
UNIX For Beginners

Brian W. Kernighan

ABSTRACT

This paper is meant to help new users get started on UNIX.It covers:

• basics needed for day-to-day use of the system _ typing commands, correcting typing
mistakes, logging in and out, mail, inter-console communication, the file system, printing
files, redirecting I/O, pipes, and the shell.

• document preparation _ a brief tutorial on the ROFF formatter for beginners, hints on
preparing documents, and capsule descriptions of some supporting software.

• UNIX programming _ using the editor, programming the shell, programming in C, other
languages.

There is also an annotated UNIX bibliography.

UNIX For Beginners

Brian W. Kernighan

UNIX f or Beginners

Brian W. Kernighan

Bell Laboratories, Murray Hill, N. J.

In many ways, UNIX is the state of the art in
computer operating systems.From the user’s point
of view, it is easy to learn and use, and presents few
of the usual impediments to getting the job done.

It is hard, however, for the beginner to know
where to start, and how to make the best use of the
facilities available. The purpose of this introduc-
tion is to point out high spots for new users, so they
can get used to the main ideas of UNIX and start
making good use of it quickly.

This paper is not an attempt to re-write the
UNIX Programmer’s Manual; often the discussion
of something is simply ‘‘read section x in the man-
ual.’’ (This implies that you will need a copy of the
UNIX Programmer’s Manual.) Rather it suggests in
what order to read the manual, and it collects
together things that are stated only indirectly in the
manual.

There are fivesections:

1.
Getting Started: How to log in to a UNIX, how
to type, what to do about mistakes in typing,
how to log out. Some of this is dependent on
which UNIX you log into (phone numbers, for
example) and what terminal you use, so this
section must necessarily be supplemented by
local information.

2.
Day-to-day Use: Things you need every day to
use UNIX effectively: generally useful com-
mands; the file system.

3.
Document Preparation: Preparing manuscripts
is one of the most common uses for UNIX.
This section contains advice, but not extensive

instructions on any of the formatting programs.

4.
Writing Programs:UNIX is an excellent vehicle
for developing programs. This section talks
about some of the tools, but again is not a tuto-
rial in any of the programming languages that
UNIX provides.

5.
A UNIX Reading List. An annotated bibliogra-
phy of documents worth reading by new users.

I. GETTING STARTED

Logging In

Most of the details about logging in are in the
manual section called ‘‘How to Get Started’’ (pages
iv-v in the 5th Edition). Here are a couple of extra
warnings.

You must have a UNIX login name, which you
can get from whoever administers your system.
You also need to know the phone number. UNIX is
capable of dealing with a variety of terminals: Ter-
minet 300’s; Execuport, TI and similar portables;
video terminals; GSI’s; and even the venerable
Teletype in its various forms. But note:UNIX will
not handle IBM 2741 terminals and their deriv-
atives (e.g., some Anderson-Jacobsons, Novar).
Furthermore,UNIX is strongly oriented towards
devices with lower case. If your terminal produces
only upper case (e.g., model 33 Teletype), life will
be so difficult that you should look for another ter-
minal.

Be sure to set the switches appropriately on
your device: speed (if it’s variable) to 30 characters
per second, lower case, full duplex, even parity, and
any others that local wisdom advises. Establish a
connection using whatever magic is needed for
your terminal. UNIX should type ‘‘login:’ ’ at you.

-2-

If it types garbage, you may be at the wrong speed;
push the ‘break’ or ‘interrupt’ key once. If that
fails to produce a login message, consult a guru.

When you get a ‘‘login:’ ’ message, type your
login namein lower case. Follow it by a RETURN
if the terminal has one. If a password is required,
you will be asked for it, and (if possible) printing
will be turned off while you type it, again followed
by a RETURN. (On M37 Teletypes always use
NEWLINE or LINEFEED in place ofRETURN).

The culmination of your login efforts is a per-
cent sign ‘‘%’’. Thepercent sign means thatUNIX
is ready to accept commands from the terminal.
(You may also get a message of the day just before
the percent sign or a notification that you have
mail.)

Typing Commands

Once you’ve seen the percent sign, you can
type commands, which are requests that UNIX do
something. Try typing
date

followed by RETURN. You should get back some-
thing like
Sun Sep 22 10:52:29 EDT 1974

Don’t forget the RETURN after the command, or
nothing will happen. If you think you’re being
ignored, type aRETURN; something should happen.
We won’t show the carriage returns, but they hav e
to be there.

Another command you might try is which tells
you everyone who is currently logged in:
who

gives something like
pjp ttyf Sep 22 09:40 bwk ttyg Sep 22
09:48 mel ttyh Sep22 09:58

The time is when the user logged in.

If you make a mistake typing the command
name,UNIX will tell you. For example, if you type
whom

you will be told
whom: not found

Strange Terminal Behavior

Sometimes you can get into a state where your
terminal acts strangely. For example, each letter
may be typed twice, or theRETURN may not cause
a line feed. You can often fix this by logging out
and logging back in. Or you can read the descrip-
tion of the command in section I of the manual.
This will also tell you how to get intelligent treat-
ment of tab characters (which are much used in
UNIX) if your terminal doesn’t hav e tabs. If it does
have computer-settable tabs, the command will set
the stops correctly for you.

Mistakes in Typing

If you make a typing mistake, and see it before
the carriage return has been typed, there are two
ways to recover. The sharp-character ‘‘#’ ’ erases
the last character typed; in fact successive uses of
‘‘#’’ erase characters back to the beginning of the
line (but not beyond). So if you type badly, you
can correct as you go:
dd#atte##e

is the same as ‘‘date’’.

The at-sign ‘‘@’’ erases all of the characters
typed so far on the current input line, so if the line
is irretrievably fouled up, type an ‘‘@’’ and start
over (on the same line!).

What if you must enter a sharp or at-sign as
part of the text? If you precede either ‘‘#’ ’ or ‘‘@’’
by a backslash ‘‘\’ ’, it loses its erase meaning.This
implies that to erase a backslash, you have to type
two sharps or two at-signs. The backslash is used
extensively in UNIX to indicate that the following
character is in some way special.

Readahead

UNIX has full readahead, which means that you
can type as fast as you want, whenever you want,
ev en when some command is typing at you. If you
type during output, your input characters will
appear intermixed with the output characters, but
they will be stored away by UNIX and interpreted in
the correct order. So you can type two commands
one after another without waiting for the first to fin-
ish or even begin.

Stopping a Program

You can stop most programs by typing the
character ‘‘DEL’’ (perhaps called ‘‘delete’’ or
‘‘ rubout’’ on your terminal). There are exceptions,
like the text editor, whereDEL stops whatever the
program is doing but leaves you in that program.
You can also just hang up the phone. The ‘‘inter-
rupt’’ or ‘‘break’’ key found on most terminals has
no effect.

Logging Out

The easiest way to log out is to hang up the
phone. You can also type
login name-of-new-user

and let someone else use the terminal you were on.
It is not sufficient just to turn off the terminal.
UNIX has no time-out mechanism, so you’ll be
there forever unless you hang up.

Mail

When you log in, you may sometimes get the
message
You hav email.

UNIX provides a postal system so you can send and

-3-

receive letters from other users of the system. To
read your mail, issue the command
mail

Your mail will be printed, and then you will be
asked
Save?

If you do want to save the mail, typey, for ‘‘yes’’;
any other response means ‘‘no’’.

How do you send mail to someone else? Sup-
pose it is to go to ‘‘joe’’ (assuming ‘‘joe’’ is some-
one’s login name).The easiest way is this:
mail joe now type in the text of the letter on as
many lines as you like ... after the last line of the
letter type the character ‘‘control-d’’, that is,
hold down ‘‘control’’ and type a letter ‘‘d’’.

And that’s it. The ‘‘control-d’’ sequence, usually
called ‘‘EOT’’, is used throughoutUNIX to mark
the end of input from a terminal, so you might as
well get used to it.

There are other ways to send mail _ you can
send a previously prepared letter, and you can mail
to a number of people all at once. For more details
see

The notation means the command in section (I)
of theUNIX Programmer’s Manual.

Writing to other users

At some point in your UNIX career, out of the
blue will come a message like
Message from joe...

accompanied by a startling beep. It means that Joe
wants to talk to you, but unless you take explicit
action you won’t be able to talk back. To respond,
type the command
write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will appear
on yours and vice versa. The path is slow, rather
like talking to the moon. (If you are in the middle
of something, you have to get to a state where you
can type a command.Normally, whatever program
you are running has to terminate or be terminated.
If you’re editing, you can escape temporarily from
the editor _ read the manual.)

A protocol is needed to keep what you type
from getting garbled up with what Joe types. Typi-
cally it’s like this:

Joe types ‘‘write smith’’ and waits.
Smith types ‘‘write joe’’ and waits.
Joe now types his message (as many lines as he
likes). Whenhe’s ready for a reply, he signals it
by typing (o), which stands for ‘‘over’’.
Now Smith types a reply, also terminated by (o).
This cycle repeats until someone gets tired; he
then signals his intent to quit with (o+o), for
‘‘over and out’’.
To terminate the conversation, each side must
type a ‘‘control-d’’ character alone on a line.
(‘‘Delete’’ also works.) When the other person
types his ‘‘control-d’’, you will get the message
‘‘EOT’’ on your terminal.

If you write to someone who isn’t logged in, or
who doesn’t want to be disturbed, you’ll be told. If
the target is logged in but doesn’t answer after a
decent interval, simply type ‘‘control-d’’.

On-line Manual

The UNIX Programmer’s Manual is typically
kept on-line. If you get stuck on something, and
can’t find an expert to assist you, you can print on
your terminal some manual section that might help.
It’s also useful for getting the most up-to-date
information on a command.To print a manual sec-
tion, type ‘‘man section-name’’. Thusto read up on
the command, type
man who

If the section in question isn’t in part I of the man-
ual, you have to giv e the section number as well, as
in
man 6 chess

Of course you’re out of luck if you can’t remember
the section name.

II. DAY -TO-DAY USE

Creating Files _ The Editor

If we have to type a paper or a letter or a pro-
gram, how do we get the information stored in the
machine? Most of these tasks are done with the
UNIX ‘‘ text editor’’ Since is thoroughly docu-
mented in and explained in A Tutorial Introduction
to the UNIX Text Editor, we won’t spend any time
here describing how to use it. All we want it for
right now is to make some files. (A file is just a
collection of information stored in the machine, a
simplistic but adequate definition.)

To create a file with some text in it, do the fol-
lowing:

ed (invokes the text editor)
a (command to ‘‘ed’’, to add text)
now type in
whatever text you want ...
. (signals the end of adding text)

At this point we could do various editing operations
on the text we typed in, such as correcting spelling

-4-

mistakes, rearranging paragraphs and the like.
Finally, we write the information we have typed
into a file with the editor command ‘‘w’ ’:
w junk

will respond with the number of characters it wrote
into the file called ‘‘junk’ ’.

Suppose we now add a few more lines with
‘‘a’’, terminate them with ‘‘.’’ , and write the whole
thing out as ‘‘temp’’, using
w temp

We should now hav e two files, a smaller one called
‘‘ junk’’ and a bigger one (bigger by the extra lines)
called ‘‘temp’’. Type a ‘‘q’ ’ to quit the editor.

What files areout there?

The (for ‘‘list’ ’) command lists the names (not
contents) of any of the files thatUNIX knows about.
If we type
ls

the response will be
junk temp

which are indeed our two files. They are sorted
into alphabetical order automatically, but other
variations are possible.For example, if we add the
optional argument ‘‘-t’ ’,
ls -t

lists them in the order in which they were last
changed, most recent first. The ‘‘-l’ ’ option gives a
‘‘ long’’ listing:
ls -l

will produce something like
-rw-rw-rw- 1 bwk 41 Sep 22 12:56 junk -rw-
rw-rw- 1 bwk 78Sep 22 12:57 temp

The date and time are of the last change to the file.
The 41 and 78 are the number of characters (you
got the same thing from ‘‘bwk’ ’ is the owner of the
file _ the person who created it. The ‘‘-rw-rw-rw-’ ’
tells who has permission to read and write the file,
in this case everyone.

Options can be combined: ‘‘ls -lt’’ would give
the same thing, but sorted into time order. You can
also name the files you’re interested in, and will list
the information about them only. More details can
be found in

It is generally true of UNIX programs that
‘‘flag’’ arguments like ‘‘-t’ ’ precede filename argu-
ments.

Printing Files

Now that you’ve got a file of text, how do you
print it so people can look at it? There are a host of
programs that do that, probably more than are
needed.

One simple thing is to use the editor, since
printing is often done just before making changes
anyway. You can say

ed junk 1,$p
will reply with the count of the characters in
‘‘ junk’’ and then print all the lines in the file. After
you learn how to use the editor, you can be selec-
tive about the parts you print.

There are times when it’s not feasible to use the
editor for printing. For example, there is a limit on
how big a file can handle (about 65,000 characters
or 4000 lines). Secondly, it will only print one file
at a time, and sometimes you want to print several,
one after another. So here are a couple of alterna-
tives.

First is the simplest of all the printing pro-
grams. simply copies all the files in a list onto the
terminal. Soyou can say
cat junk

or, to print two files,
cat junk temp

The two files are simply concatenated (hence the
name ‘‘cat’’) onto the terminal.

produces formatted printouts of files. As with
prints all the files in a list. The difference is that it
produces headings with date, time, page number
and file name at the top of each page, and extra
lines to skip over the fold in the paper. Thus,
pr junk temp

will list ‘‘junk’ ’ neatly, then skip to the top of a new
page and list ‘‘temp’’ neatly.

will also produce multi-column output:
pr -3 junk

prints ‘‘junk’ ’ in 3-column format. You can use any
reasonable number in place of ‘‘3’ ’ and will do its
best.

It should be noted that is not a formatting pro-
gram in the sense of shuffling lines around and jus-
tifying margins. Thetrue formatters are and which
we will get to in the section on document prepara-
tion.

There are also programs that print files on a
high-speed printer. Look in your manual under and
Which to use depends on the hardware configura-
tion of your machine.

Shuffling Files About

Now that you have some files in the file system
and some experience in printing them, you can try
bigger things. For example, you can move a file
from one place to another (which amounts to giving
afile a new name), like this:
mv junk precious

This means that what used to be ‘‘junk’ ’ is now
‘‘precious’’. If you do an command now, you will
get
precious temp

Beware that if you move a file to another one that
already exists, the already existing contents are lost
forever.

-5-

If you want to make a copyof a file (that is, to
have two versions of something), you can use the
command:
cp precious temp1

makes a duplicate copy of ‘‘precious’’ in ‘‘temp1’’.

Finally, when you get tired of creating and
moving files, there is a command to remove files
from the file system, called
rm temp temp1

will remove all of the files named. You will get a
warning message if one of the named files wasn’t
there.

Filename, What’s in a

So far we have used filenames without ever
saying what’s a legal name, so it’s time for a couple
of rules. First, filenames are limited to 14 charac-
ters, which is enough to be descriptive. Second,
although you can use almost any character in a file-
name, common sense says you should stick to ones
that are visible, and that you should probably avoid
characters that might be used with other meanings.
We already saw, for example, that in the command,
‘‘ ls -t’’ meant to list in time order. So if you had a
file whose name was ‘‘-t’ ’, you would have a tough
time listing it by name. There are a number of
other characters which have special meaning either
to UNIX as a whole or to numerous commands.To
avoid pitfalls, you would probably do well to use
only letters, numbers and the period. (Don’t use
the period as the first character of a filename, for
reasons too complicated to go into.)

On to some more positive suggestions. Sup-
pose you’re typing a large document like a book.
Logically this divides into many small pieces, like
chapters and perhaps sections. Physically it must
be divided too, for will not handle big files. Thus
you should type the document as a number of files.
You might have a separate file for each chapter,
called
chap1 chap2 etc...

Or, if each chapter were broken into several files,
you might have
chap1.1 chap1.2 chap1.3
... chap2.1chap2.2
...

You can now tell at a glance where a particular file
fits into the whole.

There are advantages to a systematic naming
convention which are not obvious to the novice
UNIX user. What if you wanted to print the whole
book? You could say
pr chap1.1 chap1.2 chap1.3

but you would get tired pretty fast, and would prob-
ably even make mistakes. Fortunately, there is a
shortcut. You can say

pr chap*
The ‘‘*’ ’ means ‘‘anything at all’’, so this translates
into ‘‘print all files whose names begin with ‘chap’
’’ , listed in alphabetical order. This shorthand nota-
tion is not a property of the command, by the way.
It is system-wide, a service of the program that
interprets commands (the ‘‘shell’’ Using that fact,
you can see how to list the files of the book:
ls chap*

produces
chap1.1 chap1.2 chap1.3
...

The ‘‘*’ ’ is not limited to the last position in a file-
name _ it can be anywhere. Thus
rm *junk*

removes all files that contain ‘‘junk’ ’ as any part of
their name. As a special case, ‘‘*’ ’ by itself
matches every filename, so
pr *

prints all the files (alphabetical order), and
rm *

removes all files. (You had better be sure that’s
what you wanted to say!)

The ‘‘*’ ’ is not the only pattern-matching fea-
ture available. Supposeyou want to print only
chapters 1 through 4 and 9 of the book. Then you
can say
pr chap[12349]*

The ‘‘[...]’ ’ means to match any of the characters
inside the brackets. You can also do this with
pr chap[1-49]*

‘‘ [a-z]’’ matches any character in the range a
through z. There is also a ‘‘?’’ character, which
matches any single character, so
pr ?

will print all files which have single-character
names.

Of these niceties, ‘‘*’ ’ is probably the most use-
ful, and you should get used to it. The others are
frills, but worth knowing.

If you should ever hav e to turn off the special
meaning of ‘‘*’ ’, ‘‘?’’, etc., enclose the entire argu-
ment in quotes (single or double), as in
ls "?"

What’ s in a Filename, Continued

When you first made that file called ‘‘junk’ ’,
how did UNIX know that there wasn’t another
‘‘ junk’’ somewhere else, especially since the person
in the next office is also reading this tutorial? The
reason is that generally each user of UNIX has his
own ‘‘directory’’, which contains only the files that
belong to him. When you create a new file, unless
you take special action, the new file is made in your
own directory, and is unrelated to any other file of
the same name that might exist in someone else’s
directory.

-6-

The set of all files that UNIX knows about are
organized into a (usually big) tree, with your files
located several branches up into the tree. It is pos-
sible for you to ‘‘walk’’ around this tree, and to find
any file in the system, by starting at the root of the
tree and walking along the right set of branches.

To begin, type
ls /

‘‘ /’’ is the name of the root of the tree (a convention
used by UNIX). You will get a response something
like this:
bin dev etc lib tmp usr

This is a collection of the basic directories of files
thatUNIX knows about. On most systems, ‘‘usr’’ is
a directory that contains all the normal users of the
system, likeyou. Now try
ls /usr

This should list a long series of names, among
which is your own login name.Finally, try
ls /usr/your-name

You should get what you get from a plain
ls

Now try
cat /usr/your-name/junk

(if ‘ ‘junk’ ’ is still around). The name
/usr/your-name/junk

is called the ‘‘pathname’’ of the file that you nor-
mally think of as ‘‘junk’ ’. ‘‘Pathname’’ has an
obvious meaning: it represents the full name of the
path you have to follow through the tree of directo-
ries to get to a particular file. It is a universal rule
in UNIX that anywhere you can use an ordinary file-
name, you can use a pathname.

Here is a picture which may make this clearer:
(root)
/ \
/ \
/ \

bin etc usr dev tmp
/ \ / \ / \ / \ / \

/ \
/ \

adam eve mary
/ / \ \

/ \ junk
junk temp

Notice that Mary’s ‘‘junk’ ’ is unrelated to
Eve’s.

This isn’t too exciting if all the files of interest
are in your own directory, but if you work with
someone else or on several projects concurrently, it
becomes handy indeed. For example, your friends
can print your book by saying
pr /usr/your-name/chap*

Similarly, you can find out what files your neighbor
has by saying
ls /usr/neighbor-name

or makeyour own copy of one of his files by
cp /usr/your-neighbor/his-file yourfile

(If your neighbor doesn’t want you poking
around in his files, or vice versa, privacy can be
arranged. Each file and directory can have read-
write-execute permissions for the owner, a group,
and everyone else, to control access.See and for
details. As a matter of observed fact, most users
most of the time find openness of more benefit than
privacy.)

As a final experiment with pathnames, try
ls /bin /usr/bin

Do some of the names look familiar? When you
run a program, by typing its name after a ‘‘%’’, the
system simply looks for a file of that name. It
looks first in your directory (where it typically
doesn’t find it), then in ‘‘/bin’ ’ and finally in
‘‘ /usr/bin’’. There is nothing magic about com-
mands like or except that they hav e been collected
into two places to be easy to find and administer.

What if you work regularly with someone else
on common information in his directory? You
could just log in as your friend each time you want
to, but you can also say ‘‘I want to work on his files
instead of my own’’. This is done by changing the
directory that you are currently in:
chdir /usr/your-friend

Now when you use a filename in something like or
it refers to the file in ‘‘your-friend’s’’ directory.
Changing directories doesn’t affect any permissions
associated with a file _ if you couldn’t access a file
from your own directory, changing to another direc-
tory won’t alter that fact.

If you forget what directory you’re in, type
pwd

(‘‘print working directory’’) to find out.

It is often convenient to arrange one’s files so
that all the files related to one thing are in a direc-
tory separate from other projects. For example,
when you write your book, you might want to keep
all the text in a directory called book. So make one
with
mkdir book

then go to it with
chdir book

then start typing chapters.The book is now found
in (presumably)
/usr/your-name/book

To delete a directory, see

You can go up one level in the tree of files by
saying
chdir ..

‘‘ ..’’ is the name of the parent of whatever directory
you are currently in. For completeness, ‘‘.’’ is an
alternate name for the directory you are in.

-7-

Using Files instead of the Terminal

Most of the commands we have seen so far pro-
duce output on the terminal; some, like the editor,
also take their input from the terminal. It is univer-
sal in UNIX that the terminal can be replaced by a
file for either or both of input and output. As one
example, you could say
ls

to get a list of files.But you can also say
ls >filelist

to get a list of your files in the file ‘‘filelist’ ’.
(‘‘filelist’ ’ will be created if it doesn’t already exist,
or overwritten if it does.) The symbol ‘‘>’ ’ is used
throughoutUNIX to mean ‘‘put the output on the
following file, rather than on the terminal’’. Noth-
ing is produced on the terminal. As another exam-
ple, you could concatenate several files into one by
capturing the output of in a file:
cat f1 f2 f3 >temp

Similarly, the symbol ‘‘<’ ’ means to take the
input for a program from the following file, instead
of from the terminal. Thus, you could make up a
script of commonly used editing commands and put
them into a file called ‘‘script’’. Thenyou can run
the script on a file by saying
ed file <script

Pipes

One of the novel contributions of UNIX is the
idea of a pipe. A pipe is simply a way to connect
the output of one program to the input of another
program, so the two run as a sequence of processes
_ apipe-line.

For example,
pr f g h

will print the files ‘‘f ’’, ‘‘g’ ’ and ‘‘h’ ’, beginning
each on a new page. Supposeyou want them run
together instead.You could say
cat f g h >temppr temprm temp

but this is more work than necessary. Clearly what
we want is to take the output of and connect it to
the input of So let us use a pipe:
cat f g h pr

The vertical bar means to take the output from
which would normally have gone to the terminal,
and put it into which formats it neatly.

Any program that reads from the terminal can
read from a pipe instead; any program that writes
on the terminal can drive a pipe. You can have as
many elements in a pipeline as you wish.

Many UNIX programs are written so that they
will take their input from one or more files if file
arguments are given; if no arguments are given they
will read from the terminal, and thus can be used in
pipelines.

The Shell

We hav e already mentioned once or twice the
mysterious ‘‘shell,’’ which is in fact The shell is the
program that interprets what you type as commands
and arguments. It also looks after translating ‘‘*’ ’,
etc., into lists of filenames.

The shell has other capabilities too. For exam-
ple, you can start two programs with one command
line by separating the commands with a semicolon;
the shell recognizes the semicolon and breaks the
line into two commands. Thus
date; who

does both commands before returning with a ‘‘%’’.

You can also have more than one program run-
ning simultaneouslyif you wish. For example, if
you are doing something time-consuming, like the
editor script of an earlier section, and you don’t
want to wait around for the results before starting
something else, you can say
ed file <script&

The ampersand at the end of a command line says
‘‘start this command running, then take further
commands from the terminal immediately.’’ Thus
the script will begin, but you can do something else
at the same time. Of course, to keep the output
from interfering with what you’re doing on the ter-
minal, it would be better to have said
ed file <script>lines &

which would save the output lines in a file called
‘‘ lines’’.

When you initiate a command with ‘‘&’ ’, UNIX
replies with a number called the process number,
which identifies the command in case you later
want to stop it. If you do, you can say
kill process-number

You might also read

You can say
(command-1; command-2; command-3) &

to start these commands in the background, or you
can start a background pipeline with
command-1 command-2 &

Just as you can tell the editor or some similar
program to take its input from a file instead of from
the terminal, you can tell the shell to read a file to
get commands.(Why not? The shell after all is just
a program, albeit a clever one.) For instance, sup-
pose you want to set tabs on your terminal, and find
out the date and who’s on the system every time
you log in. Then you can put the three necessary
commands (into a file, let’s call it ‘‘ xxx’’, and then
run it with either
sh xxx

or
sh <xxx

This says to run the shell with the file ‘‘xxx’ ’ as
input. Theeffect is as if you had typed the contents
of ‘‘xxx’ ’ on the terminal. (If this is to be a regular

-8-

thing, you can eliminate the need to type ‘‘sh’’; see
and

The shell has quite a few other capabilities as
well, some of which we’ll get to in the section on
programming.

III. DOCUMENT PREP ARATION

UNIX is extensively used for document prepara-
tion. Thereare three major formatting programs,
that is, programs which produce a text with justified
right margins, automatic page numbering and
titling, automatic hyphenation, and the like. The
simplest of these formatters is which in fact is sim-
ple enough that if you type almost any text into a
file and ‘‘roff ’’ it, you will get plausibly formatted
output. You can do better with a little knowledge,
but basically it’s easy to learn and use. We’ ll get
back to shortly.

is similar to but does much less for you auto-
matically. It will do a great deal more, once you
know how to use it.

Both and are designed to produce output on ter-
minals, line-printers, and the like. The third for-
matter, (pronounced ‘‘tee-roff ’’), instead drives a
Graphic Systems phototypesetter, which produces
very high quality output on photographic paper.
This paper was printed on the phototypesetter by

Because and are relatively hard to learn to use
effectively, sev eral ‘‘packages’’ of canned format-
ting requests are available which let you do things
like paragraphs, running titles, multi-column out-
put, and so on, with little effort. Regrettably,
details vary from system to system.

ROFF

The basic idea of (and of and for that matter) is
that the text to be formatted contains within it ‘‘for-
matting commands’’ that indicate in detail how the
formatted text is to look. For example, there might
be commands that specify how long lines are,
whether to use single or double spacing, and what
running titles to use on each page. In general, you
don’t hav e to spell out all of the possible formatting
details. Mostof them have ‘‘default values’’, which
you will get if you say nothing at all. For example,
unless you take special precautions, you’ll get sin-
gle-spaced output, 65-character lines, justified right
margins, and 58 text lines per page when you a file.
This is the reason that is so simple _ most of the
decisions have already been made for you.

Some things do have to be done, however. If
you want a document broken into paragraphs, you
have to tell where to add the extra blank lines. This
is done with the ‘‘.sp’’ command:

this is the end of one paragraph.̂ sp This begins
the next paragraph ...

In (and in and formatting commands consist of a
period followed by two letters, and they must
appear at the beginning of a line, all by themselves.
The ‘‘.sp’’ command tells to finish printing any of
the previous line that might be still unprinted, then
print a blank line before continuing. You can have
more space if you wish; ‘‘.sp 2’’ asks for 2 spaces,
and so on.

If you simply want to ensure that subsequent
text appears on a fresh output line, you can use the
command ‘‘.br’’ (for ‘‘break’’) instead of ‘‘.sp’’.

Most of the other commonly-used commands
are equally simple. For example you can center
one or more lines with the ‘‘.ce’’ command.
ˆce Title of Paper ˆsp 2

causes the title to be centered, then followed by two
blank lines. As with ‘‘.sp’’, ‘‘.ce’’ can be followed
by a number; in that case, that many input lines are
centered.

‘‘ .ul’’ underlines lines, and can also be followed
by a number:
ˆce 2 ˆul 2 An Earth-shaking Paper ˆsp John Q.
Scientist

will center and underline the two text lines. Notice
that the ‘‘.sp’’ between them is not part of the line
count.

You can get multiple-line spacing instead of the
default single-spacing with the ‘‘.ls’’ command:
ˆls 2

causes double spacing.

If you’re typing things like tables, you will not
want the automatic filling-up and justification of
output lines that is done by default. You can turn
this off with the command ‘‘.nf ’’ (no-fill), and then
back on again with ‘‘.fi’ ’ (fill). Thus
this section is filled by default. ˆnf here lines
will appear just as you typed them _ no extra
spaces, no moving of words. ˆfi Now go back to
filling up output lines.

You can change the line-length with ‘‘.ll’ ’, and
the left margin (the indent) by ‘‘.in’ ’. Theseare
often used together to makeoffset blocks of text:
ˆll −10 ˆin +10
this text will be moved 10 spaces to
the right and the lines will also be
shortened 10 characters from the
right. The ‘‘+’’ and ‘‘−’ ’ mean to
change the previous value by that
much. Now rev ert:
ˆll +10
ˆin −10

Notice that ‘‘.ll +10’’ adds ten characters to the line length,
while ‘‘.ll 10’ ’ makes the line ten characters
long.

-9-

The ‘‘.ti’ ’ command indents (in either direction)
just like ‘‘.in’ ’, except for only one line. Thus to
make a new paragraph with a 10-character indent,
you would say
ˆsp ˆti +10 New paragraph ...

You can put running titles on both top and bot-
tom of each page, like this:
ˆhe "left top"center top"right top" ˆfo "left bot-
tom"center bottom"right bottom"

The header or footer is divided into three parts,
which are marked off by any character you like.
(We used a double quote.) If there’s nothing
between the markers, that part of the title will be
blank. If you use a percent sign anywhere in ‘‘.he’’
or ‘‘.fo’ ’, the current page number will be inserted.
So to get centered page numbers with dashes
around them, at the top, use
ˆhe ""− % −""

You can skip to the top of a new page at any time
with the ‘‘.bp’’ command; if ‘‘.bp’’ is followed by a
number, that will be the new page number.

The foregoing is probably enough about for
you to go off and format most everyday documents.
Read for more details.

Hints for Preparing Documents

Most documents go through several versions
(always more than you expected) before they are
finally finished. Accordingly, you should do what-
ev er possible to make the job of changing them
easy.

First, when you do the purely mechanical oper-
ations of typing, type so subsequent editing will be
easy. Start each sentence on a new line. Make
lines short, and break lines at natural places, such
as after commas and semicolons, rather than ran-
domly. Since most people change documents by
rewriting phrases and adding, deleting and rear-
ranging sentences, these precautions simplify any
editing you have to do later.

The second aspect of making change easy is
not to commit yourself to formatting details too
early. For example, if you decide that each para-
graph is to have a space and an indent of 10 charac-
ters, you might type, before each,
ˆsp ˆti +10

But what happens when later you decide that it
would have been better to have no space and an
indent of only 5 characters?It’s tedious indeed to
go back and patch this up.

Fortunately, all of the formatters let you delay
decisions until the actual moment of running. The
secret is to define a new operation (called amacro),
for each formatting operation you want to do, like
making a new paragraph. You can say, in all three
formatters,

ˆde PP ˆsp ˆti +10 ˆˆ
This defines ‘‘ .PP’’ as a new (or or operation,
whose meaning is exactly
ˆsp ˆti +10

(The ‘‘..’’ marks the end of the definition.) When-
ev er ‘‘.PP’’ is encountered in the text, it is as if you
had typed the two lines of the definition in place of
it.

The beauty of this scheme is that now, if you
change your mind about what a paragraph should
look like, you can change the formatted output
merely by changing the definition of ‘‘.PP’’ and re-
running the formatter.

As a rule of thumb, for all but the most trivial
jobs, you should type a document in terms of a set
of macros like ‘‘.PP’’, and then define them appro-
priately. As long as you have entered the text in
some systematic way, it can always be cleaned up
and re-formatted by a judicious combination of
editing and macro definitions. The packages of for-
matting commands that we mentioned earlier are
simply collections of macros designed for particu-
lar formatting tasks.

One of the main differences between and the
other formatters is that macros in can only be lines
of text and formatting commands.In and macros
may have arguments, so they can have different
effects depending on how they are called (in
exactly the same way that the ‘‘.sp’’ command has
an argument, the number of spaces you want).

Miscellany

In addition to the basic formatters,UNIX pro-
vides a host of supporting programs. and let you
integrate mathematics into the text of a document,
in a language that closely resembles the way you
would speak it aloud. and detect possible spelling
mistakes in a document.looks for lines containing
a particular text pattern (rather like the editor’s con-
text search does, but on a whole series of files). For
example,
grep "ing$" chap*

will find all lines ending in the letters ‘‘ing’ ’ in the
series of files ‘‘chap*’’. (It is almost always a good
practice to put quotes around the pattern you’re
searching for, in case it contains characters that
have a special meaning for the shell.)

counts the words and (optionally) lines in a set
of files. translates characters into other characters;
for example it will convert upper to lower case and
vice versa. This translates upper into lower:
tr "[A-Z]" "[a-z]"

prints a list of the differences between two files,
so you can compare two versions of something
automatically (which certainly beats proofreading
by hand). sorts files in a variety of ways; makes
cross-references; makes a permuted index

-10-

(keyword-in-context listing).

Most of these programs are either indepen-
dently documented (like and or are sufficiently sim-
ple that the description in the UNIX Programmer’s
Manual is adequate explanation.

IV. PROGRAMMING

UNIX is a marvelously pleasant and productive
system for writing programs; productivity seems to
be an order of magnitude higher than on other inter-
active systems.

There will be no attempt made to teach any of
the programming languages available on UNIX, but
a few words of advice are in order. First, UNIX is
written in C, as is most of the applications code. If
you are undertaking anything substantial, C is the
only reasonable choice. More on that in a moment.
But remember that there are quite a few programs
already written, some of which have substantial
power.

The editor can be made to do things that would
normally require special programs on other sys-
tems. For example, to list the first and last lines of
each of a set of files, say a book, you could labori-
ously type
ed e chap1.1 1p $p e chap1.2 1p $p
etc.

But instead you can do the job once and for all.
Type
ls chap* >temp

to get the list of filenames into a file. Then edit this
file to make the necessary series of editing com-
mands (using the global commands of and write it
into ‘‘script’’. Now the command
ed <script

will produce the same output as the laborious hand
typing.

The pipe mechanism lets you fabricate quite
complicated operations out of spare parts already
built. For example, the first draft of the program
was (roughly)
cat ... (collect the files) tr ...(put each word on
a new line, deletepunctuation, etc.)
sort (into dictionary order) uniq (strip out
duplicates) comm (list words found in text
but not in dictionary)

Programming the Shell

An option often overlooked by newcomers is
that the shell is itself a programming language, and
since UNIX already has a host of building-block
programs, you can sometimes avoid writing a spe-
cial purpose program merely by piecing together
some of the building blocks with shell command
files.

As an unlikely example, suppose you want to
count the number of users on the machine every

hour. You could type
date who wc -l

ev ery hour, and write down the numbers, but that is
rather primitive. The next step is probably to say
(date; who wc -l) >>users

which uses ‘‘>>’ ’ to appendto the end of the file
‘‘users’’. (We hav en’t mentioned ‘‘>>’ ’ before _
it’s another service of the shell.) Now all you have
to do is to put a loop around this, and ensure that
it’s done every hour. Thus, place the following
commands into a file, say ‘‘count’’:
: loop (date; who wc -l) >>users sleep 3600
goto loop

The command is followed by a space and a label,
which you can then Notice that it’s quite legal to
branch backwards. Now if you issue the command
sh count &

the users will be counted every hour, and you can
go on with other things. (You will have to use to
stop counting.)

If you would like ‘‘every hour’’ to be a parame-
ter, you can arrange for that too:
: loop (date; who wc - l) >>users sleep $1 goto
loop

‘‘$1’’ means the first argument when this procedure
is invoked. If you say
sh count 60

it will count every minute. A shell program can
have up to nine arguments, ‘‘$1’’ through ‘‘$9’’.

The other aspect of programming is conditional
testing. The command can test conditions and
execute commands accordingly. As a simple exam-
ple, suppose you want to add to your login
sequence something to print your mail if you have
some. Thus,knowing that mail is stored in a file
called ‘mailbox’, you could say
if -r mailbox mail

This says ‘‘if the file ‘mailbox’ is readable, execute
the command.’’

As another example, you could arrange that the
‘‘count’’ procedure count every hour by default, but
allow an optional argument to specify a different
time. Simplyreplace the ‘‘sleep $1’’ line by
if $1x = x sleep 3600 if $1x != x sleep $1

The construction
if $1x = x

tests whether ‘‘$1’’, the first argument, was present
or absent.

More complicated conditions can be tested: you
can find out the status of an executed command,
and you can combine conditions with ‘and’, ‘or’,
‘not’ and parentheses _ see You should also read
which describes how to manipulate arguments to
shell command files.

Programming in C

As we said, C is the language of choice: every-
thing in UNIX is tuned to it. It is also a remarkably

-11-

easy language to use once you get started.Sections
II and III of the manual describe the system inter-
faces, that is, how you do I/O and similar functions.

You can write quite significant C programs with
the level of I/O and system interface described in
Programming in C: A Tutorial, if you use existing
programs and pipes to help. For example, rather
than learning how to open and close files you can
(at least temporarily) write a program that reads
from its standard input, and use to concatentate sev-
eral files into it. This may not be adequate for the
long run, but for the early stages it’s just right.

There are a number of supporting programs that
go with C. The C debugger, is marginally useful
for digging through the dead bodies of C programs.
the assembly language debugger, is actually more
useful most of the time, but you have to know more
about the machine and system to use it well. The
most effective debugging tool is still careful
thought, coupled with judiciously placed print
statements.

You can instrument C programs and thus find
out where they spend their time and what parts are
worth optimising. Compile the routines with the
‘‘ -p’’ option; after the test run use to print an execu-
tion profile. The command will give you the gross
run-time statistics of a program, but it’s not super
accurate or reproducible.

C programs that don’t depend too much on spe-
cial features of UNIX can be moved to the Honey-
well 6070 andIBM 370 systems with modest effort.
ReadTheGCOSC Library by M. E. Lesk and B. A.
Barres for details.

Miscellany

If you haveto use Fortran, you might consider
which gives you the decent control structures and
free-form input that characterize C, yet lets you
write code that is still portable to other environ-
ments. Bear in mind that UNIX Fortran tends to
produce large and relatively slow-running pro-
grams. Furthermore,supporting software like etc.,
are all virtually useless with Fortran programs.

If you want to use assembly language (all heav-
ens forfend!), try the implementation languageLIL,
which gives you many of the advantages of a high-
level language, like decent control flow structures,
but still lets you get close to the machine if you
really want to.

If your application requires you to translate a
language into a set of actions or another language,
you are in effect building a compiler, though proba-
bly a small one. In that case, you should be using
the compiler-compiler, which helps you develop a
compiler quickly.

V. UNIX READING LIST

General:

UNIX Programmer’s Manual (Ken Thompson, Den-
nis Ritchie, and a cast of thousands).Lists com-
mands, system routines and interfaces, file formats,
and some of the maintenance procedures. You
can’t liv e without this, although you will probably
only read section I.

The UNIX Time-sharing System (Ken Thompson,
Dennis Ritchie). CACM, July 1974. An overview
of the system, for people interested in operating
systems. Worth reading by anyone who programs.
Contains a remarkable number of one-sentence
observations on how to do things right.

Document Preparation:

A Tutorial Introduction to the UNIX Te xt Editor.
(Brian Kernighan). Bell Laboratories internal
memorandum. Weak on the more esoteric uses of
the editor, but still probably the easiest way to learn

Typing Documents on UNIX. (Mike Lesk). Bell
Laboratories internal memorandum. A macro
package to isolate the novice from the vagaries of
the formatting programs. If this specific package
isn’t available on your system, something similar
probably is.This one works with both and

Programming:

Programming in C: A Tutorial (Brian Kernighan).
Bell Laboratories internal memorandum.The easi-
est way to start learning C, but it’s no help at all
with the interface to the system beyond the simplest
IO. Shouldbe read in conjunction with

C Reference Manual (Dennis Ritchie). Bell Labo-
ratories internal memorandum.An excellent refer-
ence, but a bit heavy going for the beginner, espe-
cially one who has never used a language likeC.

Others:

D. M. Ritchie, UNIX Assembler Reference Man-
ual.

B. W. Kernighan and L. L. Cherry, A System for
Typesetting Mathematics, Computing Science
Tech. Rep. 17.

M. E. Lesk and B. A. Barres, The GCOS C Library.
Bell Laboratories internal memorandum.

K. Thompson and D. M. Ritchie, Setting Up UNIX.

M. D. McIlroy, UNIX Summary.

D. M. Ritchie, The UNIX I/O System.

A. D. Hall, The M6 Macro Processor, Computing
Science Tech. Rep. 2.

J. F. Ossanna, NROFF User’s Manual _ Second
Edition, Bell Laboratories internal memorandum.

D. M. Ritchie and K. Thompson, Regenerating Sys-
tem Software.

B. W. Kernighan, Ratfor_A Rational Fortran, Bell

-12-

Laboratories internal memorandum.

M. D. McIlroy, Synthetic English Speech by Rule,
Computing Science Tech. Rep. 14.

M. D. McIlroy, Bell Laboratories internal memo-
randum.

J. F. Ossanna, TROFF Users’ Manual, Bell Labora-
tories internal memorandum.

B. W. Kernighan, TROFF Made Trivial, Bell Labo-
ratories internal memorandum.

R. H. Morris and L. L. Cherry, Computer Detection
of Typographical Errors, Computing Science Tech.
Rep. 18.

S. C. Johnson, YACC (Yet Another Compiler-Com-
piler), Bell Laboratories internal memorandum.

P. J. Plauger, Programming in LIL: A Tutorial, Bell
Laboratories internal memorandum.

Index

& (asynchronous process)8
; (multiple processes)8
* (pattern match)5
[] (pattern match)6
? (pattern match)6
<> (redirect I/O)7
>> (file append)12
backslash (\)2
cat (concatenate files)4
cdb (C debugger) 12
chdir (change directory)7
chmod (change protection)7
command arguments 4
command files8
cp (copy files) 5
cref (cross reference)11
date 2
db (assembly debugger) 13
delete (DEL)2
diff (file comparison)11
directories 7
document formatting9
ed (editor)3
editor programming11
EOT (end of file) 3
eqn (mathematics)11
erase character (#)2
file system structure6
filenames 5
file protection7
goto 12
grep (pattern matching)11
if (condition test)12
index 14
kill a program 8

kill a character (@)2
lil (high-level assembler) 13
login 1
logout 2
ls (list file names)4
macro for formatting10
mail 2
multi-columns printing (pr)5
mv (move files) 5
nroff 9
on-line manual3
opr (offline print) 5
pathname 6
pattern match in filenames5
pipes () 8
pr (print files) 4
prof (run-time monitor)13
protection 7
ptx (permuted index) 11
pwd (working directory)7
quotes 6
ratfor (decent Fortran) 13
readahead 2
reading list 13
redirect I/O (<>)7
RETURN key 1
rm (remove files) 5
rmdir (remove directory) 7
roff (text formatting) 9
root (of file system)6
shell (command interpreter)8
shell arguments ($)12
shell programming12
shift (shell arguments) 12
sleep 12
sort 11
spell (find spelling mistakes)
stopping a program2
stty (set terminal options)2
tabs (set tab stops)2
terminal types1
time (time programs)13
tr (translate characters)11
troff (typesetting) 9
typo (find spelling mistakes) 11
wc (word count)11
who (who is looged in)2
write (to a user)3
yacc (compiler-compiler) 13

