
File System Multithreading in
Sys temVRelease4MP

. J. Kent Peacock - Intel Multiprocessor Consortium

ABSTRACT

An Intel-sponsored Consortium of computer companies has developed a multiprocessor
version of System V Release 4 (SVR4MP) which has been released by UNIX Sysæm
Laboratories. The Consortium's goal was to add fine-grained locking ûo SVR4 with minimal
change to the kemel, and with complete backward compatibility for user progrâms. To do
this, a locking sEategy was developed which complemented, rather than replaced, existing
UNIX synchronization mechanisms.
To multitlread the flle systems, some general locking sEategies were developed and applied
to the generic Virtual File Sysæm (VFS) and vnode interfaces. Of particular interest were
the disk-based Si and UFS file system types, especially with respect to their scalability.
Contention points were found and successively eliminated to the point where the tle systems
were found to be disk-bound. In particular, several file system caches were restructured
using a low-contention, highly-scalable approach called a Software Set-Associartve Cache.
This æchnique reduced the measured locking contention of each of these caches from the
l0-I57o range to less than 0.17o.
A number of experimental changes to disk queue sorting algorithms were attempted to reduce
the disk bottleneck, with limited success. However, these experiments provided the
following insight into the need for balance between I/O and CPU utilization in the system:
that anempting to increase CPU utilization to show higher parallelism could actually lower
system throughput.
Using the GAEDE benchmark with a sufflcient number of disks configured, the kernel was
found to obtain throughput scalability of 887o of the theoretical maximum on 5 processors.

Introduction

The goal of the Consortium assembled by Intel
was to produce a multiprocessor version of System
V Release 4 in as short a time as possible. As such,
there was no inclination to perform a radical restruc-
turing of fhe kernel, nor to support user-level threads
while the evolution of a consensus th¡eads standard
was incomplete.

There were two main performance goals for
this efforu binary performance running the GAEDE
benchmark [7] with respect to the uniprocessor sys-
tem should degrade by no more than 5Vo; and the
proportional increase of throughput should be at least
857o of the ûrst processor for each processor brought
online, up to 6 processors. The performance
numbers were arrived at through negotiations with
IJNIX System Laboraûories as their acceptance cri-
teria. The 6 processor limit arose from considera-
tions of how well the implementation was expected
to scale, namely between 8 and 16 processors, and,
more importantly, of how large a system was likely
to be available for testing.
Previous Work

Many atæmpts have been made to adapt LJNIX
to run on multiprocessor machines. Companies such
as AT&T, Encore, Sequent, NCR, DEC, Silicon

Graphics, Solboume and Corollary have all offered
multiprocessor UND(systems, though not all have
described the changes made to the operating system
in the literahre. Bach [2] describes a multiprocessor
version of System V released by AT&T. Encore has
described several generations of their multithreading
effort, ûrst on MACH and then on OSF/I in a series
of papers [4, 11, 12,I5]. This work has the greatest
similarity to that reported here, so an attempt has
been made úo make relevant comparisons to it
throughout the paper. DEC has also published papers
on their approach ¡o multithreading their BSD-
derived ULTRIX system LL0,ZL}. Ruane's paper on
Amdahl's UTS multiprocessing kernel is the best
precedent to the philosophy of the approach used by
the Consortium [20]. Lately, NCR has discussed
their parallelization efforts on System V Release 4
[5, 6]. As NCR has participated as a member of the
Inæl Consortium, this work influenced the
Consortium's approach.

Locking Model

Multiprocessor locking implementations can be
divided roughly into two camps: those who replaced
the traditional sleep-walceup UNIX synchronization
with semaphores or other locking primitives, and
those who opted to retain the sleep-wakeup

Sumrner '92 USENIX - June 8-June 12,1992 - San Antonio' TX t9

Flle System Multithreading in SVR4MP

synchronization model and add mutual exclusion
around the appropriate critical sections. Bach's [2]
implementation is of the fust type, with existing syn-
ch¡onization mechanisms replaced by Dijkstra sema-
phores. Ruane's paper [20] represents a sort of
canonical description of the type of locking
described most often by previous multithreaders
using the mutual exclusion approach. The paper
gives a very good discussion of some subtle syn-
chronization issues relative to a pre-SVR4 environ-
ment, as well as some sound arguments against
using Dijkstra semaphores.

Although a thorough description of the Consor-
tium locking protocols is beyond the scope of this
paper, there are a number of key features of the
locking primitives which should be noted: Firstly,
mutual exclusion locks are implemented so that any
mutex locks held by a process are automatically
released and reacquired across a context switch.
This is an imitation of the implicit uniprocessor
locking achieved by holding the processor in a non-
preemptive kernel. It is necessary for proper sleep-
wakeup operation for a lock protecting a sleep condi-
tion to be released afrer the sleeping process has
established itself on the sleep queue. Most previous
efforts have enhanced the sleep function to release a
single mutex lock, usually specified as an extra argu-
ment to the sleep call. With automatic releasing of
locks across context switches, sleep calls need not
be changed. This means that much of the mul-
tithreading effort merely involves adding mutex
Iocks around sections of code, even though they may
sleep. Comparisons of many multith¡eaded frles
with the originals show this to be literally the only
change required. This is an important feature when
it is necessary to occasionally upgrade to ongoing
releases of the underlying uniprocessor system.

The ability to release all of the locks acquired
in the call stack relates to another feature of the
locks, namely that recursive locking of each indivi-
dual lock is allowed. SVR4 is designed in such a
way that there are a number of object-oriented inter-
faces between sub-systems of the kernel, derived
from SunOS [8]. These subsystems call back and
forth to one another and create surprisingly deep
recursive call stacks. (This happens particularly
between virtual memory and file systern modules.)
Though providing considerable modularity, this
feature makes it very difficult to establish assefions
about which mutex locks might be held coming into
any given kernel function. Allowing lock recursion
and the automatic release of mutex locks allows a
given function to deal only with its own locking
requirements, without having to worry about which
locks its callers hold, aside from deadlock considera-
tions.

The primitives were also designed to be able to:
configure whether the caller spins or gives up the
processor when the lock is not available. l¡cks

Peacock

acquired by interrupt routines must spin, whereas
locks of the same class which might deadlock one
another can avoid deadlock by sleeping. The
deadlock avoidance comes from the fact that held
locks are released when a lock requester sleeps. In
addition, mutex locks may be configured as
shared/exclusive locks, allowing multiple reader
locks or a single writer lock to be held.

For purposes of the following discussion, it is
useñrl to carefully define the difference between a
resource lock and a mutex lock. Logically, a
resource lock is a lock which protects a resource
even when the locker is not running on a CPU. A
mutex lock, on the other hand, only protects a
resource when the locker is running on a CPU.
Stated another way, a resource lock may be held
across context switches, while a mutex lock would
not be. A resource lock can be an actual locking
primitive, such as a semaphore [2], but need not be.
Implementing a resource lock as locking data pro-
tected by a mutex has been shown by Ruane to pro-
vide greater flexibility in locking than the semaphore
approach [20]. It should be noted that there are
resource locks already present in the uniprocessor
code, for example, the B_BUSY flag bit in a disk
buffer cache header or the ILOCKED flag in an inode
structure. Protecting manipulations of these resource
locks with mutexes is usually sufficient to generalize
them to work on a multiprocessor. In fact, all of the
instances of a given type of resource lock can be
protected using a single mutex lock rather than a
lock per instance, typically with very low contention
on the mutex.

More detailed descriptions of the locking primi-
tives and more detailed arguments in favor of using
them over semaphores can be found elsewhere [5,
171.

File Systems Locking

The SVR4 file system implementation centers
around two separate object-oriented interfaces which
originated in SunOS [9]. One is the Virtual File
System (VFS) interface, which consists of functions
which perform file system operations, for example,
mounting and unmounting. The other is the virtual
node (vnode) interface, which allows operations on
instances of files which reside in a virtual file svs-
tem.

Most of the file system multithreading effort
was spent developing a general multithreading model
for these two interfaces. Although there are around
10 file system.types in SVR4, only the two disk-
based file systems are discussed: the UNIX File Sys-
tem (UFS) type, which is a derivative of the Berke-
ley Fast File System [13] via SunOS, and rhe 55
type, which is derived from the System V Release 3
file system. The strategies for multithreading these
two file systems were basically the same.

20 Summer '92 USENIX - June 8-June 12,1992 - San Antonio, TX

Peacock

VFS Locking
The VFS layer of the file system provides the

support for an object-oriented interface to the various
frle system types available. This support includes
maintaining the list of mounted file systems and
resolving races between file system unmounts and
pathname searches into a frle system being
unmounted. The multithreading of the VFS layer
centers around a shared/exclusive mutual exclusion
lock which serializes access to mount points during
pathname lookup, mount and unmount operations.
This lock protects the existing uniprocessor resource
lock on each virtual file system. This approach
seems to be essentially the same as that used by
Encore in their multithreading of the Mach vnode-
based file system [11].
Vnode Locking

The vnode layer of the kernel implements
another object-oriented interface for operations on
each file within a virtual file system of a given type.
The focal point of these operations is the vnode
structure, which is usually contained within a VFS-
dependent node structure for each active vfs element
in the system. The object-oriented interface consists
of a number of macros prefixed with "VOp " which
call through a VFS-dependent function code table.
With only a few exceptions, these macro calls
represent the only path into the file system code.
The interface was designed to support a set of opera-
tions which were atomic and mostlv statelesi. in
order to support a stateless nenuori< file sysiem,
namely NFS [9]. In actual implementation, local file
systems do retain some state necessary to implement
normal LJMX file system semantics. For example, in
a UFS or 55 filesystem, a VOP_LOOKUP operation,
which does one stage of a pathname lookup, leaves
the found file or directory in a locked state on return.

The granularity of locking desired at the vnode
level is the individual vnode, which suggests a lock-
ing strategy whereby a lock on a vnodã is obtained
and released around almost every VOp call. Using
this strategy provides a blanket level of essentially
automatic vnode locking for most of the VOp func-
tions.
Inode Locking

There are two main aspects to file system lock-
ing inside UFS and 55: locking of a given file inode
while some operation is performed on it, and the
locking of the file system inode cache during the
lookup or freeing of an inode. Inode cache locking
is discussed in a later section devoted to cache con-
tention.

The per-inode lock is a resource lock which
can remain held across blocking operations, such as
disk VO. The original uniprocessor implementation
of the inode locking uses two separate lock flag bits
in the inode, II¡CKED and IRWLOCKED. (Pre-SVR4
systems had only the ILOCIGD flag.) The ILOCKED

File System Multithreading in SVR4Mp

flag locks the inode during most operations which
would access or change the contents of the inode
itself, whereas the IRWLOCKED flag makes read or
write operations atomic. This allows a long read or
write operation to proceed without blocking a star
operation, for example. These locks are set and
cleared by the ILOCK - IUNLOCK and IRWIOCK -
IRwt NLOCK macro pairs. Both the IIOCKED and
IRWLOCKED bits can be held at the same time by
two different processes. In a multiprocessor, the
processes must be prevented from running at the
same time for correct emulation of the uniprocessor
semantics. In order to accomplish this, the vnode
lock must be held concurrently with each of the two
resource lock flags. This is done by acquiring the
vnode lock from within ILOCK and IRWLOCK and
releasing it within IUNLOCK and IRWUNLOCK. The
effect of this on return from a VOp function which
does an ILOCK without an IUNLOCK due to lock
recursion, is to leave the vnode locked outside the
VOP function. For example, the previously men-
tioned VOP_IOOKUP function returns with both
ILOCKED set and the vnode lock held on the found
directory or file. If the process does a context
switch after the return, the vnode lock is released,
but the resource lock, embodied in the flag bit, is
not. Hence, the integrity of the inode is still pro-
tected, although a process holding the IRWLOCKED
lock could run after acquiring the vnode lock. This
behavior is the same as in the uniprocessor system.
When the next vOP call is made which does the
matching IIJNLOCK on the inode, the extra vnode
lock on the file is released, and the vnode is
unlocked completely on return from the call.

This locking approach represents a different
philosophy from the OSF/1 file system [12], where
by design, no file system locks can be held on return
from a VOP function. Since the uniprocessor model
is preserved by our strategy, no additional races are
introduced such that an error path could cause the
lock not to be released. The only way for the vnode
lock not to be released is for the inode lock not to
be released, which would also qualify as a unipro-
cessor bug. Having the vnode lock visible at the
VOP interface also allows the lock to be held around
multiple VOP calls, which is made possible by the
recursive property of the Consortium mutex locks.
This is used in several cases to avoid a race with file
locking on a vnode.

Because there is a lock on each vnode, the
potential for deadlock exists when it is necessary to
lock more than one vnode, as during pathname
searches or some STREAMS operations. The solu-
tion to this problem is to have the lock s/eep when it
waits for a busy vnode lock. As previously dis-
cussed, this removes the deadlock possibility because
all of the locks held by the locker are released. The
one problem that this causes is that potential
context-switches are introduced which were nor

Summer '92 USENIX - June 8-June tZ, tgg? - San Antonio, TX 2l

File System Multithreading in SVR4MP

present before the vnode locking was added. One
solution to this is to widen the scope of the vnode
locking so that the preemption happens in a safe
place. Locking around the VOP calls has been found
to be sufficiently wide for almost all problem situa-
tions, since callers should conservatively assume that
any VOP call might sleep. Additional vnode locking
which is bound with inode lock manipulations is also
safe, . because the inode locking itself may sleep.
The only place where the vnode lock's possible
sleeping causes a problem is in the iget function
where the inode has been found by a cache lookup.
A sleep to wait for the vnode lock could allow the
identity of the inode to change. The solution is sim-
ply to recheck after the vnode is locked that the
inode obtained still matches the identity of the one
searched for.

When an inode is heavily shared by many
processes, the processes tend to queue up sleeping to
wait for the inode lock. This represents an example
of what has been called the thunàering herd prcblem
t5]. When an inode lock is released, the normal
wakeup function makes all of the processes sleeping
on the inode runnable. In a multiprocessor, this
results in all but one of the processes finding thp
lock busy and going back to sleep. This takes O(N')
CPU time to process N sleepers. To alleviate this, a
wakelproc version of wakeup has been used to
awaken only one process when an inode lock is
released. The process awakened using this approach
has to assume more responsibility: if the process no
longer wants the inode lock, it must do another
wakelproc to pass the lock to another waiting pro-
cess.
VN-HOLD/VN_RELE Locking

Vnodes represent shared resources in most
cases, and can hence be referenced by a number of
different processes in a completely asynchronous
fashion. When a new pointer reference to a vnode is
created, a reference count in the vnode is incre-
mented by doing a VN_HOLD (which uses an atomic
add operation in the multiprocessor case). When the
caller is done with the vnode, it releases the refer-
ence by doing a VN_RELE operation. The
VN_RELE does an atomic decrement of the refer-
ence count and if it becomes zeÍo, calls
VOP_INACTIVE, which does a file system dependent
cleanup operation on the vnode.

In some file systems the vnode continues to
exist in a quiescent state after the VOP_INACTM,
such that it can be reclaimed by a future lookup
operation. The problem with this is that the zero
count state is used to signify the quiescent state in
these file systems. But the count goes to zerc before
the inactivation is performed, so there is a serious
race between the lookup operation and the inactiva-
tion. It is possible for another process to find the
vnode and do a VN_HOLD followed by a VN_RELE
before the inactivation is performed, resulting in two

Peacock

inactivation attempts. To solve this problem it is
necessary to change the file systems not to use the
zero count as the inactive indicator. For example, in
the 55 and UFS frle systems, the count is decre-
mented again to -1 under the inode cache lookup
lock to truly indicate the inactive state. On a
lookup, which is also done holding the cache lookup
lock, when the count for an inode is -1, the inode is
reactivated and the count set back to zero before
doing a VN_HOLD to count the new reference. This
solution makes the state transitions between active
and inactive states safe, while allowing the use of
atomic operations for VN_HOLD and M{_RELE.

Encore describes using a per-vnode spin lock
around the VN_HOLD^/N_RELE increment and
decrement operations [L1], but they do not reveal
their solution to the above race condition.

Performance Tuning

A number of useful tools were available to the
SVR4MP developers Í6, l7l. These tools, together
with techniques very similar to those described by
Paciorek, et al. 115), allowed reasonably accurate
characterization of the locking contention and scala-
bility of the system and the detection of deadlocks.
Cache Contention

A number of different caches are used within
all UNIX variants to enhance system performance.
Logically, such caches are collections of objects
each tagged with an identifier. Typical operations
perform some actions on an individual cache object.
These actions can often be quite self-contained and
very scalable, since their locality is constrained.
However, once the operation enters the domain of
the cache itself, it can collíde with other operations
on different objects in the cache. Hence, attention is
naturally drawn to these caches as places where pro-
cessor contention can occur and needs to be relieved.
Most of these caches have a similar structure, as
illustrated in Figure 1. In Figure 1, the hash queues
are an array of queue head structures, indexed by
computing a hash function of an object identifier
during a cache operation. Each square box
represents an element of the cache, and those that
are not marked "Busy" are chained in least-
recently-used (LRU) order on a free list. To aid in
discussing locking strategies for this organization it
is useful to consider the three main operations:
lookup, release and flush.

A cache lookup operation scans the appropriate
hash queue for the given object identifier. If an ele-
ment matching the identifier is found and is not
busy, it is removed from the free list, marked busy
and returned to the caller. If the matching element
is busy, then the caller waits for it to be released by
the cur¡ent owner and then rescans the hash queue to
make sure the identity of the matched element has
not changed. If the identifier is not found, an

22 Summer '92 USENIX - June 8.June 12, L992 - San Antonio, TX

Peacock

element is removed from the front of the free list
and its current hash list and replaced on the hash
queue of the searched-for identifier. The element is
marked busy, its contents are then changed to reflect
the new identity and it is returned to the caller. The
release operation of a busy cache element puts a
busy element back onto the free list and clears the
busv mark.

äún
Oucuc

--E

KU
Frcc Ust

Figure 1: General Cache Organization

The flush operation runs periodically to clean
elements on the free list so that they can be reused
immediately when a cache miss occurs. The flush
operation scans the list for items that need cleaning,
removes them from the free list, cleans them and
returns them to the free list when done. As an
example, the buffer cache cleaning involves queue-
ing modified disk blocks to be written to the disk. A
very detailed description of this structure relative to
the disk buffer cache can be found in Bach [1].

Figure 2: Separate Hash Queue and Free List Locks

The "intuitively obvious" way to lock this
structure involves the use of three types of locks: a
lock on each cache element, a lock for each hash
queue and a lock to protect the free list, as shown in
Figure 2. The dotted and dashed lines enclose the
data structures protected by each of the hash queue
and free list locks (the cache element locks are not
shown). This locking strategy was used by Encore

File System Multithreading in SVR4MP

in their Macl/4.3BSD buffer cache locking, and has
a number of deadlock and performance difficulties
t4l. In terms of overhead, this locking requires
obtaining at least three locks per lookup or release
operation, including the per-element lock. A cache
lookup miss may require obtaining two arbitrary
hash queue locks, thus requiring a deadlock
avoidance strategy to be implemented. More impor-
tantly, the free list lock is obtained for every opera-
tion, so it represents the limiting factor for the scala-
bility of the cache, as discovered and reported by
Encore.

A simplification of this approach lowers the
locking overhead without sacrifrcing scalability
(assuming short average hash queue size) by using
only the single free list lock to protect all of the data
structures, as shown in Figure 3. An early version
of the Consortium locking for the buffer cache
included a per-element lock along with the free list
lock. It was noted that an element lock was almost
always obtained while holding the free list lock, and
was hence redundant. Removing the element lock
reduced lock overhead by 50Vo and lowered conten-
tion also. Of course, the element lock can not be
removed if it is a semaphore resource lock which
replaces the busy mark on the cache element, as in
the semaphore locking approach. In the Consortium
case, the element lock was a mutex which only pro-
tected manipulations of fields within the data struc-
ture.

Figure 3: Single I¡ck for All Cache Data Structures

Unfortunately, the single lock still represents a
contention point when the access rate to a cache is
high. A solution to this problem is to fragment the
free list intô segments which are associãted with
each hash list and use a lock on each hash list to
protect both the hash queue and the free list, as
shown in Figure 4. Any time a free element is
required, it is allocated from the free list associated
with the hash queue being searched, so that each
cache element is permanently bound to a fixed hash
queue. Because of this, each hash queue is typically
initialized to have a configurable, constant number of
elements. This cache organization was dubbed a

i
À

l ,

l L

I

l l
Hash Qucuc / i

Æ \ ;
\ i

\ !

\
\ i
I

ns¡

Qucuc

i - \
i----tBßyl i
'-._._-À

:.:.:.:i------l---

Frcc List
l¡ck

U U

Frcc List

Summer '92 USENIX - June 8.June 12,lgg2 - San Antonio, TX 23

File System Multithreading in SVR4MP

Sofrware Set-Associative Cache (SSAC) due to its
logical resemblancp to a hardware set-associative
cache, and is described in detail elsewhere [17]. It
represents the key technique used in multithreading
the file system caches to obtain practically unlimited
scalability. The description is extended here to show
the application of the technique to a number of dif-
ferent caches and illustrate the problems that arose.

Peacock

Segmap Cache
The segmap cache was changed first, as it

represented the largest bottleneck. In this case, the
hash queue and free list pointers in the cache struc-
ture were kept. The hash and free queues for each
hash queue were set up at initialization to contain 4
cache elements each. The hash queue manipulations
were simplified, since elements are never moved
from one hash chain to another. This code change
was very straightforward and took less than one day
to accomplish. No side effects or difficulties were
apparent after the change, and the contention was
reduced as described. Segmap cache elements are
not locked for exclusive use on return from the
lookup operation, but a reference count is incre-
mented. Hence, more than one process may actually
use a cache entry. To protect these processes from
one another, the hash queue lock for the queue con-
taining an element is locked while fields in the cache
element are manipulated. This avoids the necessity
for a separate mutex lock to proteat the data contents
within the cache. C.ontention for this per-element
locking is included in the less than .lVo contention
measurement.
Disk Buffer Cache

The application of the SSAC structure to the
disk buffer cache proved to be somewhat more
interesting and challenging due to some features of
the SVR4 buffer cache code. Memory for the cache
headers and buffers is not statically allocated at ini-
tialization, as it was in SVR3. Rather, the free list
of headers grows as needed and the buffers them-
selves are dynamically allocated'and freed to accom-
modate different buffer sizes. This made it difficult
to configure a set of fixed-length buffer chains on the
hash queues, so another approach was needed. In
addition, the cache hashing function was found to be
very poor. Most kemel hash queue arrays are
configured to have 2n entries so that the cheaper bit-
mask operation (tag & (2"-1) can be used instead of
the modulus operation to fold the object identifier
tag into a hash index. If the object identifiers are
separated by a power of two, then only a subset of
the hash queues are actually ever used. In the case
of the buffer cache, a UFS file system with 4-I$yte
blocls generates object identifiers which are usually
multiples of 8 (when converted to 512-byte physical
block numbers), thus using only every 8th hash
queue. This problem can be alleviated by using only
2"-1 entries, which requires the more expensive
modulus operation, but gives a better hashing distri-
bution. (As another example of this, process struc-
tures were always allocated on 512-byte boundaries,
so any sleep on the address of any proc structure
always queued the sleeper on sleep hash queue 0.)

One of the desirable properties of a cache is
that the hash queue remain fairly short, to reduce the
search time required for a lookup. A traditional tar-
get has been to keep the average size of each hash

lhsh/Frcc Lirt
IÆk!

Figure 4: Software Set-Associative Cache Locking

A follow-on paper by Encore describing paral-
lelization of a vnode-based file system [L1] does not
refer to the free list contention problem. The buffer
cache locking is described as consisting of a lock on
each hash queue, plus a lock inside each buffer.
From this description it is not possible to determine
how or even if they have solved the free list conten-
tion problem. The problem is likely moot to them,
however, as their stated intention was ultimatelv to
replace the buffer cache entirely with the Mach "No
Buffer Cache" code from CMU.
File System Caches

While tuning the file systems, three SVR4 file
system caches showed up as having significant levels
of cache contention. The first of these caches is the
segrnap cache, which is used to map file pages into
windows where they can be copied during read and
write operations. The segmap cache replaces the
buffer cache in SVR4 for most data read and write
operations. The second cache is the buffer cache (a
shadow of its former self), which is used to hold file
system structural information, such as blocla of
inodes. The last cache is the directory name lookup
cache (DNLC), which is a cache of pathname com-
ponent translations. The segmap cache exhibited
70-15% contention with only two processors running
cache-bound file system I/O, while the buffer and
DNLC caches had similar contention when the
GAEDE and AIM 3 benchmarks were run on 5
CPUs. The SSAC technique was applied to these
caches, with slightly different structures in each
case. The locking contention for all of the caches
was reduced to less than .LVo. The different struc-
tures lead to some small problems which highlight
the properties of the approach.

24 Summer '92 USENIX - June E-June 12,1992 - San Antonio, TX

Peacock

queue at around 4 buffers. rühen the free list for
each hash queue was configured to be this sÞe, it
was discovered that the buffer cache code contains
an inherent deadlock. Certain operations require the
use of 2 or more buffers, which can deadlock when
all of the buffers on a free list'are used up by such
operations. This deadlock could not be eliminated
without radical restructuring of the code. So, to
make its occurrence less likely, larger free lists were
configured and shared among a number of hash
queues, with a single mutex lock per free list. Each
hash queue is bound at initialization to a particular
free list, and buffers do move between hash queues,
but only within those bound to the same free list.
This approach provided the contention reduction
desired, while increasing the probability of the
deadlock only marginally.
Directory Name Loohtp Cache

The DNLC cache changes were another varia-
tion on the SSAC theme. All of the free list and
hash queue pointers were removed and the cache
structured as a 2-dimensional anay, with a vector of
simple spin locks to lock each row of the cache. To
maintain the LRU ordering of each cache line, a
timestamp was added to each DNLC structure indi-
cating the last time that the structure was accessed,
with a 0 timestamp indicating a busy cache entry.
When a cache search is attempted, the entry with the
lowest non-zero timestamp is remembered and
reused if the name is entered into the cache.

The semantics of this particular cache have
some unusual features, most of which do not affect
the SSAC structure. The lookup and enter opera-
tions are split into two distinct operations, where
they are normally combined. A number of opera-
tions purge entries from the cache based on different
characteristics, such as vnode identity, file system
identity, just any old entry or the entire cache. The
purge operation actually removes the entry, rather
than cleaning it as in other flush-type operations.
Because of this, a little more care needs to be taken
in deciding which entries should be purged when
merely reclaiming space. In most of the purge
operations, the entire cache has to be scanned and all
elements satisfying the search criterion must be
removed. The division of free list locks in this case
is an advantage, because each row of the cache is
locked individually as the cache is searched, allow-
ing other operations to proceed in parallel. On the
other hand, the multiple locla do not allow the state
of the entire cache to remain frozen during an opera-
tion. (Although this property does not present a
problem in normal operation, a debugging function
which counts all of the occurrences of a given vnode
in the cache is no longer reliable.)

Since there is no single LRU free list, purging
an element when any one will do has to be done
carefully. The approach of traversing each cache
row processing each element in tum works very well

File System Multithreading in SVR4MP

in the cleaning case (for example, the buffer cache),
where the cleaned element is not reused immedi-
ately. In the purging case, it is a poor approxima-
tion to selecting a least-recently-used entry to purge.
A better LRU approximation for the purging case is
to select the least-recently-used entry from a cache
row, purge it and then move onto the next row in the
cache, cycling through the cache.

A potential problem was noticed in the hashing
function for this cache. The same entry can bè
entered into the cache with different user permis-
sions (credentials), so an often-used directory entry
could be in the cache many times with different
credentials for different users, all hashed onto the
same queue. This could cause thrashing on that
queue. The solution to the problem is to use the
credential pointer in the hash calculation to distribute
the occurrences of the name to a number of different
hash queues. This illustrates a general property of
the SSAC organization, which is that the goodness
of the hashing function becomes more important
when relatively short, fixed-sized cache rows are
defined. In general, the shorter each row is, the fas-
ter the search can be, but the probability of thrashing
within a row increases. Experience from hardware
caches, where 4-way set associativity is considered
adequate, suggests that 4 is a reasonable starting
value for tuning the hash queue length.

The DNLC cache also has some other interest-
ing behavior in its interactions with the UFS and 55
file systems. When a vnode is entered into the
DNLC cache, it has a M{_HOLD placed on it. Quite
often, the last reference to a UFS or 55 file is from
the DNLC cache. Because of this, the iger function,
which attempts to find a given file in the inode
cache, calls the DNLC purge-any function when
there are no more free inodes in the cache. This
purging represents a hit-or-miss effort which is
repeated until one of the file system's ihodes whose
last reference is from the DNLC cache is purged. If
one is hit, the purge function calls MrI_RELE to
decrement the vnode reference count to zero, which
then calls VOP_INACTIVE to release its inode. In
the 55 file system, this is where the fun began: If
the file being inactived was unlinked, then the inac-
tivate routine called the ifree function to release the
inode number back to the inode free list. If the call
to iget was for a file being allocated (from ialloc),
then the ifree finction would deadlock trying to
obtain the non-recursive mutex lock on the file sys-
tem structure, which was held by ialloc. The solu-
tion to the problem was to release the mutex lock in
ialloc before the call to iget. Unfortunately, this
allowed a race where attempts could be made to
allocate the same inode more than once, which had
to be dealt with by detecting the already-allocated
inode after return from dger. This example is cited
to illustrate the (often unexpected) recursive flavor of
the SVR4 file system code.

Summer '92 USENIX - June 8-June 12, Lggz - San Antonio, TX 25

F'ile System Multithreading in SVR4MP

The Encore approach to locking the DNLC
cache is the combination of hash and free list locks
shown in Figure 2 Í111. As such, each operation
acquires between 1 and 4 locks to accomplish an
enter operation, whereas the SSAC approach always
acquires only 1 row lock with lower contention than
in the Encore.case due to the fragmented free lists.
Inode Caches

The inode caches in the UFS and 55 file sys-
tems are additional candidates for the SSAC mul-
tithreading approach. However, a single lock has
been used for the entire collection of inode hash
queues and the inode free list in each file system.
This strategy was chosen due to an insufficient level
of measured contention. It could be argued that the
lack of contention arises from the relative infre-
quency of file open or create operations relative to
others, such as reading or writing. Also, the DNLC
cache removes some of the inode lookup load caused
by pathname searches. The Encore locking approach
is the same as that used for their other caches,
namely the use of a lock for each hash queue as well
as a free list lock.
Disk Queue T\rning

Once the contention on the three caches was
removed, a Z-CPU system with a single disk became
essentially l/O-bound running the GAEDE bench-
mark. To investigate the cause of this, some perfor-
mance measuring was added to the kernel which
reported utilizations of all processors and the disk
controller, as well as the size of the disk queue.
These measurements were collected at each clock
tick and averaged over a l.-second interval. Watch-
ing these statistics in real time revealed that the sys-
tem was alternating between periods of processor
saturation with little or no disk activity, and disk
saturation with little or no processor activity. The
disk saturation occurred when the disk queue size
rose to several hundred requests in length. Unfor-
tunately, it is theoretically possible in SVR4 for the
size of the disk queue to be bounded only by the
number of allocatable memory pages in the system.

The blocking of the CPUs during periods when
the disk queues were very large was due to the fact
that processes were blocked on synchronous I/O
which was generated to update inode contents and
directories. As an experiment, all of the synchro-
nous inode update operations were changed to
delayed writes to decouple them from the disk
driver. This change improved the CPU scalability
substantially, at the cost of a less consistent file sys-
tem, On a two-processor system, the GAEDE bench-
mark could be transformed from mostly disk-bound
to mostly CPU-bound with this changó. (A kernel
variable which turned this feature on or off was cyn-
ically dubbed the "benchmark flag", with the
suggestion that at least some vendors actually have
such a flag.) McVoy [14] proposed doing something

Peacock

similar to this, but with better file system con-
sistency, by forcing the correct ordering of asynchro-
nous operations to the disk for directory and inode
updates. The change described here was not
intended primarily as a file system enhancement, but
rather as a tool to make the benchmark more CPU-
bound to uncover locking contention in the ñle sys-
¡ems.

Another approach, which has been used suc-
cessfully to increase write throughput of the buffer
cache in SVR3 [16], was to queue synchronous
requests near the front of the disk queue. This
change gave only minimal benefit. It was found that
requests were often queued asynchronously, but then
a process would later decide that it wanted the data
block. This suggested an approach whereby requests
which were being waited for were dynamically pro-
moted to the front of the disk queue, to allow wait-
ing processes to become active sooner. Surprisingly,
this change caused overall throughput of the bench-
mark to decline dramatically, because the disk queue
never actually became empty, but increased mono-
tonically in size.

It appears from this that balance among utiliza-
tions of resources is more important than optimizing
the utilization of one class of resource, namely the
CPUs. The segments of idle CPU time seem to be
necessary to restore balance by lowering the effec-
tive request rate to the disk, allowing it to clear the
accumulated backlog.

The real problem here is that there is a "high
wall" between the disk driver and upper level file
system layer. Once an asynchronous write request is
passed to the disk driver, there is no current way to
retrieve it until the operation is complete. This
represents wasted I/O activity, since a process that
waits for such a request is likely to modify the data
just written. Similarly, the disk can be idle for long
periods of time because the cache flushing code
which could give the driver some work to do does
not know that the disk is idle. When it does give it
work to do, it tends to flood the disk queue with
requests, which overloads the driver and slows or
idles the CPUs.

Fixing these problems to even out the flow of
cache copy-back traffic to the disk is one part of the
solution to this problem. The other part of the solu-
tion is to reduce the write requirements of the file
systems themselves, possibly by the use of log-
structured file systems such as that implemented for
the Sprite project [19].

Related Work

The closest work to this effort was done by
Encore to multithread their vnode-based Mach file
system and the OSF/1 file system ÍLL, I2). Their
approach was actually quite different in a number of
wavs.

26 Summer '92 USENIX - June 8.June 12, L992 - San Antonio, TX

Peacock

The most significant difference is that they
chose to lock the file systems below the vnode layer,
that is, there is no generic locking outside the file
system. The SVR4MP approach was the exact
opposite of this. The locking is provided in a gen-
eric sense across the vnode operation interface, with
the vnode lock available as the mutual exclusion
lock for all of the per-vnode data, including file sys-
tem dependent data. The Encore approach replaced
the inode ILOCKED flag with read/write resource
locks, which extended the file semantics to allow
true concurrency for file reading. The rationale for
this extension was that some files are read frequently
on a large system, and that performance could be
enhanced by reducing lock contention on these files.
During Consortium tuning, this type of contention
was not encountered, probably due to our
configurations being smaller in size than Encore's.
Another advantage of locking below the vnode inter-
face is that the file system writer has the flexibility
to determine whether a read/write or simple mutex
lock should be used, whereas the ionsortium
approach allows only mutex locking. On the other
hand, the Consortium approach involves less seman-
tic (i.e. code) changes, particularly since it is permis-
sible for a vnode lock to be held around more than
one VOP call when that is required. This was impor-
tant due to the time-to-market and robustness con-
straints that the project faced.

Encore avoids contention by releasing the
resource locks across any blocking operations, which
allows a race between two simultaneous lookups of
the same inode.. This race requires a recheck of the
hash queue whenever a new inode is read from disk.
In the OSF/1 file system, the recheck is avoided by
timestamping data structures, such as a hash queue,
when they change and only rechecking a queue if its
timestamp changes across a blocking operation.
Much of the paper on OSF/L describes the races
introduced into directory operations by more permis-
sive locking and how they were solved using times-
tamps. In the Consortium approach, the original
resource locking semantics are preserved, keeping
the ILOCKED or IRWLOCKED flags locked across
blocking operations, even though the vnode mutex
locks are released.

Another clear difference can be seen in the
general cache locking strategy, which has been com:
mented on throughout the paper. Practically all of
their described cache locking fits the hash queue
lock + free list lock + element lock model, as shown
in Figure 2. The Consortium locking uses the single
lock model shown in Figure 3, modified to use
SSAC locking (Figure 4) where contention is too
high.

File System Multithreading in SVR4Mp

Summary

The SVR4MP effort resulted in a system which
largely met its goals. The degradation relative to a
uniprocessor SVR4 kernel is very close to the SVo
target, and the throughput scalability at 5 processors
ß 88Vo of the theoretical maximum. This is com-
puted as 5-CPU Throughput I (5 "' l-CpU
Throughput). Figure 5 is a graph which shows the
actual increase in throughput as a function of the
number of processors, as well as the ideal scalabil-
ity. To achieve this goal given the dísk-bound
behavior described previously, it was necessary to
configure 8 separate disk drives on 4 disk controllers
in the benchmark system (with the "benchmark
flag" tumed off).

The file system multith¡eading effort resulted in
a model which provides a lot of generic support for
locking within each file system type. The vnode
locking around VOP functions provides default lock-
ing protection for most file system functions, making
individual file system multithreading easier.

Significant contention points in the file system
caches were relieved by the application of the
Software Set-Associative Cache structure. Once
these significant locking bottlenecks were relieved,
the file systems were found to be inherently disk
bound by our benchmarks. Some disk queueing
modifications were tried, with limited success and
one dramatic failure. However, these modifications
lead to insights about the importance of maintaining
balance to achieve optimal throughput, rather than
attempting to optimize the utilization of a single
resource class.

200000

150000

P':"ell* looooo
scrrpts/flouf

'Actual

Figure 5: Scalability of the Gaede Benchmark

The Sprite Logging File System is reportedly
an order of magnitude more efficient at using disks
than existing file systems [19], running at CPU
saturation while consuming only LTVo of disk
bandwidth in a test which is similar to GAEDE.
This being the opposite of our situation, the maniage
of multiprocessor technology with log-based file

-0

1 . 2 3 4 5
P¡ocessors

Summer '92 USENIX - June 8-June 12,l9g2 - San Antonio, TX 27

File System Multithreading in SVR4MP

systems appears to be quite desirable.
SVR4MP is available from UNIX Systems

Laboratories as a source-code upgrade to System V
Release 4. More information can be obtained bv cal-
ling 1-800-828-UNIX.

Acknowledgments

This project has been a pleasure for us to be
involved with, as most of the architecture team had
at least two generations of multiprocessor design
experience. A large number of people have contri-
buted to the success of SVR4MP, most having writ-
ten code: Mike Abbott, Sunil Bopardikar, Fiorenzo
Catteneo, Calvin Chou, Ho Chen, Ben Cuny, Jane
Ha, Jim Hanko, Mohan Krishnan, John Litvin, Mani
Mahalingam, Arun Maheshwari, Cliff Neighbors,
Sandeep Nijhawan, Mark Nudelman, Lisa Repka,
Sunil Saxena, K. M. Sherif, Moyee Siu, John Slice,
Dean Thomas, Vijaya Verma, Fred Yang and
Wilfred Yu. Special thanks are due to Wilfred Yu
for the performance numbers quoted here. Thanks
are also due to the reviewers for their helpful
suggestions for improvements to this paper.

References

[1] M. J. Bach. The Design of the UNIX Operating
System. Prentice-Hall, Englewood Cliffs NJ,
1986, pp. 38-59,

[2] M. Bach and S. Buroff, Multiprocessor UNIX
Operating Systems. AT&T Bell Laboratories
Technical Journal, 64:1733-t749, October
t984.

[3] R. Barkley and T. P. Iæe. A Dynamic File Sys-
tem Inode Allocation and Reclaim Strategy.
Froceedings of rhe Winter 1990 USENIX
Conference.

[4]J. Boykin and A. Langerman. The Paralleliza-
tion of Macly'4.3BSD: Design Philosophy and
Performanc.e Analysis. Froceedings of the
USENIX Workshop on Experiences with Distri-
buted and Multiprocessor Systems, pp 105-126,
October 1989. Also appeared as: MaciV4.3BSD:
A Conservative Approach to Parallelization.
Computing Systems, Vol. 3, No. L, USENIX,
V/inter 1990.

[5] M. Campbell, Richard Barton, J. Browning, D.
Cervenka, B. Curry, T. Davis, T. Edmonds, R.
Holt, J. Slice, T. Smith and R. Wescott. The
Parallelization of UNIX System V Release 4.0.
Froceedings of the Winter 1991 USENIX
Conference.

[6] M. Campbell, R. Holt and J. Slice. tock
Granularity Tuning Mechanisms in SVR4/lvIp.
Froceedings of the Second Symposium on
Experiences with Distributed and Multiproces-
sor Systems (SEDMS IÐ. USENIX, March
1991.

Peacock

[7] S. Gaede. A Scaling Technique for Comparing
Interactive System Capacities. Froceedings of
the Conference of CMG XIII, December 1,982.

[8] R. Gingell, J. Moran and W. Shannon. Virtual
Memory Architecture in SunOS. Froceedings
of the Summer 1987 USENIX Conference.

[9] S. Kleiman. Vnodes: An Architecture for Multi-
ple File Systems in Sun LINIX. Froceedings of
the Summer 1986 USENIX Conference.

[10] G. Hamilton and D. Conde. An Experimental
Symmetric Multiprocessor ULTRIX Kernel.
Froceedings of the Winter 1988 USENIX
Conference.

[11] A. Langerman, J. Boykin and S. LoVerso. A
Highly-Parallelized Mach-based Vnode Filesys-
tem. Froc¿edings of the Winter 1990 USENIX
Conferenc¿.

[12] S. LoVerso, N. Paciorek, A. Langerman and G.
Feinberg. The OSF/1 UNIX Filesystem (UFS).
Froceedings of the Winter L99t USENIX
Conference.

[13] M. K. McKusick, W. Joy, S. Leffler and R.
Fabry. A Fast File System for UNIX. Transac-
tions on Computer Systems, Yol. 2 No. 3, pp
I81-L97. ACM, 1984.

[14] L. W. McVoy and S. R. Kleiman. Extent-like
Performance from a UNIX File System.
Froceedings of the Winter t99L USENIX
Conference.

[15] N. Paciorek, S. LoVerso, A. I:ngerman.
Debugging Operating System Kernels.
Froceedings of the Second Symposium on
Experiences with Distributed and Multiproces-
sor Systems (SEDMS ID. USENIX, March
799t.

[16] K. Peacock. The Counterpoint Fast File Sys-
tem. Froceedings of the 1988 Winter USENIX
Conference.

[17] J. K. Peacock, S. Saxena, D. Thomas, F. Yang
and W. Yu. Experiences from Multithreading
System V Release 4. Froceedings of the Third
Symposium on Experiences with Distributed
and Multiprocessor Systems (SEDMS III).
USENIX, March 1992.

[18] R. Rodriguez, M. Koehler, L. Palmer and R.
Palmer. A Dynamic UNIX Operating System.
Froceedings of the Summer 1988 USENIX
Conference.

[19] M. Rosenblum and J. K. Ousterhout. The
Design and Implementation of a Log-Structured
File System. Froceedings of the Thirteenth
ACM Symposium on Operating Systems Princi-
ples. ACM SIGOPS, Vol. 25, No. 5, October
1991.

[20] L. M. Ruane. Process Syncluonization in the
UTS Kemel. Computing Systems, Vol. 3 No, 3,
USENIX, Summer L990.

2E Summer '92 USENIX - June 8-June L2,1992 - San Antonio, TX

Peacock

l2L)V. Sinkewicz. A Strategy for SMP ULTRIX.
Froceedings of the Summer 1988 USENIX
Conference.

Author Information

Kent Peacock has worked at Intel as a Consul-
tant for 2 years as a member of the Intel Multipro-
cessor Consortium. Prior to that, he worked at
Acer/Counterpoint developing a multiprocessor
implementation of System V and the
Acer/Counterpoint Fast File System, which is now
part of SCO UNIX [16]. He has worked on design
and implementation of 5 multiprocessor systems
since 1978, and has dabbled in performance tuning,
C compilers, multiprocessor debugging tools and
graphics applications. He graduated from the
University of Waterloo in Ontario, Canada with a
Ph.D. in Computer Science n 1979, having previ-
ously completed a Master of Mathematics in Com-
puter Science n L975. ln 1974, he graduated from
the University of Manitoba, in Vy'innipeg, Canada,
with a Bachelor of Science in Electrical Engineering.
He can be reached via U. S. Mail at 1747 Fanwood
Ct.;San Jose, CA 95133 and electronically at
kentp@stpslS.intel.com .

FÍle System Multithreading in SVR4MP

Summer '92 USENIX - June 8-June 12,lgg} - San Antonio, TX 29

