which the compiler is running, unlike the definitions in ‘machine.h’, which describe the
machine for which the compiler is producing output. Most of the values in ‘xm-machine.h’ are
actually the same on all machines that GNU CC runs on, so large parts of all configuration files
are identical. But there are some macros that vary:

USG Define this macro if the host system is System V.

VMS Define this macro if the host system is VMS.

FAILURE_EXIT_CODE

A C expression for the status code to be returned when the compiler exits after serious
errors.

SUCCESS_EXIT_CODE

A C expression for the status code to be returned when the compiler exits without
serious errors.

HOST_WORDS_BIG_ENDIAN

Defined if the host machine stores words of multi-word values in big-endian order.
(GNU CC does not depend on the host byte ordering within a word.)

HOST_FLOAT_WORDS_BIG_ENDIAN

Define this macro to be 1 if the host machine stores DFmode, XFmode or TFmode floating
point numbers in memory with the word containing the sign bit at the lowest address;
otherwise, define it to be zero.

This macro need not be defined if the ordering is the same as for multi-word integers.

HOST_FLOAT_FORMAT

A numeric code distinguishing the floating point format for the host machine. See
TARGET_FLOAT_FORMAT in Section 16.3 [Storage Layout], page 314 for the alternatives
and default.

HOST_BITS_PER_CHAR

A C expression for the number of bits in char on the host machine.

HOST_BITS_PER_SHORT

A C expression for the number of bits in short on the host machine.

HOST_BITS_PER_INT

A C expression for the number of bits in int on the host machine.

HOST_BITS_PER_LONG

A C expression for the number of bits in long on the host machine.

404 Using and Porting GNU CC

ONLY_INT_FIELDS

Define this macro to indicate that the host compiler only supports int bit fields, rather
than other integral types, including enum, as do most C compilers.

EXECUTABLE_SUFFIX

Define this macro if the host system uses a naming convention for executable files that
involves a common suffix (such as, in some systems, ‘.exe’) that must be mentioned
explicitly when you run the program.

OBSTACK_CHUNK_SIZE

A C expression for the size of ordinary obstack chunks. If you don’t define this, a
usually-reasonable default is used.

OBSTACK_CHUNK_ALLOC

The function used to allocate obstack chunks. If you don’t define this, xmalloc is used.

OBSTACK_CHUNK_FREE

The function used to free obstack chunks. If you don’t define this, free is used.

USE_C_ALLOCA

Define this macro to indicate that the compiler is running with the alloca implemented
in C. This version of alloca can be found in the file ‘alloca.c’; to use it, you must
also alter the ‘Makefile’ variable ALLOCA. (This is done automatically for the systems
on which we know it is needed.)

If you do define this macro, you should probably do it as follows:
#ifndef __GNUC__
#define USE_C_ALLOCA
#else
#define alloca __builtin_alloca
#endif

so that when the compiler is compiled with GNU CC it uses the more efficient built-in
alloca function.

FUNCTION_CONVERSION_BUG

Define this macro to indicate that the host compiler does not properly handle converting
a function value to a pointer-to-function when it is used in an expression.

HAVE_VPRINTF

Define this if the library function vprintf is available on your system.

MULTIBYTE_CHARS

Define this macro to enable support for multibyte characters in the input to GNU CC.
This requires that the host system support the ANSI C library functions for converting
multibyte characters to wide characters.

HAVE_PUTENV

Define this if the library function putenv is available on your system.

Chapter 17: The Configuration File 405

NO_SYS_SIGLIST

Define this if your system does not provide the variable sys_siglist.

USE_PROTOTYPES

Define this to be 1 if you know that the host compiler supports prototypes, even if
it doesn’t define STDC , or define it to be 0 if you do not want any prototypes
used in compiling GNU CC. If ‘USE_PROTOTYPES’ is not defined, it will be determined
automatically whether your compiler supports prototypes by checking if ‘__STDC__’ is
defined.

NO_MD_PROTOTYPES

Define this if you wish suppression of prototypes generated from the machine descrip-
tion file, but to use other prototypes within GNU CC. If ‘USE_PROTOTYPES’ is defined
to be 0, or the host compiler does not support prototypes, this macro has no effect.

MD_CALL_PROTOTYPES

Define this if you wish to generate prototypes for the gen_call or gen_call_value

functions generated from the machine description file. If ‘USE_PROTOTYPES’ is defined
to be 0, or the host compiler does not support prototypes, or ‘NO_MD_PROTOTYPES’
is defined, this macro has no effect. As soon as all of the machine descriptions are
modified to have the appropriate number of arguments, this macro will be removed.

Some systems do provide this variable, but with a different name such as _sys_siglist.
On these systems, you can define sys_siglist as a macro which expands into the name
actually provided.

NO_STAB_H

Define this if your system does not have the include file ‘stab.h’. If ‘USG’ is defined,
‘NO_STAB_H’ is assumed.

In addition, configuration files for system V define bcopy, bzero and bcmp as aliases. Some files
define alloca as a macro when compiled with GNU CC, in order to take advantage of the benefit
of GNU CC’s built-in alloca.

406 Using and Porting GNU CC

Index 407

Index

!
‘!’ in constraint . 260

#
‘#’ in constraint . 261

in template . 253

#pragma . 401

#pragma implementation, implied 149

#pragma, reason for not using . 128

$
$. 129

%
‘%’ in constraint . 261

‘%’ in template . 251

&
‘&’ in constraint . 261

’
’ . 164

(
(nil) . 204

*
‘*’ in constraint . 262

* in template . 253

/
‘/i’ in RTL dump . 207

‘/s’ in RTL dump . 207, 208

‘/u’ in RTL dump . 207

‘/v’ in RTL dump . 207

=
‘=’ in constraint . 261

?
‘?’ in constraint . 260

?: extensions . 115, 116

?: side effect . 117

‘ ’ in variables in macros . 114

bb init func . 352

builtin apply . 113

builtin apply args . 113

builtin args info . 354

builtin classify type . 354

builtin next arg . 354

builtin return . 113

builtin saveregs . 353

CTOR LIST . 380

DTOR LIST . 380

+
‘+’ in constraint . 261

>
‘>’ in constraint . 256

>? . 147

\
\ . 252

<
‘<’ in constraint . 255

<? . 147

0
‘0’ in constraint . 257

3
3b1 installation . 97

408 Using and Porting GNU CC

A
abort . 25, 193

abs . 25, 222

abs and attributes . 295

absm2 instruction pattern . 270

absolute value . 222

access to operands . 204

accessors . 204

ACCUMULATE OUTGOING ARGS . 340

ACCUMULATE OUTGOING ARGS and stack frames 350

ADDITIONAL REGISTER NAMES . 383

addm3 instruction pattern . 269

addr diff vec . 231

addr diff vec, length of . 300

addr vec . 231

addr vec, length of . 300

address . 251

address constraints . 257

address of a label . 109

ADDRESS COST . 366

address operand . 257

addressing modes . 361

ADJUST COST . 369

ADJUST INSN LENGTH . 300

aggregates as return values . 347

aligned attribute . 131

alignment . 130

ALL REGS . 329

Alliant . 160

alloca . 25

alloca and SunOs . 88

alloca vs variable-length arrays 119

alloca, for SunOs . 97

alloca, for Unos . 98

allocate stack instruction pattern 276

ALLOCATE TRAMPOLINE . 356

alternate keywords . 141

AMD29K options . 54

analysis, data flow . 199

and . 221

and and attributes . 294

and, canonicalization of . 281

andm3 instruction pattern . 269

ANSI support . 24

apostrophes . 164

APPLY RESULT SIZE . 346

ARG POINTER REGNUM . 337

ARG POINTER REGNUM and virtual registers 217

arg pointer rtx . 338

ARGS GROW DOWNWARD . 335

argument passing . 195

arguments in frame (88k) . 56

arguments in registers . 342

arguments on stack . 340

arithmetic libraries . 196

arithmetic shift . 222

arithmetic simplifications . 197

arithmetic, in RTL . 220

arrays of length zero . 118

arrays of variable length . 119

arrays, non-lvalue . 121

ashift . 222

ashift and attributes . 295

ashiftrt . 222

ashiftrt and attributes . 295

ashlm3 instruction pattern . 269

ashrm3 instruction pattern . 270

asm expressions . 133

ASM APP OFF . 373

ASM APP ON . 373

ASM BYTE OP . 374

ASM CLOSE PAREN . 375

ASM COMMENT START . 373

ASM DECLARE FUNCTION NAME . 377

ASM DECLARE FUNCTION SIZE . 377

ASM DECLARE OBJECT NAME . 377

ASM FILE END . 372

ASM FILE START . 372

ASM FINAL SPEC . 308

ASM FINISH DECLARE OBJECT . 377

ASM FORMAT PRIVATE NAME . 379

asm fprintf . 385

ASM GENERATE INTERNAL LABEL . 379

ASM GLOBALIZE LABEL . 378

ASM IDENTIFY GCC . 372

asm input . 231

Index 409

ASM NO SKIP IN TEXT . 388

asm noperands . 237

ASM OPEN PAREN . 375

asm operands, RTL sharing . 243

asm operands, usage . 232

ASM OUTPUT ADDR DIFF ELT . 386

ASM OUTPUT ADDR VEC ELT . 387

ASM OUTPUT ALIGN . 388

ASM OUTPUT ALIGN CODE . 387

ASM OUTPUT ALIGNED COMMON . 376

ASM OUTPUT ALIGNED LOCAL . 377

ASM OUTPUT ASCII . 374

ASM OUTPUT BYTE . 374

ASM OUTPUT CASE END . 387

ASM OUTPUT CASE LABEL . 387

ASM OUTPUT CHAR . 374

ASM OUTPUT COMMON . 376

ASM OUTPUT CONSTRUCTOR . 382

ASM OUTPUT DESTRUCTOR . 383

ASM OUTPUT DOUBLE . 374

ASM OUTPUT DOUBLE INT . 374

ASM OUTPUT EXTERNAL . 378

ASM OUTPUT EXTERNAL LIBCALL . 378

ASM OUTPUT FLOAT . 374

ASM OUTPUT IDENT . 373

ASM OUTPUT INT . 374

ASM OUTPUT INTERNAL LABEL . 378

ASM OUTPUT LABEL . 377

ASM OUTPUT LABELREF . 378

ASM OUTPUT LOCAL . 376

ASM OUTPUT LONG DOUBLE . 374

ASM OUTPUT LOOP ALIGN . 387

ASM OUTPUT OPCODE . 384

ASM OUTPUT POOL PROLOGUE . 374

ASM OUTPUT QUADRUPLE INT . 374

ASM OUTPUT REG POP . 386

ASM OUTPUT REG PUSH . 386

ASM OUTPUT SHARED COMMON . 376

ASM OUTPUT SHARED LOCAL . 377

ASM OUTPUT SHORT . 374

ASM OUTPUT SKIP . 388

ASM OUTPUT SOURCE FILENAME . 373

ASM OUTPUT SOURCE LINE . 373

ASM OUTPUT SPECIAL POOL ENTRY 375

ASM SPEC . 308

ASM STABD OP . 390

ASM STABN OP . 390

ASM STABS OP . 389

assemble name . 377

assembler format . 372

assembler instructions . 133

assembler instructions in RTL . 232

assembler names for identifiers . 137

assembler syntax, 88k . 57

ASSEMBLER DIALECT . 386

assembly code, invalid . 175

assigning attribute values to insns 296

asterisk in template . 253

atof . 394

attr . 297

attr flag . 296

attribute expressions . 294

attribute of variables . 131

attribute specifications . 298

attribute specifications example 298

attributes, defining . 292

autoincrement addressing, availability 193

autoincrement/decrement addressing 255

autoincrement/decrement analysis 199

automatic inline for C++ member fns 132

B
backslash . 252

backtrace for bug reports . 179

barrier . 235

BASE REG CLASS . 330

basic blocks . 199

bcmp . 405

bcond instruction pattern . 272

bcopy, implicit usage . 359

BIGGEST ALIGNMENT . 316

BIGGEST FIELD ALIGNMENT . 316

Bison parser generator . 85

bit fields . 224

bit shift overflow (88k) . 58

BITFIELD NBYTES LIMITED . 318

410 Using and Porting GNU CC

BITS BIG ENDIAN . 314

BITS BIG ENDIAN, effect on sign extract 225

BITS PER UNIT . 314

BITS PER WORD . 314

bitwise complement . 221

bitwise exclusive-or . 222

bitwise inclusive-or . 222

bitwise logical-and . 221

BLKmode . 211

BLKmode, and function return values 242

BLOCK PROFILER . 352

BLOCK PROFILER CODE . 353

BRANCH COST . 367

break out memory refs . 363

bug criteria . 175

bug report mailing lists . 176

bugs . 175

bugs, known . 151

builtin functions . 25

byte writes (29k) . 54

byte mode . 214

BYTES BIG ENDIAN . 314

bzero . 405

bzero, implicit usage . 359

C
C compilation options . 17

C intermediate output, nonexistent 15

C language extensions . 107

C language, traditional. 25

C statements for assembler output 253

C INCLUDE PATH . 72

c++ . 23

C++ . 15

C++ compilation options . 17

C++ interface and implementation headers 148

C++ language extensions . 145

C++ member fns, automatically inline 132

C++ misunderstandings . 167

C++ named return value . 145

C++ options, command line . 27

C++ pragmas, effect on inlining 149

C++ source file suffixes . 23

C++ static data, declaring and defining 167

call . 228

call instruction pattern . 273

call usage . 241

call-clobbered register . 323

call-saved register . 323

call-used register . 323

call insn . 235

call insn and ‘/u’ . 208

call pop instruction pattern . 273

CALL USED REGISTERS . 323

call used regs . 323

call value instruction pattern . 273

call value pop instruction pattern 273

CALLER SAVE PROFITABLE . 348

calling conventions . 335

calling functions in RTL . 241

CAN ELIMINATE . 339

canonicalization of instructions . 281

case labels in initializers . 123

case ranges . 124

case sensitivity and VMS . 191

CASE DROPS THROUGH . 397

CASE VALUES THRESHOLD . 397

CASE VECTOR MODE . 397

CASE VECTOR PC RELATIVE . 397

casesi instruction pattern . 275

cast to a union . 125

casts as lvalues . 115

cc status . 364

CC STATUS MDEP . 364

CC STATUS MDEP INIT . 364

cc0 . 218

cc0, RTL sharing . 243

cc0 rtx . 219

CC1 SPEC . 308

CC1PLUS SPEC . 308

CCmode . 211

CDImode . 211

change address . 267

CHAR TYPE SIZE . 320

CHECK FLOAT VALUE . 318

CHImode . 211

Index 411

class definitions, register . 329

class preference constraints . 261

CLASS LIKELY SPILLED P . 333

CLASS MAX NREGS . 334

classes of RTX codes . 205

CLEAR INSN CACHE (BEG, END) . 357

clobber . 228

cmpm instruction pattern . 270

cmpstrm instruction pattern . 271

code generation conventions . 68

code generation RTL sequences 286

code motion . 199

code label . 235

code label and ‘/i’ . 209

CODE LABEL NUMBER . 235

codes, RTL expression . 203

COImode . 211

combiner pass . 218

command options . 17

common subexpression elimination 199

compare . 220

compare, canonicalization of . 281

compilation in a separate directory 89

compiler bugs, reporting . 177

compiler compared to C++ preprocessor 15

compiler options, C++ . 27

compiler passes and files . 197

compiler version, specifying . 49

COMPILER PATH . 71

complement, bitwise . 221

complex numbers . 117

compound expressions as lvalues 115

computed gotos . 109

computing the length of an insn 299

cond . 224

cond and attributes . 294

condition code register . 218

condition code status . 364

condition codes . 223

conditional expressions as lvalues 115

conditional expressions, extensions 116

CONDITIONAL REGISTER USAGE . 323

conditions, in patterns . 246

configuration file . 403

conflicting types . 166

const applied to function . 126

const function attribute . 127

CONST CALL P . 208

CONST COSTS . 366

const double . 214

const double, RTL sharing . 243

CONST DOUBLE CHAIN . 214

CONST DOUBLE LOW . 214

CONST DOUBLE MEM . 214

CONST DOUBLE OK FOR LETTER P . 334

const int . 214

const int and attribute tests . 294

const int and attributes . 294

const int, RTL sharing . 243

CONST OK FOR LETTER P . 334

const string . 215

const string and attributes . 294

const true rtx . 214

const0 rtx . 214

CONST0 RTX . 215

const1 rtx . 214

CONST1 RTX . 215

const2 rtx . 214

CONST2 RTX . 215

constant attributes . 301

constant folding . 197

constant folding and floating point 396

constant propagation . 199

CONSTANT ADDRESS P . 361

CONSTANT ALIGNMENT . 316

CONSTANT P . 361

CONSTANT POOL ADDRESS P . 208

constants in constraints . 256

constm1 rtx . 214

constraint modifier characters . 261

constraint, matching . 257

constraints . 255

constraints, machine specific . 262

constructing calls . 113

constructor expressions . 122

constructors vs goto . 148

412 Using and Porting GNU CC

constructors, output of . 380

contributors . 9

controlling register usage . 323

controlling the compilation driver 307

conventions, run-time . 195

conversions . 225

Convex options . 53

copy rtx if shared . 243

core dump . 175

cos . 25

costs of instructions . 366

COSTS N INSNS . 366

CPLUS INCLUDE PATH . 72

CPP PREDEFINES . 311

CPP SPEC . 307

CQImode . 211

cross compilation and floating point 394

cross compiling . 49

cross-compiler, installation . 89

cross-jumping . 201

CSImode . 211

CTImode . 211

CUMULATIVE ARGS . 344

current function epilogue delay list 351

current function outgoing args size 340

current function pops args . 351

current function pretend args size 350

D
‘d’ in constraint . 256

data flow analysis . 199

DATA ALIGNMENT . 316

data section . 370

DATA SECTION ASM OP . 369

DBR OUTPUT SEQEND . 385

dbr sequence length . 385

DBX . 157

DBX CONTIN CHAR . 390

DBX CONTIN LENGTH . 390

DBX DEBUGGING INFO . 389

DBX FUNCTION FIRST . 391

DBX LBRAC FIRST . 391

DBX MEMPARM STABS LETTER . 391

DBX NO XREFS . 390

DBX OUTPUT ENUM . 391

DBX OUTPUT FUNCTION END . 391

DBX OUTPUT LBRAC . 391

DBX OUTPUT MAIN SOURCE DIRECTORY 393

DBX OUTPUT MAIN SOURCE FILE END 393

DBX OUTPUT MAIN SOURCE FILENAME 393

DBX OUTPUT RBRAC . 391

DBX OUTPUT SOURCE FILENAME . 393

DBX OUTPUT STANDARD TYPES . 392

DBX REGISTER NUMBER . 388

DBX REGPARM STABS CODE . 390

DBX REGPARM STABS LETTER . 391

DBX STATIC CONST VAR CODE . 390

DBX STATIC STAB DATA SECTION 390

DBX TYPE DECL STABS CODE . 390

DBX WORKING DIRECTORY . 393

DCmode . 211

De Morgan’s law . 281

dead code . 198

dead or set p . 284

deallocating variable length arrays 119

death notes . 328

debug rtx . 180

DEBUG SYMS TEXT . 389

DEBUGGER ARG OFFSET . 389

DEBUGGER AUTO OFFSET . 389

debugging information generation 201

debugging information options . 36

debugging, 88k OCS . 56

declaration scope . 163

declarations inside expressions . 107

declarations, RTL . 226

declaring attributes of functions 126

declaring static data in C++ . 167

DEFAULT CALLER SAVES . 348

DEFAULT GDB EXTENSIONS . 389

DEFAULT MAIN RETURN . 402

DEFAULT PCC STRUCT RETURN . 347

DEFAULT SHORT ENUMS . 320

DEFAULT SIGNED CHAR . 320

define asm attributes . 298

define attr . 292

Index 413

define delay . 302

define expand . 286

define function unit . 303

define insn . 245

define insn example . 246

define peephole . 286

define split . 289

defining attributes and their values 292

defining jump instruction patterns 279

defining peephole optimizers . 282

defining RTL sequences for code generation 286

defining static data in C++ . 167

delay slots, defining . 301

DELAY SLOTS FOR EPILOGUE . 351

delayed branch scheduling . 201

dependencies for make as output 72

dependencies, make . 45

DEPENDENCIES OUTPUT . 72

Dependent Patterns . 277

destructors vs goto . 148

destructors, output of . 380

detecting ‘-traditional’ . 26

DFmode . 211

dialect options . 24

digits in constraint . 257

DImode . 211

directory options . 48

disabling certain registers . 323

dispatch table . 386

div . 221

div and attributes . 295

DIVDI3 LIBCALL . 359

divide instruction, 88k . 57

division . 221

divm3 instruction pattern . 269

divmodm4 instruction pattern . 269

DIVSI3 LIBCALL . 358

dollar signs in identifier names . 129

DOLLARS IN IDENTIFIERS . 401

DONE . 287

DONT REDUCE ADDR . 368

double-word arithmetic . 117

DOUBLE TYPE SIZE . 320

downward funargs . 110

driver . 307

DW bit (29k) . 54

DWARF DEBUGGING INFO . 393

DYNAMIC CHAIN ADDRESS . 336

E
‘E’ in constraint . 256

EASY DIV EXPR . 398

EDOM, implicit usage . 359

ELIGIBLE FOR EPILOGUE DELAY . 351

ELIMINABLE REGS . 339

empty constraints . 266

EMPTY FIELD BOUNDARY . 316

ENCODE SECTION INFO . 370

ENCODE SECTION INFO and address validation 362

ENCODE SECTION INFO usage . 385

ENDFILE SPEC . 309

endianness . 193

enum machine mode . 210

enum reg class . 330

enumeration clash warnings . 34

environment variables . 71

epilogue . 349

eq . 223

eq and attributes . 295

eq attr . 295

equal . 223

errno, implicit usage . 359

error . 318

error messages . 173

escape sequences, traditional . 26

exclamation point . 260

exclusive-or, bitwise . 222

EXECUTABLE SUFFIX . 404

exit . 25

exit status and VMS . 190

EXIT BODY . 402

EXIT IGNORE STACK . 350

EXPAND BUILTIN SAVEREGS . 354

expander definitions . 286

explicit register variables . 138

expr list . 241

414 Using and Porting GNU CC

expression codes . 203

expressions containing statements 107

expressions, compound, as lvalues 115

expressions, conditional, as lvalues 115

expressions, constructor . 122

extended asm . 133

extendmn instruction pattern . 271

extensible constraints . 257

extensions, ?: . 115, 116

extensions, C language . 107

extensions, C++ language . 145

extern int target flags . 312

external declaration scope . 163

EXTRA CC MODES . 365

EXTRA CC NAMES . 365

EXTRA CONSTRAINT . 334

EXTRA SECTION FUNCTIONS . 370

EXTRA SECTIONS . 369

extv instruction pattern . 272

extzv instruction pattern . 272

F
‘F’ in constraint . 256

fabs . 25

FAIL . 287

FAILURE EXIT CODE . 403

fatal signal . 175

features, optional, in system conventions 312

ffs . 25, 222

ffsm2 instruction pattern . 270

file name suffix . 21

file names . 46

files and passes of the compiler . 197

final pass . 201

FINAL PRESCAN INSN . 384

FINAL REG PARM STACK SPACE . 341

final scan insn . 351

final sequence . 385

FINALIZE PIC . 371

FIRST INSN ADDRESS . 300

FIRST PARM OFFSET . 335

FIRST PARM OFFSET and virtual registers 217

FIRST PSEUDO REGISTER . 322

FIRST STACK REG . 327

FIRST VIRTUAL REGISTER . 216

fix . 226

fix truncmn2 instruction pattern 271

fixed register . 322

FIXED REGISTERS . 322

fixed regs . 323

fixmn2 instruction pattern . 271

FIXUNS TRUNC LIKE FIX TRUNC . 398

fixuns truncmn2 instruction pattern 271

fixunsmn2 instruction pattern . 271

flags in RTL expression . 207

float . 226

float as function value type . 164

FLOAT ARG TYPE . 360

float extend . 226

FLOAT STORE FLAG VALUE . 400

float truncate . 226

FLOAT TYPE SIZE . 320

FLOAT VALUE TYPE . 360

FLOAT WORDS BIG ENDIAN . 314

FLOATIFY . 360

floating point and cross compilation 394

floatmn2 instruction pattern . 271

floatunsmn2 instruction pattern 271

force reg . 267

format function attribute . 127

forwarding calls . 113

frame layout . 335

FRAME GROWS DOWNWARD . 335

FRAME GROWS DOWNWARD and virtual registers 217

frame pointer needed . 349

FRAME POINTER REGNUM . 337

FRAME POINTER REGNUM and virtual registers 217

FRAME POINTER REQUIRED . 338

frame pointer rtx . 338

fscanf, and constant strings . 162

ftruncm2 instruction pattern . 271

function attributes . 126

function call conventions . 195

function entry and exit . 349

function pointers, arithmetic . 121

function prototype declarations 128

Index 415

function units, for scheduling . 303

function, size of pointer to . 121

function-call insns . 241

FUNCTION ARG . 342

FUNCTION ARG ADVANCE . 344

FUNCTION ARG BOUNDARY . 345

FUNCTION ARG CALLEE COPIES . 343

FUNCTION ARG PADDING . 344

FUNCTION ARG PARTIAL NREGS . 343

FUNCTION ARG PASS BY REFERENCE 343

FUNCTION ARG REGNO P . 345

FUNCTION BLOCK PROFILER . 352

FUNCTION BOUNDARY . 315

FUNCTION CONVERSION BUG . 404

FUNCTION EPILOGUE . 350

FUNCTION EPILOGUE and trampolines 356

FUNCTION INCOMING ARG . 343

FUNCTION MODE . 401

FUNCTION OUTGOING VALUE . 346

FUNCTION PROFILER . 352

FUNCTION PROLOGUE . 349

FUNCTION PROLOGUE and trampolines 356

FUNCTION VALUE . 345

FUNCTION VALUE REGNO P . 346

functions that have no side effects 126

functions that never return . 126

functions with printf or scanf style arguments . . . 126

functions, leaf . 326

G
‘g’ in constraint . 256

‘G’ in constraint . 256

g++ . 23

G++ . 15

g++ 1.xx . 23

g++ older version . 23

g++, separate compiler . 23

GCC . 15

GCC EXEC PREFIX . 71

ge . 224

ge and attributes . 295

GEN ERRNO RTX . 359

gencodes . 198

genconfig . 201

general operand . 248

GENERAL REGS . 329

generalized lvalues . 115

generating assembler output . 253

generating insns . 247

genflags . 198

genflags, crash on Sun 4 . 153

get attr . 295

get attr length . 300

GET CLASS NARROWEST MODE . 213

GET CODE . 203

get frame size . 339

get insns . 234

get last insn . 234

GET MODE . 213

GET MODE ALIGNMENT . 213

GET MODE BITSIZE . 213

GET MODE CLASS . 213

GET MODE MASK . 213

GET MODE NAME . 213

GET MODE NUNITS . 213

GET MODE SIZE . 213

GET MODE UNIT SIZE . 213

GET MODE WIDER MODE . 213

GET RTX CLASS . 205

GET RTX FORMAT . 205

GET RTX LENGTH . 205

geu . 224

geu and attributes . 295

global offset table . 69

global register after longjmp . 140

global register allocation . 200

global register variables . 138

GLOBALDEF . 188

GLOBALREF . 188

GLOBALVALUEDEF . 188

GLOBALVALUEREF . 188

GNU CC and portability . 193

GNU CC command options . 17

GO IF LEGITIMATE ADDRESS . 362

GO IF MODE DEPENDENT ADDRESS 363

goto in C++ . 148

416 Using and Porting GNU CC

goto with computed label . 109

gp-relative references (MIPS) . 63

gprof . 38

greater than . 224

grouping options . 17

gt . 224

gt and attributes . 295

gtu . 224

gtu and attributes . 295

H
‘H’ in constraint . 256

HANDLE PRAGMA . 401

hard registers . 216

HARD FRAME POINTER REGNUM . 337

HARD REGNO MODE OK . 324

HARD REGNO NREGS . 324

hardware models and configurations, specifying 50

HAVE ATEXIT . 402

HAVE POST DECREMENT . 361

HAVE POST INCREMENT . 361

HAVE PRE DECREMENT . 361

HAVE PRE INCREMENT . 361

HAVE PUTENV . 404

HAVE VPRINTF . 404

header files and VMS . 187

high . 215

HImode . 211

HImode, in insn . 236

HOST BITS PER CHAR . 403

HOST BITS PER INT . 403

HOST BITS PER LONG . 403

HOST BITS PER SHORT . 403

HOST FLOAT FORMAT . 403

HOST FLOAT WORDS BIG ENDIAN . 403

HOST WORDS BIG ENDIAN . 403

HPPA Options . 64

I
‘i’ in constraint . 256

‘I’ in constraint . 256

i386 Options . 64

IBM RS/6000 and PowerPC Options 58

IBM RT options . 60

IBM RT PC . 160

identifier names, dollar signs in 129

identifiers, names in assembler code 137

identifying source, compiler (88k) 55

IEEE FLOAT FORMAT . 318

if then else . 224

if then else and attributes . 294

if then else usage . 227

immediate operand . 248

IMMEDIATE PREFIX . 385

implicit argument: return value 145

IMPLICIT FIX EXPR . 398

implied #pragma implementation 149

in data . 369

in struct . 209

in struct, in code label . 209

in struct, in insn . 208, 209

in struct, in label ref . 208

in struct, in mem . 207

in struct, in reg . 207

in struct, in subreg . 207

in text . 369

include files and VMS . 187

INCLUDE DEFAULTS . 310

inclusive-or, bitwise . 222

INCOMING REGNO . 323

incompatibilities of GNU CC . 162

increment operators . 175

INDEX REG CLASS . 330

indirect jump instruction pattern 274

INIT CUMULATIVE ARGS . 344

INIT CUMULATIVE INCOMING ARGS 344

INIT SECTION ASM OP . 369, 382

INITIAL ELIMINATION OFFSET . 339

INITIAL FRAME POINTER OFFSET 339

initialization routines . 380

initializations in expressions . 122

INITIALIZE TRAMPOLINE . 356

initializers with labeled elements 123

initializers, non-constant . 122

inline automatic for C++ member fns 132

inline functions . 132

Index 417

inline functions, omission of . 132

inline, automatic . 198

inlining and C++ pragmas . 149

insn . 234

insn and ‘/i’ . 209

insn and ‘/s’ . 208

insn and ‘/u’ . 208

insn attributes . 292

insn canonicalization . 281

insn lengths, computing . 299

insn splitting . 289

insn-attr.h . 293

INSN ANNULLED BRANCH P . 208

INSN CACHE DEPTH . 357

INSN CACHE LINE WIDTH . 357

INSN CACHE SIZE . 357

INSN CLOBBERS REGNO P . 328

INSN CODE . 237

INSN DELETED P . 208

INSN FROM TARGET P . 208

insn list . 241

INSN REFERENCES ARE DELAYED . 402

INSN SETS ARE DELAYED . 402

INSN UID . 233

insns . 233

insns, generating . 247

insns, recognizing . 247

installation trouble . 151

installing GNU CC . 77

installing GNU CC on the 3b1 . 97

installing GNU CC on the Sun . 96

installing GNU CC on Unos . 98

installing GNU CC on VMS . 98

instruction attributes . 292

instruction combination . 200

instruction patterns . 245

instruction recognizer . 202

instruction scheduling . 200

instruction splitting . 289

insv instruction pattern . 272

INT TYPE SIZE . 319

INTEGRATE THRESHOLD . 401

integrated . 210

integrated, in insn . 208

integrated, in reg . 207

integrating function code . 132

Intel 386 Options . 64

Interdependence of Patterns . 277

interface and implementation headers, C++ 148

interfacing to GNU CC output . 195

intermediate C version, nonexistent 15

INTIFY . 360

invalid assembly code . 175

invalid input . 176

invoking g++ . 23

ior . 222

ior and attributes . 294

ior, canonicalization of . 281

iorm3 instruction pattern . 269

isinf . 396

isnan . 396

J
jump instruction patterns . 279

jump instructions and set . 227

jump optimization . 198

jump threading . 199

jump insn . 234

JUMP LABEL . 235

JUMP TABLES IN TEXT SECTION . 370

K
kernel and user registers (29k) . 55

keywords, alternate . 141

known causes of trouble . 151

L
LABEL NUSES . 235

LABEL OUTSIDE LOOP P . 208

LABEL PRESERVE P . 209

label ref . 215

label ref and ‘/s’ . 208

label ref, RTL sharing . 243

labeled elements in initializers . 123

labels as values . 109

labs . 25

418 Using and Porting GNU CC

language dialect options . 24

large bit shifts (88k) . 58

large return values . 347

LAST STACK REG . 327

LAST VIRTUAL REGISTER . 216

ldexp . 395

le . 224

le and attributes . 295

leaf functions . 326

leaf function . 327

leaf function p . 274

LEAF REG REMAP . 326

LEAF REGISTERS . 326

left rotate . 222

left shift . 222

LEGITIMATE CONSTANT P . 364

LEGITIMATE PIC OPERAND P . 371

LEGITIMIZE ADDRESS . 363

length-zero arrays . 118

less than . 224

less than or equal . 224

leu . 224

leu and attributes . 295

LIB SPEC . 308

LIBCALL VALUE . 346

‘libgcc.a’ . 358

LIBGCC NEEDS DOUBLE . 359

Libraries . 46

library subroutine names . 358

LIBRARY PATH . 72

LIMIT RELOAD CLASS . 331

link options . 46

LINK LIBGCC SPECIAL . 309

LINK LIBGCC SPECIAL 1 . 309

LINK SPEC . 308

lo sum . 220

load address instruction . 257

LOAD EXTEND OP . 398

load multiple instruction pattern 268

local labels . 108

local register allocation . 200

local variables in macros . 114

local variables, specifying registers 140

LOCAL INCLUDE DIR . 310

LOCAL LABEL PREFIX . 385

LOG LINKS . 237

logical shift . 222

logical-and, bitwise . 221

long long data types . 117

LONG DOUBLE TYPE SIZE . 320

LONG LONG TYPE SIZE . 320

LONG TYPE SIZE . 319

longjmp . 140

longjmp and automatic variables 25, 195

longjmp incompatibilities . 162

longjmp warnings . 32

LONGJMP RESTORE FROM STACK . 339

loop optimization . 199

lshift . 222

lshift and attributes . 295

lshiftrt . 222

lshiftrt and attributes . 295

lshlm3 instruction pattern . 270

lshrm3 instruction pattern . 270

lt . 224

lt and attributes . 295

ltu . 224

lvalues, generalized . 115

M
‘m’ in constraint . 255

M680x0 options . 51

M88k options . 55

machine dependent options . 50

machine description macros . 307

machine descriptions . 245

machine mode conversions . 225

machine modes . 210

machine specific constraints . 262

macro with variable arguments . 120

macros containing asm . 136

macros, inline alternative . 132

macros, local labels . 108

macros, local variables in . 114

macros, statements in expressions 107

macros, target description . 307

Index 419

macros, types of arguments . 114

main and the exit status . 190

make . 45

make safe from . 288

match dup . 248

match dup and attributes . 300

match op dup . 250

match operand . 247

match operand and attributes . 294

match operator . 248

match par dup . 251

match parallel . 250

match scratch . 248

matching constraint . 257

matching operands . 252

math libraries . 196

math, in RTL . 220

MAX BITS PER WORD . 314

MAX CHAR TYPE SIZE . 320

MAX FIXED MODE SIZE . 318

MAX INT TYPE SIZE . 319

MAX LONG TYPE SIZE . 319

MAX MOVE MAX . 398

MAX OFILE ALIGNMENT . 316

MAX REGS PER ADDRESS . 361

MAX UNITS PER WORD . 314

MAX WCHAR TYPE SIZE . 321

maximum operator . 147

maxm3 instruction pattern . 269

MAYBE REG PARM STACK SPACE . 341

mcount . 352

MD CALL PROTOTYPES . 405

MD EXEC PREFIX . 309

MD STARTFILE PREFIX . 309

MD STARTFILE PREFIX 1 . 309

mem . 219

mem and ‘/s’ . 207

mem and ‘/u’ . 207

mem and ‘/v’ . 207

mem, RTL sharing . 243

MEM IN STRUCT P . 207

MEM VOLATILE P . 207

member fns, automatically inline 132

memcmp . 25

memcpy . 25

memcpy, implicit usage . 359

memory model (29k) . 55

memory reference, nonoffsettable 259

memory references in constraints 255

MEMORY MOVE COST . 367

memset, implicit usage . 359

messages, warning . 31

messages, warning and error . 173

middle-operands, omitted . 116

minimum operator . 147

minm3 instruction pattern . 269

minus . 220

minus and attributes . 295

minus, canonicalization of . 281

MIPS options . 61

misunderstandings in C++ . 167

mktemp, and constant strings . 162

mod . 221

mod and attributes . 295

MODDI3 LIBCALL . 359

mode attribute . 131

mode classes . 212

MODE CC . 212

MODE COMPLEX FLOAT . 212

MODE COMPLEX INT . 212

MODE FLOAT . 212

MODE FUNCTION . 212

MODE INT . 212

MODE PARTIAL INT . 212

MODE RANDOM . 212

MODES TIEABLE P . 326

modifiers in constraints . 261

modm3 instruction pattern . 269

MODSI3 LIBCALL . 358

MOVE MAX . 398

MOVE RATIO . 368

movm instruction pattern . 267

movstrictm instruction pattern 268

movstrm instruction pattern . 270

MULDI3 LIBCALL . 358

mulhisi3 instruction pattern . 269

420 Using and Porting GNU CC

mulm3 instruction pattern . 269

mulqihi3 instruction pattern . 269

MULSI3 LIBCALL . 358

mulsidi3 instruction pattern . 269

mult . 221

mult and attributes . 295

mult, canonicalization of . 281

MULTIBYTE CHARS . 404

multiple alternative constraints 259

multiplication . 221

multiprecision arithmetic . 117

MUST PASS IN STACK, and FUNCTION ARG 342

N
‘n’ in constraint . 256

N REG CLASSES . 330

name augmentation . 191

named patterns and conditions . 246

named return value in C++ . 145

names used in assembler code . 137

names, pattern . 267

naming convention, implementation headers 149

naming types . 113

ne . 223

ne and attributes . 295

neg . 221

neg and attributes . 295

neg, canonicalization of . 281

negm2 instruction pattern . 270

nested functions . 110

nested functions, trampolines for 355

newline vs string constants . 26

next cc0 user . 280

NEXT INSN . 234

NEXT OBJC RUNTIME . 361

nil . 204

no constraints . 266

no-op move instructions . 201

NO BUILTIN PTRDIFF TYPE . 307

NO BUILTIN SIZE TYPE . 307

NO DOLLAR IN LABEL . 401

NO DOT IN LABEL . 402

NO FUNCTION CSE . 368

NO IMPLICIT EXTERN C . 401

NO MD PROTOTYPES . 405

NO RECURSIVE FUNCTION CSE . 369

NO REGS . 329

NO STAB H . 405

NO SYS SIGLIST . 404

non-constant initializers . 122

non-static inline function . 132

NON SAVING SETJMP . 323

nongcc SI type . 360

nongcc word type . 361

nonoffsettable memory reference 259

nop instruction pattern . 274

noreturn function attribute . 126

not . 221

not and attributes . 294

not equal . 223

not using constraints . 266

not, canonicalization of . 281

note . 235

NOTE INSN BLOCK BEG . 236

NOTE INSN BLOCK END . 236

NOTE INSN DELETED . 236

NOTE INSN FUNCTION END . 236

NOTE INSN LOOP BEG . 236

NOTE INSN LOOP CONT . 236

NOTE INSN LOOP END . 236

NOTE INSN LOOP VTOP . 236

NOTE INSN SETJMP . 236

NOTE LINE NUMBER . 235

NOTE SOURCE FILE . 235

NOTICE UPDATE CC . 364

NUM MACHINE MODES . 213

O
‘o’ in constraint . 255

OBJC GEN METHOD LABEL . 379

OBJC INCLUDE PATH . 72

OBJC INT SELECTORS . 321

OBJC PROLOGUE . 373

OBJC SELECTORS WITHOUT LABELS 321

OBJECT FORMAT COFF . 383

OBJECT FORMAT ROSE . 383

Index 421

Objective C . 15

OBSTACK CHUNK ALLOC . 404

OBSTACK CHUNK FREE . 404

OBSTACK CHUNK SIZE . 404

obstack free . 97

OCS (88k) . 56

offsettable address . 255

old-style function definitions . 128

omitted middle-operands . 116

one cmplm2 instruction pattern 270

ONLY INT FIELDS . 403

open coding . 132

operand access . 204

operand constraints . 255

operand substitution . 251

operands . 246

OPTIMIZATION OPTIONS . 313

optimize options . 39

optional hardware or system features 312

options to control warnings . 31

options, C++ . 27

options, code generation . 68

options, debugging . 36

options, dialect . 24

options, directory search . 48

options, GNU CC command . 17

options, grouping . 17

options, linking . 46

options, optimization . 39

options, order . 17

options, preprocessor . 44

order of evaluation, side effects . 173

order of options . 17

order of register allocation . 324

ORDER REGS FOR LOCAL ALLOC . 324

Ordering of Patterns . 276

other directory, compilation in . 89

OUTGOING REG PARM STACK SPACE 341

OUTGOING REGNO . 323

output file option . 23

output of assembler code . 372

output statements . 253

output templates . 251

output addr const . 374

output asm insn . 254

overflow while constant folding . 396

OVERLAPPING REGNO P . 328

overloaded virtual fn, warning . 36

OVERRIDE OPTIONS . 313

P
‘p’ in constraint . 257

packed attribute . 131

parallel . 229

parameter forward declaration . 120

parameters, miscellaneous . 397

PARM BOUNDARY . 315

parser generator, Bison . 85

parsing pass . 197

passes and files of the compiler . 197

passing arguments . 195

PATTERN . 237

pattern conditions . 246

pattern names . 267

Pattern Ordering . 276

patterns . 245

pc . 219

pc and attributes . 300

pc, RTL sharing . 243

pc rtx . 219

PCC BITFIELD TYPE MATTERS . 317

PCC STATIC STRUCT RETURN . 348

PDImode . 211

peephole optimization . 201

peephole optimization, RTL representation 230

peephole optimizer definitions . 282

percent sign . 251

perform . 361

PIC . 69, 371

PIC OFFSET TABLE REGNUM . 371

plus . 220

plus and attributes . 295

plus, canonicalization of . 281

Pmode . 401

pointer arguments . 127

POINTER SIZE . 315

422 Using and Porting GNU CC

portability . 193

portions of temporary objects, pointers to 168

position independent code . 371

post dec . 232

post inc . 232

pragma . 401

pragma, reason for not using . 128

pragmas in C++, effect on inlining 149

pragmas, interface and implementation 148

pre dec . 231

pre inc . 232

predefined macros . 311

PREDICATE CODES . 397

PREFERRED DEBUGGING TYPE . 389

PREFERRED OUTPUT RELOAD CLASS 331

PREFERRED RELOAD CLASS . 331

preprocessing numbers . 164

preprocessing tokens . 164

preprocessor options . 44

PRESERVE DEATH INFO REGNO P . 328

prev cc0 setter . 280

PREV INSN . 233

prev nonnote insn . 284

PRINT OPERAND . 384

PRINT OPERAND ADDRESS . 385

PRINT OPERAND PUNCT VALID P . 385

processor selection (29k) . 55

product . 221

prof . 38

PROFILE BEFORE PROLOGUE . 352

profiling, code generation . 352

program counter . 219

prologue . 349

PROMOTE FUNCTION ARGS . 315

PROMOTE FUNCTION RETURN . 315

PROMOTE MODE . 315

PROMOTE PROTOTYPES . 340

promotion of formal parameters 128

pseudo registers . 216

PSImode . 211

PTRDIFF TYPE . 321

push address instruction . 257

PUSH ROUNDING . 340

PUSH ROUNDING, interaction with STACK BOUNDARY . . 315

PUT CODE . 203

PUT MODE . 213

PUT REG NOTE KIND . 238

PUT SDB . 394

putenv . 404

Q
‘Q’, in constraint . 257

QImode . 211

QImode, in insn . 236

qsort, and global register variables 139

question mark . 260

quotient . 221

R
‘r’ in constraint . 256

r0-relative references (88k) . 56

ranges in case statements . 124

read-only strings . 162

READONLY DATA SECTION . 370

REAL ARITHMETIC . 396

REAL INFINITY . 396

REAL NM FILE NAME . 383

REAL VALUE ATOF . 395

REAL VALUE FIX . 395

REAL VALUE FROM INT . 397

REAL VALUE ISINF . 396

REAL VALUE ISNAN . 396

REAL VALUE LDEXP . 395

REAL VALUE NEGATE . 396

REAL VALUE RNDZINT . 395

REAL VALUE TO DECIMAL . 376

REAL VALUE TO INT . 397

REAL VALUE TO TARGET DOUBLE . 375

REAL VALUE TO TARGET LONG DOUBLE 375

REAL VALUE TO TARGET SINGLE . 375

REAL VALUE TRUNCATE . 396

REAL VALUE TYPE . 395

REAL VALUE UNSIGNED FIX . 395

REAL VALUE UNSIGNED RNDZINT . 395

REAL VALUES EQUAL . 395

REAL VALUES LESS . 395

Index 423

recog operand . 384

recognizing insns . 247

reg . 216

reg and ‘/i’ . 207

reg and ‘/s’ . 207

reg and ‘/u’ . 207

reg and ‘/v’ . 207

reg, RTL sharing . 243

REG ALLOC ORDER . 324

REG CC SETTER . 241

REG CC USER . 241

REG CLASS CONTENTS . 330

REG CLASS FROM LETTER . 331

REG CLASS NAMES . 330

REG DEAD . 238

REG DEP ANTI . 241

REG DEP OUTPUT . 241

REG EQUAL . 239

REG EQUIV . 239

REG FUNCTION VALUE P . 207

REG INC . 238

REG LABEL . 239

REG LEAF ALLOC ORDER . 327

REG LIBCALL . 240

REG LOOP TEST P . 207

reg names . 385

REG NO CONFLICT . 238

REG NONNEG . 238

REG NOTE KIND . 238

REG NOTES . 237

REG OK FOR BASE P . 363

REG OK FOR INDEX P . 363

REG OK STRICT . 362

REG PARM STACK SPACE . 340

REG PARM STACK SPACE, and FUNCTION ARG 342

REG RETVAL . 240

REG UNUSED . 240

REG USERVAR P . 207

REG WAS 0 . 240

register allocation . 200

register allocation order . 324

register allocation, stupid . 199

register class definitions . 329

register class preference constraints 261

register class preference pass . 200

register pairs . 325

register positions in frame (88k) . 56

Register Transfer Language (RTL) 203

register usage . 322

register use analysis . 199

register variable after longjmp . 140

register-to-stack conversion . 201

REGISTER MOVE COST . 367

REGISTER NAMES . 383

register operand . 248

REGISTER PREFIX . 385

registers . 133

registers arguments . 342

registers for local variables . 140

registers in constraints . 256

registers, global allocation . 138

registers, global variables in . 138

REGNO OK FOR BASE P . 331

REGNO OK FOR INDEX P . 331

REGNO REG CLASS . 330

regs ever live . 349

relative costs . 366

RELATIVE PREFIX NOT LINKDIR . 309

reload pass . 218

reload completed . 274

reload in instruction pattern . 268

reload in progress . 267

reload out instruction pattern . 268

reloading . 200

remainder . 221

reporting bugs . 175

representation of RTL . 203

rest argument (in macro) . 120

rest of compilation . 197

rest of decl compilation . 197

restore stack block instruction pattern 275

restore stack function instruction pattern 275

restore stack nonlocal instruction pattern 275

return . 228

return instruction pattern . 274

return value of main . 190

424 Using and Porting GNU CC

return value, named, in C++ . 145

return values in registers . 345

return, in C++ function header 145

RETURN ADDR IN PREVIOUS FRAME 336

RETURN ADDR RTX . 336

RETURN IN MEMORY . 347

RETURN POPS ARGS . 341

returning aggregate values . 347

returning structures and unions 195

right rotate . 222

right shift . 222

rotate . 222

rotatert . 222

rotlm3 instruction pattern . 270

rotrm3 instruction pattern . 270

ROUND TYPE ALIGN . 318

ROUND TYPE SIZE . 318

RS/6000 and PowerPC Options . 58

RT options . 60

RT PC . 160

RTL addition . 220

RTL comparison . 220

RTL comparison operations . 223

RTL constant expression types . 214

RTL constants . 214

RTL declarations . 226

RTL difference . 220

RTL expression . 203

RTL expressions for arithmetic . 220

RTL format . 204

RTL format characters . 204

RTL function-call insns . 241

RTL generation . 198

RTL insn template . 247

RTL integers . 203

RTL memory expressions . 216

RTL object types . 203

RTL postdecrement . 231

RTL postincrement . 231

RTL predecrement . 231

RTL preincrement . 231

RTL register expressions . 216

RTL representation . 203

RTL side effect expressions . 227

RTL strings . 203

RTL structure sharing assumptions 243

RTL subtraction . 220

RTL sum . 220

RTL vectors . 203

RTX (See RTL) . 203

RTX COSTS . 366

RTX INTEGRATED P . 208

RTX UNCHANGING P . 207

run-time conventions . 195

run-time options . 68

run-time target specification . 311

S
‘s’ in constraint . 256

save stack block instruction pattern 275

save stack function instruction pattern 275

save stack nonlocal instruction pattern 275

saveable obstack . 362

scalars, returned as values . 345

scanf, and constant strings . 162

SCCS DIRECTIVE . 401

SCHED GROUP P . 209

scheduling, delayed branch . 201

scheduling, instruction . 200

SCmode . 211

scond instruction pattern . 272

scope of a variable length array 119

scope of declaration . 166

scope of external declarations . 163

scratch . 218

scratch operands . 218

scratch, RTL sharing . 243

SDB ALLOW FORWARD REFERENCES 394

SDB ALLOW UNKNOWN REFERENCES 394

SDB DEBUGGING INFO . 393

SDB DELIM . 394

SDB GENERATE FAKE . 394

search path . 48

second include path . 44

SECONDARY INPUT RELOAD CLASS 332

SECONDARY MEMORY NEEDED . 333

Index 425

SECONDARY MEMORY NEEDED RTX . 333

SECONDARY OUTPUT RELOAD CLASS 332

SECONDARY RELOAD CLASS . 332

SELECT CC MODE . 365

SELECT RTX SECTION . 370

SELECT SECTION . 370

separate directory, compilation in 89

sequence . 230

sequential consistency on 88k . 56

set . 227

set attr . 297

set attr alternative . 297

SET DEST . 228

SET SRC . 228

setjmp . 140

setjmp incompatibilities . 162

SETUP FRAME ADDRESSES . 336

SETUP INCOMING VARARGS . 355

SFmode . 211

shared strings . 162

shared VMS run time system . 191

SHARED SECTION ASM OP . 369

sharing of RTL components . 243

shift . 222

SHIFT COUNT TRUNCATED . 398

SHORT TYPE SIZE . 319

side effect in ?: . 117

side effects, macro argument . 108

side effects, order of evaluation . 173

sign extend . 225

sign extract . 225

sign extract, canonicalization of 282

signed division . 221

signed maximum . 221

signed minimum . 221

SIGNED CHAR SPEC . 308

SImode . 211

simple constraints . 255

simplifications, arithmetic . 197

sin . 25

SIZE TYPE . 320

sizeof . 114

SLOW BYTE ACCESS . 368

SLOW UNALIGNED ACCESS . 368

SLOW ZERO EXTEND . 368

SMALL REGISTER CLASSES . 333

smaller data references (88k) . 56

smaller data references (MIPS) . 63

smax . 221

smin . 221

SPARC options . 52

specified registers . 138

specifying compiler version and target machine 49

specifying hardware config . 50

specifying machine version . 49

specifying registers for local variables 140

speed of instructions . 366

splitting instructions . 289

sqrt . 25, 222

sqrtm2 instruction pattern . 270

square root . 222

sscanf, and constant strings . 162

stack arguments . 340

stack checks (29k) . 55

stack frame layout . 335

STACK BOUNDARY . 315

STACK DYNAMIC OFFSET . 336

STACK DYNAMIC OFFSET and virtual registers 217

STACK GROWS DOWNWARD . 335

STACK PARMS IN REG PARM AREA . 341

STACK POINTER OFFSET . 335

STACK POINTER OFFSET and virtual registers 217

STACK POINTER REGNUM . 337

STACK POINTER REGNUM and virtual registers 217

stack pointer rtx . 338

STACK REGS . 327

stage1 . 86

standard pattern names . 267

STANDARD EXEC PREFIX . 309

STANDARD INCLUDE DIR . 310

STANDARD STARTFILE PREFIX . 309

start files . 91

STARTFILE SPEC . 308

STARTING FRAME OFFSET . 335

STARTING FRAME OFFSET and virtual registers 217

statements inside expressions . 107

426 Using and Porting GNU CC

static data in C++, declaring and defining 167

STATIC CHAIN . 338

STATIC CHAIN INCOMING . 338

STATIC CHAIN INCOMING REGNUM 337

STATIC CHAIN REGNUM . 337

‘stdarg.h’ and register arguments 342

‘stdarg.h’ and RT PC . 60

STDC VALUE . 311

storage layout . 314

STORE FLAG VALUE . 399

‘store multiple’ instruction pattern 269

strcmp . 25

strcpy . 25, 316

strength-reduction . 199

STRICT ALIGNMENT . 316

strict low part . 226

string constants . 162

string constants vs newline . 26

STRIP NAME ENCODING . 371

strlen . 25

strlenm instruction pattern . 271

STRUCT VALUE . 347

STRUCT VALUE INCOMING . 348

STRUCT VALUE INCOMING REGNUM 348

STRUCT VALUE REGNUM . 347

structure passing (88k) . 58

structure value address . 347

STRUCTURE SIZE BOUNDARY . 316

structures . 164

structures, constructor expression 122

structures, returning . 195

stupid register allocation . 199

subm3 instruction pattern . 269

submodel options . 50

subreg . 217

subreg and ‘/s’ . 207

subreg and ‘/u’ . 207

subreg, in strict low part . 226

subreg, special reload handling 218

SUBREG PROMOTED UNSIGNED P . 207

SUBREG PROMOTED VAR P . 207

SUBREG REG . 218

SUBREG WORD . 218

subscripting . 121

subscripting and function values 121

SUCCESS EXIT CODE . 403

suffixes for C++ source . 23

Sun installation . 96

suppressing warnings . 31

surprises in C++ . 167

SVr4 . 57

SWITCH TAKES ARG . 307

SWITCHES NEED SPACES . 307

symbol ref . 215

symbol ref and ‘/u’ . 208

symbol ref and ‘/v’ . 208

symbol ref, RTL sharing . 243

SYMBOL REF FLAG . 208

SYMBOL REF FLAG, in ENCODE SECTION INFO 371

SYMBOL REF USED . 208

symbolic label . 243

syntax checking . 31

sys siglist . 405

SYSTEM INCLUDE DIR . 310

T
tablejump instruction pattern . 275

tagging insns . 296

tail recursion optimization . 198

target description macros . 307

target machine, specifying . 49

target options . 49

target specifications . 311

target-parameter-dependent code 198

TARGET BELL . 321

TARGET BS . 321

TARGET CR . 322

TARGET EDOM . 359

TARGET FF . 322

TARGET FLOAT FORMAT . 318

TARGET MEM FUNCTIONS . 359

TARGET NEWLINE . 321

TARGET OPTIONS . 312

TARGET SWITCHES . 312

TARGET TAB . 321

TARGET VERSION . 313

Index 427

TARGET VT . 322

TCmode . 211

tcov . 38

template debugging . 34

temporaries, lifetime of . 168

termination routines . 380

text section . 370

TEXT SECTION ASM OP . 369

TFmode . 211

thunks . 110

TImode . 211

‘tm.h’ macros . 307

TMPDIR . 71

top level of compiler . 197

traditional C language . 25

TRADITIONAL RETURN FLOAT . 345

TRAMPOLINE ALIGNMENT . 356

TRAMPOLINE SECTION . 356

TRAMPOLINE SIZE . 356

TRAMPOLINE TEMPLATE . 356

trampolines for nested functions 355

TRANSFER FROM TRAMPOLINE . 358

TRULY NOOP TRUNCATION . 399

truncate . 226

truncmn instruction pattern . 271

tstm instruction pattern . 270

type alignment . 130

typedef names as function parameters 163

typeof . 114

U
udiv . 221

UDIVDI3 LIBCALL . 359

udivm3 instruction pattern . 269

udivmodm4 instruction pattern . 269

UDIVSI3 LIBCALL . 358

Ultrix calling convention . 160

umax . 221

umaxm3 instruction pattern . 269

umin . 221

uminm3 instruction pattern . 269

umod . 221

UMODDI3 LIBCALL . 359

umodm3 instruction pattern . 269

UMODSI3 LIBCALL . 358

umulhisi3 instruction pattern . 269

umulqihi3 instruction pattern . 269

umulsidi3 instruction pattern . 269

unchanging . 210

unchanging, in call insn . 208

unchanging, in insn . 208

unchanging, in reg and mem . 207

unchanging, in subreg . 207

unchanging, in symbol ref . 208

undefined behavior . 175

undefined function value . 175

underscores in variables in macros 114

underscores, avoiding (88k) . 56

union, casting to a . 125

unions . 164

unions, returning . 195

UNITS PER WORD . 314

UNKNOWN FLOAT FORMAT . 319

Unos installation . 98

unreachable code . 198

unshare all rtl . 243

unsigned division . 221

unsigned greater than . 224

unsigned less than . 224

unsigned minimum and maximum 221

unsigned fix . 226

unsigned float . 226

unspec . 231

unspec volatile . 231

untyped call instruction pattern 273

untyped return instruction pattern 274

use . 229

USE C ALLOCA . 404

USE PROTOTYPES . 405

used . 209

used, in symbol ref . 208

USER LABEL PREFIX . 385

USG . 403

V
‘V’ in constraint . 255

428 Using and Porting GNU CC

value after longjmp . 140

values, returned by functions . 345

varargs implementation . 353

‘varargs.h’ and RT PC . 60

variable alignment . 130

variable attributes . 131

variable number of arguments . 120

variable-length array scope . 119

variable-length arrays . 119

variables in specified registers . 138

variables, local, in macros . 114

Vax calling convention . 160

VAX options . 52

VAX FLOAT FORMAT . 319

‘VAXCRTL’ . 191

VIRTUAL INCOMING ARGS REGNUM 216

VIRTUAL OUTGOING ARGS REGNUM 217

VIRTUAL STACK DYNAMIC REGNUM 217

VIRTUAL STACK VARS REGNUM . 217

VMS . 403

VMS and case sensitivity . 191

VMS and include files . 187

VMS installation . 98

void pointers, arithmetic . 121

void, size of pointer to . 121

VOIDmode . 211

volatil . 209

volatil, in insn . 208

volatil, in mem . 207

volatil, in reg . 207

volatil, in symbol ref . 208

volatile applied to function . 126

volatile memory references . 209

voting between constraint alternatives 261

vprintf . 404

W
warning for enumeration conversions 34

warning for overloaded virtual fn 36

warning messages . 31

warnings vs errors . 173

WCHAR TYPE . 321

WCHAR TYPE SIZE . 321

which alternative . 254

whitespace . 164

word mode . 214

WORD REGISTER OPERATIONS . 398

WORD SWITCH TAKES ARG . 307

WORDS BIG ENDIAN . 314

WORDS BIG ENDIAN, effect on subreg 218

X
‘X’ in constraint . 256

XCmode . 211

XCOFF DEBUGGING INFO . 389

XEXP . 205

XFmode . 211

XINT . 205

‘xm-machine.h’ . 403

xor . 222

xor, canonicalization of . 282

xorm3 instruction pattern . 269

XSTR . 205

XVEC . 206

XVECEXP . 206

XVECLEN . 206

XWINT . 205

Z
zero division on 88k . 57

zero-length arrays . 118

zero extend . 225

zero extendmn instruction pattern 271

zero extract . 225

zero extract, canonicalization of 282

i

Short Contents

GNU GENERAL PUBLIC LICENSE . 1

Contributors to GNU CC . 9

1 Protect Your Freedom—Fight “Look And Feel” 11

2 Compile C, C++, or Objective C . 15

3 GNU CC Command Options . 17

4 Installing GNU CC . 77

5 Extensions to the C Language Family . 107

6 Extensions to the C++ Language . 145

7 Known Causes of Trouble with GNU CC . 151

8 Reporting Bugs . 175

9 How To Get Help with GNU CC . 185

10 Using GNU CC on VMS . 187

11 GNU CC and Portability . 193

12 Interfacing to GNU CC Output . 195

13 Passes and Files of the Compiler . 197

14 RTL Representation . 203

15 Machine Descriptions . 245

16 Target Description Macros . 307

17 The Configuration File . 403

Index . 407

ii Using and Porting GNU CC

iii

Table of Contents

GNU GENERAL PUBLIC LICENSE 1

Preamble . 1
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . 2
How to Apply These Terms to Your New Programs . 7

Contributors to GNU CC . 9

1 Protect Your Freedom—Fight “Look And Feel”
. 11

2 Compile C, C++, or Objective C 15

3 GNU CC Command Options . 17

3.1 Option Summary . 17
3.2 Options Controlling the Kind of Output . 21
3.3 Compiling C++ Programs . 23
3.4 Options Controlling C Dialect . 24
3.5 Options Controlling C++ Dialect . 27
3.6 Options to Request or Suppress Warnings . 31
3.7 Options for Debugging Your Program or GNU CC 36
3.8 Options That Control Optimization . 39
3.9 Options Controlling the Preprocessor . 44
3.10 Passing Options to the Assembler . 46
3.11 Options for Linking . 46
3.12 Options for Directory Search . 48
3.13 Specifying Target Machine and Compiler Version 49
3.14 Hardware Models and Configurations . 50

3.14.1 M680x0 Options . 51
3.14.2 VAX Options . 52
3.14.3 SPARC Options . 52
3.14.4 Convex Options . 53
3.14.5 AMD29K Options . 54
3.14.6 M88K Options . 55
3.14.7 IBM RS/6000 and PowerPC Options 58
3.14.8 IBM RT Options . 60
3.14.9 MIPS Options . 61

iv Using and Porting GNU CC

3.14.10 Intel 386 Options . 64
3.14.11 HPPA Options . 64
3.14.12 Intel 960 Options . 65
3.14.13 DEC Alpha Options . 66
3.14.14 Clipper Options . 67
3.14.15 Options for System V . 67

3.15 Options for Code Generation Conventions . 68
3.16 Environment Variables Affecting GNU CC . 71
3.17 Running Protoize . 72

4 Installing GNU CC . 77

4.1 Compilation in a Separate Directory . 89
4.2 Building and Installing a Cross-Compiler . 89

4.2.1 Steps of Cross-Compilation . 90
4.2.2 Configuring a Cross-Compiler . 90
4.2.3 Tools and Libraries for a Cross-Compiler 91
4.2.4 ‘libgcc.a’ and Cross-Compilers . 92
4.2.5 Cross-Compilers and Header Files . 93
4.2.6 Actually Building the Cross-Compiler 95

4.3 Installing on the HP Precision Architecture . 95
4.4 Installing GNU CC on the Sun . 96
4.5 Installing GNU CC on the 3b1 . 97
4.6 Installing GNU CC on Unos . 98
4.7 Installing GNU CC on VMS . 98
4.8 Installing GNU CC on the WE32K . 102
4.9 Installing GNU CC on the MIPS . 103
4.10 collect2 . 104
4.11 Standard Header File Directories . 105

5 Extensions to the C Language Family 107

5.1 Statements and Declarations in Expressions . 107
5.2 Locally Declared Labels . 108
5.3 Labels as Values . 109
5.4 Nested Functions . 110
5.5 Constructing Function Calls . 113
5.6 Naming an Expression’s Type . 113
5.7 Referring to a Type with typeof . 114
5.8 Generalized Lvalues . 115
5.9 Conditionals with Omitted Operands . 116
5.10 Double-Word Integers . 117
5.11 Complex Numbers . 117
5.12 Arrays of Length Zero . 118

v

5.13 Arrays of Variable Length . 119
5.14 Macros with Variable Numbers of Arguments 120
5.15 Non-Lvalue Arrays May Have Subscripts . 121
5.16 Arithmetic on void- and Function-Pointers . 121
5.17 Non-Constant Initializers . 122
5.18 Constructor Expressions . 122
5.19 Labeled Elements in Initializers . 123
5.20 Case Ranges . 124
5.21 Cast to a Union Type . 125
5.22 Declaring Attributes of Functions . 126
5.23 Prototypes and Old-Style Function Definitions 128
5.24 Dollar Signs in Identifier Names . 129
5.25 The Character ESC in Constants . 130
5.26 Inquiring on Alignment of Types or Variables 130
5.27 Specifying Attributes of Variables . 131
5.28 An Inline Function is As Fast As a Macro . 132
5.29 Assembler Instructions with C Expression Operands 133
5.30 Controlling Names Used in Assembler Code . 137
5.31 Variables in Specified Registers . 138

5.31.1 Defining Global Register Variables . 138
5.31.2 Specifying Registers for Local Variables 140

5.32 Alternate Keywords . 141
5.33 Incomplete enum Types . 142
5.34 Function Names as Strings . 142

6 Extensions to the C++ Language 145

6.1 Named Return Values in C++ . 145
6.2 Minimum and Maximum Operators in C++ . 147
6.3 goto and Destructors in GNU C++ . 148
6.4 Declarations and Definitions in One Header . 148

7 Known Causes of Trouble with GNU CC 151

7.1 Actual Bugs We Haven’t Fixed Yet . 151
7.2 Installation Problems . 151
7.3 Cross-Compiler Problems . 156
7.4 Interoperation . 156
7.5 Problems Compiling Certain Programs . 161
7.6 Incompatibilities of GNU CC . 162
7.7 Fixed Header Files . 165
7.8 Disappointments and Misunderstandings . 166
7.9 Common Misunderstandings with GNU C++ . 167

7.9.1 Declare and Define Static Members . 167

vi Using and Porting GNU CC

7.9.2 Temporaries May Vanish Before You Expect 168
7.10 Caveats of using protoize . 169
7.11 Certain Changes We Don’t Want to Make . 170
7.12 Warning Messages and Error Messages . 173

8 Reporting Bugs . 175

8.1 Have You Found a Bug? . 175
8.2 Where to Report Bugs . 176
8.3 How to Report Bugs . 177
8.4 Sending Patches for GNU CC . 181

9 How To Get Help with GNU CC 185

10 Using GNU CC on VMS . 187

10.1 Include Files and VMS . 187
10.2 Global Declarations and VMS . 188
10.3 Other VMS Issues . 190

11 GNU CC and Portability . 193

12 Interfacing to GNU CC Output 195

13 Passes and Files of the Compiler 197

14 RTL Representation . 203

14.1 RTL Object Types . 203
14.2 Access to Operands . 204
14.3 Flags in an RTL Expression . 207
14.4 Machine Modes . 210
14.5 Constant Expression Types . 214
14.6 Registers and Memory . 216
14.7 RTL Expressions for Arithmetic . 220
14.8 Comparison Operations . 223
14.9 Bit Fields . 224
14.10 Conversions . 225
14.11 Declarations . 226
14.12 Side Effect Expressions . 227
14.13 Embedded Side-Effects on Addresses . 231
14.14 Assembler Instructions as Expressions . 232
14.15 Insns . 233
14.16 RTL Representation of Function-Call Insns . 241

vii

14.17 Structure Sharing Assumptions . 243
14.18 Reading RTL . 244

15 Machine Descriptions . 245

15.1 Everything about Instruction Patterns . 245
15.2 Example of define insn . 246
15.3 RTL Template . 247
15.4 Output Templates and Operand Substitution 251
15.5 C Statements for Assembler Output . 253
15.6 Operand Constraints . 255

15.6.1 Simple Constraints . 255
15.6.2 Multiple Alternative Constraints . 259
15.6.3 Register Class Preferences . 261
15.6.4 Constraint Modifier Characters . 261
15.6.5 Constraints for Particular Machines 262
15.6.6 Not Using Constraints . 266

15.7 Standard Pattern Names For Generation . 267
15.8 When the Order of Patterns Matters . 276
15.9 Interdependence of Patterns . 277
15.10 Defining Jump Instruction Patterns . 279
15.11 Canonicalization of Instructions . 281
15.12 Machine-Specific Peephole Optimizers . 282
15.13 Defining RTL Sequences for Code Generation 286
15.14 Defining How to Split Instructions . 289
15.15 Instruction Attributes . 292

15.15.1 Defining Attributes and their Values 292
15.15.2 Attribute Expressions . 294
15.15.3 Assigning Attribute Values to Insns 296
15.15.4 Example of Attribute Specifications 298
15.15.5 Computing the Length of an Insn . 299
15.15.6 Constant Attributes . 301
15.15.7 Delay Slot Scheduling . 301
15.15.8 Specifying Function Units . 303

16 Target Description Macros . 307

16.1 Controlling the Compilation Driver, ‘gcc’ . 307
16.2 Run-time Target Specification . 311
16.3 Storage Layout . 314
16.4 Layout of Source Language Data Types . 319
16.5 Register Usage . 322

16.5.1 Basic Characteristics of Registers . 322
16.5.2 Order of Allocation of Registers . 324

viii Using and Porting GNU CC

16.5.3 How Values Fit in Registers . 324
16.5.4 Handling Leaf Functions . 326
16.5.5 Registers That Form a Stack . 327
16.5.6 Obsolete Macros for Controlling Register Usage 328

16.6 Register Classes . 329
16.7 Stack Layout and Calling Conventions . 335

16.7.1 Basic Stack Layout . 335
16.7.2 Registers That Address the Stack Frame 337
16.7.3 Eliminating Frame Pointer and Arg Pointer 338
16.7.4 Passing Function Arguments on the Stack 340
16.7.5 Passing Arguments in Registers . 342
16.7.6 How Scalar Function Values Are Returned 345
16.7.7 How Large Values Are Returned . 347
16.7.8 Caller-Saves Register Allocation . 348
16.7.9 Function Entry and Exit . 349
16.7.10 Generating Code for Profiling . 352

16.8 Implementing the Varargs Macros . 353
16.9 Trampolines for Nested Functions . 355
16.10 Implicit Calls to Library Routines . 358
16.11 Addressing Modes . 361
16.12 Condition Code Status . 364
16.13 Describing Relative Costs of Operations . 366
16.14 Dividing the Output into Sections (Texts, Data, . . .) 369
16.15 Position Independent Code . 371
16.16 Defining the Output Assembler Language . 372

16.16.1 The Overall Framework of an Assembler File 372
16.16.2 Output of Data . 374
16.16.3 Output of Uninitialized Variables . 376
16.16.4 Output and Generation of Labels . 377
16.16.5 How Initialization Functions Are Handled 380
16.16.6 Macros Controlling Initialization Routines 382
16.16.7 Output of Assembler Instructions . 383
16.16.8 Output of Dispatch Tables . 386
16.16.9 Assembler Commands for Alignment 387

16.17 Controlling Debugging Information Format . 388
16.17.1 Macros Affecting All Debugging Formats 388
16.17.2 Specific Options for DBX Output . 389
16.17.3 Open-Ended Hooks for DBX Format 391
16.17.4 File Names in DBX Format . 393
16.17.5 Macros for SDB and DWARF Output 393

16.18 Cross Compilation and Floating Point . 394
16.19 Miscellaneous Parameters . 397

ix

17 The Configuration File . 403

Index . 407

x Using and Porting GNU CC

