
DBX(1) DBX(1)

NAME
dbx − debugger

SYNOPSIS
dbx [−r] [−i] [−I dir] [objfile [coredump]]

DESCRIPTION
Dbx is a tool for source level debugging and execution of programs under UNIX.The objfile is an
object file produced by a compiler with the appropriate flag (usually ‘‘−g’’) specified to produce sym-
bol information in the object file.Currently,cc(1), f77(1), and the DEC Western Research Laboratory
Modula-2 compiler, mod(l), produce the appropriate source information. The machine level facilities
of dbxcan be used on any program.

The object file contains a symbol table that includes the name of the all the source files translated by
the compiler to create it. These files are available for perusal while using the debugger.

If a file named ‘‘core’’ exists in the current directory or acoredumpfile is specified,dbxcan be used to
examine the state of the program when it faulted.

If the file ‘‘.dbxinit’’ exists in the current directory then the debugger commands in it are executed.
Dbxalso checks for a ‘‘.dbxinit’’ in the user’s home directory if there isn’t one in the current directory.

The command line options and their meanings are:

−r Executeobjfile immediately. If it terminates successfullydbxexits. Otherwisethe reason for
termination will be reported and the user offered the option of entering the debugger or letting
the program fault. Dbx will read from ‘‘/dev/tty’’ when−r is specified and standard input is
not a terminal.

−i Forcedbxto act as though standard input is a terminal.

−I dir Add dir to the list of directories that are searched when looking for a source file.Normally
dbx looks for source files in the current directory and in the directory whereobjfile is located.
The directory search path can also be set with theusecommand.

Unless−r is specified,dbx just prompts and waits for a command.

Execution and Tracing Commands

run [args] [< filename] [> filename]
rerun [args] [< filename] [> filename]

Start executingobjfile, passingargsas command line arguments;< or > can be used to redirect
input or output in the usual manner. Whenrerun is used without any arguments the previous
argument list is passed to the program; otherwise it is identical torun . If objfile has been
written since the last time the symbolic information was read in,dbx will read in the new
information.

trace [in procedure/function] [if condition]
trace source-line-number[if condition]
trace procedure/function[in procedure/function] [if condition]
trace expressionat source-line-number[if condition]
trace variable[in procedure/function] [if condition]

Have tracing information printed when the program is executed. Anumber is associated with
the command that is used to turn the tracing off (see thedeletecommand).

The first argument describes what is to be traced. If it is asource-line-number, then the line is
printed immediately prior to being executed. Sourceline numbers in a file other than the cur-
rent one must be preceded by the name of the file in quotes and a colon, e.g. "mumble.p":17.

If the argument is a procedure or function name then every time it is called, information is
printed telling what routine called it, from what source line it was called, and what parameters

17 May 1984 1

DBX(1) DBX(1)

were passed to it. In addition, its return is noted, and if it’s a function then the value it is
returning is also printed.

If the argument is anexpressionwith anat clause then the value of the expression is printed
whenever the identified source line is reached.

If the argument is a variable then the name and value of the variable is printed whenever it
changes. Execution is substantially slower during this form of tracing.

If no argument is specified then all source lines are printed before they are executed. Execu-
tion is substantially slower during this form of tracing.

The clause ‘‘ in procedure/function’’ r estricts tracing information to be printed only while
executing inside the given procedure or function.

Conditionis a boolean expression and is evaluated prior to printing the tracing information; if
it is false then the information is not printed.

stop if condition
stop atsource-line-number[if condition]
stop in procedure/function[if condition]
stopvariable[if condition]

Stop execution when the given line is reached, procedure or function called, variable changed,
or condition true.

status[> filename]
Print out the currently active trace andstopcommands.

deletecommand-number...
The traces or stops corresponding to the given numbers are removed. Thenumbers associated
with traces and stops are printed by thestatuscommand.

catchnumber
ignore number

Start or stop trapping signalnumberbefore it is sent to the program.This is useful when a
program being debugged handles signals such as interrupts.Initially all signals are trapped
except SIGCONT, SIGCHILD, SIGALRM and SIGKILL.

cont Continue execution from where it stopped.Execution cannot be continued if the process has
‘‘ finished’’, that is, called the standard procedure ‘‘exit’’. Dbx does not allow the process to
exit, thereby letting the user to examine the program state.

step Execute one source line.

next Execute up to the next source line. The difference between this andstep is that if the line con-
tains a call to a procedure or function thestep command will stop at the beginning of that
block, while thenext command will not.

return [procedure]
Continue until a return toprocedureis executed, or until the current procedure returns if none
is specified.

Displaying and Naming Data

print expression[, expression...]
Print out the values of the expressions. Arrayexpressions are always subscripted by brackets
(‘‘[]’ ’). Variables having the same identifier as one in the current block may be referenced as
‘‘ block-name. variable’’ . The field reference operator (‘‘.’’) can be used with pointers as well
as records, making the C operator ‘‘->’ ’ unnecessary (although it is supported).The construct
expression\ typenamecan be used to print theexpressionout in the format of the type named
typename.

17 May 1984 2

DBX(1) DBX(1)

whatis name
Print the declaration of the given name, which may be qualified with block names as above.

which identifier
Print the full qualification of the given identifer, i.e. theouter blocks that the identifier is asso-
ciated with.

whereis identifier
Print the full qualification of all the symbols whose name matches the given identifier. The
order in which the symbols are printed is not meaningful.

assignvariable= expression
setvariable= expression

Assign the value of the expression to the variable.

call procedure(parameters)
Execute the object code associated with the named procedure or function.Currently, calls to a
procedure with a variable number of arguments are not possible. Also, string parameters are
not passed properly for C.

where Print out a list of the active procedures and function.

dump [> filename]
Print the names and values of all active variables.

up [count]
down [count]

Move the current function, which is used for resolving names, up or down the stackcountlev-
els. Thedefaultcountis 1.

Accessing Source Files

edit [filename]
edit procedure/function-name

Invoke an editor onfilenameor the current source file if none is specified. If aprocedureor
functionname is specified, the editor is invoked on the file that contains it. Which editor is
invoked by default depends on the installation. The default can be overridden by setting the
environment variable EDITOR to the name of the desired editor.

file [filename]
Change the current source file name tofilename. If none is specified then the current source
file name is printed.

func [procedure/function]
Change the current function. If none is specified then print the current function.Changing the
current function implicitly changes the current source file to the one that contains the function;
it also changes the current scope used for name resolution.

list [source-line-number[, source-line-number]]
list procedure/function

List the lines in the current source file from the first line number to the second inclusive. If no
lines are specified, the next 10 lines are listed. If the name of a procedure or function is given
lines n-k to n+k are listed wheren is the first statement in the procedure or function andk is
small.

usedirectory-list
Set the list of directories to be searched when looking for source files.

17 May 1984 3

DBX(1) DBX(1)

Machine Level Commands

tracei [address] [if cond]
tracei [variable] [at address] [if cond]
stopi [address] [if cond]
stopi [at] [address] [if cond]

Turn on tracing or set a stop using a machine instruction address.

stepi

nexti Single step as instepor next, but do a single instruction rather than source line.

address,address/ [mode]
[address] / [count] [mode]

Print the contents of memory starting at the firstaddressand continuing up to the second
addressor until count items are printed.If no address is specified, the address following the
one printed most recently is used.The modespecifies how memory is to be printed; if it is
omitted the previous mode specified is used. The initial mode is ‘‘X’ ’. The following modes
are supported:

i print the machine instruction
d print a short word in decimal
D print a long word in decimal
o print a short word in octal
O print a long word in octal
x print a short word in hexadecimal
X print a long word in hexadecimal
b print a byte in octal
c print a byte as a character
s print a string of characters terminated by a null byte
f print a single precision real number
g print a double precision real number

Symbolic addresses are specified by preceding the name with an ‘‘&’ ’. Registers are denoted by
‘‘ $rN’’ where N is the number of the register. Addresses may be expressions made up of other
addresses and the operators ‘‘+’’, ‘‘-’’, and indirection (unary ‘‘*’’).

Miscellaneous Commands

shcommand-line
Pass the command line to the shell for execution. TheSHELL environment variable deter-
mines which shell is used.

aliasnew-command-name old-command-name
Respond tonew-command-nameas though it wereold-command-name.

help Print out a synopsis ofdbxcommands.

gripe Invoke a mail program to send a message to the person in charge ofdbx.

sourcefilename
Readdbxcommands from the given filename.

quit Exit dbx.

FILES
a.out objectfile
.dbxinit initial commands

SEE ALSO
cc(1), f77(1), mod(l)

17 May 1984 4

DBX(1) DBX(1)

COMMENTS
Non-local gotos can cause some trace/stops to be missed. Most of the command names are too long.
The alias facility helps, but is really quite weak.A csh-like history capability would improve the situa-
tion. Butthen, who wants to duplicate the c-shell in a debugger?

Dbx suffers from the same ‘‘multiple include’’ malady as does sdb. If you have a program consisting of
a number of object files and each is built from source files that include header files, the symbolic infor-
mation for the header files is replicated in each object file. Since about one debugger start-up is done
for each link, having the linker (ld) re-organize the symbol information won’t sav emuch time, though
it would reduce some of the disk space used. The problem is an artifact of the unrestricted semantics of
#include’s in C; for example an include file can contain static declarations that are separate entities for
each file in which they are included.

17 May 1984 5

	DBX (1)

