Indian Hill C Style and Coding Standards
as amended for U of T ZoologwNIX®

L.W. Cannon
R.A. Elliott
L.W Kirchhoff
JH. Miller
JM. Milner
R.W Mitze
E.P Shan
N.O. Whittington

Bell Labs

Henry Spencer

Zoology Computer Systems
University of Toronto

ABSTRACT

This document is an annotated (by the last author) version of the original paper of
the same title. It describes a set of coding standards and recommendations which are
local standards for fiially-supportedunix programs. Thescope is coding style, not
functional oganization.

16 October 1982

Indian Hill C Style and Coding Standards
as amended for U of T ZoologwNIX®

L.W. Cannon
R.A. Elliott
L.W Kirchhoff
JH. Miller
JM. Milner
R.W Mitze
E.P Shan
N.O. Whittington

Bell Labs

Henry Spencer

Zoology Computer Systems
University of Toronto

1. Introduction

This document is a result of a committee formed at Indian Hill to establish a common set of coding
standards and recommendations for the Indian Hill commufiltg scope of this work is the coding style,
not the functional ayanization of programs. The standards in this document are not specific to ESS pro-
gramming only. We havetried to combine previous work [1,6] on C style into a uniform set of standards
that should be appropriate forygproject using C.

2. File Organization
A file consists of various sections that should be separated/drpldglank lines. Although there is
no maximum length requirement for source files, files with more than about 1500 lines are cumbersome to
deal with. The editor may not & enough temp space to edit the file, compilations will gevelpetc.
Since most of us use 300 baud terminals, entines rof asterisks, for example, should be discourgged
Also lines longer than 80 columns are not handled well by all terminals and showtudsslaf possibl€.

The suggested order of sections for a file is as follows:
1. Any header file includes should be the first thing in the file.

2. Immediatelyafter the include%should be a prologue that tells what is in that féedescription of
the purpose of the objects in the files (whethey teefunctions, external data declarations or defini-
tions, or something else) is more useful than a list of the object names.

3. Anytypedefs and defines that apply to the file as a whole are next.

1. Infact, the/'re pretty good general standards. This document is presented unadulterafet variations,
comments, exceptions, etc. are presented in footnotes.

2. Of necessitythese standards cannotveoal situations. Experience and informed judgement count for
much. In&perienced programmers who encounter unusual situations should consult 1) code written by
experienced C programmers following these rules, or 2) experienced C programmers.

3. Thisis not a problem at U of, Br most other sensible places, but rows of asterisks are still annoying.
4. Excessiely long lines which result from deep indenting are often a symptom of poayiniped code.

5. A common variation, in both Bell code and ours, is tense the order of sections 1 and Phis is an
acceptable practice.

-2-

4, Next come the global (external) data declaratiolisa set of defines applies to a particular piece of
global data (such as a flags word), the defines should be immediately after the data declaration

5. Thefunctions come IaZt

2.1. FileNaming Conventions

UNIX requires certain sfik corventions for names of files to be processed byctheommand [5?.
The following suffixes are required:

. C source file names must end.in
. Assembler source file names must endin
In addition the following corentions are uniersally followed:
. Relocatable object file names endan
. Include header file names endhr'? or.d
. Ldp10 specification file names end.im
. Yacc source file names end.yn
. Lex urce file names end ih

3. HeaderFiles

Header files are files that are included in other files prior to compilation by the C preproSesser
are defined at the systenvéklike stdio.hwhich must be included by mamprogram using the standard 1/0
library. Hfader files are also used to contain data declarations and defines that are needed by more than one
programl . Header files should be functionallyganized, i.e., declarations for separate subsystems should
be in separate header files. Also, if a set of declarationsely lix change when code is ported from one
machine to anothgethose declarations should be in a separate header file.

Header files should not be nested. Some objeasyledefs and initialized data definitions cannot
be seen twice by the compiler in on«izcompilation. On wmaix- systems this is also true of uninitialized
declarations without thexern keyword™“. This can happen if include files are nested and will cause the
compilation to fail.

4. Extemal Declarations

External declarations should begin in columnElach declaration should be on a separate lke.
comment describing the role of the object being declared should be included, witehtom that a list

6. Suchdefines should be indented to put tiefines ane level deeper than the firsieword of the declaration
to which the apply.

7. They should be in some sort of meaningful orddiop-dovn is generally better than bottom-up, and a
“ breadth-first’ approach (functions on a similarvie of abstraction together) is preferregeo depth-first
(functions defined as soon as possible after their callehsiderable judgement is called for here. If defin-
ing large numbers of essentially-independent utility functions, consider alphabetical order.

8. Inaddition to the suffix carentions gven here, it is comentional to use ‘Makefile’ (not ‘makefile’) for the
control file formakeand ‘README’ for a summary of the contents of a directory or directory tree.

9. Preferred.An alternate corention that may be preferable in multi-language environments is to use the same
suffix as an ordinary source file but withaperiods instead of one (e.g. “foo..c”).

10.
No idea what this is.

11.
Don't use absolute pathnames for header files. Use&rlhene>construction for getting them from a stan-
dard place, or define them relatito the current directoryThe —I option of the C compiler is the besaw
to handle rtensie pivate libraries of header filesit permits reoganizing the directory structure without
having to alter source files.

12.
It should be noted that declaring variables in a header file is often a pooFrdeaently it is a symptom of
poor partitioning of code between files.

-3-

of defined constants do not need comments if the constant names are sufficient documentation. The com-
ments should be tabbed so thatthiee up underneath each ot?\%r Use the tab character (CTRL | if your
terminal doesn’havea sparate ky) rather than blanksFor structure and union template declarations,

each element should be alone on a line with a comment describifigeitopening brace{() should be on

the same line as the structure tag, and the closing brace should be alone on a line in column 1, i.e.

struct boat {
int wllength; [* water line length in feet */
inttype; /* see bela */
long sarea; /* sail area in square feet */
2
/*
* defines for boat.typ]e4
*
#define KETCH 1
#define YAWL 2
#define SLOOP 3
#define SQRIG 4
#define MAOOR 5

If an external variable is initialized the equal sign should not be orjnﬂted

intx=1;

char *msg = "message";

struct boat winner = {
40, [*water line length */
YAWL,
600 /*sail area */

16

5. Comments

Comments that describe data structures, algorithms, etc., should_be in block comment form with the
opening /* in column one, a * in column 2 before each line of commlet:ft teend the closing */ in col-
umns 2-3.

13.
So should the constant names and their defined values.

14.
These defines are better put right after the declaratitypefwithin the structdeclaration, with enough tabs
after # to indentlefineone level more than the structure member declarations.

15.
The empty initializer“{} ’, should neer be wsed. Structurénitializations should be fully parenthesized
with braces. Constants used to initialize longs should be explicitly long.

16.
In ary file which is part of a lger whole rather than a self-contained program, maximum use should be
made of thestatic keyword to male functions and variables local to single filegariables in particular
should be accessible from other files only when there is a clear need that cannot be filled in ayother w
Such usages should be commented toeniiagiear that another file’variables are being used; the comment
should name the other file.

17.
Some automated program-analysis packages use a different character in this position as a marker for lines
with specific items of information. In particula line with a ‘-’ here in a comment preceding a function is
sometimes assumed to be a one-line summary of the fursgtiopose.

* Here is a block comment.

* The comment text should be tabbmér&S
* and the opening /* and closing star-slash
* should be alone on a line.

Note thatgrep ~.*will catch all block comments in the fildn some cases, block comments inside a
function are appropriate, and yhehould be tabbedwver to the same tab setting as the code thay the
describe. Shotomments may appear on a single line indentedto the tab setting of the code that fol-
lows.

if (argc > 1) {
/* Get input file from command line. */
if (freopen(argv[1], "r", stdin) == NULL)
error("cant open %s\n", argv[1]);

}

Very short comments may appear on the same line as the cgddewibe, but should be tabbed
over far enough to separate them from the statements. If more than one short comment appears in a block
of code thg should all be tabbed to the same tab setting.

if (@==2)

return(TRJE); /* special case */
else

return(isprime(a)); /Aworks only for odd a */

6. Function Declarations

Each function should be preceded by a block comment prologue tleattigg name and a short
description of what the function dogs If the function returns aalue, the type of the value returned
should be alone on a line in column 1 (do not defauhtjo If the function does not return a value then it
should not be gen a return type. If the alue returned requires a long explanation, it should s @ the
prologue; otherwisé can be on the same line as the return type, tabled ©he function name and for
mal parameters should be alone on a line beginning in column 1. Each parameter should be declared (do
not default tant), with a comment on a single lindhe opening brace of the function body should also be
alone on a line lggnning in colur%ﬁ 1. The function name, argument declaration list, and opening brace
should be separated by a blank fine All local declarations and code within the function body should be
tabbed wger at least one tab.

If the function uses gnexternal variables, these shouldvlaheir own declarations in the function
body using thextern keyword. If the external variable is an array the array bounds must be repeated in the
exern declaration. Thershould also bexern declarations for all functions called by avegi function.

This is particularly beneficial to someone picking up code written by andtheefunction returns aalue
of type other thaiint, it is required by the compiler that such functions be declared beforeyheaised.
Having theextern delcaration in the calling functiomtieclarations sectiorvaids all such problenis.

18.
A common practice in both Bell and local code is to use a space rather than a tab aftdihikastaccept-
able.

19.
Discussion of non-tvial design decisions is also appropriate, butich duplicating information that is
present in (and clear from) the codes to easy for such redundant information to get out of date.

20.
Neither Bell nor local code hases included these separating blank lines, and it is not clear thatdlde
anything useful. Leze them out.

21.
These rules tend to produce a lot of clut@oth Bell and local practice frequently omégern declarations

In general each variable declaration should be on a separate line with a comment describing the role
played by the variable in the function. If thariable is external or a parameter of type pointer which is
changed by the function, that should be noted in the comment. All such comments for parameters and local
variables should be tabbed so thatytliae up underneath each othdihe declarations should be separated
from the functions datements by a blank line.

A local variable should not be redeclared in nested b%gckEven though this is valid C, the poten-
tial confusion is enough thhnt will complain about it when gén the—h option.

6.1. Examples

/*
* skyblue()
* Determine if the skis blue.
*
int /* TRUE or FALSE */
skyblue()
{
extern int hour;
if (hour < MORNING || hour > EVENING)
return(ALSE); /* black */
else
return(TRJE); /* blue */
}

for staticvariables and functions. This is permitted. Omission of declarations for standard library routines is
also permissible, although if thare declared it is better to declare them within the functions that use them
rather than globally.

22,
In fact, avoid ary local declarations thawerride declarations at highenigs.

* tail(nodep)

* Find the last element in the linked list
* pointed to by nodep and return a pointer to it.

*
NODE * [* pointer to tail of list */
tail(nodep)
NODE *nodep; [* pointer to head of list */
{
register NODE *np; [* current pointer advances to NULL */
register NODE *Ip; /* last pointer follows np */
np = Ip = nodep;
while ((np = np->next) '= NULL)
Ip = np;
return(lp);
}

7. CompoundStatements

Compound statements are statements that contain lists of statements enclosed inTim&ces.
enclosed list should be tabbedeoone more than the tab position of the compound statement iTedf.
opening left brace should be at the end of the line beginning the compound statement and the closing right
brace should be alone on a line, tabbed under the beginning of the compound stateneetitat the left
brace beginning a function body is the only occurrence of a left brace which is alone on a line.

7.1. Examples

if (expr) {
statement;
statement;

}

if (expr) {
statement;
statement;

}else {
statement;
statement;

}

Note that the right brace before #seand the right brace before thvile of ado-whilestatement (bela)
are the only places where a right braces appears that is not alone on a line.

for (i=0; i < MAX; i++) {

statement;
statement;
}
while (expr) {
statement;
statement;
}
do {
statement;
statement;

} while (expr);

switch (expr) {

case ABC:

case DEF:
statement;
break;

case XYZ:
statement;
break;

default:
statement;
brealgl‘;;

}

Note that when multipleaselabels are used, there placed on separate lines. The fall through feature of
the Cswitchstatement should rarely i/er be wsed when code isxecuted beforedlling through to the
next one. If this is done it must be commented for future maintenance.

if (strcmp(reply "yes") == EQJAL) {
statements for yes

} else if (strcmp(reply'no") == EQUAL) {
statements for no

} else if (strcmp(reply"'maybe”) == EQIAL) {
statements for maybe

}else {
statements for none of the aleo

}

The last example is a generalizaglitchstatement and the tabbing reflects the switch between exactly one
of several alternatves rather than a nesting of statements.

8. Expressions

23.
This breakis, strictly speaking, unnecessaoyt it is required nonetheless because iv@rts a &ll-through
error if anothecaseis added later after the last one.

8.1. Operators

The old \ersions of equal-ops =+, =—, =*, etc. should not be used. The preferred use is +=, —=, *=,
etc. All binary operators except . and —> should be separated from their operands bé |amkddition,
keyw&;éjs that are follved by expressions in parentheses should be separated from the left parenthesis by a
blank™. Blanks should also appear after commas in argument lists to help separate the arguments visually
On the other hand, macros with arguments and function calls shouldveoa tlank between the name

and the left parenthesis. In particyltire C preprocessor requires the left parenthesis to be immediately
after the macro name or else the argument list will not be recogrilreatty operators should not be sepa-

rated from their single operand. Since C has some unexpected precedence rules, all exprebgiogs in
mixed operators should be fully parenthesized.

Examples

a+=c+d
a=(a+b)/(c*g;
strp—>field = str.fl - ((x & MASK) >> DISP);
while (*d++ = *s++)
; /* EMPTY BODY */

8.2. NamingConventions

Individual projects will no doubt lva their own naming carentions. Thereare some general rules
however.

. An initial underscore should not be used foy agercreated gamg?. UNIX uses it for names that
the user should not ba o know (like the standard I/O library)

. Macro namegypedefhames, andefinenames should be all in CAPS.

. Variable names, structure tag names, and function names should heﬁrcasgs. Some macros
(such asgetchar and putchal) are in lower case since themay also exist as functions. Care is
needed when interchanging macros and functions gince functions pass their paramesdus by v
whereas macros pass their arguments by name subsfitution

8.3. Constants

Numerical constants should not be coded dirggtIyThe definefeature of the C preprocessor should
be used to assign a meaningful name. This will alscentadasier to administer lge programs since the

24,
Some judgement is called for in the case of cometeressions, which may be clearer if therler” opera-
tors are not surrounded by spaces and the “Oute€s are.

25.
Sizeofis an exception, see the discussion of function calls. Less log®aliyreturn.

26.
Trailing underscores should beoaed too.

27.
This cowention is reserved for system purposéisyou must hae your own prvate identifiers, begin them
with a capital letter identifying the package to whichytbelong.

28.
It is best to aoid names that differ only in case,dikoo andFOQ. The potential for confusion is consider
able.

29.
This difference also means that carefree use of macros requires care whare thefined. Remember that
complex expressions can be used as parameters, and operator-precedence problems can arise unless all
occurrences of parameters in the definitiomehparentheses around therfihere is little that can be done
about the problems caused by side effects in parameters excepidtaide effects in expressions (a good
idea anyway).
30.
At the very least, andirectly-coded numerical constant musvéa omment explaining the degtion of
the value.

-O-

constant @lue can be changed uniformly by changing onlydéfine The enumeration data type is the
preferred way to handle situations whereagable takes on only a discrete set of values, since additional
type checking is\ailable througHint.

There are some cases where the constants 0 and 1 may appear asakenstebd of as defines.
For example if afor loop indexes through an arrgyhen

for (i=0;i < ARYBOUND; i++)
is reasonable while the code

fptr = fopen(filename, "r");
if (fptr == 0)
error("cant open %s\n", filename);

is not. In the last example the defined constdldtL is available as part of the standard 1/O library’
header filestdio.hand must be used in place of the 0.

9. Portability

The advantages of portable code are wellWkmoThissection gies some guidelines for writing per
table code, where the definition of portable is taken to mean that a source file contains portable code if it
can be compiled andkecuted on different machines with the only source change being the inclusion of
possibly different header filesThe header files will contain defines and typedefs that may vary from
machine to machine. Reference [1] contains useful information on both style and parthaligy of the
recommendations in this document originated in [Ihe following is a list of pitfalls to bevaided and
recommendations to be considered when designing portable code:

. First, one must recognize that some things are inherently non-portakxdenples are code to deal
with particular hardware registers such as the program statas and code that is designed to sup-
port a particular piece of hardware such as an assembler or V&2 dtven in these cases there are
mary routines and data ganizations that can be made machine independent. It is suggested that
source file be ganized so that the machine-independent code and the machine-dependent code are
in separate files. Then if the program is to beseddo a rew machine, it is a much easier task to
determine what needs to be chargedit is dso possible that code in the machine-independent files
may hae wses in other programs as well.

. Pay attention to word sizes. The folling sizes apply to basic types in C for the machines that will
be used most at IH:

center; l c cclrr.rtype pdpll 3B IBM _char 8 8 8 short 16 16 16
int 16 32 32long 32 32 32

In general if the Wor(égize is importashortor long should be used to get 16 or 32 bit items opn an
of the aboe machines™. If a ample loop counter is being used where either_16 or 32 bits will do,
then usant, since it will get the most efficient (natural) unit for the current magh ne

31
If you #ifdefdependencies, malaire that if no machine is specified, the result is a syntax aota default
machine!

32.
The 3B is a Bell Labs machine. The VAX, not shown in the table, is similar to the 3B in these reBpects.
68000 resembles either the pdp11 or the 3B, depending on the particular compiler.

33.
Any unsigned type other than plaimsigned intshould betypedeéd, as such types are highly compiler
dependent. This also true of long and short types other tluany intandshort int Large programs should
have a @ntral header file which suppliggoedes$ for commonly-used width-sensiéi types, to mak it easier
to change them and to aid in finding width-sewsitbde.

34.
Beware of making assumptions about the size of point€hgy are not alvays the same size a#. Nor are
all pointers alays the same size, or freely intergertible. Pointerto-character is a particular trouble spot
on machines which do not address to the byte.

-10-

. Word size also affects shifts and masks. The code
X &= 0177770

will clear only the three rightmost bits of amt on a PDP11. On a 3B it will also clear the entire
upper halfverd. Use

x &="07
instead which works properly on all machiﬁgs

. Code that taks advantage of the &/ complement representation of humbers on most machines
should not be usedOptimizations that replace arithmetic operations with\egemt shifting opera-
tions are particularly suspecYou should weigh the time savings with the potential for obscure and
difficult bugs when your code is mad, sayfrom a 3B to a 1A.

. Watch out for signed characters. On the PDP-11, characters artgigdesl when used irxgres-
sions, which is not the case oryather machine. In particulagetcharis an intger-valued function
(or macro) since the yalue BOF for the standard 1/O library is —1, which is not possible for a-char
acter on the 3B or IBM".

. The PDP-11 is unique among processors on whickisIsan that the bytes are numbered from right
to left within a \IS d. All other machines (3B, IBM, Interdata 8/32, Honeywell) number the bytes
from left to right". Hence ap code that depends on the left-right orientation of bits inoadw
deseres special scrutyn Bit fields within structure members will only be portable so long &s tw
separate fields are ve concatenated and treated as a‘tnif1,3]

. Do not default the boolean test for non-zero, i.e.
if (f() !'= FAIL)
is better than

if (f0)

evan thoughFAIL may hae the value 0 which is considered to mean false % . CThis will help
you out later when somebody decides that a failure return should be -1 instead of 0

35.
The or operator |() does not hee these problems, nor do bitfields (which, unfortunatady not very porta-
ble due to defecte compilers).

36.
Actually, this is not quite the real reason wbetchar returnsint, but the comment isalid: codewhich
assumes either that characters are signed or thatitheinsigned is unportable. It is best to completely
avad using char to hold numbers.Manipulation of characters as if thevere numbers is also often
unportable.

37.
Actually, there are some more right-to-left machines,rmit the comments still apply.

38.
The same applies to variables in generdignment considerations and loader peculiarities enttkvery
rash to assume that amconsecutiely-declared variables are together in memanythat a variable of one
type is aligned appropriately to be used as another type.

39.
A particularly notorious case is usisgrcmpto test for string equalifyvhere the result shoulever ever be
defaulted. Thepreferred approach is to define a ma8TREQ

#define STREQ(a, b) (strcmp((a), (b)) == 0)

40.

An exception is commonly made for predicates, which are functions which meet the following restrictions:
« Has no other purpose than to return true or false.
« Returns 0 for false, 1 for true, nothing else.

« Is mamed so that the meaning of (say) a ‘true’ return is absolutelgpusb Calla predicateisvalid or valid,
not checkvalid

-11-

. Be auspicious of numericalues appearing in the codEven simple valu f l& 0 or 1 ould be bet-
ter expressed using defineselikALSE and TRUE (see preious item Any aher constants
appearing in a program would be better expressed as a defined com$iantnakes it easier to
change and also easier to read.

. Become familiar with xsting library functions and defin%% You should not be writing yoummm
string compare routine, or making your own defines for system stru%#ur&bt only does this
waste your time, but it prents your program from taking advantage of amicrocode assists or
other means of improving performance of system rou %es

. Uselint. It is a waluable tool for finding machine-dependent constructs as well as other inconsisten-
cies or program bugs that pass the compiler

10. Lint

Lint is a C program checker [2] that examines C source files to detect and report type incompatibili-
ties, inconsistencies between function definitions and calls, potential program budssise¢xpected that
projects will require programs to uBet as part of the official acceptance proceé reln addition, work
is going on in department 5521 to modiiigt so that it will check for adherence to the standards in this
document.

It is still too early to say exactly which of the standardemghere will be checked bint. In some
cases such as whether a comment is misleading or incorrect there is little hope of mechanical dhecking.
other cases such as checg' g that the opening brace of a function body is alone on a line in column 1, the
test has already been ad Zd Future bulletins will be used to announcevnadditions tolint as thg
occur.

It should be noted that the best way tolirsteis not as a barrier that must bee@wome before dicial
acceptance of a program, but rather as a tool to use wédneanajor changes or additions to the codgeha
been madelLint can find obscure bugs and insure portability before problems occur.

11. SpecialConsiderations
This section contains some miscellaneous dod don'ts.

. Don'’t change syntax via macro substitution. It makes the program unintelligible tat &tidoperpe-
trator.

. There is a time and a place for embedded assignment staté?nelmtssome constructs there is no

41.
Actually, YESandNO often read better.

42.
But nottoo familiar. The internal details of libranatilities, as opposed to their external interfaces, are sub-
ject to change withoutaning. The are also often quite unportable.

43.
Or, especially writing your own code to control terminals. Use teemcappackage.

44,
It also makes your code less readable, because the reader has to figure out whe¢hdoipgusomething
special in that reimplemented sttd justify its existence. Furthermord; s a fuitful source of bugs.

45,
The use ofint on all programs is strongly recommendédis difficult to eliminate complaints about func-
tions whose returnalue is not used (in the current version of C, at least), but most other message# from
really do indicate something wrong. The —h, —p, —a, —x, and —c options are worth leagkhiafthem will
complain about some legitimate things, buythdl also pick up man botches.

46.

Yes.
47.

Little of this is rel@ant at U of T The version ofint that we hae lacks these mods.
48.

The ++ and —— operators count as assignment statements. So, foy puaposes, do functions with side
effects.

-12-

better way to accomplish the results without making the catléeb and less readablerhe while
loop in section 8.1 is one example of an appropriate place. Another is the common code segment:

while ((c = getchar()) != EOF) {
process the character
}

Using embedded assignment statements to weptm-time performance is also possibldowever,
one should consider the tradebétween increased speed and decreased maintainability that results
when embedded assignments are used in artificial pl&oesxample, the code:

a=b+g
d:a+r;

should not be replaced by
d=(a=b+c)+r

evan though the latter may ga ane g/cle. Notethat in the long run the time difference between the
two will decrease as the optimizeaigs maturity while the difference in ease of mai@enance will
increase as the human memory of whgbing on in the latter piece of code begins to fade

. There is also a time and place for the terrfarpperator and the binary comma operafbine logi-
cal expression operand before theshould be parenthesized:
(x>=0)?x:-X

Nested? : operators can be confusing and shouldvwédad if possible. There are some macros lik
getchar where thg can be useful. The comma operator can also be usefal Btatements to pro-
vide multiple initializations or incrementations.

. Goto statements should be used sparingly as ymaafl-structured cod%o. The main place v§|ere
they can be usefully employed is to break out ofesal levels of switch for, and while nesting —,

e.g.
for (...)
for (...) {
if (disaster)
goto error;
}
error:

clean up the mess

When agotois necessary the accompanying label should be alone on a line and tabbed one tab posi-
tion to the left of the associated code that follows.

. This committee recommends that programmers not rely on automatic beautifiers for thimdollo
reasons. Firstthe main person who benefits from good program style is the programmer himself.
This is especially true in the early design of handwritten algorithms or pseudo-&atiematic
beautifiers can only be applied to complete, syntactically correct programs and hence - not a
able when the need for attention to white space and indentation is greatest. It is also felt that pro-
grammers can do a better job of making clear the complete visual layout of a function or file, with the

49.
Note also that side effects withixpressions can result in code whose semantics are comefpendent,
since C$ ader of @aluation is explicitly undefined in most places. Compilers do differ.

50.
Thecontinuestatement is almost as bareakis less troublesome.

51.
The need to do such a thing may indicate that the inner constructs shouldére darbkto a separate func-
tion, with a success/failure return code.

-13-

normal attention to detail of a careful programﬁ%erSloppy programmers should learn to be careful
programmers instead of relying on a beautifier to enhkir code readableFinally, it is felt that

since beautifiers are nonwiial programs that must parse the source, the burden of maintaining them
in the face of the continuing@ution of C is not worth the benefits gained by such a program.

12. Project Dependent Standards

Individual projects may wish to establish additional standards beyond tlveaehgie. Thefollow-
ing issues are some of those that should be adddressed by each project program administration group.

. What additional nhaming ceentions should be follwed? Inparticular systematic prefix coren-
tions for functional grouping of global data and also for structure or union member names can be use-
ful.

. What kind of include file ayanization is appropriate for the projectarticular data hierarchy?

. What procedures should be established feieveing lint complaints? Atolerance leel needs to be
established in concert with thiat options to preent unimportant complaints from hiding complaints
about real bugs or inconsistencies.

. If a project establishes its own arehilibraries, it should plan on supplying a lint library file [2] to
the system administrators. This will alldimt to check for compatible use of library functions.

13. Conclusion

A set of standards has been presented for C programming style. One of the most important points is
the proper use of white space and comments so that the structure of the progrdemifrem the layout
of the code. Another good idea to keep in mind when writing code is that ielig fiat you or someone
else will be asked to modify it or malit run on a different machine sometime in the future.

As with ary standard, it must be followed if it is to be usefdlhe Indian Hill version ofint will
enforce those standards that are amenable to automatic chetfkiru have touble following agy of
these standards danust ignore them. Programmers at Indian Hill should bring their problems to the Soft-
ware Development System Group (Lee Kirchiiotontact) in department 5522. Programmers outside
IndiagsHiII should contact the Processor Application Group (Layne Cannon, contact) in department
5512~

52.
In other vords, some of the visual layout is dictated by intent rather than syntax. Beautifiers cannot read
minds.

53.
At U of T Zoology it's Henry Spencer in 336B.

[1]
(2]
3]
[4]
5]
[6]

-14-

References

B.A. Tague, "C Language Portability", Sept 22, 197This document issued by department 8234
contains three memos by R.C. Haight, A.L. Glasswat T.L. Lyon dealing with style and portability

S.C. Johnson, "Lint, a C Program Checker", Technical Memorandum, 77-1273-14, September 16,
1977.

R.W. Mitze, "The 3B/PDP-11 Sabbing Problem", Memorandum for File, 1273-770907.01MF
September 14, 1977.

R.A. Elliott and D.C. Pfder, "3B Processor Common Diagnostic Standards- Version 1", Memoran-
dum for File, 5514-780330.01MMarch 30, 1978.

R.W. Mitze, "An Owerview of C Compilation of UNIX User Processes on the 3B", Memorandum for
File, 5521-780329.02MMarch 29, 1978.

B.W. Kernighan and D.M. Ritchid,he C Pogramming Languge, Prentice-Hall 1978.

-15-

/*

* The C Style Summary Sheet

* by Henry Spenceid of T Zoology
*

#include <errno.h>

typedef int
#define

SEQNO; [*... %l
STREQ(a0) (stremp((@)(b)) == 0)

static char *foo = NULL; /.. %
struct bar {
SEQNO alpha; A
define
int beta; [* .. %

NOSEQNO
h

/*

* M ary unnecessary braces, to shahere.
*

static int
bletch(a)
int a; [* . ¥

{

/* what is returned */

int bar; [*
extern int errno; /* ..., changed here */
extern char *index();

if (foobar() = FAIL) {
return(b);
}

while (x == (y & MASK)) {
f+=(x>=0)? x: =X;
}

do {
/* Avoid nesting ?: */
} while (index(a, b) '= NULL);

switch (...) {
case ABC:
case DEF:
printf("...", a, b);
break;
case XYZ:
X=Y,;
/* FALLTHROUGH */
default:
/* Limit imbedded =s. */
break;
}

Block comment,
describefile.

Headers; do’nest.

Global definitions.

Global declarations.

Static whe
0
Don'’t assume 16 bits.
Functions.
Dondefault int.
Don't defe
if (lisvalid()) {
errnc= ER
} else {
}
for (i=0;
}

if (STREQ(X, "foo")) {

} else if (STREQ(X, "bar")) {

x &="07;
}else if (STREQ(X, "ugh™) {
/* Avoid gotos */

telse {

/* and cor

}

while((c = getc()) != EOF)
; /*NULLB

