
A Scalable Implementation of Virtual
Memory HAT Layer for Shared

Memory Multiprocessor Machines
Ramesh Balan, Kurt Gollhardt - UNIX System Laboratories

ABSTRACT

This paper describes the design and implementation of the UNIX@ SVR4.2 Virtual
Memory (VM) Hardware Address Translation (ÌIAT) layer that can be used as a model for
other multiprocessor (MP) platforms in terms of scalability and MP related interfaces
between the IIAT layer and the machine independent layer. SVR4.2 is a SVR4.1 ES based
kernel that suppo¡s shared memory multiprocessors and light weight processes in a shared
address space. By implementing a fine-grained locking mechañisn¡ a lazy Translation
Lookaside Buffer (TLB) shootdown evaluation policy and other improvements over the SVR4
design _ the memory management feature is made scalable in terml of number of processors
as well as size of memory supported. Providing a small set of interfaces beiween the
machine dependent and independent layers for TLB consistency and a simple set of locking
requirements between th€ two layers, SVR4.2 facilitates thè portability of the memory
management feature to other multiprocessor platforms.

Introduction

A scalable and pofable HAT layer that supports
multiprocessors and multiple threads in an address
space is described in this paper. The scalability of
the implementation is primarily due to three reasons:

r The TLB shootdown policy and algorithms.
o A fine-grained locking scheme that allows

memory management as a whole to be scal-
able with respect to number of processors.

o Design to support large physical memory
configurations.
A small set of well defined MP related HAT

interfaces is introduced for use by other layers of the
kernel. The purpose of these HAT functions is to
maintain TLB consistency in a multiprocessor
environment. SVR4.2 does not assume hardware sup-
p9f ,f9r TLB consistencyr and the support is pro-
vided by the IIAT layer.

The HAT layer is the Memory Mangement
Unit (MMU) dependent part of rhe memory manage-
ment facility in SVR4.0 UNIX implementations.
Other UNIX Virtual Memory implementations also
usually contain such a machine dependent layer. In
SVR4.2 (a derivative of SVR4.1 that provides sup-
port for multiprocessors and light weight processes),
all but a small portion of rest of the VM-subsystem
is machine independent.

Traditionally, most of the porting effort is spent
on implementing the IIAT layer when porting SVR4
memory management feature to various

/However, cache coherence is assumed to be supported
by the hardware.

Summer '92 USENIX - June 8-June L2, tgg2 - San Antonio, TX

architectures. This effort is much more complex in a
multiprocessor environment. Also, typically, scalabil-
ity issues are not emphasized during porting efforts.
By providing a well defined set of interfaces and a
simple locking protocol, the porting effort will be
routine without any loss in the performance of the
system.

Related Work

Previous work done on providing a general
interface for the hardware dependent layer óf VM
includes the MACH pmap layer [1] and the original
SVR4 HAT layer interfaces that were derived from
SunOS [2]. The TLB shoordown policy imple-
mented in SVR4.2 is similar ro the MACH policy
[3], however kernel address space shootdowns are
handled differently from the user address space.
Several solutions to TLB consistency with and
without assuming hardware cache consistency have
been discussed in various papers [4]. An implemen-
tation of TLB synchronization that uses a paÍicular
TLB format (TLB ID entry) has been described in
t5]. The SVR4.2 implementation does not expect
the TLB to contain any fields such as TLB ID other
than a subset of fields in the page table entry. How-
ever, there are two areas in which SVR4.2 imole-
mentation of TLB shootdowns is machine dependènt:
one is when clearing the page table entries bf other
processors which is dependent on the MMU struc-
ture and the other is in sending inter-processor inter-
rupts for synchronization of the processors whose
TLB is being shot down.

107

A Scalable Implementation of Virtual Memory ...

Bacþround

The SVR4.0 HAT data structures were retained
for SVR4.2. The reason for this is that the data
structures efficiently support large, sparse address
spaces in terms of space and time. The principal
factor behind this efûciency is the møpping chunlæ
data structure. A mapping chunk is used to keep
track of all virtual mappings to a physical page.
Each page table entry has a corresponding mapping
chunk entry and each physical page has a linked list
of mapping chunk entries that denotes the virtual
translations to the page Qnøpping chøin). The size of
a mapping chunk is much smaller than that of a page
tablez, Non-active translations does not have an
entry in the mapping chunk. Due to this reason,
sparsely populated page tables waste very little space
for providing the map¡ting chain. When operating on
a large address ranger, all the page table chunks that
does not have a conesponding mapping chunk are
skipped, and no time is spent looking at the non
existent page table entries.

The Uniprocessor (UP) interfaces from the
SVR4.0 IIAT layer have also been retained since the
interfaces have been found to be suffrcient in sup,
porting different architectures that SVR4 has beèn
ported to so far (including Intel386, SPARC@,
Motorola 88000, MIPS). The most frequently exe-
cuted UP IIAT functionalities in SVR4 were to load
a translation to a given page (hat_memload0), to
unload translations for a range of addresses
(hat_unload0) and to unload all translations ro a
given physical page (hat jageunload}).

The reference port for SVR4.2 is on an
Intel386/486 architecture and thus the initial HAT
implementation is targeted for the Intel386 MMU.
The following is a list of its features that are of
interest:

r The Intel386 MMU uses a two level page
table structure to define an address spaca [6].
When references to the page table entries are
denoted as level L entries or level 2 entries in
the sections below, they are in regards to this
structure.

r Level L is the page table directory consisting
of. 7024 entries, each of which points to a
page table. This page table is refened to as
the level 2 page table.

o Iævel 2 page table consists of 1024 entries,
each of which point to a physical page.

o The physical page size is 4096 bytes.
o The modify and reference bits are in the page

table entry and are updated by the hardware.
¡ The i386 also provides an interlocking facility

-
-'In- $e i386 implementation, the size of a mapping

chunk is tl32nd of page table size.rSuch as unloading an address range or changing
protections.

Balan, Gollhardt

when accessing the reference and modify bits;
i.e. no other accesses to the page table entry
are possible when the hardware is changing
these bits for that entry.

The i386 architecture can support 4 Gigabytes of vir-
tual address space. In many RISC architectures (such
as MIPS@), the modify and reference bits are simu-
lated in software and thus, unlike the Intel386 imple-
mentation, TLB shootdowns are not required when
these bits are modified.

Multiprocessor Interfaces

Most MMUs implement a simple cache known
as Translation I¡okaside Buffer for caching virtual
to physical translations to avoid real memory
accesses. In a multiprocessor environment the same
virtual address can reside in multiple TLBs and the
coherence of these translations needs to be main-
tained between the TLBs. In SVR4.2, all the
exported MP related IIAT interfaces are used for
maintaining the TLB consistency. The number of
active CPUS in the system for the kernel address
space and the number of CPUs a user address space
(execution entity : a process (consisting of one or
more light weight processes)) is associated with is
recorded to do selective TLB flushes. This is
referred to as TLB accounting. Tn-e IIAT layer
records the TLB accounting in a HAT data structure
that is associated with each address space, including
the kernel address space.

All online CPUs in the system can execute in
the context of the kernel address space (&øs). The
kernel address space HAT accounting structule
records the current set of online CPUs. Two HAT
functions are provided for establishing this account-
ing when bringing CPUs online or offline. These
functions are used in accounting which processors'
TLBs will be flushed for the kernel address space.

o hat_online (): Called when onlining an
engine (CPU) in the system. Sets active cpu
count field and the processor's bit in the &as
HAT structure. It also flushes the ensine,s
TLB.

r hat_offline(): Called when taking an
engine (CPU) offline in the system. Cleari the
processor's bit set in hat_online() and
decrements the count of active cpus in køs
HAT structure.
The processor accounting for user level address

spaces for shooting down TLBs is done at context
switching time. Since threads within an address
space can be running at the same time on different
CPUs, the CPUs that are executing in the context of
the same address space must be known to perform
selective TLB flushes. The following interfaces are
used when scheduling a light weight proc€ss (LWp)
on any CPU in the system.

. hat_asload(as): Cal led when context
switching to a new LWP. It adds the

108 Summer '92 USENIX - June 8-June L2, Lgg2 - San Antonio, TX

Balan, Gollhardt

pfocessor to the active engine þrocessor)
accounting in the IIAT structure of this
address space a,s and loads this address space
into the MMU fiust the level 1 page table
entries on the i386 architecture).

o hat_asunload(as, f tag): Cal led when
context switching out a LWP. It unloads the
MMU mappings for this process (again, just
the level 1 translations on the i386) and takes
the engine out of the active engine accounting
of the HAT structure. The flag parameter
indicates whether the caller wants a TLB flush
to be done by this function after unloading the
mappingsa. Except for the CPU accounting,
the rest of the fi¡nctionalitv needs to be done
on a UP platform as wells. Note that there is
no need to call hat_asunloadQ if the context
switch is to select a LWP in the same pro-
cess.
The following are the HAT interfaces for lazy

shootdown of TLBs used only on the kemel address
space by the kernel segment drivers. To implement
lazy TLB shootdowns (details of which is explained
later), an object opaque to all other layers of VM
except the HAT layer called a cookie, is maintained,
The cookìe reflects the age of virtual translations
with respect to the TLB. In the i386 HAT imple-
mentation, the cookie is a timestamp but it could be
a corrnter of some sort in other implementations. The
state of the TLB the HAT records is the timestamp
of the last TLB flush. The state of a virtual address
will be explained in section 6.1.1. The following are
the interfaces:

r hat getshootcookie(): Returns an
opaque value that indicates the "age" of a
TLB, which is used for lazy shootdown.

o hat_shootdown(cookÍe_t cookie,
u_int flag)¡ TLB shootdown routine for
kernel address space. If any of the active
CPUs in the system has an older cookie than
the passed-in cookie, then the TLBs of these
CPUs will be flushed. The flag argument is
used by clients which do not use lazy shoot-
downo, so all the CPUs in the system are
flushed regardless of.the cookie passãd in.

ffiswitch implementation does
trot request hat_asunload} to flush the TLB. This is
because it has to flush thc TLB after copying the page
tablc entries for the U area of the new process it is
loading. Thus it forgoes the TLB flush after unloading
the mappings of the old proc€ss.

JThe TLB flush is not necessary on some æchitectu¡es
whose MMUs (such as SPARC and MIPS) provide the
context number as part of every TLB entry aud on those
architectu¡es whe¡c TLBs ue flushed on each context
switch.

óIhere is no such ctient in SVR4.2.

A Scalable Implementation of Virtual Memory ...

The TLB shootdown interfaces for user level
address spaces are not seen outside the HAT layer -
the shootdown is immediate and it is done during
one of the following HAT operations: unloading a
translation, changing the protection of a page (only
in the case of restricting permissions), remapping a
virtual address to a different physical address, and in
the case of clearing a modify bit of a page table
entry (architecture speciûc).

Scalability Solutions

This section will discuss some of the features
that makes the SVR4.2 implementation scalable.
TLB Shootdowns

On platforms that does not support TLB con-
sistency in hardware, a multiprocessor kernel needs
to maintain the consistency for translations that are
cached in several processors' TLBs. The TLB is a
common feature of present day architectures since it
avoids any memory accesses (two in the case of a
i386 architecture) in translating a virtual address to
physical address if the address is present in the TLB
cache. The shootdown algorithms depend on the
existence of a hardware facility to issue cross-
processor interrupts. TLBs are fully flushedz as
opposed to flushing single TLB lines [5]. Since, the
shootdown algorithms are MMU architecture depen-
dent, they are part of the HAT layer in SVR4.2.

A lazy shootdown policy for the kemel address
space has been used whereas immediate shootdowns
are employed for the user address space. Since the
kernel virtual address usage is in the control of the
kernel, a lazy evaluation of the inconsistent TLB
states can be done. However, for a user address
space, multiple TLBs need to be immediately
brought to a consistent state since SVR4.2 supports
multiple L-WPs in an address space which can con-
currently execute on multiple CPUs.
Lary Shootdowtts

A lazy evaluation policy is very important for
the kemel address space. When a kernel virtual
address translation is unloaded, all processors' TLBs
in the system need to be brought to a consistent
state. This is because all processors in the system
share the kernel address space (in a symmetric mul-
tiprocessor architecture). Delaying shootdowns may
avoid doing the shootdowns entirely since the TLBs
might be flushed already when the evaluation is done
(due to a context switch, for example).

The kernel segment drivers essentially deter-
mine the laziness of a shootdown in kemel address
space. Ttvo major users of this policy in SVR4.2 are
the segbnen driver which manages the permanently
resident kernel memory and lhe segmap driver which

ffi does not support single line
TLB flushes exc€pt through the use of an unsupported
multi-instruction sequence.

Summer '92 USENIX - June t-June 12, LggZ - San Antonio, TX 109

A Scalable Implementation of Virtual Memory ...

manages transient file mappings used by file system
read and write system calls.

When a kernel virtual address is freed bv a ker-
nel thread, then typically that address would ïeed to
be flushed from all the TLBs in the system. But the
SVR4.2 seglonem driver delays this shootdown until
this address is about to be reused by the kernel. The
virtual space managed by the segkrnem driver is
represented as a bitmap and the bitmap itself is
divided into zones (the size of the zone is a tune-
able; the default value is 16 bytes). Each zone has
associated with it a cooãe (explained in the previous
section), which is set when an address in the zone is
freed. At the time of allocation, when it is found that
a page is allocated from a freed zone whose
addresses have still not been flushed from the TLBs.
hat-shootdownfl is called with the cookie-associated
with the zone as an argument. What
hat-shootdownfl does with this cookie will be
explained shortly.

Similarly, segmap manages its virtual space in
fixed-size chunl<s (configured as 8K as the default
value) and each chunk has an associated cookie,
Unlike segkmem, however, when a segmap chuttk is
freed (last reference is released), the cookie for the
chunk is set through the hatÅetshootcookie} inteþ
face but the translations are not unloaded. Instead,
this chunk is linked on to a list; the segmap aging
daemon periodically looks at this list and unloads
the translations at this time but does not perform a
shootdown of the unloaded addresses. When the
chunk is then reused by segmap, it calls
hat_shootdown with the associated cookie. The
shootdown can be delayed after the unloading since
no other context can access this file page in the
mean time. This technique allows us to eliminate the
shootdown entirely, if the chunk is reused with the
same identity (same physical pages) before it is
aged,
Lazy S hootdown Algorithm

Inside the HAT layer, a cookie is associated
with each processor that denotes when the
processor's TLB was flushed last. In a separate glo-
bal variable, the cookie of the least recently flushed
TLB is maintained. If the cookie passed in to
hat_shootdownfl is older than this value, then it
immediately returns since it knows that all the TLBs
in the system have been flushed since the cookie was
acquired. If this is not the case, the following steps
are executed by the initiator (the context that is ini-
tiating the shootdown):

1. Acquires a global spin lock. This spin lock
disallows the active processor set of the sys-
tem from changing underneath. It also serial-
izes lazy shootdowns in order to set the
cookie for each processor.

2. Scans the list of all processors that have been
hat_online)'ed (see interface definition in the
last section) and selects all the processors

Balan, Gollhardt

whose cookie is "older" than the passed in
cookie. While selecting the processors to be
interrupted, it recomputes the least recently
flushed value and sets the cookie for each pro-
cessor it selects (to lbolt in our implementa-
tion).

3. Sends cross processor interrupts to the proces-
sors.

4. Unlocks the global spin lock it acquired ear-
lier once all the responders have begun pro-
cessing the interrupt.

The responders (processors at the receiving end of
these interrupts) then flush their own TLBs before
again becoming active. The cross processor interrupt
executes at the highest interrupt priority level (ipl) in
the system because no interrupts can be allowed
while servicing a shootdown, Otherwise, this could
result in a deadlock if the interrupt level routine
causes a shootdown itself. This interrupt level is
even higher than the normal "block-all" interrupts
level (splhi) to avoid latency problems; we are care-
ful to avoid changing anything in the cross-processor
interrupt service routines which could interfere with
splhi-protected critical regions. Note that the
responders do not wait for any synchronization with
the initiator in this algorithm. All they have to do is
a TLB flush since the translations have been
modified earlier by the segment drivers. The initiator
does not wait for all the responders to complete their
operation.
Immedinte Shootdowns

The interfaces for immediate shootdowns
employed for the user address space are hidden in
the HAT layer and are not exported to other layers
in VM. This is because immediate shootdowns are
caused only by operations within the FIAT layer
such as unloading a translation and changing protec-
tions for a translation.
I mmediat e S ho ot dow n Al gor ithm

The algorithm for immediate shootdown is
similar to the lazy shootdown algorithm. The follow-
ing steps are executed by the initiator:

1. Grab the same global spin lock that we
acquire in the lazy algorithm for the same rea-
son (to keep anybody else from changing the
active processor set or performing another
shootdown).

2. Send cross-processor interrupts to all the pro-
cessors that share this address space (the pro-
cessor list that is updated by hat_asload and
hat_asunload). Unlike the lazy algorithm, the
responders spin waiting on synchronization
with the initiator.

3. Modify the page table entries (level 2 entries)
as appropriate for the operation (zero page
table entries if unloading translations, change
the protection bit or clear the modifying bit if
syncing the page table entry to the page

110 Summer '92 USENIX - June E-June 12,1992 - San Antonio, TX

Balan, Gollhardt

structurÐ.
4. Increment the counter that the responders are

spinning on, The responders perform a TLB
flush and return from the interrupt.

5. Perform a TLB flush for the initiator's proces-
sor.

6. Unlock the global spin lock acquired earlier.
The initiator again - as in the lazy case -
does not wait for the responders to finish
flushing their TLBs.
This algorithm has been optimized for the i386

architecture when the initiator has to modify a large
range of page table entries (example: when unload-
ing a large range of addresses). The initiator holds
the HAT resource lock (a spin lock) that is associ-
ated with the address space being modified at the
outset of the algorithm. After the responders are in a
spinning state, instead of changing all the page table
entries the initiator just unloads the level 1 entries
for the affected page tables. Thus, the initiator
spends less time when all other processors are spin-
ning. The initiator then increments the counter that
releases the responders from spinning on the barrier.
The responders then flush their TLB before returning
from the interrupt. If any of the LWPs running on
the responders try to access the inconsistent þage
table entry, it will take a fault because of the non-
existent lével 1 entry. The trap code will then try to
acquire the HAT resource lock and will block until
the initiator releases the HAT lock. This reduces the
time processors spin uselessly in the shootdown
algorithm.
Pageout

- The implementation of local working set aging
for pageout in SVR4.2 also prevents shootdowni
when compared to the global pageout policy in
SVR4. The global pageout daemon scani ali the
pltlsical pages in the system and clears the modify
bit if the bit is set for a page (after calling
VOP_PUTPAGEQ on the page) or clears the refer--
ence bit if it is set. Both of these actions would
require shootdowns (since these bits are in the page
table entry). But with the working set aging, the pro,
cess to be øged is seized; i.e. all the LWPs in the
process except the current context are brought to a
quiescent state. Thus, there is no need to shootdown
when modifying the page table enrries. The i386
context switch code flushes the TLBs when switch-
ing back in these LWPs.
Other Architectures

The above mentioned interfaces and algorithms
provide flexibility in supporting various architec-
tures, requiring minimal changes to them.

_ - Architectures supporting single TLB entry
flushes:

o The lazy shootdown algorithm need not
change at all. Even though the algorithm
flushes the whole TLB, most shootdowns are

A Scalable Implementation of Virtual Memory ...

totally avoided by this policy (see section
"Performance Data") and thus result in very
little overhead when compared to flushing.
individual entries.

o The immediate shootdown interfaces (both the
initiator and the responder) would change to
take in the address range as an argument and
flush just those entries. Since these interfaces
are not exported to other VM layers, changing
the interfaces is acceptable

o There may be a point in such architectures
where flushing a whole TLB is cheaper if the
number of lines to be flushed in the TLB is
too large. The algorithms should take this
into account when deciding which is more
efficient.
fuchitectures whose TLB entries contain a field

for context number:
o It is unnecessary to flush the TLB on context

switches.
o The lazy shootdown algorithm would not

change. If no gther local TLB flushes are done
by the kernelð, all the cookies associated with
the processors would be in the same state and
only one cookie would be needed.

o For the user address space, a lazy shootdown
algorithm may be possible as implemented in
tsl.

o No changes to interfaces are necessary.
Locking Design

The locking design implemented for the VM
subsystem as a whole should scale well on parallel
activities (intra-process and inter-process) that occur
on the system. The primary motive in arriving at the
current locking model was to keep things simple and
not to have the locking requirements between the
VM layers (the page layer, the segment layer and the
HAT layer) too complex. As a result, porting of this
HAT layer to other architectures should be almost as
straightforward as a Uniprocessor HAT layer.

The principal locks in the VM layer are:
r Page Layer

O A global spin lock in the page layer for
protecting the page hash chains

o A per page spin lock for mutexing the
fields of the page structure

o A read/write sleep lock which is
acquired in reader mode to ensure that
the page state, identity and data are
valid and remain so and acquired in
writer mode if modifying any of the
above.

. Segment Layer (user segment driver)
O A reader/writer lock per segment. This

lock is acquired in writer mode when
changing the attributes of a segment

ffi+.2.

Summer '92 USENIX - June 8-June lZ,1rgg? - San Antonio, TX 111

A Scalable Implementation of Virtual Memory ...

(such as protection) and in reader mode
when the attributes of the segment are
to remain valid for the duration of
operation,

o A per segment spin lock which guards
the sleep lock.

o HAT Layer
o There is only one spin lock associated

with each address space for guarding
the ÉIAT resources.

Making the HAT lock finer grained by moving
it to the page table level was considered but decided
it wouldn't be much of a gain for the following rea-
sons: most UNIX processes fit in one page table and
there would be extra locking round trips for HAT
functions that cross page tables. If found necessary,
other ports can move this to a page table level
(architectures where the page table size is small)
without any need to change the locking require-
ments.
Analysß of the Locking desígn

Two widely occurring system events in UNIX
systems, page faults and forkQ/exit0 operation,
would be a good indicator of scalability in the VM
layer.

o When generating concurrent page faults in dif-
ferent address spaces, the only lock contention
will be for the global page layer spin lock that
is guarding the page hash chains. The lock
hold time for this lock is very low. There will
be different instances of the HAT lock (due to
different address spaces) and segment locks
(faulting on different segments).

o For concurrent page faults generated within a
process among its LWPs, there would be con-
tention for the FIAT resource lock but the lock
hold time during loading of a translation will
again be very small. Faulting on the same
segment by various LWPs would cause con-
tention for the per segment sleep lock. Some
faults require the lock to be held only in
reader mode and thus allows for parallelism
between such faults at the segment layer.

. \ryhen concurrent forkQ/exitQ operations take
place in different address spaces; the only
contention at the VM level would be for locks
at the anon layer (which manages anonymous
pages) and at the swøp layer for reserving
anon pages and swap space for the child
processes respectively. Again, the lock hold
times during the reservation operation would
be very small.

. Intra-process concurrent forkQ/exitQ opera-
tions could cause lock contention at the HAT
layer and the segment layer but both the locks
will be held only while each segment is being
copied. Reducing the lock hold time on the
HAT resource lock by dropping the HAT lock
after copying each mapping chunk (32 page

Balan, Gollhardt

table entries) is being considered.
Examples of the Locking requirements for HAT

interfaces
To get an idea of the locking requirements,

some of the IIAT interfaces are listed here. In all
these operations, the HAT resource lock is acquired
by the HAT layer.
hat_memload() : I¡ad a virtual address trans-

lation. Called with the reader/writer lock for
the physical page held. The caller can not
hold any spin locks.

hat_unload(): Unload a range of virtual
address translations. The caller need not hold
any spin locks. This routine acquires the spin
lock associated with the physical page struc-
ture in order to modify the mapping chain for
the page.

hat_pageunload () : Unload all the virtual
translations to a given physical page. The spin
lock for the page is held by the caller.

Physical Memory Scalability
SVR4 had a limit on the physical memory it

was able to support on the i386 platform. Changes
were made in SVR4.2 to avoid this limite. Several
kernel functions in SVR4 relied on the fact that all
of physical memory in a machine is mapped into the
kernel virtual space. These functions generally need
to get a virtual address from a given physical
address in a non-blocking fashion. On the Intel386
reference port, out of the available 4 Gigabyte vir-
tual address space, the user address space was given
3 Gbytes and the kernel 1 Gbyte virtual space. The
kernel virtual itself was divided at kernel boot time
among different kernel segment drivers (segkman,
segmap and segu (which manages the simultaneous
mapping of several processes' U areas at the same
time)). After this division, only 256 Mbytes of phy-
sical memory could be mapped into the kernel vir-
tual space. The default layouts of the kernel
memory map could be changed to make this limit
bigger but there would still be a limit. All the kernel
functions that expect this non-blocking behaviour
were modified in SVR4.2 to eliminate this restriction
in one of the following two ways:

o Cache the needed virtual address.
. Create and destroy virtual mappings to a

given physical page as needed.
The HAT layer was one of the primary users of

this "magic mapping" in using it to get to the vir-
tual address of a level 2 page table entry from the
page frame number stored in the level 1 page table
entry. It was changed to cache the virtual address in
the HAT structure itself. Going into the details of all
the changes in the kemel is beyond the scope of this
paper.

ffifluenced by any Mp ¡elated
issues.

tt2 Summer '92 USENIX - June 8-June t2, L992 - San Antonio, TX

Balan, Gollhardt

Performance Data

Most features of SVR4.2 have been completed
and performance measurements are beginning to be
collected for the system. Thus the performance
measurements presented here are by no means the
optimal frgures for SVR4.2.
Shootdown Measurements

Some measurements were taken on how well
our shootdown algorithms (lazy and immediate)
scale with respect to number of processors. Scalabil-
ity of the basic cost of the shootdowns, the lazy
shootdown algorithm and the immediate shootdowns
algorithm \¡/ere measured. The following measure-
ment process was used in collecting the data:

o The measurements were taken on a Sequent
Symmetry platform which has 6 Intel 386 pro-
cessors at 20Mhz.

¡ Ten samples of each measurement were taken,
and their mean value was used.

o A measurement tool called casper was used to
mear¡ure the time spent in different windows
of the kernel code paths in units of
microseconds.

¡ All our measurements reflect the time spent
by the initiator.
The time spent by the responders in the lazy

algorithm would be a fixed time constant (time taken
to flush its TLB). In the immediate shootdown case,
the time spent by the responders would be upper
bounded by the time spent by the initiaror.

The basic cost of shootdowns was computed on
the Symmetry by calling hat_shootdown} with
HAT_NOCOOKIE as an argument, which shoots
down all processors in the system without any other
computation. Figure 1 is the graph that illustrates
the results.

A Scalable Implementation of Virtual Memory ...

400
3s0
300

. 250

"ljiio^. zoo
"--""-" 150

100
50
0

2 3 4 5 6
number of processors

Figure 2: Cost of the Lazy shootdown algorithm
(used for kernel address space)

The cost of the lazy shootdown algorithm is illus-
trated in Figure 2. Note that there is a fixed cost
overhead over the basic shootdown cost in the range
of 70 microseconds. The cost of the algorithm per
additional processor is about 40 microseconds.

Measurements of the immediate shootdown
algorithm were analyzed next. It was measured by
running a kemel level test that handcrafted a user
address space and spawned as many threads as the
number of onlined processors. After the spawned
threads waited spinning on a barrier, the parent
unmapped a previously mapped page. This would
generate a shootdown on all the other processors that
were spinning on the barrier. Thus the initiator
touches only one page table entry.

3s0
300
250

¡¡iç¡e- 200
seconds 159

100
50
0

t i i ¡ ¿
number of processors

Figure 3: Cost of Immediate shootdown algorithm
(used for user address space)

The overhead of the algorithm over the basic shoot-
down (Fig. 3) cost is about 30 microseconds. The
fixed cost of each additional processor for the
immediate shootdown algorithm is about 45
microseconds.

The data collected so far indicates that we
should be able to scale well in the range of tens of
processors for both the lazy shootdowns and immedi-
ate shootdowns. The cost of the lazv shootdown
algorithm is slighrly (about 40 microsóconds) more
than the immediate shootdown. This is due to all the
accounting that is done to update the cookie for each

300
250
200

-:'::'". 1s0
ùvw¡¡gù

100
50
0

t t l l
2 3 4 5

number of processors
Figure 1: Basic cost of shootdowns

The graph shows that the measurements are not
exactly linear. TWo possible reasons for this is vari-
ances in the interrupt fanout facility on the Sequents
and that even a slight disturbance in order of tens of
microseonds for each collection of samples will per-
turb the linearity.

I
6

Summer '92 USENIX - June 8.June t2, t992 - San Antonio, TX 113

A Scalable Implementation of Virtuat Memory ...

TLB in the lazy shootdown case. Other similar
measurements [3] show that the bus contention may
become a problem for algorithms that use cross pro-
cessor intemrpts when it deals with processors in the
range of 75 - 20.

Another encouraging measurement about the
effectiveness of the laø.y unload policy of the
segkman driver (disorssed above) shows that it
makes only 1.1 calls to hat_shootdawn per 700
memory allocation requests, Actual shootdowns will
be even less frequent (as can be observed from the
explanation of the algorithm). This data was col-
lected by running a kemel level test that allocates
and frees kernel memory repeatedly in different
sizes. There was no other activity (such as the
pageout daemon) in the system when this test was
run.
Concurrent forkQ/execQ/exitQ measurements

Scalability of concurrent inter-address space
fork) / exec) I exit) oper ations were measured through
a benchmark programro. The benchmark consists óf
the following tests:

o forlOluitfl operations with åss size ranging
from 0 to 192K.

o fork)løcec)lexit) operations with åss
ranging from 0 to 48K.

o forkQlsbrkQlexit) operations with sår,t
ranging from 0 to 192K

Balan, Gollhardt

3. The measurement was done on a 4 processor
(Intel386 @ 20MIfz) Sequent Symmetry
machine.

As mentioned earlier, the measurements data (Figure
4) is used only to illustrate the scalability of SVR4.2
and should not be taken as the final performance
data of the system.

Conclusions

A model of the HAT layer that is scalable with
respect to processors and memory has been
described in this paper. This model makes the port-
ing effof simpler without losing sight of the sòala-
bility issues. A well defined multiprocessor manage-
ment interface between the machine independent and
the MMU dependent part of Virtual Memory subsys-
tem and simple locking guidelines provide the keys
in making a memory management feature portable.
The TLB shootdown þolicy and algorithms in
SVR4.2 adapt well to different architectures. rWith
multiprocessor platforms becoming more common,
preserving the ease of porting a kernel to different
architectures without losing sight of scalability issues
will be extremely critical.

Acknowledgements

The design and implementation of the VM sub-
system was a joint effort by the SVR4.2 VM team
members. The past and present members of this
team include: Steve Baumel (also provided
seglonem measurements), K. Doshi, Mike Lazar of
Pyramid Technologies, Joe Lée, and Dave Lennert of
Sequent Computer Systems. Dick Menninger was the
initial implementor of the SVR4.2 HAT layer.
Thanks also to Mike Miracle for his support in writ-
ing this paper.

References

[1] Richard Rashid et al., MachineJndependent
Virtual memory management for Paged Unipro-
cessor and Multiprocessor Architectures, in
IEEE Transactions of Computers, Vol.37, No.8,
August 1988."

[2] Robert A. Gingell, Joseph P. Moran and Wil-
liam A. Shannon, Virtual Memory Architecture
in SunOS, n Proc. USENIX Summer '87
Conference, Phoenix, AR, June 1987.

[3] Black, et. al., Translation Lookaside Buffer
Consistency: A sofnvare Approach, December
1988, CMU-CS-88-201.

[4] Patricia J. Teller, Translation-Lookaside Buffer
Consistency, June L990, IEEE COMPUTER.

[5] Michael Y. Thompson et al., Translation Loo-
kaside Buffer Synchronization in a Multiproces-
sor System, USENIX Winter Conference 1988.

[6] 80386 Programmer's Reference Manual

slze

slze

speedup

number of concurrent runs
Figure 4: Scalability of fork0/execO/exitO operations

The measurement process was as follows:
1. Scalability was measured by having a fixed

processor configuration (4 processors) and
varying the workload of the tests in the
benchmark. The workload was varied bv exe-
cuting the same benchmark concunentli from
1 up to 4 times. The speedup was measured
by the elapsed time of each work load and
meæuring it against the unit workload (one
run of the benchmark).

2. Each of the above test was repeated for 10
times in a run.

rulhe benchmark program called S is one of the
benchmarks used at USL.

4
? <

J

2.5
2

1.5
1.

0.5
0

I
A

tt{ Summer '92 USENIX - June E-June 12,lg92 - San Antonio, TX

Balan, Gollhardt

Author Information

Ramesh Balan is a Member of Technical Staff
at LJND(System Laboratories in the Kernel
Development group. He received his M.S. in Com-
puter Science in 1989 from the school of Engineer-
ing and Applied Sciences in Columbia University.
He can be reached via e-mail at ramesh@usl.com.

Kurt Gollhardt is a consultant at IJNIX System
Laboratories in the Kernel Development group. He
received a B.S. in Computer Science and a B.S. in
Electrical Engineering at Washington University in
St.Louis. He can be reached via e-mail at
kdg@usl.com.

A Scalable Implementation of Virtual Memory ...

Summer '92 USENIX - June 8-June 12,1992 - San Antonio, TX 115

