
Ex Reference Manual
Version 2.0 − April, 1979

William Joy*

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

ABSTRACT

Ex a line oriented text editor, which supports both command and display oriented
editing. This reference manual describes the command oriented part of ex; the display
editing features of ex are described in An Introduction to Display Editing with Vi. Other
documents about the editor include the introductionEdit: A tutorial, the Ex/edit Com-
mand Summary, and aVi Quick Referencecard.

Ex Reference Manual
Version 2.0 − April, 1979

William Joy*

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, Ca. 94720

1. Starting ex

Each instance of the editor has a set of options, which can be set to tailor it to your liking. The com-
mandedit invokes a version of ex designed for more casual or beginning users by changing the default set-
tings of some of these options. To simplify the description which follows we assume the default settings of
the options.

When invoked, ex determines the terminal type from theTERM variable in the environment. If there
is a file .exrc in your HOME directory ex reads commands from that file, simulating a source command.
Options setting commands placed in.exrc will be executed before each editor session.

A command to enterex has the following prototype:†

ex [−] [−v] [−t tag] [−r] [+lineno] name ...

The most common case edits a single file with no options, i.e.:

exname

The− command line option option suppresses all interactive-user feedback and is useful in processing edi-
tor scripts in command files. The−v option is equivalent to usingvi rather thanex. The−t option is equiv-
alent to an initial tag command, editing the file containing the tag and positioning the editor at its defini-
tion. The−r option is used in recovering after an editor or system crash, retrieving the last saved version of
the named file or, if no file is specified, typing a list of saved files. Namearguments indicate files to be
edited. An argument of the form +lineno indicates that the editor should begin at the specified line in the
first file rather than at the last line.

2. File manipulation

2.1. Curr ent file

Ex is normally editing the contents of a single file, whose name is recorded in thecurrentfile name.
Ex performs all editing actions in a buffer (actually a temporary file) into which the text of the file is ini-
tially read. Changes made to the buffer have no effect on the file being edited unless and until the buffer
contents are written out to the file with awrite command. After the buffer contents are written, the previous
contents of the written file are no longer accessible.When a file is edited, its name becomes the current file
name, and its contents are read into the buffer.

The current file is almost always considered to beedited. This means that the contents of the buffer
are logically connected with the current file name, so that writing the current buffer contents onto that file,
ev en if it exists, is a reasonable action. If the current file is not editedthenex will not normally write on it

* The financial support of an IBM Graduate Fellowship and the National Science Foundation under grants
MCS74-07644-A03 and MCS78-07291 is gratefully acknowledged.

† Brackets ‘[’ ‘]’ surround optional parameters here.

-2-

if it already exists.*

2.2. Alternate file

Each time a new value is given to the current file name, the previous current file name is saved as the
alternatefile name. Similarly if a file is mentioned but does not become the current file, it is saved as the
alternate file name.

2.3. Filenameexpansion

Filenames within the editor may be specified using the normal shell expansion conventions. In addi-
tion, the character ‘%’ in filenames is replaced by thecurrent file name and the character ‘#’ by thealter-
natefile name.†

2.4. Multiple files and named buffers

If more than one file is given on the command line, then the first file is edited as described above.
The remaining arguments are placed with the first file in theargument list. The current argument list may
be displayed with theargs command. Thenext file in the argument list may be edited with thenext com-
mand. Theargument list may also be respecified by specifying a list of names to thenext command. These
names are expanded, the resulting list of names becomes the new argument list, andex edits the first file on
the list.

For saving blocks of text while editing, and especially when editing more than one file, ex has a
group of named buffers. Theseare similar to the normal buffer, except that only a limited number of opera-
tions are available on them.The buffers have namesa throughz.‡

3. ExceptionalConditions

3.1. Err ors and interrupts

When errors occurex (optionally) rings the terminal bell and, in any case, prints an error diagnostic.
If the primary input is from a file, editor processing will terminate. If an interrupt signal is received, ex
prints ‘‘Interrupt’’ and returns to its command level. If the primary input is a file, thenex will exit when
this occurs.

3.2. Recovering fr om hangups and crashes

If a hangup signal is received and the buffer has been modified since it was last written out, or if the
system crashes, either the editor (in the first case) or the system (after it reboots in the second) will attempt
to preserve the buffer. The next time you log in you should be able to recover the work you were doing,
losing at most a few lines of changes from the last point before the hangup or editor crash.To recover a file
you can use the −r option. If you were editing the file resume, then you should change to the directory
where you were when the crash occurred, giving the command

ex −r resume

After checking that the retrieved file is indeed ok, you canwrite it over the previous contents of that file.

You will normally get mail from the system telling you when a file has been saved after a crash.The
command

ex−r

will print a list of the files which have been saved for you.

* Thefile command will say ‘‘[Not edited]’’ if the current file is not considered edited.

† This makes it easy to deal alternately with two files and eliminates the need for retyping the name supplied on
aneditcommand after aNo write since last changediagnostic is received.

‡ It is also possible to refer to A throughZ; the upper case buffers are the same as the lower but commands
append to named buffers rather than replacing if upper case names are used.

-3-

4. Editing modes

Ex has five distinct modes.The primary mode is commandmode. Commandsare entered in com-
mand mode when a ‘:’ prompt is present, and are executed each time a complete line is sent. In text input
modeex gathers input lines and places them in the file. Theappend, insert,andchange commands use text
input mode. No prompt is printed when you are in text input mode. This mode is left by typing a ‘.’ alone
at the beginning of a line, andcommandmode resumes.

The last three modes areopenandvisual modes, entered by the commands of the same name, and,
within open and visual modestext insertionmode. Openandvisualmodes allow local editing operations to
be performed on the text in the file. Theopencommand displays one line at a time on any terminal while
visual works on CRT terminals with random positioning cursors, using the screen as a (single) window for
file editing changes.These modes are described (only) inAn Introduction to Display Editing with Vi.

5. Commandstructur e

Most command names are English words, and initial prefixes of the words are acceptable abbrevia-
tions. Theambiguity of abbreviations is resolved in favor of the more commonly used commands.*

5.1. Commandparameters

Most commands accept prefix addresses specifying the lines in the file upon which they are to have
effect. The forms of these addresses will be discussed below. A number of commands also may take a
trailing countspecifying the number of lines to be involved in the command.†Thus the command ‘‘10p’’
will print the tenth line in the buffer while ‘‘delete 5’’ will delete five lines from the buffer, starting with the
current line.

Some commands take other information or parameters, this information always being given after the
command name.‡

5.2. Commandvariants

A number of commands have two distinct variants. Thevariant form of the command is invoked by
placing an ‘!’ immediately after the command name. Some of the default variants may be controlled by
options; in this case, the ‘!’ serves to toggle the default.

5.3. Flagsafter commands

The characters ‘#’, ‘p’ and ‘l’ may be placed after many commands.* In this case, the command
abbreviated by these characters is executed after the command completes.Sinceex normally prints the new
current line after each change, ‘p’ is rarely necessary. Any number of ‘+’ or ‘−’ characters may also be
given with these flags. If they appear, the specified offset is applied to the current line value before the
printing command is executed.

5.4. Multiple commands per line

More than one command may be placed on a line by separating each pair of commands by a ‘|’ char-
acter. Howev er theglobal commands, and the shell escape ‘!’ must be the last command on a line, as they
are not terminated by a ‘|’.

5.5. Reporting large changes

Most commands which change the contents of the editor buffer give feedback if the scope of the
change exceeds a threshold given by the report option. This feedback helps to detect undesirably large
changes so that they may be quickly and easily reversed with anundo. After commands with more global

* As an example, the commandsubstitutecan be abbreviated ‘s’ while the shortest available abbreviation for the
setcommand is ‘se’.

† Counts are rounded down if necessary.

‡ Examples would be option names in asetcommand i.e. ‘‘set number’’, a file name in anedit command, a reg-
ular expression in asubstitutecommand, or a target address for acopycommand, i.e. ‘‘1,5 copy 25’’.

* A ‘p’ or ‘l’ must be preceded by a blank or tab except in the single special case ‘dp’.

-4-

effect such asglobal or visual,you will be informed if the net change in the number of lines in the buffer
during this command exceeds this threshold.

6. Commandaddressing

6.1. Addressing primitives

. The current line. Most commands leave the current line as the last line which they
affect. Thedefault address for most commands is the current line, thus ‘.’ is rarely
used alone as an address.

n Thenth line in the editor’s buffer, lines being numbered sequentially from 1.

$ The last line in the buffer.

+n −n An offset relative to the current buffer line.†

/pat/ ?pat? Scan forward and backward respectively for a line containing pat, a regular
expression (as defined below). The scans normally wrap around the end of the
buffer. If all that is desired is to print the next line containingpat, then the trailing
/ or ? may be omitted. If pat is omitted or explicitly empty, then the last regular
expression specified is located.‡

´´ ´x Before each non-relative motion of the current line ‘.’, the previous current line is
marked with a tag, subsequently referred to as ‘´´’. This makes it easy to refer or
return to this previous context. Marksmay also be established by themark com-
mand, using single lower case lettersx and the marked lines referred to as ‘´x’.

6.2. Combining addressing primitives

Addresses to commands consist of a series of addressing primitives, separated by ‘,’ or ‘ ;’. Such
address lists are evaluated left-to-right. When addresses are separated by ‘;’ the current line ‘ .’ is set to the
value of the previous addressing expression before the next address is interpreted.If more addresses are
given than the command requires, then all but the last one or two are ignored. If the command takes two
addresses, the first addressed line must precede the second in the buffer.†

7. Commanddescriptions

The following form is a prototype for allex commands:

addresscommand! parameters count flags

All parts are optional; the degenerate case is the empty command which prints the next line in the file.

In the following command descriptions, the default addresses are shown in parentheses, which are
not,however, part of the command.

(.) append abbr:a
text
.

Reads the input text and places it after the specified line. After the command, ‘.’ addresses the last
line input or the specified line if no lines were input. If address ‘0’ is given, text is placed at the
beginning of the buffer.

† The forms ‘.+2’ ‘++;2’ and ‘++’ are all equivalent; if the current line is line 100 they all address line 102.

‡ The forms \/ and \? scan using the last regular expression used in a scan; after a substitute// and?? would
scan using the substitute’s regular expression.

† Null address specifications are permitted in a list of addresses, the default in this case is the current line ‘.’;
thus ‘,100’ is equivalent to ‘.,100’. It is an error to give a prefix address to a command which expects none.

-5-

a!
text
.

The variant flag toappendtoggles the setting for theautoindentoption during the input oftext.

args

The members of the argument list are printed, with the current argument delimited by ‘[’ and ‘]’.

(. , .) changecount abbr:c
text
.

Replaces the specified lines with the input text. The current line becomes the last line input; if no
lines were input it is left as for adelete.

c!
text
.

The variant togglesautoindentduring thechange.

(. , .) copyaddr flags abbr:co

A copyof the specified lines is placed afteraddr, which may be ‘0’. The current line ‘.’ addresses
the last line of the copy. The commandt is a synonym for copy.

(. , .) deletebuffer count flags abbr:d

Removes the specified lines from the buffer. The line after the last line deleted becomes the current
line; if the lines deleted were originally at the end, the new last line becomes the current line. If a
namedbuffer is specified by giving a letter, then the specified lines are saved in that buffer, or
appended to it if an upper case letter is used.

edit file abbr:e
exfile

Used to begin an editing session on a new file. Theeditor first checks to see if the buffer has been
modified since the lastwrite command was issued. If it has been, a warning is issued and the com-
mand is aborted.The command otherwise deletes the entire contents of the editor buffer, makes the
named file the current file and prints the new filename. After insuring that this file is sensible† the
editor reads the file into its buffer.

If the read of the file completes without error, the number of lines and characters read is typed. If
there were any non-ASCII characters in the file they are stripped of their non-ASCII high bits, and any
null characters in the file are discarded.If none of these errors occurred, the file is considerededited.
If the last line of the input file is missing the trailing newline character, it will be supplied and a com-
plaint will be issued.This command leaves the current line ‘.’ at the last line read.‡

e! file

The variant form suppresses the complaint about modifications having been made and not written
from the editor buffer, thus discarding all changes which have been made before editing the new file.

† I.e., that it is not a binary file such as a directory, a block or character special file other than/dev/tty, a termi-
nal, or a binary or executable file (as indicated by the first word).

‡ If executed from withinopenor visual,the current line is initially the first line of the file.

-6-

e+n file

Causes the editor to begin at linen rather than at the last line.

file abbr:f

Prints the current file name, whether it has been ‘[Modified]’ since the lastwrite command, the cur-
rent line, and the number of lines in the buffer.*

file file

The current file name is changed tofile which is considered ‘[Not edited]’.

(1 , $) global /pat/ cmds abbr:g

First marks each line among those specified which matches the given regular expression. Thenthe
given command list is executed with ‘.’ initially set to each marked line.

The command list consists of the remaining commands on the current input line and may continue to
multiple lines by ending all but the last such line with a ‘\’. Append, insert,andchange commands
and associated input are permitted; the ‘.’ terminating input may be omitted if it would be on the last
line of the command list. Openand visual commands are permitted in the command list and take
input from the terminal.

Theglobal command itself may not appear in cmds. Theundocommand is also not permitted there,
asundoinstead can be used to reverse the entireglobal command. Theoptionsautoprintandautoin-
dentare inhibited during a global, and the value of thereport option is temporarily infinite, in defer-
ence to a report for the entire global. Finally, the context mark ‘´´’ is set to the value of ‘.’ before the
global command begins and is not changed during a global command, except perhaps by anopenor
visualwithin theglobal.

g! /pat/ cmds abbr:v

The variant form ofglobal runscmdsat each line not matchingpat.

(.) insert abbr:i
text
.

Places the given text before the specified line. The current line is left at the last line input; if there
were none input it is left at the line before the addressed line. This command differs from append
only in the placement of text.

i!
text
.

The variant togglesautoindentduring theinsert.

(. , .+1) join count flags abbr:j

Places the text from a specified range of lines together on one line. White space is adjusted at each
junction to provide at least one blank character, two if there was a ‘.’ at the end of the line, or none if
the first following character is a ‘)’. If there is already white space at the end of the line, then the
white space at the start of the next line will be discarded.

* In the rare case that the current file is ‘[Not edited]’ this is noted also; in this case you have to use the form w!
to write to the file, since the editor is not sure that awrite will not destroy a file unrelated to the current contents
of the buffer.

-7-

j!

The variant causes a simplerjoin with no white space processing; the characters in the lines are sim-
ply concatenated.

(.) k x

Thek command is a synonym for mark. It does not require a blank or tab before the following letter.

(. , .) list count flags

Prints the specified lines in a more unambiguous way: tabs are printed as ‘ˆI’ and the end of each line
is marked with a trailing ‘$’. The current line is left at the last line printed.

(.) mark x

Gives the specified line markx, a single lower case letter. The x must be preceded by a blank or a
tab. The addressing form ‘´x’ then addresses this line. The current line is not affected by this com-
mand.

(. , .) moveaddr abbr:m

The move command repositions the specified lines to be after addr. The first of the moved lines
becomes the current line.

next abbr:n

The next file from the command line argument list is edited.

n!

The variant suppresses warnings about the modifications to the buffer not having been written out,
discarding (irretrievably) any changes which may have been made.

n filelist

The specifiedfilelist is expanded and the resulting list replaces the current argument list; the first file
in the new list is then edited.

(. , .) number count flags abbr:#f or nu

Prints each specified line preceded by its buffer line number. The current line is left at the last line
printed.

(.) openflags abbr:o
(.) open/pat/ flags

Enters intraline editing openmode at each addressed line. If pat is given, then the cursor will be
placed initially at the beginning of the string matched by the pattern.SeeAn Introduction to Display
Editing with Vi for more details.

preserve

The current editor buffer is saved as though the system had just crashed.This command is for use
only in emergencies when awrite command has resulted in an error and you don’t know how to sav e
your work. After apreserveyou should seek help.

(. , .) print count abbr:p

Prints the specified lines with non-printing characters printed as control characters ‘ˆx ’; delete (octal
177) is represented as ‘ˆ?’.The current line is left at the last line printed.

-8-

(.) put buffer abbr:pu

Puts back previously deletedor yanked lines. Normallyused with deleteto effect movement of lines,
or with yank to effect duplication of lines. If no buffer is specified, then the last deletedor yanked
text is restored.*By using a named buffer, text may be restored that was saved there at any previous
time.

quit abbr:q

Causesex to terminate.No automatic write of the editor buffer to a file is performed.However, ex
issues a warning message if the file has changed since the lastwrite command was issued, and does
not quit.† Normally, you will wish to save your changes, and you should give a write command; if
you wish to discard them, use theq! command variant.

q!

Quits from the editor, discarding changes to the buffer without complaint.†

(.) read file abbr:r

Places a copy of the text of the given file in the editing buffer after the specified line. If no file is
given the current file name is used. The current file name is not changed unless there is none in
which casefile becomes the current name. The sensibility restrictions for the edit command apply
here also. If the file buffer is empty and there is no current name thenex treats this as anedit com-
mand.

Address ‘0’ is legal for this command and causes the file to be read at the beginning of the buffer.
Statistics are given as for theedit command when theread successfully terminates.After a read the
current line is the last line read.‡

(.) read !command

Reads the output of the commandcommandinto the buffer after the specified line. This is not a vari-
ant form of the command, rather a read specifying a commandrather than a filename;a blank or tab
before the! is mandatory.

recover file

Recovers file from the system save area. Usedafter a accidental hangup of the phone** or a system
crash** or preservecommand. Exceptwhen you usepreserveyou will be notified by mail when a
file is saved.

rewind abbr:rew

The argument list is rewound, and the first file in the list is edited.

rew!

Rewinds the argument list discarding any changes made to the current buffer.

setparameter

With no arguments, prints those options whose values have been changed from their defaults; with
parameterall it prints all of the option values.

Giving an option name followed by a ‘?’ causes the current value of that option to be printed. The
‘?’ is unnecessary unless the option is Boolean valued. Booleanoptions are given values either by
the form ‘set option’ to turn them on or ‘set nooption’ to turn them off; string and numeric options

* But no modifying commands may intervene between thedeleteor yankand theput, nor may lines be moved
between files without using a named buffer.

† Exwill also issue a diagnostic if there are more files in the argument list.

‡ Within openandvisualthe current line is set to the first line read rather than the last.

** The system saves acopy of the file you were editing only if you have made changes to the file.

-9-

are assigned via the form ‘setoption=value’.

More than one parameter may be given to set; they are interpreted left-to-right.

shell abbr:sh

A new shell is created.When it terminates, editing resumes.

sourcefile abbr:so

Reads and executes commands from the specified file.Sourcecommands may be nested.

(. , .) substitute /pat/repl / options count flags addr:s

On each specified line, the first instance of patternpat is replaced by replacement patternrepl. If the
global indicator option character ‘g’ appears, then all instances are substituted; if theconfirmindica-
tion character ‘c’ appears, then before each substitution the line to be substituted is typed with the
string to be substituted marked with ‘↑ ’ characters. By typing an ‘y’ one can cause the substitution
to be performed, any other input causes no change to take place. After a substitutethe current line is
the last line substituted.

Lines may be split by substituting new-line characters into them. The newline in repl must be
escaped by preceding it with a ‘\’.† Other metacharacters available in pat and repl are described
below.

(. , .) t addr flags

Thet command is a synonym for copy.

ta tag

The focus of editing switches to the location of tag, switching to a different line in the current file
where it is defined, or if necessary to another file.‡

The tags file is normally created by a program such asctags,and consists of a number of lines with
three fields separated by blanks or tabs. The first field gives the name of the tag, the second the name
of the file where the tag resides, and the third gives an addressing form which can be used by the edi-
tor to find the tag; this field is usually a contextual scan using ‘/pat/’ to be immune to minor changes
in the file.

undo abbr:u

Reverses the changes made in the buffer by the last buffer editing command.Note thatglobal com-
mands are considered a single command for the purpose of undo(as areopenandvisual.) Also, the
commandswrite and edit which interact with the file system cannot be undone. Undo is its own
inverse.

Undoalways marks the previous value of the current line ‘.’ as ‘ ´´’. After anundothe current line is
the first line restored or the line before the first line deleted if no lines were restored.For commands
with more global effect such asglobal andvisual the current line regains it pre-command value after
anundo.

(1 , $) v /pat/ cmds

A synonym for theglobal command variantg!, running the specifiedcmdson each line which does
not matchpat.

† If thesubstituteis within aglobal, then two escaping ‘\’ characters will be needed.)

‡ If you have modified the current file before giving a tag command, you must write it out; giving anothertag
command, specifying notag will reuse the previous tag.

-10-

version abbr:ve

Prints the current version number of the editor as well as the date the binary was created.

(.) visual type count flags abbr:vi

Enters visual mode at the specified line. Type is optional and may be ‘−’ , ‘↑ ’ or ‘ .’ as in thez com-
mand to specify the placement of the specified line on the screen.By default, if type is omitted, the
specified line is placed as the first on the screen.A countspecifies an initial window size; the default
is the value of the optionwindow. See the documentAn Introduction to Display Editing with Vi for
more details.

(1 , $) write file abbr:w

Writes changes made back to file, printing the number of lines and characters written. Normally file
is omitted and the text goes back where it came from. If afile is specified, then text will be written to
that file.* If the file does not exist it is created.The current file name is changed only if there is no
current file name; the current line is never changed.

If an error occurs while writing the current andeditedfile, the editor considers that there has been
‘‘No write since last change’’ even if the buffer had not previously been modified.

(1 , $) write>> file abbr:w>>

Writes the buffer contents at the end of an existing file.

w! name

Overrides the checking of the normalwrite command, and will write to any file which the system
permits.

(1 , $) w !command

Writes the specified lines into command.Note the difference betweenw! which overrides checks and
w ! which writes to a command.

wq name

Likeawrite and then aquit command.

wq! name

The variant overrides checking on the sensibility of thewrite command, asw! does.

(. , .) yank buffer count abbr:ya

Places the specified lines in the namedbuffer, for later retrieval via put. If no buffer name is speci-
fied, the lines go to a more volatile place; see theputcommand description.

(.) z type count

Prints a window of text with the specified line at the top. If type is ‘−’ the line is placed at the bot-
tom; a ‘.’ causes the line to be placed in the center.* A count gives the number of lines to be dis-
played rather than the number specified by thewindowoption. Ona CRT the screen is cleared before
display begins unless a count which is less than the screen size is given. Thecurrent line is left at the
last line printed.

* The editor writes to a file only if it is the current file and is edited, if the file does not exist, or if the file is
actually a teletype,/dev/tty, /dev/null. Otherwise, you must give the variant formw! to force the write.

* Forms ‘z=’ and ‘z↑ ’ also exist; ‘z=’ places the current line in the center, surrounds it with lines of ‘−’ charac-
ters and leaves the current line at this line. The form ‘z↑ ’ prints the window before ‘z−’ would. Thecharacters
‘+’, ‘ ↑ ’ and ‘−’ may be repeated for cumulative effect.

-11-

! command

The remainder of the line after the ‘!’ character is sent to a shell to be executed. Within the text of
commandthe characters ‘%’ and ‘#’ are expanded as in filenames and the character ‘!’ is replaced
with the text of the previous command.Thus, in particular, ‘ !!’ repeats the last such shell escape.If
any such expansion is performed, the expanded line will be echoed.The current line is unchanged by
this command.

If there has been ‘‘[No write]’ ’ of the buffer contents since the last change to the editing buffer, then a
diagnostic will be printed before the command is executed as a warning. A single ‘!’ is printed when
the command completes.

(addr , addr) ! command

Takes the specified address range and supplies it as standard input to command;the resulting output
then replaces the input lines.

($) =

Prints the line number of the addressed line.The current line is unchanged.

(. , .) > count flags
(. , .) < count flags

Perform intelligent shifting on the specified lines;< shifts left and> shift right. The quantity of shift
is determined by the shiftwidthoption and the repetition of the specification character. Only white
space (blanks and tabs) is shifted; no non-white characters are discarded in a left-shift. The current
line becomes the last line which changed due to the shifting.

ˆD

An end-of-file from a terminal input scrolls through the file. The scroll option specifies the size of
the scroll, normally a half screen of text.

(.+1)
(.+1) |

An address alone causes the addressed line to be printed.A blank line prints the next line in the file.

(. , .) & options count flags

Repeats the previoussubstitutecommand.

(. , .) ˜ options count flags

Replaces the previous regular expression with the previous replacement pattern from a substitution.

8. Regular expressions and substitute replacement patterns

8.1. Regular expressions

A regular expression specifies a set of strings of characters.A member of this set of strings is said to
bematchedby the regular expression.Ex remembers two previous regular expressions: the previous regu-
lar expression used in asubstitutecommand and the previous regular expression used elsewhere (referred to
as the previousscanningregular expression.) Theprevious regular expression can always be referred to by
anull re, e.g. ‘//’ or ‘??’.

8.2. Magic and nomagic

The regular expressions allowed by ex are constructed in one of two ways depending on the setting of
themagic option. Theex default setting of magic gives quick access to a powerful set of regular expression
metacharacters. The disadvantage of magic is that the user must remember that these metacharacters are
magic and precede them with the character ‘\’ to use them as ‘‘ordinary’’ characters. With nomagic, the

-12-

default for edit and vi, regular expressions are much simpler, there being only two metacharacters. The
power of the other metacharacters is still available by preceding the (now) ordinary character with a ‘\’.
Note that ‘\’ is thus always a metacharacter.

The remainder of the discussion of regular expressions assumes that that the setting of this option is
magic.†

8.3. Basicregular expression summary

The following basic constructs are used to constructmagic mode regular expressions.

char An ordinary character matches itself. The characters ‘↑ ’ at the beginning of a line, ‘$’ at
the end of line, ‘*’ as any character other than the first, ‘.’, ‘\’, ‘[’, and ‘˜’ are not ordi-
nary characters and must be escaped (preceded) by ‘\’ to be treated as such.

↑↑ At the beginning of a pattern forces the match to succeed only at the beginning of a line.

$ At the end of a regular expression forces the match to succeed only at the end of the line.

. Matches any single character except the new-line character.

\< Forces the match to occur only at the beginning of a ‘‘variable’’ or ‘‘word’’; that is,
either at the beginning of a line, or just before a letter, digit, or underline and after a
character not one of these.

\> Similar to ‘\<’, but matching the end of a ‘‘variable’’ or ‘‘word’’, i.e. either the end of the
line or before character which is neither a letter, nor a digit, nor the underline character.

[string] Matches any (single) character in the class defined by string. Most characters in string
define themselves. A pair of characters separated by ‘−’ in string defines the set of char-
acters collating between the specified lower and upper bounds, thus ‘[a−z]’ as a regular
expression matches any (single) lower-case letter. If the first character of string is an ‘↑ ’
then the construct matches those characters which it otherwise would not; thus ‘[↑a−z]’
matches anything but a lower-case letter (and of course a newline). To place any of the
characters ‘↑ ’, ‘[’, or ‘−’ in stringyou must escape them with a preceding ‘\’.

8.4. Combining regular expression primitives

The concatenation of two regular expressions matches the leftmost and then longest string which can
be divided with the first piece matching the first regular expression and the second piece matching the sec-
ond. Any of the (single character matching) regular expressions mentioned above may be followed by the
character ‘*’ to form a regular expression which matches any number of adjacent occurrences (including 0)
of characters matched by the regular expression it follows.

The character ‘˜’ may be used in a regular expression, and matches the text which defined the
replacement part of the last substitutecommand. A regular expression may be enclosed between the
sequences ‘\(’ and ‘\)’ with side effects in thesubstitutereplacement patterns.

8.5. Substitutereplacement patterns

The basic metacharacters for the replacement pattern are ‘&’ and ‘˜’; these are given as ‘ \&’ and ‘\˜’
when nomagic is set. Each instance of ‘&’ is replaced by the characters which the regular expression
matched. The metacharacter ‘˜’ stands, in the replacement pattern, for the defining text of the previous
replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the escaping char-
acter ‘\’. The sequence ‘\n’ is replaced by the text matched by the n-th regular subexpression enclosed
between ‘\(’ and ‘\)’.† The sequences ‘\u’ and ‘\l’ cause the immediately following character in the
replacement to be converted to upper- or lower-case respectively if this character is a letter. The sequences

† To discern what is true with nomagic it suffices to remember that the only special characters in this case will
be ‘↑ ’ at the beginning of a regular expression, ‘$’ at the end of a regular expression, and ‘\’. With nomagic the
characters ‘̃’ and ‘&’ also lose their special meanings related to the replacement pattern of a substitute.

† When nested, parenthesized subexpressions are present,n is determined by counting occurrences of ‘\(’ start-
ing from the left.

-13-

‘\U’ and ‘\L’ turn such conversion on, either until ‘\E’ or ‘\e’ is encountered, or until the end of the replace-
ment pattern.

9. Option descriptions

autoindent, ai default: noai

Can be used to ease the preparation of structured program text. At the beginning of eachappend,
change or insertcommand or when a new line is openedor created by anappend, change, insert, or
substituteoperation within openor visual mode,ex looks at the line being appended after, the first
line changed or the line inserted before and calculates the amount of white space at the start of the
line. It then aligns the cursor at the level of indentation so determined.

If the user then types lines of text in, they will continue to be justified at the displayed indenting
level. If more white space is typed at the beginning of a line, the following line will start aligned
with the first non-white character of the previous line. To back the cursor up to the preceding tab
stop one can hit ˆD. The tab stops going backwards are defined at multiples of theshiftwidthoption.
You cannotbackspace over the indent, except by sending an end-of-file with aˆD.

Specially processed in this mode is a line with no characters added to it, which turns into a com-
pletely blank line (the white space provided for the autoindentis discarded.)Also specially pro-
cessed in this mode are lines beginning with an ‘↑ ’ and immediately followed by a ˆD. This causes
the input to be repositioned at the beginning of the line, but retaining the previous indent for the next
line. Similarly, a ‘0’ followed by a ˆD repositions at the beginning but without retaining the previous
indent.

Autoindentdoesn’t happen inglobalcommands or when the input is not a terminal.

autoprint , ap default: ap

Causes the current line to be printed after eachdelete, copy, join, move, substitute, t, undoor shift
command. This has the same effect as supplying a trailing ‘p’ to each such command.Autoprint is
suppressed in globals, and only applies to the last of many commands on a line.

beautify, bf default: nobeautify

Causes all control characters except tab, newline and form-feed to be discarded from the input. A
complaint is registered the first time a backspace character is discarded.Beautifydoes not apply to
command input.

dir ectory, dir default: dir=/tmp

Specifies the directory in whichex places its buffer file. If this directory in not writable, then the edi-
tor will exit abruptly when it fails to be able to create its buffer there.

errorbells, eb default: eb

Error messages are preceded by a bell.* If possible the editor always places the error message in a
standout mode of the terminal (such as inverse video) instead of ringing the bell.

ignorecase, ic default: noic

All upper case characters in the text are mapped to lower case in regular expression matching. In
addition, all upper case characters in regular expressions are mapped to lower case except in charac-
ter class specifications.

* Bell ringing inopenandvisualon errors is not suppressed by settingnoeb.

-14-

lisp default: nolisp

Autoindentindents appropriately for lisp code, and the() { } [[and]] commands in openandvisual
are modified to have meaning forlisp.

list default: nolist

All printed lines will be displayed (more) unambiguously, showing tabs and end-of-lines as in the list
command.

magic default: magic forex†

If nomagic is set, the number of regular expression metacharacters is greatly reduced, with only ‘↑ ’
and ‘$’ having special effects. In addition the metacharacters ‘˜’ and ‘&’ of the replacement pattern
are treated as normal characters.All the normal metacharacters may be mademagic whennomagic
is set by preceding them with a ‘\’.

number, nu default: nonumber

Causes all output lines to be printed with their line numbers. In addition each input line will be
prompted for by supplying the line number it will have.

open default: open

If noopen, the commandsopenandvisualare not permitted. This is set for edit to prevent confusion
resulting from accidental entry to open or visual mode.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal to not do automatic carriage returns when
printing more than one (logical) line of output. greatly speeding output on terminals without address-
able cursors when text with leading white space is printed.

paragraphs, para default: para=IPLPPPQPbp

Specifies the paragraphs for the{ and} operations in openandvisual. The pairs of characters in the
option’s value are the names of the macros which start paragraphs.

prompt default: prompt

Command mode input is prompted for with a ‘:’.

report default: report=5†

Specifies a threshold for feedback from commands.Any command which modifies more than the
specified number of lines will provide feedback as to the scope of its changes.For commands such
asglobal, open, undo, and visual which have potentially more far reaching scope, the net change in
the number of lines in the buffer is presented at the end of the command, subject to this same thresh-
old. Thus notification is suppressed during a global command on the individual commands per-
formed.

scroll default: scroll=12

Determines the number of logical lines scrolled when an end-of-file is received from a terminal input.

sections default: sections=SHNH

Specifies the section macros for the[[and]] operations in openandvisual. The pairs of characters in
the options’s value are the names of the macros which start paragraphs.

† Nomagic for editandvi.

† 2 for edit.

-15-

shell, sh default: sh=/bin/sh

Gives the path name of the shell forked for the shell escape command ‘!’, and by theshellcommand.

shiftwidth , sw default: sw=8

Gives the width a software tab stop, used in reverse tabbing with ˆD when usingautoindentto append
text, and by the shift commands.

showmatch, sm default: nosm

In openandvisualmode, when a) or } is typed, move the cursor to the matching(or { for one sec-
ond if this matching character is on the screen.Extremely useful withlisp.

slowopen, slow terminal dependent

Affects the display algorithm used in visualmode, holding off display updating during input of new
text to improve throughput when the terminal in use is both slow and unintelligent. SeeAn Introduc-
tion to Display Editing with Vi for more details.

tabstop, ts default: ts=8

The editor expands tabs in the input file to be ontabstopboundaries for the purposes of display.

term from environment

The terminal type of the output device.

terse default: noterse

Shorter error diagnostics are produced for the experienced user.

warn default: warn

Warn if there has been ‘[No write since last change]’ before a ‘!’command escape.

window default: window=23

The number of lines in a text window for thez andvisualcommands.

wrapscap, ws default: ws

Searches using the regular expressions in addressing will wrap around past the end of the file.

wrapmargin, wm default: wm=0

Defines a margin for automatic wrapover of text during input in openand visual modes. SeeAn
Introduction to Text Editing with Vi for details.

writeany, wa default: nowa

Inhibit the checks normally made beforewrite commands, allowing a write to any file which the sys-
tem protection mechanism will allow.

10. Limitations

This editor uses a temporary file as a workspace and each line in the buffer is represented by an in-
core pointer to the image of that line on the disk. The editor doesnot reclaim space in this temporary file
used by lines which are deleted or changed.This means that files which are larger than 128K characters
may be difficult to edit, and that systematic changes on large numbers of lines may run the editor out of
temporary file space.

If the editor runs out of temporary space you can write the file and then use anedit command to read
it back in. This will reclaim the lost space.A better solution is to split the file into smaller pieces or to use
astream editor such assedon the file.

-16-

Other editor limits that the user is likely to encounter are as follows: 512 characters per line, 256
characters per global command list, 64 characters per file name, 128 characters in the previous inserted and
deleted text in openor visual,100 characters in a shell escape command, 30 characters in a string valued
option, 30 characters in a tag name, and 256K characters in the temporary file. The limit on the number of
lines depends on the amount of core: each line takes at least 1 word, and to effectundooccasionally up to 2.

