
Indian Hill C Style and Coding Standards
as amended for U of T ZoologyUNIX ®

L.W. Cannon
R.A. Elliott

L.W. Kirchhoff
J.H. Miller
J.M. Milner
R.W. Mitze
E.P. Schan

N.O. Whittington

Bell Labs

Henry Spencer

Zoology Computer Systems
University of Toronto

ABSTRACT

This document is an annotated (by the last author) version of the original paper of
the same title. It describes a set of coding standards and recommendations which are
local standards for officially-supportedUNIX programs. Thescope is coding style, not
functional organization.

16 October 1982

Indian Hill C Style and Coding Standards
as amended for U of T ZoologyUNIX ®

L.W. Cannon
R.A. Elliott

L.W. Kirchhoff
J.H. Miller
J.M. Milner
R.W. Mitze
E.P. Schan

N.O. Whittington

Bell Labs

Henry Spencer

Zoology Computer Systems
University of Toronto

1. Intr oduction

This document is a result of a committee formed at Indian Hill to establish a common set of coding
standards and recommendations for the Indian Hill community. The scope of this work is the coding style,
not the functional organization of programs. The standards in this document are not specific to ESS pro-
gramming only1. We hav etried to combine previous work [1,6] on C style into a uniform set of standards
that should be appropriate for any project using C2.

2. FileOrganization

A file consists of various sections that should be separated by several blank lines. Although there is
no maximum length requirement for source files, files with more than about 1500 lines are cumbersome to
deal with. The editor may not have enough temp space to edit the file, compilations will go slower, etc.
Since most of us use 300 baud terminals, entire rows of asterisks, for example, should be discouraged3.
Also lines longer than 80 columns are not handled well by all terminals and should be avoided if possible4.

The suggested order of sections for a file is as follows:

1. Any header file includes should be the first thing in the file.

2. Immediatelyafter the includes5 should be a prologue that tells what is in that file.A description of
the purpose of the objects in the files (whether they be functions, external data declarations or defini-
tions, or something else) is more useful than a list of the object names.

3. Any typedefs and defines that apply to the file as a whole are next.

1. In fact, they’re pretty good general standards. This document is presented unadulterated;U of T variations,
comments, exceptions, etc. are presented in footnotes.

2. Of necessity, these standards cannot cover all situations. Experience and informed judgement count for
much. Inexperienced programmers who encounter unusual situations should consult 1) code written by
experienced C programmers following these rules, or 2) experienced C programmers.

3. Thisis not a problem at U of T, or most other sensible places, but rows of asterisks are still annoying.

4. Excessively long lines which result from deep indenting are often a symptom of poorly-organized code.

5. A common variation, in both Bell code and ours, is to reverse the order of sections 1 and 2.This is an
acceptable practice.

-2-

4. Next come the global (external) data declarations.If a set of defines applies to a particular piece of
global data (such as a flags word), the defines should be immediately after the data declaration6.

5. Thefunctions come last7.

2.1. FileNaming Conventions

UNIX requires certain suffix conventions for names of files to be processed by thecc command [5]8.
The following suffixes are required:

• C source file names must end in.c

• Assembler source file names must end in.s

In addition the following conventions are universally followed:

• Relocatable object file names end in.o

• Include header file names end in.h 9 or .d

• Ldp10specification file names end in.b

• Yacc source file names end in.y

• Lex source file names end in.l

3. HeaderFiles

Header files are files that are included in other files prior to compilation by the C preprocessor. Some
are defined at the system level l ike stdio.hwhich must be included by any program using the standard I/O
library. Header files are also used to contain data declarations and defines that are needed by more than one
program11. Header files should be functionally organized, i.e., declarations for separate subsystems should
be in separate header files. Also, if a set of declarations is likely to change when code is ported from one
machine to another, those declarations should be in a separate header file.

Header files should not be nested. Some objects like typedefs and initialized data definitions cannot
be seen twice by the compiler in one compilation. On non-UNIX systems this is also true of uninitialized
declarations without theextern keyword12. This can happen if include files are nested and will cause the
compilation to fail.

4. External Declarations

External declarations should begin in column 1.Each declaration should be on a separate line.A
comment describing the role of the object being declared should be included, with the exception that a list

6. Suchdefines should be indented to put thedefines one level deeper than the first keyword of the declaration
to which they apply.

7. They should be in some sort of meaningful order. Top-down is generally better than bottom-up, and a
‘‘ breadth-first’’ approach (functions on a similar level of abstraction together) is preferred over depth-first
(functions defined as soon as possible after their calls).Considerable judgement is called for here. If defin-
ing large numbers of essentially-independent utility functions, consider alphabetical order.

8. In addition to the suffix conventions given here, it is conventional to use ‘Makefile’ (not ‘makefile’) for the
control file formakeand ‘README’ for a summary of the contents of a directory or directory tree.

9. Preferred.An alternate convention that may be preferable in multi-language environments is to use the same
suffix as an ordinary source file but with two periods instead of one (e.g. ‘‘foo..c’’).

10.
No idea what this is.

11.
Don’t use absolute pathnames for header files. Use the<name> construction for getting them from a stan-
dard place, or define them relative to the current directory. The−I option of the C compiler is the best way
to handle extensive private libraries of header files;it permits reorganizing the directory structure without
having to alter source files.

12.
It should be noted that declaring variables in a header file is often a poor idea.Frequently it is a symptom of
poor partitioning of code between files.

-3-

of defined constants do not need comments if the constant names are sufficient documentation. The com-
ments should be tabbed so that they line up underneath each other13. Use the tab character (CTRL I if your
terminal doesn’t hav ea separate key) rather than blanks.For structure and union template declarations,
each element should be alone on a line with a comment describing it.The opening brace ({) should be on
the same line as the structure tag, and the closing brace should be alone on a line in column 1, i.e.

struct boat {
int wllength; /* water line length in feet */
int type; /* see below */
long sarea; /* sail area in square feet */

};
/*
* defines for boat.type14

*/
#define KETCH 1
#define YAWL 2
#define SLOOP 3
#define SQRIG 4
#define MOTOR 5

If an external variable is initialized the equal sign should not be omitted15.

int x = 1;
char *msg = "message";
struct boat winner = {

40, /* water line length */
YA WL,
600 /* sail area */

};
16

5. Comments

Comments that describe data structures, algorithms, etc., should be in block comment form with the
opening /* in column one, a * in column 2 before each line of comment text17, and the closing */ in col-
umns 2-3.

13.
So should the constant names and their defined values.

14.
These defines are better put right after the declaration oftype, within thestructdeclaration, with enough tabs
after # to indentdefineone level more than the structure member declarations.

15.
The empty initializer, ‘‘{}’ ’, should never be used. Structureinitializations should be fully parenthesized
with braces. Constants used to initialize longs should be explicitly long.

16.
In any file which is part of a larger whole rather than a self-contained program, maximum use should be
made of thestatic keyword to make functions and variables local to single files.Variables in particular
should be accessible from other files only when there is a clear need that cannot be filled in another way.
Such usages should be commented to make it clear that another file’s variables are being used; the comment
should name the other file.

17.
Some automated program-analysis packages use a different character in this position as a marker for lines
with specific items of information. In particular, a line with a ‘-’ here in a comment preceding a function is
sometimes assumed to be a one-line summary of the function’s purpose.

-4-

/*
* Here is a block comment.
* The comment text should be tabbed over18

* and the opening /* and closing star-slash
* should be alone on a line.
*/

Note thatgrep ˆ.* will catch all block comments in the file.In some cases, block comments inside a
function are appropriate, and they should be tabbed over to the same tab setting as the code that they
describe. Shortcomments may appear on a single line indented over to the tab setting of the code that fol-
lows.

if (argc > 1) {
/* Get input file from command line. */
if (freopen(argv[1], "r", stdin) == NULL)

error("can’t open %s\n", argv[1]);
}

Very short comments may appear on the same line as the code they describe, but should be tabbed
over far enough to separate them from the statements. If more than one short comment appears in a block
of code they should all be tabbed to the same tab setting.

if (a == 2)
return(TRUE); /* special case */

else
return(isprime(a)); /*works only for odd a */

6. FunctionDeclarations

Each function should be preceded by a block comment prologue that gives the name and a short
description of what the function does19. If the function returns a value, the type of the value returned
should be alone on a line in column 1 (do not default toint). If the function does not return a value then it
should not be given a return type. If the value returned requires a long explanation, it should be given in the
prologue; otherwiseit can be on the same line as the return type, tabbed over. The function name and for-
mal parameters should be alone on a line beginning in column 1. Each parameter should be declared (do
not default toint), with a comment on a single line.The opening brace of the function body should also be
alone on a line beginning in column 1. The function name, argument declaration list, and opening brace
should be separated by a blank line20. All local declarations and code within the function body should be
tabbed over at least one tab.

If the function uses any external variables, these should have their own declarations in the function
body using theextern keyword. If the external variable is an array the array bounds must be repeated in the
extern declaration. Thereshould also beextern declarations for all functions called by a given function.
This is particularly beneficial to someone picking up code written by another. If a function returns a value
of type other thanint, it is required by the compiler that such functions be declared before they are used.
Having theexterndelcaration in the calling function’s declarations section avoids all such problems21.

18.
A common practice in both Bell and local code is to use a space rather than a tab after the *.This is accept-
able.

19.
Discussion of non-trivial design decisions is also appropriate, but avoid duplicating information that is
present in (and clear from) the code. It’s too easy for such redundant information to get out of date.

20.
Neither Bell nor local code has ever included these separating blank lines, and it is not clear that they add
anything useful. Leave them out.

21.
These rules tend to produce a lot of clutter. Both Bell and local practice frequently omitsextern declarations

-5-

In general each variable declaration should be on a separate line with a comment describing the role
played by the variable in the function. If the variable is external or a parameter of type pointer which is
changed by the function, that should be noted in the comment. All such comments for parameters and local
variables should be tabbed so that they line up underneath each other. The declarations should be separated
from the function’s statements by a blank line.

A local variable should not be redeclared in nested blocks22. Even though this is valid C, the poten-
tial confusion is enough thatlint will complain about it when given the−h option.

6.1. Examples

/*
* skyblue()
*
* Determine if the sky is blue.
*/

int /* TRUE or FALSE */
skyblue()

{
extern int hour;

if (hour < MORNING || hour > EVENING)
return(FALSE); /* black */

else
return(TRUE); /* blue */

}

for staticvariables and functions. This is permitted. Omission of declarations for standard library routines is
also permissible, although if they are declared it is better to declare them within the functions that use them
rather than globally.

22.
In fact, avoid any local declarations that override declarations at higher levels.

-6-

/*
* tail(nodep)
*
* Find the last element in the linked list
* pointed to by nodep and return a pointer to it.
*/

NODE * /* pointer to tail of list */
tail(nodep)

NODE *nodep; /* pointer to head of list */

{
register NODE *np; /* current pointer advances to NULL */
register NODE *lp; /* last pointer follows np */

np = lp = nodep;
while ((np = np->next) != NULL)

lp = np;
return(lp);

}

7. CompoundStatements

Compound statements are statements that contain lists of statements enclosed in braces.The
enclosed list should be tabbed over one more than the tab position of the compound statement itself.The
opening left brace should be at the end of the line beginning the compound statement and the closing right
brace should be alone on a line, tabbed under the beginning of the compound statement.Note that the left
brace beginning a function body is the only occurrence of a left brace which is alone on a line.

7.1. Examples

if (expr) {
statement;
statement;

}

if (expr) {
statement;
statement;

} else {
statement;
statement;

}

Note that the right brace before theelseand the right brace before thewhile of ado-whilestatement (below)
are the only places where a right braces appears that is not alone on a line.

-7-

for (i = 0; i < MAX; i++) {
statement;
statement;

}

while (expr) {
statement;
statement;

}

do {
statement;
statement;

} w hile (expr);

switch (expr) {
case ABC:
case DEF:

statement;
break;

case XYZ:
statement;
break;

default:
statement;
break23;

}

Note that when multiplecaselabels are used, they are placed on separate lines. The fall through feature of
the Cswitchstatement should rarely if ever be used when code is executed before falling through to the
next one. If this is done it must be commented for future maintenance.

if (strcmp(reply, "yes") == EQUAL) {
statements for yes
...

} else if (strcmp(reply, "no") == EQUAL) {
statements for no
...

} else if (strcmp(reply, "maybe") == EQUAL) {
statements for maybe
...

} else {
statements for none of the above
...

}

The last example is a generalizedswitchstatement and the tabbing reflects the switch between exactly one
of several alternatives rather than a nesting of statements.

8. Expressions

23.
This break is, strictly speaking, unnecessary, but it is required nonetheless because it prevents a fall-through
error if anothercaseis added later after the last one.

-8-

8.1. Operators

The old versions of equal-ops =+, =−, =*, etc. should not be used. The preferred use is +=, −=, *=,
etc. All binary operators except . and −> should be separated from their operands by blanks24. In addition,
keywords that are followed by expressions in parentheses should be separated from the left parenthesis by a
blank25. Blanks should also appear after commas in argument lists to help separate the arguments visually.
On the other hand, macros with arguments and function calls should not have a blank between the name
and the left parenthesis. In particular, the C preprocessor requires the left parenthesis to be immediately
after the macro name or else the argument list will not be recognized.Unary operators should not be sepa-
rated from their single operand. Since C has some unexpected precedence rules, all expressions involving
mixed operators should be fully parenthesized.

Examples

a += c + d;
a = (a + b) / (c * d);
strp−>field = str.fl - ((x & MASK) >> DISP);
while (*d++ = *s++)

; /* EMPTY BODY * /

8.2. NamingConventions

Individual projects will no doubt have their own naming conventions. Thereare some general rules
however.

• An initial underscore should not be used for any user-created names26. UNIX uses it for names that
the user should not have to know (like the standard I/O library)27.

• Macro names,typedefnames, anddefinenames should be all in CAPS.

• Variable names, structure tag names, and function names should be in lower case28. Some macros
(such asgetchar and putchar) are in lower case since they may also exist as functions. Care is
needed when interchanging macros and functions since functions pass their parameters by value
whereas macros pass their arguments by name substitution29.

8.3. Constants

Numerical constants should not be coded directly30. Thedefinefeature of the C preprocessor should
be used to assign a meaningful name. This will also make it easier to administer large programs since the

24.
Some judgement is called for in the case of complex expressions, which may be clearer if the ‘‘inner’’ opera-
tors are not surrounded by spaces and the ‘‘outer’’ ones are.

25.
Sizeofis an exception, see the discussion of function calls. Less logically, so is return.

26.
Trailing underscores should be avoided too.

27.
This convention is reserved for system purposes.If you must have your own private identifiers, begin them
with a capital letter identifying the package to which they belong.

28.
It is best to avoid names that differ only in case, like foo andFOO. The potential for confusion is consider-
able.

29.
This difference also means that carefree use of macros requires care when they are defined. Remember that
complex expressions can be used as parameters, and operator-precedence problems can arise unless all
occurrences of parameters in the definition have parentheses around them.There is little that can be done
about the problems caused by side effects in parameters except to avoid side effects in expressions (a good
idea anyway).

30.
At the very least, any directly-coded numerical constant must have a comment explaining the derivation of
the value.

-9-

constant value can be changed uniformly by changing only thedefine. The enumeration data type is the
preferred way to handle situations where a variable takes on only a discrete set of values, since additional
type checking is available throughlint.

There are some cases where the constants 0 and 1 may appear as themselves instead of as defines.
For example if afor loop indexes through an array, then

for (i = 0; i < ARYBOUND; i++)

is reasonable while the code

fptr = fopen(filename, "r");
if (fptr == 0)

error("can’t open %s\n", filename);

is not. In the last example the defined constantNULL is available as part of the standard I/O library’s
header filestdio.hand must be used in place of the 0.

9. Portability

The advantages of portable code are well known. Thissection gives some guidelines for writing por-
table code, where the definition of portable is taken to mean that a source file contains portable code if it
can be compiled and executed on different machines with the only source change being the inclusion of
possibly different header files.The header files will contain defines and typedefs that may vary from
machine to machine. Reference [1] contains useful information on both style and portability. Many of the
recommendations in this document originated in [1].The following is a list of pitfalls to be avoided and
recommendations to be considered when designing portable code:

• First, one must recognize that some things are inherently non-portable.Examples are code to deal
with particular hardware registers such as the program status word, and code that is designed to sup-
port a particular piece of hardware such as an assembler or I/O driver. Even in these cases there are
many routines and data organizations that can be made machine independent. It is suggested that
source file be organized so that the machine-independent code and the machine-dependent code are
in separate files. Then if the program is to be moved to a new machine, it is a much easier task to
determine what needs to be changed31. It is also possible that code in the machine-independent files
may have uses in other programs as well.

• Pay attention to word sizes. The following sizes apply to basic types in C for the machines that will
be used most at IH32:

center; l c c c l r r r. type pdp11 3B IBM _ char 8 8 8 short 16 16 16
int 16 32 32long 32 32 32

In general if the word size is important,shortor long should be used to get 16 or 32 bit items on any
of the above machines33. If a simple loop counter is being used where either 16 or 32 bits will do,
then useint, since it will get the most efficient (natural) unit for the current machine34.

31.
If you #ifdefdependencies, make sure that if no machine is specified, the result is a syntax error, not a default
machine!

32.
The 3B is a Bell Labs machine. The VAX, not shown in the table, is similar to the 3B in these respects.The
68000 resembles either the pdp11 or the 3B, depending on the particular compiler.

33.
Any unsigned type other than plainunsigned intshould betypedefed, as such types are highly compiler-
dependent. Thisis also true of long and short types other thanlong intandshort int. Large programs should
have a central header file which suppliestypedefs for commonly-used width-sensitive types, to make it easier
to change them and to aid in finding width-sensitive code.

34.
Beware of making assumptions about the size of pointers.They are not always the same size asint. Nor are
all pointers always the same size, or freely interconvertible. Pointer-to-character is a particular trouble spot
on machines which do not address to the byte.

-10-

• Word size also affects shifts and masks. The code

x &= 0177770

will clear only the three rightmost bits of anint on a PDP11. On a 3B it will also clear the entire
upper halfword. Use

x &= ˜07

instead which works properly on all machines35.

• Code that takes advantage of the two’s complement representation of numbers on most machines
should not be used.Optimizations that replace arithmetic operations with equivalent shifting opera-
tions are particularly suspect.You should weigh the time savings with the potential for obscure and
difficult bugs when your code is moved, say, from a 3B to a 1A.

• Watch out for signed characters. On the PDP-11, characters are sign extended when used in expres-
sions, which is not the case on any other machine. In particular, getchar is an integer-valued function
(or macro) since the value ofEOF for the standard I/O library is −1, which is not possible for a char-
acter on the 3B or IBM36.

• The PDP-11 is unique among processors on which C exists in that the bytes are numbered from right
to left within a word. All other machines (3B, IBM, Interdata 8/32, Honeywell) number the bytes
from left to right37. Hence any code that depends on the left-right orientation of bits in a word
deserves special scrutiny. Bit fields within structure members will only be portable so long as two
separate fields are never concatenated and treated as a unit38. [1,3]

• Do not default the boolean test for non-zero, i.e.

if (f() != FAIL)

is better than

if (f())

ev en thoughFAIL may have the value 0 which is considered to mean false by C39. This will help
you out later when somebody decides that a failure return should be −1 instead of 040.

35.
The or operator (|) does not have these problems, nor do bitfields (which, unfortunately, are not very porta-
ble due to defective compilers).

36.
Actually, this is not quite the real reason why getchar returnsint, but the comment is valid: codewhich
assumes either that characters are signed or that they are unsigned is unportable. It is best to completely
avoid using char to hold numbers.Manipulation of characters as if they were numbers is also often
unportable.

37.
Actually, there are some more right-to-left machines now, but the comments still apply.

38.
The same applies to variables in general.Alignment considerations and loader peculiarities make it very
rash to assume that two consecutively-declared variables are together in memory, or that a variable of one
type is aligned appropriately to be used as another type.

39.
A particularly notorious case is usingstrcmpto test for string equality, where the result shouldnever ever be
defaulted. Thepreferred approach is to define a macroSTREQ:

#define STREQ(a, b) (strcmp((a), (b)) == 0)

40.
An exception is commonly made for predicates, which are functions which meet the following restrictions:

• Has no other purpose than to return true or false.

• Returns 0 for false, 1 for true, nothing else.

• Is named so that the meaning of (say) a ‘true’ return is absolutely obvious. Calla predicateisvalid or valid,
notcheckvalid.

-11-

• Be suspicious of numeric values appearing in the code.Even simple values like 0 or 1 could be bet-
ter expressed using defines like FALSE and TRUE (see previous item)41. Any other constants
appearing in a program would be better expressed as a defined constant.This makes it easier to
change and also easier to read.

• Become familiar with existing library functions and defines42. You should not be writing your own
string compare routine, or making your own defines for system structures43. Not only does this
waste your time, but it prevents your program from taking advantage of any microcode assists or
other means of improving performance of system routines44.

• Use lint. It is a valuable tool for finding machine-dependent constructs as well as other inconsisten-
cies or program bugs that pass the compiler45.

10. Lint

Lint is a C program checker [2] that examines C source files to detect and report type incompatibili-
ties, inconsistencies between function definitions and calls, potential program bugs, etc.It is expected that
projects will require programs to uselint as part of the official acceptance procedure46. In addition, work
is going on in department 5521 to modifylint so that it will check for adherence to the standards in this
document.

It is still too early to say exactly which of the standards given here will be checked bylint. In some
cases such as whether a comment is misleading or incorrect there is little hope of mechanical checking.In
other cases such as checking that the opening brace of a function body is alone on a line in column 1, the
test has already been added47. Future bulletins will be used to announce new additions to lint as they
occur.

It should be noted that the best way to uselint is not as a barrier that must be overcome before official
acceptance of a program, but rather as a tool to use whenever major changes or additions to the code have
been made.Lint can find obscure bugs and insure portability before problems occur.

11. SpecialConsiderations

This section contains some miscellaneous do’s and don’ts.

• Don’t change syntax via macro substitution. It makes the program unintelligible to all but the perpe-
trator.

• There is a time and a place for embedded assignment statements48. In some constructs there is no

41.
Actually, YESandNO often read better.

42.
But nottoo familiar. The internal details of library facilities, as opposed to their external interfaces, are sub-
ject to change without warning. They are also often quite unportable.

43.
Or, especially, writing your own code to control terminals. Use thetermcappackage.

44.
It also makes your code less readable, because the reader has to figure out whether you’re doing something
special in that reimplemented stuff to justify its existence. Furthermore,it’s a fruitful source of bugs.

45.
The use oflint on all programs is strongly recommended.It is difficult to eliminate complaints about func-
tions whose return value is not used (in the current version of C, at least), but most other messages fromlint
really do indicate something wrong. The −h, −p, −a, −x, and −c options are worth learning.All of them will
complain about some legitimate things, but they will also pick up many botches.

46.
Yes.

47.
Little of this is relevant at U of T. The version oflint that we have lacks these mods.

48.
The ++ and −− operators count as assignment statements. So, for many purposes, do functions with side
effects.

-12-

better way to accomplish the results without making the code bulkier and less readable.The while
loop in section 8.1 is one example of an appropriate place. Another is the common code segment:

while ((c = getchar()) != EOF) {
process the character

}

Using embedded assignment statements to improve run-time performance is also possible.However,
one should consider the tradeoff between increased speed and decreased maintainability that results
when embedded assignments are used in artificial places.For example, the code:

a = b + c;
d = a + r;

should not be replaced by

d = (a = b + c) + r;

ev en though the latter may save one cycle. Notethat in the long run the time difference between the
two will decrease as the optimizer gains maturity, while the difference in ease of maintenance will
increase as the human memory of what’s going on in the latter piece of code begins to fade49.

• There is also a time and place for the ternary? : operator and the binary comma operator. The logi-
cal expression operand before the? : should be parenthesized:

(x >= 0) ? x : −x

Nested? : operators can be confusing and should be avoided if possible. There are some macros like
getchar where they can be useful. The comma operator can also be useful infor statements to pro-
vide multiple initializations or incrementations.

• Goto statements should be used sparingly as in any well-structured code50. The main place where
they can be usefully employed is to break out of several levels of switch, for, and while nesting51,
e.g.

for (...)
for (...) {

...
if (disaster)

goto error;
}

...
error:

clean up the mess

When agoto is necessary the accompanying label should be alone on a line and tabbed one tab posi-
tion to the left of the associated code that follows.

• This committee recommends that programmers not rely on automatic beautifiers for the following
reasons. First,the main person who benefits from good program style is the programmer himself.
This is especially true in the early design of handwritten algorithms or pseudo-code.Automatic
beautifiers can only be applied to complete, syntactically correct programs and hence are not avail-
able when the need for attention to white space and indentation is greatest. It is also felt that pro-
grammers can do a better job of making clear the complete visual layout of a function or file, with the

49.
Note also that side effects within expressions can result in code whose semantics are compiler-dependent,
since C’s order of evaluation is explicitly undefined in most places. Compilers do differ.

50.
Thecontinuestatement is almost as bad.Breakis less troublesome.

51.
The need to do such a thing may indicate that the inner constructs should be broken out into a separate func-
tion, with a success/failure return code.

-13-

normal attention to detail of a careful programmer52. Sloppy programmers should learn to be careful
programmers instead of relying on a beautifier to make their code readable.Finally, it is felt that
since beautifiers are non-trivial programs that must parse the source, the burden of maintaining them
in the face of the continuing evolution of C is not worth the benefits gained by such a program.

12. Project Dependent Standards

Individual projects may wish to establish additional standards beyond those given here. Thefollow-
ing issues are some of those that should be adddressed by each project program administration group.

• What additional naming conventions should be followed? Inparticular, systematic prefix conven-
tions for functional grouping of global data and also for structure or union member names can be use-
ful.

• What kind of include file organization is appropriate for the project’s particular data hierarchy?

• What procedures should be established for reviewing lint complaints? Atolerance level needs to be
established in concert with thelint options to prevent unimportant complaints from hiding complaints
about real bugs or inconsistencies.

• If a project establishes its own archive libraries, it should plan on supplying a lint library file [2] to
the system administrators. This will allowlint to check for compatible use of library functions.

13. Conclusion

A set of standards has been presented for C programming style. One of the most important points is
the proper use of white space and comments so that the structure of the program is evident from the layout
of the code. Another good idea to keep in mind when writing code is that it is likely that you or someone
else will be asked to modify it or make it run on a different machine sometime in the future.

As with any standard, it must be followed if it is to be useful.The Indian Hill version oflint will
enforce those standards that are amenable to automatic checking.If you have trouble following any of
these standards don’t just ignore them. Programmers at Indian Hill should bring their problems to the Soft-
ware Development System Group (Lee Kirchhoff, contact) in department 5522. Programmers outside
Indian Hill should contact the Processor Application Group (Layne Cannon, contact) in department
551253.

52.
In other words, some of the visual layout is dictated by intent rather than syntax. Beautifiers cannot read
minds.

53.
At U of T Zoology, it’s Henry Spencer in 336B.

-14-

References

[1] B.A. Tague, "C Language Portability", Sept 22, 1977.This document issued by department 8234
contains three memos by R.C. Haight, A.L. Glasser, and T.L. Lyon dealing with style and portability.

[2] S.C. Johnson, "Lint, a C Program Checker", Technical Memorandum, 77-1273-14, September 16,
1977.

[3] R.W. Mitze, "The 3B/PDP-11 Swabbing Problem", Memorandum for File, 1273-770907.01MF,
September 14, 1977.

[4] R.A. Elliott and D.C. Pfeffer, "3B Processor Common Diagnostic Standards- Version 1", Memoran-
dum for File, 5514-780330.01MF, March 30, 1978.

[5] R.W. Mitze, "An Overview of C Compilation of UNIX User Processes on the 3B", Memorandum for
File, 5521-780329.02MF, March 29, 1978.

[6] B.W. Kernighan and D.M. Ritchie,The C Programming Language, Prentice-Hall 1978.

-15-

/*
* The C Style Summary Sheet Block comment,
* by Henry Spencer, U of T Zoology describesfile.
*/

#include <errno.h> Headers; don’t nest.

typedef int SEQNO; /*... */ Global definitions.
#define STREQ(a,b) (strcmp((a),(b)) == 0)

static char *foo = NULL; /* ... */ Global declarations.
struct bar { Static whene

SEQNO alpha; /* ... */
define NOSEQNO 0

int beta; /* ... */ Don’t assume 16 bits.
};

/*
* M any unnecessary braces, to show where. Functions.
*/
static int /* what is returned */ Don’t default int.
bletch(a)
int a; /* ... */ Don’t default int.
{

int bar; /* ... */
extern int errno; /* ..., changed here */
extern char *index();

if (foobar() != FAIL) { if (!isvalid()) {
return(5); errno= ERANGE;

} } else {

while (x == (y & MASK)) { }
f += (x >= 0) ? x : −x;

} f or (i = 0; i < BOUND; i++) {

do { }
/* Avoid nesting ?: */

} w hile (index(a, b) != NULL); if (STREQ(x, "foo")) {

switch (...) { } else if (STREQ(x, "bar")) {
case ABC: x &= ˜07;
case DEF: } else if (STREQ(x, "ugh")) {

printf("...", a, b); /* Avoid gotos */
break; }else {

case XYZ: /* and continues. */
x = y; }
/* FALLTHROUGH */

default: while((c = getc()) != EOF)
/* Limit imbedded =s. */ ; /* NULLBOD
break;

}
}

