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ABSTRACT

The Vinum Volume Manager is a device driver which implements virtual disk drives. It
isolates disk hardware from the device interface and maps data in ways which result in an
incr ease in flexibility, perfor mance and reliability compared to the traditional slice view of
disk storage. Vinum implements the RAID-0, RAID-1, RAID-4 and RAID-5 models, both in-
dividually and in combination.

Vinum is an open source volume manager which runs under FreeBSD and NetBSD. It
was inspired by the VERITAS® volume manager and implements many of the concepts of
VERITAS®. Its key features are:

• Vinum implements many RAID levels:

• RAID-0 (striping).

• RAID-1 (mirroring).

• RAID-4 (fixed parity).

• RAID-5 (block-interleaved parity).

• RAID-10 (mirroring and striping), a combination of RAID-0 and RAID-5.

In addition, other combinations are possible for which no formal RAID level definition
exists.

• Volume managers initially emphasized reliability and perfor mance rather than ease of
use. The results are frequently down time due to misconfiguration, with consequent
reluctance on the part of operational personnel to attempt to use the more unusual
featur es of the product. Vinum attempts to provide an easier-to-use non-GUI inter-
face.

In place of conventional disk partitions, Vinum presents synthetic disks called volumes to
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the user. These volumes are the top level of a hierarchy of objects used to construct vol-
umes with differ ent characteristics:

• The top level is the virtual disk or volume. Volumes effectively replace disk drives.

• Volumes are composed of one or more plexes, each of which repr esents the total ad-
dr ess space of a volume. This level in the hierarchy thus provides redundancy.

• Since Vinum exists within the UNIX disk storage framework, it would be possible to
use UNIX partitions as the building block for multi-disk plexes, but in fact this turns
out to be too inflexible: UNIX disks can have only a limited number of partitions. In-
stead, Vinum subdivides a single UNIX partition (the drive ) into contiguous areas
called subdisks, which it uses as building blocks for plexes.

• Subdisks reside on Vinum drives, curr ently UNIX partitions. Vinum drives can contain
any number of subdisks. With the exception of a small area at the beginning of the
drive, which is used for storing configuration and state information, the entire drive is
available for data storage.

With this structure, Vinum offers the following features:

Unlimited disk size

Since Vinum plexes are composed of subdisks which can reside on any Vinum volumes
can exceed the size of any single disk. Ther e is no intrinsic limitation on the size of a
plex or a volume.

Faster access

Concurr ent access to a disk severely limits the throughput: with modern disks, sequential
disk transfer rates exceed 50 MB/s, but most transfers are less than 32 kB in size and thus
take only in the order of 500 µs to complete. By contrast, seek latency takes about ten
times this time, so every seek drops the aggregate throughput by a factor of ten or more,
depending strongly on the length of the transfer.

The traditional and obvious solution to this bottleneck is ‘‘more spindles’’: rather than us-
ing one large disk, it uses several smaller disks with the same aggregate storage space.
Each disk is capable of positioning and transferring independently, so the effective
thr oughput incr eases by a factor close to the number of disks used.

The exact throughput improvement is, of course, smaller than the number of disks in-
volved: although each drive is capable of transferring in parallel, there is no way to en-
sur e that the requests are evenly distributed across the drives. Inevitably the load on one
drive will be higher than on another.

The evenness of the load on the disks is strongly dependent on the way the data is
shar ed acr oss the drives. It’s convenient to think of the disk storage as a large number of
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data sectors which are addr essable by number, rather like the pages in a book. The most
obvious method is to divide the virtual disk into groups of consecutive sectors the size of
the individual physical disks and store them in this manner, rather like taking a large
book and tearing it into smaller sections. This method is called concatenation and has
the advantage that the disks do not need to have any specific size relationships.

Concatenation does not correspond to any specific RAID level. It works well when the
access to the virtual disk is spread evenly about its address space. When access is con-
centrated on a smaller area, the improvement is less marked. Figur e 1 illustrates the se-
quence in which storage units are allocated in a concatenated organization.
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Figure 1: Concatenated organization

An alternative mapping is to divide the address space into smaller, even-sized
components and store them sequentially on differ ent devices. For example, the first 256
sectors may be stored on the first disk, the next 256 sectors on the next disk and so on.
After filling the last disk, the process repeats until the disks are full. This mapping is
called striping or RAID-0, though the latter term is somewhat misleading: it provides no
redundancy. Striping requir es somewhat more effort to locate the data, and it can cause
additional I/O load where a transfer is spread over multiple disks, but it can also provide
a mor e constant load across the disks. Figur e 2 illustrates the sequence in which storage
units are allocated in a striped organization.
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Figure 2: Str iped or ganization

Data integrity

Finally, Vinum offers improved reliability. Although disk drive reliability has increased
tr emendously over the last few years, they are still the most likely core component of a
server to fail. When they do, the results can be catastrophic: replacing a failed disk drive
and restoring data to it can take days.

The traditional way to approach this problem has been mirr oring, keeping two copies of
the data on differ ent physical hardware. Since the advent of the RAID levels, this
technique has also been called RAID level 1 or RAID-1. Any write to the volume writes
to both locations; a read can be satisfied from either, so if one drive fails, the data is still
available on the other drive.

Mirr oring has two problems:

• The price. It requir es twice as much disk storage as a non-redundant solution.

• The perfor mance impact. Writes must be perfor med to both drives, so they take up
twice the bandwidth of a non-mirror ed volume. Reads do not suffer from a
per formance penalty: it even looks as if they are faster. This issue will be discussed in
mor e detail below.

RAID-5

An alternative solution is parity, implemented in the RAID levels 2, 3, 4 and 5. Of these,
RAID-5 is the most interesting. Vinum implements RAID-5 as a variant of striped plexes
which dedicates one block of each stripe to parity of the other blocks. The location of
this parity block changes from one stripe to the next. The numbers in the data blocks
indicate the relative block numbers.
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Figure 3: RAID-5 organization

Compar ed to mirroring, RAID-5 has the advantage of requiring significantly less storage
space. Read access is similar to that of striped organizations, but write access is
significantly slower, appr oximately 25% of the read perfor mance. If one drive fails, the
array can continue to operate in degraded mode: a read from one of the remaining
accessible drives continues normally, but a read from the failed drive is recalculated from
the corresponding block from all the remaining drives.

RAID-4

Vinum also implements RAID-4, a variant of RAID-5 in which one disk contains all the
parity information:
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Figure 4: RAID-5 organization
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The only advantage that RAID-4 offers over RAID-5 is marginally simpler code. As
implemented in Vinum, it shares the code with the RAID-5 implementation. The only
dif ference is the following code:

/* subdisk containing the parity stripe */
if (plex->organization == plex_raid5)

m.psdno = plex->subdisks - 1
- (*diskaddr / (plex->stripesize * (plex->subdisks - 1)))
% plex->subdisks;

else /* RAID-4 */
m.psdno = plex->subdisks - 1;

On the other hand, RAID-4 has problems with the load on the parity subdisks when
writing. The original motivation to implement RAID-4, which was added later, was to
investigate whether improvements in drive cache hit rates might improve read
per formance and thus make up for the write perfor mance issues. They did not: as will
be discussed below, it is always a bad idea for an I/O request to span a drive, so the
situation never occurred.

RAID-3

RAID-3 is a very misunderstood RAID level. Many so-called implementations of RAID-3
ar e in fact implementations of RAID-4.

RAID-3 is like an implementation of RAID-4 with a stripe size of one byte. Each transfer
involves all disks (with the exception of the parity disk for reads). Under certain
circumstances (high-speed streaming data), this can be useful. Without spindle
synchr onization (wher e the corresponding sectors pass the heads of each drive at the
same time), RAID-3 would be very inefficient. In a multiple-access system, it also causes
high latency.

An argument for RAID-3 does exist where a single process requir es very high data rates.
With spindle synchronization, this would be a potentially useful addition to Vinum.

RAID-2

RAID-2 uses two subdisks to store a Hamming code. Otherwise it resembles RAID-3.
Compar ed to RAID-3, it offers a lower data density, higher CPU usage and no
compensating advantages. As a result, it is effectively obsolete. Vinum does not
implement it.

Vinum plex organizations.

Vinum implements mirroring by attaching multiple plexes to a volume. Each plex is a
repr esentation of the data in a volume. A volume may contain between one and eight
plexes.
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Although a plex repr esents the complete data of a volume, it is possible for parts of the
repr esentation to be physically missing, either by design (by not defining a subdisk for
parts of a concatenated plex) or by accident (as a result of the failure of a drive). As long
as at least one plex can provide the data for the complete address range of the volume,
the volume is fully functional.

Conceptually, RAID-4 and RAID-5 are used for redundancy, but in fact the
implementation is a kind of striping. This poses problems for the implementation of
Vinum: should it be a kind of plex or a kind of volume? It would have been possible to
implement it either way, but it proved to be simpler to implement RAID-4 and RAID-5 as
a plex type. This means that there are two differ ent ways of ensuring data redundancy:
either have more than one plex in a volume, or have a single RAID-4 or RAID-5 plex.
These methods can be combined.

Vinum implements both concatenation and striping at the plex level:

• A concatenated plex uses the address space of each subdisk in turn.

• A striped plex stripes the data across each subdisk. The subdisks must all have the
same size, and there must be at least two subdisks in order to distinguish it from a
concatenated plex.

• Like a striped plex, RAID-4 and RAID-5 plexes stripe the data across each subdisk.
The subdisks must all have the same size, and there must be at least three subdisks,
since otherwise it would be more efficient to use mirroring.

Which plex organization?

Each of plex organizations has its own advantages:

• Concatenated plexes are the most flexible: they can contain any number of subdisks,
and the subdisks may be of differ ent length. The plex may be extended by adding
additional subdisks. They requir e less CPU time than striped, RAID-4 or RAID-5
plexes, though the differ ence in CPU overhead from striped plexes is not measurable.
On the other hand, they are most susceptible to hot spots, where one disk is very
active and others are idle.

• The greatest advantage of striped (RAID-0) plexes is that they reduce hot spots, at
least in theory: by choosing an optimum sized stripe (empirically determined to be in
the order of 256 kB), the load on the component drives can be made more even. In
practice, since UFS also spreads the load across cylinder groups, it’s not clear how
much differ ence this advantage makes in practice. The disadvantages of this approach
ar e (fractionally) more complex code and restrictions on subdisks: they must be all the
same size. Extending a plex by adding new subdisks requir es complete
reorganization of the data in the subdisks. The issues regarding error recovery in this
reorganization are so complicated that Vinum currently does not implement it. Vinum
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imposes an additional, trivial restriction: a striped plex must have at least two
subdisks, since otherwise it is indistinguishable from a concatenated plex.

• RAID-4 and RAID-5 plexes are effectively an extension of striped plexes. Compar ed
to striped plexes, they offer the advantage of fault tolerance, but the disadvantages of
higher storage cost and significantly higher CPU overhead, particularly for writes. The
code is an order of magnitude more complex than for concatenated and striped
plexes. Like striped plexes, RAID-4 and RAID-5 plexes must have equal-sized
subdisks and cannot currently be extended. Vinum enforces a minimum of three
subdisks for a RAID-4 or RAID-5 plex, since any smaller number would not make any
sense.

In comparison with RAID-5 plexes, RAID-4 plexes have no advantage. They should
not be used.

Table 5 summarizes the advantages and disadvantages of each plex organization.

Minimum can must be
Plex type subdisks add equal application

subdisks size

concatenated 1 yes no Large data storage with
maximum placement
flexibility and moderate
per formance.

striped 2 no yes High perfor mance in
combination with highly
concurr ent access.

RAID-4, RAID-5 3 no yes Highly reliable storage,
primarily read access.

Figure 5: Vinum plex organizations
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Vinum features

Beyond object organization, Vinum includes a number of other features:

• Online configuration via the vinum utility program.

• Automatic error detection and recovery where possible.

• State information for each object. This enables Vinum to function correctly even if
some objects are not accessible.

• Persistent configuration. Each Vinum drive stores two copies of the configuration, so
the system can start up automatically. The configuration includes state information, so
any degraded objects will remain so over a reboot, or even when moved to a new
system.

• Support for Vinum root file systems.

• Online rebuild of objects.

Vinum configuration

Vinum maintains a configuration database which describes the objects known to an
individual system. Initially, the user creates the configuration database from one or more
configuration files with the aid of the vinum(8) utility program. Vinum stores a copy of
its configuration database on each drive (disk slice) under its control. This database is
updated on each state change, so that a restart accurately restor es the state of each Vinum
object.

The configuration file

The configuration file describes individual Vinum objects. The definition of a simple
volume might be:

drive a device /dev/da0s4h
volume myvol

plex org concat
sd length 1g drive a

This file describes a four Vinum objects:

• The drive line describes a disk partition (drive ) and its location relative to the
underlying hardware. It is given the symbolic name a. This separation of the
symbolic names from the device names allows disks to be moved from one location to
another without confusion.
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• The volume line describes a volume. The only requir ed attribute is the name, in this
case myvol.

• The plex line defines a plex. The only requir ed parameter is the organization, in this
case concat. No name is necessary: the system automatically generates a name from
the volume name by adding the suffix .px, wher e x is the number of the plex in the
volume. Thus this plex will be called myvol.p0.

• The sd line describes a subdisk. The minimum specifications are the name of a drive
on which to store it, and the length of the subdisk. As with plexes, no name is
necessary: the system automatically assigns names derived from the plex name by
adding the suffix .sx, wher e x is the number of the subdisk in the plex. Thus Vinum
gives this subdisk the name myvol.p0.s0

The file is indented for legibility; it is not necessary for its correct interpretation.

After processing this file, vinum(8) pr oduces the following output:

vinum -> create config1
1 drives:
D a  State: up /dev/da0s4h A: 3070/4094 MB (74%)

1 volumes:
V myvol State: up Plexes: 1 Size: 1024 MB

1 plexes:
P myvol.p0 C State: up Subdisks: 1 Size: 1024 MB

1 subdisks:
S myvol.p0.s0 State: up D: a Size: 1024 MB

This output shows the brief listing format of vinum(8). It is repr esented graphically in
Figur e 6.

This figure, and the ones which follow, repr esent a volume, which contains the plexes,
which in turn contain the subdisks. In this trivial example, the volume contains one plex,
and the plex contains one subdisk.

This particular volume has no specific advantage over a conventional disk partition. It
contains a single plex, so it is not redundant. The plex contains a single subdisk, so
ther e is no differ ence in storage allocation from a conventional disk partition. The
following sections illustrate various more inter esting configuration methods.
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Subdisk

myvol.p0.s0

Plex 1
myvol.p0

0 MB

2048 MB

volume
addr ess
space

Figure 6: A simple Vinum volume

Increased resilience: mirroring

The resilience of a volume can be increased either by mirroring or by using RAID-4 or
RAID-5 plexes. When laying out a mirror ed volume, it is important to ensure that the
subdisks of each plex are on dif ferent drives, so that a drive failure will not take down
both plexes. The following configuration mirrors a volume:

drive b device /dev/da1s4h
volume mirror

plex org concat
sd length 1g drive a

plex org concat
sd length 1g drive b

In this example, it was not necessary to specify a definition of drive a again, since Vinum
keeps track of all objects in its configuration database. After processing this definition,
the configuration looks like:
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2 drives:
D a  State: up /dev/da0s4h A: 2046/4094 MB (49%)
D b  State: up /dev/da1s4h A: 3070/4094 MB (74%)

2 volumes:
V myvol State: up Plexes: 1 Size: 1024 MB
V mirror State: up Plexes: 2 Size: 1024 MB

3 plexes:
P myvol.p0 C State: up Subdisks: 1 Size: 1024 MB
P mirror.p0 C State: up Subdisks: 1 Size: 1024 MB
P mirror.p1 C State: faulty Subdisks: 1 Size: 1024 MB

3 subdisks:
S myvol.p0.s0 State: up D: a Size: 1024 MB
S mirror.p0.s0 State: up D: a Size: 1024 MB
S mirror.p1.s0 State: empty D: b Size: 1024 MB

Figur e 7 shows the structure graphically. In this example, each plex contains the full 512
MB of address space. As in the previous example, each plex contains only a single
subdisk.

Subdisk 1

mirror.p0.s0

Plex 1
mirror.p0

Subdisk 2

mirror.p1.s0

Plex 2
mirror.p1

0 MB

512 MB

volume
addr ess
space

Figure 7: A mir rored Vinum volume
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When creating a mirror ed volume, Vinum should ensure that the contents of each plex
ar e identical. This requir es copying of data in some form, which can take a long time.
Until this has occurred, the state of the second plex is set to faulty, and the
corr esponding subdisk is empty.

In practice, people are seldom interested in the contents of newly created plexes.
Nor mally, data read from the volume has first been written to the volume, and Vinum
ensur es that this data is consistent across all the plexes. As a result, it is possible to
ignor e the inconsistencies which exist only in those parts of the plex which will never be
read. The keyword setupstate tells to Vinum set all plexes and subdisks to the up
state when creating mirror ed volumes:

volume mirror1 setupstate
plex org concat

sd length 1g drive a
plex org concat

sd length 1g drive b

Optimizing perfor mance

The mirror ed volume in the previous example is more resistant to failure than an
unmirr ored volume, but its perfor mance is less: each write to the volume requir es a write
to both drives, using up a greater proportion of the total disk bandwidth. Per formance
considerations demand a differ ent appr oach: instead of mirroring, the data is striped
acr oss as many disk drives as possible. The following configuration shows a volume
with a plex striped across four disk drives:

drive c device /dev/da2s4h
drive d device /dev/da3s4h
volume stripe

plex org striped 496k
sd length 256m drive a
sd length 256m drive b
sd length 256m drive c
sd length 256m drive d

As before, it is not necessary to define the drives which are alr eady known to Vinum.
After processing this definition, the configuration looks like:

4 drives:
D a  State: up /dev/da0s4h A: 1790/4094 MB (43%)
D b  State: up /dev/da1s4h A: 2814/4094 MB (68%)
D c  State: up /dev/da2s4h A: 3838/4094 MB (93%)
D d  State: up /dev/da3s4h A: 3838/4094 MB (93%)

3 volumes:
V myvol State: up Plexes: 1 Size: 1024 MB
V mirror State: up Plexes: 2 Size: 1024 MB
V stripe State: up Plexes: 1 Size: 1023 MB
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4 plexes:
P myvol.p0 C State: up Subdisks: 1 Size: 1024 MB
P mirror.p0 C State: up Subdisks: 1 Size: 1024 MB
P mirror.p1 C State: faulty Subdisks: 1 Size: 1024 MB
P stripe.p0 S State: up Subdisks: 4 Size: 1023 MB

7 subdisks:
S myvol.p0.s0 State: up D: a Size: 1024 MB
S mirror.p0.s0 State: up D: a Size: 1024 MB
S mirror.p1.s0 State: empty D: b Size: 1024 MB
S stripe.p0.s0 State: up D: a Size: 255 MB
S stripe.p0.s1 State: up D: b Size: 255 MB
S stripe.p0.s2 State: up D: c Size: 255 MB
S stripe.p0.s3 State: up D: d Size: 255 MB

Plex 1
striped.p0

0 MB

512 MB

volume
addr ess
space

striped.p0.s0

striped.p0.s1

striped.p0.s2

striped.p0.s3

Figure 8: A str iped Vinum volume

This volume is repr esented in Figure 8. The darkness of the stripes indicates the position
within the plex address space: the lightest stripes come first, the darkest last.
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Increased resilience: RAID-5

The alternative approach to resilience is RAID-5. The following discussion also applies to
RAID-4, but as discussed above, the use of RAID-4 is not recommended. A RAID-5
configuration might look like:

drive e device /dev/da4s4h
volume raid5

plex org raid5 496k
sd length 256m drive a
sd length 256m drive b
sd length 256m drive c
sd length 256m drive d
sd length 256m drive e

Although this plex has five subdisks, its size is the same as the plexes in the other
examples, since the equivalent of one subdisk is used to store parity information. After
pr ocessing the configuration, the system configuration is:

5 drives:
D a  State: up /dev/da0s4h A: 1535/4094 MB (37%)
D b  State: up /dev/da1s4h A: 2559/4094 MB (62%)
D c  State: up /dev/da2s4h A: 3583/4094 MB (87%)
D d  State: up /dev/da3s4h A: 3583/4094 MB (87%)
D e  State: up /dev/da4s4h A: 3838/4094 MB (93%)

4 volumes:
V myvol State: up Plexes: 1 Size: 1024 MB
V mirror State: up Plexes: 2 Size: 1024 MB
V stripe State: up Plexes: 1 Size: 1023 MB
V raid5 State: down Plexes: 1 Size: 1023 MB

5 plexes:
P myvol.p0 C State: up Subdisks: 1 Size: 1024 MB
P mirror.p0 C State: up Subdisks: 1 Size: 1024 MB
P mirror.p1 C State: faulty Subdisks: 1 Size: 1024 MB
P stripe.p0 S State: up Subdisks: 4 Size: 1023 MB
P raid5.p0 R5 State: init Subdisks: 5 Size: 1023 MB

12 subdisks:
S myvol.p0.s0 State: up D: a Size: 1024 MB
S mirror.p0.s0 State: up D: a Size: 1024 MB
S mirror.p1.s0 State: empty D: b Size: 1024 MB
S stripe.p0.s0 State: up D: a Size: 255 MB
S stripe.p0.s1 State: up D: b Size: 255 MB
S stripe.p0.s2 State: up D: c Size: 255 MB
S stripe.p0.s3 State: up D: d Size: 255 MB
S raid5.p0.s0 State: empty D: a Size: 255 MB
S raid5.p0.s1 State: empty D: b Size: 255 MB
S raid5.p0.s2 State: empty D: c Size: 255 MB
S raid5.p0.s3 State: empty D: d Size: 255 MB
S raid5.p0.s4 State: empty D: e Size: 255 MB
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Figur e 9 repr esents this volume graphically:

Plex 1
raid5.p0

0 MB

512 MB

volume
addr ess
space

raid5.p0.s0

raid5.p0.s1

raid5.p0.s2

raid5.p0.s3

raid5.p0.s4

Figure 9: A RAID-5 Vinum volume

As with striped plexes, the darkness of the stripes indicates the position within the plex
addr ess space: the lightest stripes come first, the darkest last. The completely black
stripes are the parity stripes.

On creation, RAID-5 plexes are in the init state: before they can be used, the parity data
must be created. Vinum currently initializes RAID-5 plexes by writing binary zeros to all
subdisks, though a probably future alter native is to rebuild the parity blocks, which
allows better recovery of crashed plexes.
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Resilience and perfor mance

With sufficient hardware, it is possible to build volumes which show both increased
resilience and increased perfor mance compar ed to standard UNIX partitions. Mirr ored
disks will always give better perfor mance than RAID-5, so a typical configuration file
might be:

volume raid10
plex org striped 496k

sd length 102480k drive a
sd length 102480k drive b
sd length 102480k drive c
sd length 102480k drive d
sd length 102480k drive e

plex org striped 496k
sd length 102480k drive c
sd length 102480k drive d
sd length 102480k drive e
sd length 102480k drive a
sd length 102480k drive b

Plex 1
striped.p0

Plex 2
striped.p1

.p0.s0

.p0.s1

.p0.s2

.p0.s3

.p0.s4

.p1.s0

.p1.s1

.p1.s2

.p1.s3

.p1.s4

Figure 10: A mirrored, striped Vinum volume
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Figur e 10 repr esents the structure of this volume. The subdisks of the second plex are
of fset by two drives from those of the first plex: this helps ensure that writes do not go to
the same subdisks even if a transfer goes over two drives.

After creating this volume, the configuration is:

5 drives:
D a  State: up /dev/da0s4h A: 1335/4094 MB (32%)
D b  State: up /dev/da1s4h A: 2359/4094 MB (57%)
D c  State: up /dev/da2s4h A: 3383/4094 MB (82%)
D d  State: up /dev/da3s4h A: 3383/4094 MB (82%)
D e  State: up /dev/da4s4h A: 3639/4094 MB (88%)

5 volumes:
V myvol State: up Plexes: 1 Size: 1024 MB
V mirror State: up Plexes: 2 Size: 1024 MB
V stripe State: up Plexes: 1 Size: 1023 MB
V raid5 State: down Plexes: 1 Size: 1023 MB
V raid10 State: up Plexes: 2 Size: 498 MB

7 plexes:
P myvol.p0 C State: up Subdisks: 1 Size: 1024 MB
P mirror.p0 C State: up Subdisks: 1 Size: 1024 MB
P mirror.p1 C State: faulty Subdisks: 1 Size: 1024 MB
P stripe.p0 S State: up Subdisks: 4 Size: 1023 MB
P raid5.p0 R5 State: init Subdisks: 5 Size: 1023 MB
P raid10.p0 S State: up Subdisks: 5 Size: 498 MB
P raid10.p1 S State: faulty Subdisks: 5 Size: 498 MB

22 subdisks:
S myvol.p0.s0 State: up D: a Size: 1024 MB
S mirror.p0.s0 State: up D: a Size: 1024 MB
S mirror.p1.s0 State: empty D: b Size: 1024 MB
S stripe.p0.s0 State: up D: a Size: 255 MB
S stripe.p0.s1 State: up D: b Size: 255 MB
S stripe.p0.s2 State: up D: c Size: 255 MB
S stripe.p0.s3 State: up D: d Size: 255 MB
S raid5.p0.s0 State: empty D: a Size: 255 MB
S raid5.p0.s1 State: empty D: b Size: 255 MB
S raid5.p0.s2 State: empty D: c Size: 255 MB
S raid5.p0.s3 State: empty D: d Size: 255 MB
S raid5.p0.s4 State: empty D: e Size: 255 MB
S raid10.p0.s0 State: up D: a Size: 99 MB
S raid10.p0.s1 State: up D: b Size: 99 MB
S raid10.p0.s2 State: up D: c Size: 99 MB
S raid10.p0.s3 State: up D: d Size: 99 MB
S raid10.p0.s4 State: up D: e Size: 99 MB
S raid10.p1.s0 State: empty D: c Size: 99 MB
S raid10.p1.s1 State: empty D: d Size: 99 MB
S raid10.p1.s2 State: empty D: e Size: 99 MB
S raid10.p1.s3 State: empty D: a Size: 99 MB
S raid10.p1.s4 State: empty D: b Size: 99 MB
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Object naming

As described above, Vinum assigns default names to plexes and subdisks, although they
may be overridden. Overriding the default names is not recommended: experience with
the VERITAS volume manager, which allows arbitary naming of objects, has shown that
this flexibility does not bring a significant advantage, and it can cause confusion.

Names may contain any non-blank character, but it is recommended to restrict them to
letters, digits and the underscore characters. The names of volumes, plexes and subdisks
may be up to 64 characters long, and the names of drives may up to 32 characters long.

Vinum objects are assigned device nodes in the hierarchy /dev/vinum. The configuration
shown above would cause Vinum to create the following device nodes:

• The control devices /dev/vinum/contr ol and /dev/vinum/contr old, which are used by
vinum(8) and the Vinum daemon respectively.

• Character device entries for each volume. These are the main devices used by Vinum.
The configuration above would include the devices /dev/vinum/myvol,
/dev/vinum/mirr or, /dev/vinum/striped, /dev/vinum/raid5 and /dev/vinum/raid10.

• The directories /dev/vinum/plex and /dev/vinum/sd which contain device nodes for
each plex and subdisk.

For example, consider the following configuration file:

drive drive1 device /dev/da1s4h
drive drive2 device /dev/da2s4h
drive drive3 device /dev/da3s4h
drive drive4 device /dev/da4s4h
volume s64
plex org striped 496k

sd length 100m drive drive1
sd length 100m drive drive2
sd length 100m drive drive3
sd length 100m drive drive4

After processing this file, vinum(8) cr eates the following structure in /dev/vinum :

total 1
crw------- 1 root wheel 91, 0x3fff00fe Dec 28 12:59 control
crw------- 1 root wheel 91, 0x3fff00ff Dec 28 12:59 controld
dr-xr-xr-x 2 root wheel 512 Dec 28 13:05 plex
crw-r----- 1 root operator 91, 0 Dec 28 13:17 s64
dr-xr-xr-x 2 root wheel 512 Dec 28 13:05 sd

/dev/vinum/plex:
total 0
crw-r----- 1 root operator 91, 0x40000000 Dec 28 13:17 s64.p0

/dev/vinum/sd:
total 0
crw-r----- 1 root operator 91, 0x80000000 Dec 28 13:17 s64.p0.s0
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crw-r----- 1 root operator 91, 0x80000001 Dec 28 13:17 s64.p0.s1
crw-r----- 1 root operator 91, 0x80000002 Dec 28 13:17 s64.p0.s2
crw-r----- 1 root operator 91, 0x80000003 Dec 28 13:17 s64.p0.s3

Although it is recommended that plexes and subdisks should not be allocated specific
names, Vinum drives must have logical names separate from their device name. This
makes it possible to move a drive to a differ ent location and still recognize it
automatically.

Creating file systems

Volumes appear to the system to be identical to disks, with one exception: Vinum
volumes do not contain a partition table. This has requir ed modification to some disk
utilities, notably newfs , which previously tried to interpret the last letter of a Vinum
volume name as a partition identifier. For example, a disk drive may have a name like
/dev/wd0a or /dev/da2h. These names repr esent the first partition (a) on the first (0) IDE
disk (wd) and the eighth partition (h) on the third (2) SCSI disk (da) respectively. By
contrast, a Vinum volume might be called /dev/vinum/concat, a name which has no
relationship with a partition name. Earlier versions of newfs interpr eted the last character
of the file name as the partition identifier and failed if the letter was not a valid identifier.

Star tup

The configuration information which Vinum stores the drives has the same form as in the
configuration files. When reading from the configuration database, Vinum recognizes a
number of keywords which are not allowed in the configuration files. For example, a
disk configuration might contain to following text, which has been wrapped to fit on the
page:

volume myvol state up
volume bigraid state down
plex name myvol.p0 state up org concat vol myvol
plex name myvol.p1 state up org concat vol myvol
plex name myvol.p2 state init org striped 512b vol myvol
plex name bigraid.p0 state initializing org raid5 512b vol bigraid
sd name myvol.p0.s0 drive a plex myvol.p0 state up len 1048576b driveoffset 265b plex
offset 0b
sd name myvol.p0.s1 drive b plex myvol.p0 state up len 1048576b driveoffset 265b plex
offset 1048576b
sd name myvol.p1.s0 drive c plex myvol.p1 state up len 1048576b driveoffset 265b plex
offset 0b
sd name myvol.p1.s1 drive d plex myvol.p1 state up len 1048576b driveoffset 265b plex
offset 1048576b
sd name myvol.p2.s0 drive a plex myvol.p2 state init len 524288b driveoffset 1048841b
plexoffset 0b

sd name myvol.p2.s1 drive b plex myvol.p2 state init len 524288b driveoffset 1048841b
plexoffset 524288b

sd name myvol.p2.s2 drive c plex myvol.p2 state init len 524288b driveoffset 1048841b
plexoffset 1048576b
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sd name myvol.p2.s3 drive d plex myvol.p2 state init len 524288b driveoffset 1048841b
plexoffset 1572864b

sd name bigraid.p0.s0 drive a plex bigraid.p0 state initializing len 4194304b driveof
fset 1573129b plexoffset 0b
sd name bigraid.p0.s1 drive b plex bigraid.p0 state initializing len 4194304b driveof
fset 1573129b plexoffset 4194304b
sd name bigraid.p0.s2 drive c plex bigraid.p0 state initializing len 4194304b driveof
fset 1573129b plexoffset 8388608b
sd name bigraid.p0.s3 drive d plex bigraid.p0 state initializing len 4194304b driveof
fset 1573129b plexoffset 12582912b
sd name bigraid.p0.s4 drive e plex bigraid.p0 state initializing len 4194304b driveof
fset 1573129b plexoffset 16777216b

The obvious differ ences her e ar e the presence of explicit location information and
naming (both of which are also allowed, but discouraged, for use by the user) and the
infor mation on the states (which are not available to the user). Vinum does not store
infor mation about drives in the configuration information: it finds the drives by scanning
the configured disk drives for partitions with a Vinum label. This enables Vinum to
identify drives correctly even if they have been assigned differ ent drive IDs.

At system startup, Vinum reads the configuration database from each of the Vinum drives
in reverse order of last modification time. Under normal circumstances, each drive
contains an identical copy of the configuration database, so it does not matter which
drive is read. After a crash, however, it is possible that the drives contain inconsistent
configuration information. After reading the most recent configuration, Vinum adds only
those objects which were not previously defined, thus avoiding changing the state of
existing objects.

Perfor mance issues

Per formance measurements show that the perfor mance is very close to what could be
expected from the underlying disk driver perfor ming the same operations as Vinum
per forms: in other words, the overhead of Vinum itself is negligible. This does not mean
that Vinum has perfect perfor mance: the choice of requests has a strong impact on the
overall subsystem perfor mance, and there are some known areas which could be
impr oved upon. In addition, the user can influence perfor mance by the design of the
volumes.

The following sections examine some factors which influence perfor mance.

Note: The perfor mance measur ements in this section were done on old disk drives. The absolute
per formance is correspondingly significantly poorer than that of modern drives. The intention of
the following graphs is to show relative perfor mance, not absolute perfor mance. Other tests
indicate that the perfor mance relationships also apply to modern high-end hardware.
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The influence of stripe size

In striped plexes, including RAID-4 and RAID-5 implementations, the stripe size has a
significant influence on perfor mance. In all plex structures except a single-subdisk plex
(which by definition is concatenated), the possibility exists that a single transfer to or
fr om a volume will be remapped into more than one physical I/O request. This is never
desirable, since the average latency for multiple transfers is always larger than the
average latency for single transfers to the same kind of disk hardware. Spindle
synchr onization does not help here, since there is no deter ministic relationship between
the positions of the data blocks on the differ ent disks. Within the bounds of the current
BSD I/O architectur e (maximum transfer size 128 kB) and current disk hardware, this
incr ease in latency usually offsets any speed increase in the transfer.

In the case of a concatenated plex, this remapping occurs only when a request overlaps a
subdisk boundary. In a striped or RAID-5 plex, however, the probability is an inverse
function of the stripe size. For this reason, a stripe size between 256 kB and 512 kB
appears to be optimum: it is small enough to create a relatively random mapping of file
system hot spots to individual disks, and large enough to ensure than 95% of all transfers
involve only a single data subdisk.

Figure 11: The influence of stripe size and mirroring
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Figur e 11 shows the effect of stripe size on read and write perfor mance, obtained with
rawio. This measurement used eight concurrent processes to access volumes with striped
plexes with differ ent stripe sizes. The graph shows the disadvantage of small stripe sizes,
which can cause a significant perfor mance degradation even compared to a single disk.

Other factors which influence the choice of stripe size are:

• The file system structure. UFS structur es file systems into fixed sized cylinder groups
with an inode table at the beginning of the cylinder group. It is easy for the
relationship between cylinder group and stripe size to place the beginning of each
cylinder group on the same subdisk. This occurs when both the stripe size and
cylinder group size are a power of 2.

• The file system block size. While UFS does not always transfer entire blocks, there is
a tendency for it to do so.

• The disk cache size. This factor remains to be investigated.

For these reasons, the current recommendation is to have a stripe size which is a power
of two plus or minus a block size; 496 kB is a good example for a file system with the
default block size of 16 kB.

The influence of RAID-1 mirroring

Mirr oring has differ ent ef fects on read and write throughput. A write to a mirror ed
volume causes writes to each plex, so write perfor mance is less than for a non-mirror ed
volume. A read from a mirror ed volume, however, reads from only one plex, so read
per formance can improve.

Ther e ar e two differ ent scenarios for these perfor mance changes, depending on the
layout of the subdisks comprising the volume. Two basic possiblities exist for a mirror ed,
striped plex.

One disk per subdisk

The optimum layout, both for reliability and for perfor mance, is to have each subdisk on
a separate disk. An example might be the following configuration, similar to the
configuration on page 17:

volume raid10
plex org striped 512k

sd length 102480k drive a
sd length 102480k drive b
sd length 102480k drive c
sd length 102480k drive d

plex org striped 512k
sd length 102480k drive e
sd length 102480k drive f
sd length 102480k drive g
sd length 102480k drive h
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In this case, the volume is spread over a total of eight disks. This has the following
ef fects:

• Read access: by default, read accesses will alternate across the two plexes, giving a
per formance improvement close to 100%.

• Write access: writes must be perfor med to both disks, doubling the bandwidth
requir ement. Since the available bandwidth is also double, there should be little
dif ference in througput.

At present, due to lack of hardware, no tests have been made of this configuration.

Both plexes on the same disks

An alternative layout is to spread the subdisks of each plex over the same disks:

volume raid10
plex org striped 512k

sd length 102480k drive a
sd length 102480k drive b
sd length 102480k drive c
sd length 102480k drive d

plex org striped 512k
sd length 102480k drive c
sd length 102480k drive d
sd length 102480k drive a
sd length 102480k drive b

This has the following effects:

• Read access: by default, read accesses will alternate across the two plexes. Since there
is no increase in bandwidth, there will be little differ ence in perfor mance thr ough the
second plex.

• Write access: writes must be perfor med to both disks, doubling the bandwidth
requir ement. In this case, the bandwidth has not increase, so write throughput will
decr ease by approximately 50%.

Figur e 11 also shows the effect of mirroring in this manner. The results are very close to
the theoretical predictions.

The influence of request size

As seen above, the throughput of a disk subsystem is the sum of the latency (the time
taken to position the disk hardware over the correct part of the disk) and the time to
transfer the data to or from the disk. Since latency is independent of transfer size, overall
thr oughput is strongly dependent on the size of the transfer, as Figur e 12 shows.
Unfortunately, there is little that can be done to influence the transfer size. In FreeBSD, it
tends to be closer to 10 kB than to 30 kB.
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Figure 12: Throughput as function of transfer size

The influence of concurrency

Vinum aims to give best perfor mance for a large number of concurrent processes
per forming random access on a volume. Figur e 13 shows the relationship between
number of processes and throughput for a raw disk volume and a Vinum volume striped
over four such disks with between one and 128 concurrent processes with an average
transfer size of 16 kB. The actual transfers varied between 512 bytes and 32 kB, which
roughly corresponds to UFS usage.
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Figure 13: Concurrent random access with 32 sector transfer s

The influence of request structure

For concatenated and striped plexes, Vinum creates request structures which map directly
to the user-level request buffers. The only additional overhead is the allocation of the
request structure, and the possibility of improvement is correspondingly small.

With RAID-5 plexes, the picture is very differ ent. The strategic choices described above
work well when the total request size is less than the stripe width. By contrast, consider
the following transfer of 32.5 kB:
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Figure 14: A sample RAID-5 transfer

An optimum approach to reading this data perfor ms a total of 5 I/O operations, one on
each subdisk. By contrast, Vinum treats this transfer as three separate transfers, one per
stripe, and thus perfor ms a total of 9 I/O transfers.

In practice, this inefficiency should not cause any problems: as discussed above, the
optimum stripe size is larger than the maximum transfer size, so this situation does not
arise when an appropriate stripe size is chosen.

These considerations are shown in figure 15, which clearly shows the RAID-5 tradeoffs:

• The RAID-5 write throughput is approximately half of the RAID-1 throughput in figure
11, and one-quarter of the write throughput of a striped plex.

• The read throughput is similar to that of striped volume of the same size.

Although the random access perfor mance incr eases continually with increasing stripe
size, the sequential access perfor mance peaks at about 20 kB for writes and 35 kB for
reads. This ef fect has not yet been adequately explained, but may be due to the nature
of the test (8 concurrent processes writing the same data at the same time).
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Figure 15: RAID-5 perfor mance against stripe size

The implementation

The implementation of Vinum requir ed a number of tradeoffs. This section looks at
some of the more inter esting ones.

Where the driver fits

To the operating system, Vinum looks like a block device, so it is normally be accessed
as a block device. Instead of operating directly on the device, it creates new requests
and passes them to the real device drivers. Conceptually it could pass them to other
Vinum devices, though this usage makes no sense and would probably cause problems.
The following figure is © 1996 Addison-Wesley, and is repr oduced with permission. It
shows the standard 4.4BSD I/O structure:
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Figure 16: Ker nel I/O structure, after McKusick et. al.

With Vinum and some other changes, it becomes:

system call interface to the ker nel

active file entries

socket
VNODE layer

network
pr otocols

NFS local naming (UFS) special devices
VM

MFS
FFS LFS

cooked
disk

tty raw
disk
and
tty

swap
space
mgmt.buf fer cache

line
discipline

block device driver character device driver

the hardware

Vinum block dev Vinum char
network
inter face
drivers

Figure 17: Ker nel I/O structure with Vinum

Apart from the effect of Vinum, it shows the gradual lack of distinction between block
and character devices that has occurred since the release of 4.4BSD. NetBSD implements
disk block and character devices in the same driver. FreeBSD has completely dispensed
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with disk block devices, the shaded area in the figure.

Design limitations

Vinum was intended to have as few arbitrary limits as possible consistent with an efficient
implementation. Nevertheless, a number of limits were imposed in the interests of
ef ficiency, mainly in connection with the device minor number format, which currently
persists even in the device file system.

The original release of Vinum was significantly more restrictive in the number of object
that it supported. The current limits are:

• 16382 volumes in NetBSD, 262160 volumes in FreeBSD. The highest numbered two
volume numbers are reserved for the control devices.

• 16384 plexes in NetBSD, 262162 plexes in FreeBSD.

• 32768 subdisks in NetBSD, 524324 subdisks in FreeBSD.

The differ ence between NetBSD and FreeBSD is due to the differ ent width of the minor
device number in each system.

In addition, Vinum requir es a minimum device size of 1 MB. This assumption makes it
possible to dispense with some boundary condition checks. Vinum requir es 133 kB of
disk space to store the header and configuration information, so this restriction does not
appear serious.

Memor y allocation

In order to perfor m its functionality, Vinum allocates a large number of dynamic data
structur es. Curr ently these structures are allocated by calling kernel malloc. This is a
potential problem, since malloc interacts with the virtual memory system and may
trigger a page fault. The potential for a deadlock exists if the page fault requir es a
transfer to a Vinum volume. It is probable that Vinum will modify its allocation strategy
by reserving a small number of buffers when it starts and using these if a malloc
request fails.

To cache or not to cache

Traditionally, UNIX block devices are accessed from the file system via caching routines
such as br ead and bwrite. It is also possible to access them directly, but this facility is
seldom used. The use of caching enables significant improvements in perfor mance.

Vinum does not cache the data it passes to the lower-level drivers. It would also seem
counterpr oductive to do so: the data is available in cache already, and the only effect of
caching it a second time would be to use more memory, thus causing more frequent
cache misses.
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RAID-5 plexes pose a problem to this reasoning. A RAID-5 write normally first reads the
parity block, so there might be some advantage in caching at least the parity blocks. This
issue has been deferred for further study.

Access optimization

The algorithms for RAID-5 access are surprisingly complicated and requir e a significant
amount of temporary data storage. To achieve reasonable perfor mance, they must take
err or recovery strategies into account at a low level. A RAID 5 access can requir e one or
mor e of the following actions:

• Nor mal read. All participating subdisks are up, and the transfer can be made directly
to the user buffer.

• Recovery read. One participating subdisk is down. To recover data, all the other
subdisks, including the parity subdisk, must be read. The data is recover ed by
exclusive-oring all the other blocks.

• Nor mal write. All the participating subdisks are up. This write proceeds in four
phases:

1. Read the old contents of each block and the parity block.

2. ‘‘Remove’’ the old contents from the parity block with exclusive or.

3. ‘‘Insert’’ the new contents of the block in the parity block, again with exclusive
or.

4. Write the new contents of the data blocks and the parity block. The data block
transfers can be made directly from the user buffer.

• Degraded write wher e the data block is not available. This requir es the following
steps:

1. Read in all the other data blocks, excluding the parity block.

2. Recreate the parity block from the other data blocks and the data to be written.

3. Write the parity block.

• Parityless write, a write where the parity block is not available. This is in fact the
simplest: just write the data blocks. This can proceed directly from the user buffer.

Combining access strateg ies

In practice, a transfer request may combine the actions above. In particular:

• A read request may request reading both available data (normal read) and non-
available data (recovery read). This can be a problem if the address ranges of the two
reads do not coincide: the normal read must be extended to cover the address range
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of the recovery read, and must thus be perfor med out of malloced memory.

• Combination of degraded data block write and normal write. The address ranges of
the reads may also need to be extended to cover all participating blocks.

An exception exists when the transfer is shorter than the width of the stripe and is spread
over two subdisks. In this case, the subdisk addresses do not overlap, so they are
ef fectively two separate requests.

Examples

The following examples illustrate these concepts:
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Parity block

Data block involved in transfer

Figure 18: A sample RAID-5 transfer

Figur e 18 illustrates a number of typical points about RAID-5 transfers. It shows the
beginning of a plex with five subdisks and a stripe size of 4 kB. The shaded area shows
the area involved in a transfer of 4.5 kB (9 sectors), starting at offset 0xa800 in the plex.
A read of this area generates two requests to the lower-level driver: 4 sectors from
subdisk 4, starting at offset 0x2800, and 5 sectors from subdisk 5, starting at offset
0x2000.

Writing this area is significantly more complicated. From a programming standpoint, the
simplest approach is to consider the transfers individually. This would create the
following requests:
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• Read the old contents of 4 sectors from subdisk 4, starting at offset 0x2800.

• Read the old contents of 4 sectors from subdisk 3 (the parity disk), starting at offset
0x2800.

• Per form an exclusive OR of the data read from subdisk 4 with the data read from
subdisk 3, storing the result in subdisk 3’s data buffer. This effectively ‘‘removes’’ the
old data from the parity block.

• Per form an exclusive OR of the data to be written to subdisk 4 with the data read
fr om subdisk 3, storing the result in subdisk 3’s data buffer. This effectively ‘‘adds’’ the
new data to the parity block.

• Write the new data to 4 sectors of subdisk 4, starting at offset 0x2800.

• Write 4 sectors of new parity data to subdisk 3 (the parity disk), starting at offset
0x2800.

• Read the old contents of 5 sectors from subdisk 5, starting at offset 0x2000.

• Read the old contents of 5 sectors from subdisk 3 (the parity disk), starting at offset
0x2000.

• Per form an exclusive OR of the data read from subdisk 5 with the data read from
subdisk 3, storing the result in subdisk 3’s data buffer. This effectively ‘‘removes’’ the
old data from the parity block.

• Per form an exclusive OR of the data to be written to subdisk 5 with the data read
fr om subdisk 3, storing the result in subdisk 3’s data buffer. This effectively ‘‘adds’’ the
new data to the parity block.

• Write the new data to 5 sectors of subdisk 5, starting at offset 0x2000.

• Write 5 sectors of new parity data to subdisk 3 (the parity disk), starting at offset
0x2000.

This approach is clearly suboptimal. The operation involves a total of 8 I/O operations
and transfers 36 sectors of data. In addition, the two halves of the operation block each
other, since each must access the same data on the parity subdisk. Vinum optimizes this
access in the following manner:

• Read the old contents of 4 sectors from subdisk 4, starting at offset 0x2800.

• Read the old contents of 5 sectors from subdisk 5, starting at offset 0x2000.

• Read the old contents of 8 sectors from subdisk 3 (the parity disk), starting at offset
0x2000. This repr esents the complete parity block for the stripe.

• Per form an exclusive OR of the data read from subdisk 4 with the data read from
subdisk 3, starting at offset 0x800 into the buffer, and storing the result in the same
place in subdisk 3’s data buffer.
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• Per form an exclusive OR of the data read from subdisk 5 with the data read from
subdisk 3, starting at the beginning of the buffer, and storing the result in the same
place in subdisk 3’s data buffer offset.

• Per form an exclusive OR of the data to be written to subdisk 4 with the modified
parity block, starting at offset 0x800 into the buffer, and storing the result in the same
place in subdisk 3’s data buffer.

• Per form an exclusive OR of the data to be written to subdisk 5 with the modified
parity block, starting at the beginning of the buffer, and storing the result in the same
place in subdisk 3’s data buffer offset.

• Write the new data to 4 sectors of subdisk 4, starting at offset 0x2800.

• Write the new data to 5 sectors of subdisk 5, starting at offset 0x2000.

• Write the 8 sectors of new parity data to subdisk 3 (the parity disk), starting at offset
0x2000.

This is still a lot of work, but by comparison with the non-optimized version, the number
of I/O operations has been reduced to 6, and the number of sectors transferred is
reduced by 2. The larger the overlap, the greater the saving. If the request had been for
a total of 17 sectors, starting at offset 0x9800, the unoptimized version would have
per formed 12 I/O operations and moved a total of 68 sectors, while the optimized
version would perfor m 8 I/O operations and move a total of 50 sectors.

Degraded read

Figur e 19 illustrates the situation where a data subdisk fails, in this case subdisk 4. In this
case, reading the data from subdisk 5 is trivial. Recr eating the data from subdisk 4,
however, requir es reading all the remaining subdisks. Specifically,

• Read 4 sectors each from subdisks 1, 2 and 3, starting at offset 0x2800 in each case.

• Read 8 sectors from subdisk 5, starting at offset 0x2800.

• Clear the user buffer area for the data corresponding to subdisk 4.

• Per form an ‘‘exclusive or’’ operation on this data buffer with data from subdisks 1, 2,
3, and the last four sectors of the data from subdisk 5.

• Transfer the first 5 sectors of data from the data buffer for subdisk 5 to the
corr esponding place in the user data buffer.
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Figure 19: RAID-5 transfer with inaccessible data block

Degraded write

Ther e ar e two differ ent scenarios to be considered in a degraded write. Referring to the
pr evious example, the operations requir ed ar e a mixtur e of normal write (for subdisk 5)
and degraded write (for subdisk 4). In detail, the operations are:

• Read 4 sectors each from subdisks 1 and 2, starting at offset 0x2800, into temporary
storage.

• Read 5 sectors from subdisk 3 (parity block), starting at offset 0x2000, into the
beginning of an 8 sector temporary storage buffer.

• Clear the last 3 sectors of the parity block.

• Read 8 sectors from subdisk 5, starting at offset 0x2000, into temporary storage.

• ‘‘Remove’’ the first 5 sectors of subdisk 5 data from the parity block with exclusive or.

• Rebuild the last 3 sectors of the parity block by exclusive or of the corresponding data
fr om subdisks 1, 2, 5 and the data to be written for subdisk 4.
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• Write the parity block back to subdisk 3 (8 sectors).

• Write 5 sectors user data to subdisk 5.

Parityless write

Another situation arises when the subdisk containing the parity block fails, as shown in
figur e 20.

0x0000

0x1000

0x2000

0x3000

Parity

Parity

Parity

Parity

Parity

Of fset Subdisk 1 Subdisk 2 Subdisk 3 Subdisk 4 Subdisk 5

0x0000 0x1000 0x2000 0x3000

0x4000 0x5000 0x6000 0x7000

0x8000 0x9000 0xa000 0xb000

0xc000 0xd000 0xe000 0xf000

0x10000 0x11000 0x12000 0x13000

Parity block

Data block involved in transfer

Inaccessible data

Figure 20: RAID-5 transfer with inaccessible parity block

This configuration poses no problems on reading, since all the data is accessible. On
writing, however, it is not possible to write the parity block. It is not possible to recover
fr om this problem at the time of the write, so the write operation simplifies to writing
only the data blocks. The parity block will be recr eated when the subdisk is brought up
again.
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Dr iver structure

Vinum can issue multiple disk transfers for a single I/O request:

• As the result of striping or concatenation, the data for a single request may map to
mor e than one drive. In this case, Vinum builds a request structure which issues all
necessary I/O requests at one time. This behaviour has had the unexpected effect of
highlighting problems with marginal SCSI hardware by imposing heavy activity on the
bus.

• As seen above, many RAID-5 operations requir e a second set of I/O transfers after the
initial transfers have completed.

• In case of an I/O failure on a resilient volume, Vinum must reschedule the I/O to a
dif ferent plex.

The second set of RAID-5 operations and I/O recovery do not match well with the design
of UNIX device drivers: typically, the ‘‘top half’’1 of a UNIX device driver issues I/O
commands and retur ns to the caller. The caller may choose to wait for completion, but
one of the most frequent uses of a block device is where the virtual memory subsystem
issues writes and does not wait for completion.

This poses a problem: who issues the second set of requests? The following possibilities,
listed in order of increasing desirability, exist:

1. The top half can wait for completion of the first set of requests and then launch the
second set before retur ning to the caller. This approach can seriously impact
system perfor mance and possibly cause deadlocks.

2. In a thr eaded ker nel, the strategy routine can create a thread which waits for
completion of the first set of requests and starts the second set without impacting
the main thread of the process. At the moment this approach is not possible, since
Fr eeBSD curr ently does not provide kernel thread support. It also appears likely
that it could cause a number of problems in the areas of thread synchronization and
per formance.

3. Ownership of the requests can be ‘‘given’’ to another process, which will be
awakened when they complete. This process can then issue the second set of
requests. This appr oach is feasible, and it is used by some subsystems, notably
NFS. It does not pose the same severe per formance penalty of the previous
possibility, but it does requir e that another process be scheduled twice for every
I/O.

1. UNIX device drivers run in two separate environments. The ‘‘top half’’ runs in the process context, while the
‘‘bottom half’’ runs in the interrupt context. There are severe restrictions on the functions that the bottom half of
the driver can perform.
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4. The second set of requests can be launched from the ‘‘bottom half’’ of the driver.
This is potentially dangerous: the interrupt routine must call the start routine.
While this is not expressly prohibited, the start routine is normally used by the
top half of a driver, and may call functions which are prohibited in the bottom half.

Initially, Vinum used the fourth solution. This worked for most drivers, but some drivers
requir ed functions only available in the ‘‘top half’’, such as malloc for ISA bounce
buf fers. Curr ent Fr eeBSD drivers no longer call these functions, but it is possible that the
situation will arise again.

On the other hand, this method does not allow I/O recovery. Vinum now uses a
daemon process for I/O recovery and a couple of other housekeeping activities, such as
saving the configuration database. The additional scheduling overhead for these activities
is negligible, but it is the reason that the RAID-5 second stage does not use the daemon.

Vinum root file systems

Initially Vinum did not support the root file system. The main problem was that the
Fr eeBSD boot loader does not understand the generality of a Vinum volume. The small
space reserved for the boot loader also makes it difficult to modify it to understand
Vinum. This is a situation paralleled in many commercial operating systems.

Based on prior attempts at solving this issue, the following alternatives were consider ed:

• Teach the bootstrap code about Vinum so that it could start Vinum and load directly
fr om a Vinum volume. This was considered an unlikely alternative, since Vinum
needs to know too much about the kernel environment, and there’s not enough space
for the code in conventional bootstraps.

• Cr eate a separate boot file system and put the kernel there, then start Vinum and the
root file system. Many System V implementations used this method, but it’s untidy.

• Cr eate an root file system on ramdisk. This effectively lives in swap, but there’s no
pr oblem ther e.

• Boot normally, start Vinum and then mount the root file system on top of the old root
file system. It appeared that there would be a number of problems with this
appr oach, since the system must access /etc/fstab to determine where to mount root.

In practice, however, it tur ned out that the last alternative was not so difficult after all,
and Vinum on FreeBSD now supports the root file system. The same considerations
apply to NetBSD, but at the time of writing the coding is not yet complete.
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The changes requir ed wer e:

• Load the Vinum module at boot time. Changes in the boot loader had already made
this possible.

• Start Vinum automatically at boot time, which requir ed some changes in Vinum itself
and also minor modifications to the FreeBSD startup procedur e.

• Mount the Vinum volume instead of the underlying partition. This proved to be
trivial.

Some restrictions remain for Vinum volumes for the root file system:

• They must contain at least one concatenated plex with only one subdisk.

• These subdisks must correspond to a UFS partition.

• The system can only boot from one of these subdisks.

Theor etically it would be possible to have other plexes in the root file system, but since
it’s not possible to boot from them, there’s no obvious reason to do so.

Future directions

A number of additional features have been proposed for Vinum:

• Hot spare capability: on the failure of a disk drive, the volume manager automatically
recovers the data to another drive. Some work has been done in this direction, but it
is currently not yet complete.

• Logging changes to a degraded volume. Rebuilding a plex usually requir es copying
the entire volume. In a volume with a high read to write, if a disk goes down
temporarily and then becomes accessible again (for example, as the result of controller
failur e), most of the data is already present and does not need to be copied. Logging
pinpoints which blocks requir e copying in order to bring the stale plex up to date.

• Snapshots of a volume. It is often useful to freeze the state of a volume, for example
for backup purposes. A backup of a large volume can take several hours. It can be
inconvenient or impossible to prohibit updates during this time. A snapshot solves
this problem by maintaining befor e images, a copy of the old contents of the modified
data blocks. Access to the plex reads the blocks from the snapshot plex if it contains
the data, and from another plex if it does not.

Implementing snapshots in Vinum alone would solve only part of the problem: there
must also be a way to ensure that the data on the file system is consistent from a user
standpoint when the snapshot is taken. This task involves such components as file
systems and databases and is thus outside the scope of Vinum. A snapshot facility
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alr eady exists for UFS, so the concept of snapshots at the volume manager level has
become less interesting.

• A SNMP interface for central management of Vinum systems.

• A GUI inter face is currently not planned, though it is relatively simple to program,
since no kernel code is needed. As the number of failures testify, a good GUI
inter face is apparently very difficult to write, and it tends to gloss over important
administrative aspects, so it’s not clear that the advantages justify the effort. On the
other hand, a graphical output of the configuration could be of advantage.

• Remote data replication is of interest either for backup purposes or for read-only
access at a remote site. Fr om a conceptual viewpoint, it could be achieved by
inter facing to a network driver instead of a local disk driver.

• Extending striped and RAID-5 plexes is a slow complicated operation, but it is feasible.

Curr ently ther e ar e no further plans for any of these features.

Vinum under other operating systems

Vinum first appeared in FreeBSD in 1998. In 2003, a couple of independent efforts
ported it to NetBSD (where it is now in the source tree) and OpenBSD (where it is not).
Vinum currently does not run under Linux. Curr ently some interest has been expressed
on the developer list vinum-developers@auug.org.au. A port would requir e
rewriting the driver interface layer, affecting perhaps 15% of the total code. The question
remains whether there’s enough interest in doing so in view of the multitude of other
similar products available.

Vinum: the future

Vinum is no longer new: it has been around for nearly six years. In the meantime, many
other products have become available, both for FreeBSD and for other systems. In
particular, since release 5.0 FreeBSD includes the GEOM subsystem, which addresses
some of the same issues that Vinum addresses in a differ ent, usually more general
manner. Inevitably, there are conflicts. For example, at the time of writing it is no longer
possible to use a Vinum volume as a swap partition on FreeBSD -CURRENT, the
development version of FreeBSD.

This problem will be resolved. In a mor e general sense, though, it does not make sense
to have two differ ent and conflicting implementations on a single platform. Since GEOM
is more general, it makes sense to adapt Vinum to GEOM.
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Desirable features in GEOM include:

• You can define a new mapping and insert it into the GEOM stack. For example, some
users have asked for the ability to build a single plex out of multiple mirror ed
subdisks, which is not possible in Vinum. This could be done with GEOM. In this
respect, GEOM resembles STREAMS.

• Autodiscovery allows ‘‘consumers’’ to find about new devices as they arrive. This
would make it unnecessary for Vinum to scan every disk in the system. When a disk
of type Vinum is discovered, whether at boot time or later, the Vinum code will be
infor med and will have the opportunity to add additional configuration information.

At present, this issue is under discussion in the FreeBSD mailing lists. It’s possible that an
initial implementation will simply convert Vinum to work as a single, complex GEOM
transfor mation, and that later the individual objects will be split up as independent
transfor ms.
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