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ABSTRACT

Most current computer architectures use a high−speed cache to translate user virtual
addresses into physical memory addresses. On machines that require software to imple-
ment cache fills and invalidations, the software task is fairly straightforward. In a
multi−processor multi−cache configuration, however, where processes are allowed to
migrate across processors, there is an inherant synchronization problem, as well as per-
formance issues.

This paper discusses a solution to these issues that is general enough to implement with-
out specialized hardware, yet offers good performance.

1. Intr oduction

Most current computer architectures use a high−speed cache to translate user virtual addresses into physical
memory addresses (atranslation lookaside buffer, or TLB). When a translation entry does not exist for a
particular user virtual address, some combination of software and hardware must be employed to create that
translation and supply it to the TLB.When a current virtualphysical translation changes or becomes
invalid, as happens when a physical page is ‘‘stolen’’ f rom one process and assigned to another, an extant
TLB entry must be replaced or removed. Themethodology to perform these functions is well−known on a
traditional single−processor (SP) computer system.

It was found, however, that the methodology available was insufficient when applied to a multi−processor
(MP) configuration where processes are allowed to migrate across processors.In particular, the methodol-
ogy fails on a multi−processor system where each processor is coupled with a private TLB: replacing or
removing an entry in one TLB does not change or invalidate other, possibly extant, entries on other system
processors.

This paper discusses the overall strategy that was devised to manage the TLB. The various situations in
which TLB entries must be replaced or invalidated are enumerated, as are the details of both the SP and MP
implementation.

2. Translation Lookaside Buffer

The target hardware is a system using the MIPS R2000 simplified−instruction−set processor. The TLB is
part of the system coprocessor, one of which is associated with each processor. The TLB does not have a
direct connection to memory, and it knows neither the form nor the location for page tables. TLB manage-
ment is accomplished by software via coprocessor instructions. This approach requires slightly longer refill
times than might occur with dedicated hardware, but has the advantages of simplified hardware and flexibil-
ity.[MIPS86]
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Each TLB entry consists of two words. Thelow word contains a physical page frame number and various
hardware bits (valid, dirty, etc.). Thehigh word contains a virtual page number (VPN) and an id (TLBID).
The id field is currently six bits −− thus, 64 TLB ids are available. Additionally, there exist two index reg-
isters which are used to address TLB entries (an Index register and a Random register), and an EntryLo and
EntryHi register pair. The formats of the EntryLo and EntryHi registers pairs are the same as the TLB
entries. Figure1 shows these formats.A TLB match occurs when there exists an entry which matches the
input virtual address and the current TLBID field in the EntryHi register. Misses cause an exception, as do
references to invalid entries, or stores to an address that matches a TLB entry that is not marked dirty.
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Figure 1. Translation Lookaside Buffer Format

Coprocessor instructions exist to probe for an extant entry (the index of the entry is left in the Index regis-
ter); to read a specific TLB entry (EntryHi and EntryLo receive the contents of the TLB entry indexed by
the Index register); to write to a specific entry (EntryHi and EntryLo via the Index register); and to write to
a ‘‘random’’ TLB entry (the pseudo−random Random register is used as the index).
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Figure 2.Software Page Table Format

The page table is the software counterpart of the TLB.When a TLB entry is written, it is the software page
table entry that is copied into the TLB.Bit fields not used by the TLB hardware are used for (software)
valid and copy−on−write flags, and for a reference counter. Figure 2 shows the page table entry format.

3. OperatingSystem Support

There are five different situations in which, on our system, (a port of the 5.3 UNIX Operating System) TLB
entries can become inconsistent with process state. They are:

1. A process shrinking its address space.

2. Physical pages being ‘‘stolen’’ f rom a process.

3. Systemvirtual address reallocation.

4. Systemphysical address reallocation.

5. Writesto copy−on−write pages.

The first situation occurs when a process sets its maximum data value to a lower value, when it releases a
shared memory segment, or when it releases all its address space on exit.

The second scenario occurs in low−memory situations when the memory management daemon takes physi-
cal pages from a process to be available to others.

The system also keeps a map of virtual addresses which are allocated for short durations for purposes such
as mapping user physical addresses into system virtual space for DMA. After each use, the virtual
addresses are returned to the system address map for reuse.

"UNIX is a trademark of AT&T Bell Laboratories"
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Similarly, physical pages are often assigned for varying durations to steadfast system virtual addresses such
as file system buffers. Over time, pages may be assigned, usurped, and new pages assigned.

Lastly, when a process writes to a shared copy−on−write page, a copy of the page is created and the new
page is assigned to the writing process.

In all of these situations, there can exist entries in the various TLBs that are suddenly incorrect.In all of
these situations it is necessary to ensure that the process doesn’t access addresses that it has surrendered.
To that end, there must be no entries in the TLB on the processor on which a user process is running that
map virtual/physical addresses which are no longer correct.Similarly, the kernel process must take pains
not to access kernel virtual addresses which are no longer valid.1

In our original SP port, the TLB replacement and invalidation policies were situational.That is, for each
situation an expedient method was devised to keep the TLB synchronized with the system state, but there
existed no overall strategy for TLB management. On the MP system, it became clear that an over−all pol-
icy was essential, both to make the various mechanisms work efficiently (severally and together), and to
make the problem manageable.

While on an SP system it was often appropriate to replace or remove TLB entries immediately as the entry
became invalid, on an MP system this strategy suffers from overenthusiasm. Itcould well be the case that a
process which has divested itself of pages or has had new physical pages assigned to particular virtual
addresses never runs on other processors on the system, or runs on another processor only after ‘‘natural’’
ev ents have caused the invalid entries to be replaced or removed. We decided to accentuate this tendency
and put off TLB invalidations until absolutely necessary.

To implement this strategy (which we labeled ‘‘lazy devaluation’’), system and process state is recorded to
understand when TLB entries on a particular processor must be replaced or invalidated. Whensuch an
ev ent does occur, the entire TLB is flushed, and the state structures are adjusted so that, logically, the flush
creates the greatest effect.

The following sections explicate the various situations and mechanisms involved.

3.1. Shrinking Processes

There are several scenarios in which a process might divest itself of current address space. These range
from a process resetting its break value to a process detaching a shared memory region or unmapping a
mapped file region to a process exiting.

The last case is benign −− an exiting process no longer has the ability to reference its address space.

The other cases are surmountable.Since a TLB match requires that an entry match both the input virtual
address and the current TLBID (in EntryHi), assigning a new TLB id to the process effectively renders cur-
rent (possibly stale) entries inaccessible.This approach is more efficient than the alternatives −− flushing
the entire TLB whenever a process shrinks its address space, or probing for and invalidating each possible
(now inv alid) TLB entry.

It is only when there are no readily available TLB ids that drastic action needs to be taken. In that case,
each process’ TLB id is set to an invalid value (the id is kept in the proc structure) and the TLB is flushed.
It is safe to invalidate the id field of an active process since it is guaranteed that, on an SP system, no other
process besides the one requesting an id is currently running, and thus, there is no process actively using
TLB ids. When a process resumes, it checks if its TLB id is still valid; if not, it requests a valid id from the
id allocator.

On an MP system, there is no such guarantee −− processes on other processors may well be active. The
TLB id reallocation problem is easily solved, however, by freeing only those ids whose associated process
is not currently running.A field in the proc structure indicates whether the process is currently running on
any processor. With suitable spin locks and semaphores to protect bit fields and TLB id allocation code,
process shrinking becomes quite tenable for the operating system.

TLBIDs are managed as a site−wide resource, so, at the time that ids must be recycled all TLBs on the site
must be flushed.To effect site−wide flushing, it is only necessary to set bits in a global bit field, one bit for

1. The implication is that, while user processes are not to be trusted, the kernel can certainly understand its own
memory management state and take care not to abrogate its policies.
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each active processor. Whenever a processor flushes its TLB, it clears its corresponding bit in the field.
The initiating routine merely sets all appropriate bits beforehand, flushes its own TLB, and waits until the
entire field has been cleared.(On systems that have an inter−processor interrupt facility, this wait is mini-
mal. Onsystems without hardware support, simple messaging can be used to initiate TLB flushing on the
various processors.)

3.2. ReclaimingPages

The major functions of the paging daemon are to determine page usage and to free pages into the page pool
when memory gets tight. As there are no hardware reference bits available, page usage on our system is
determined by periodically decrementing software reference counters and turning off the hardware valid
bits in the page table entries.The paging daemon has only to invalidate the corresponding entries in the
TLB to cause subsequent references to produce reference faults. Thefault code resets the valid bit and the
reference counter for the faulting page, and drops the entry into the TLB.

Similarly, to reclaim a page for the free pool, the paging daemon clears the software and hardware valid bits
in the page table entries, and inserts the pages into the free list.Semaphores associated with each virtual
memory region [Bach86] are used to ensure that page faults and page manumission are, effectively, atomic.

For both reference fault enabling and page manumission, TLB entries are not invalidated individually.
Instead, a number of pages, possibly spanning several regions, are operated on at once.Before the region
semaphores are released, TLBs are flushed site−wide.

3.3. SystemVirtual Addresses

In general, the operating system runs without TLB mappings. The kernel is divided into three segments
which carve out the addresses from 0x80000000 through 0xffffffff ( the user segment −− kuseg −− includes
all virtual addresses from zero through 0x7fffffff ). Referencesto kseg0 (0x80000000 to 0xa0000000) are
cached but not mapped into the TLB.Most of the kernel’s executable code and some of its data reside here.
The kseg1 segment (0xa0000000 to 0xc0000000) provides uncached, unmapped references −− IO registers
and ROM code are mapped to these addresses. Both kseg0 and kseg1 addresses are direct−mapped onto
the first 512MB of physical address space.Like kuseg, the kseg2 segment (0xc0000000 through 0xfffffff )
uses TLB entries to map virtual address to arbitrary physical ones. The operating system allocates kseg2
addresses for some dynamic structures and for performing DMA into user space.
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Figure 3. Hardware Defined Virtual Memory Map

For user DMA, the system allocates kernel virtual addresses from a system address map and double−maps
the user’s pages into the system space. The interrupt code which transfers data then does not need knowl-
edge of the user process for which the transfer occurs. On an SP system, dropping in new TLB entries for
the system virtual pages when they are allocated is sufficient to ensure that no stale TLB entries exist from
the previous allocation. (The dropin code probes for a current entry for the TLBID/virtual−address pair and
replaces that entry if it exists.) Buton an MP system, dropping in new TLB entries on one processor does
not affect other processors’ TLBs.Again, instead of signalling each processor and having each processor
replace or invalidate entries, we take the lazy devaluation approach. The various TLBs are allowed to fill
with new entries ‘‘naturally’’, that is, by reference.Upon deallocation, however, the page is not returned to
the free map, but is instead placed in a stale address map. If the system map becomes depleted, the
site−wide TLB flush routine is called.This routine always merges the stale address map back into the sys-
tem map while waiting for other processors to flush their TLBs.

3.4. SystemKseg2 Mappings

A variation of the page reclaiming problem exists with certain kernel routines that allocate and free physi-
cal pages associated with kernel virtual addresses (for example, pages for file system buffers). Unlike the
memory management paging daemon, which frees large numbers of pages at a time, pages are released in
small numbers. Because of this, wholesale TLB flushing is inappropriate. Instead, we apply the precept of
lazy devaluation. We track page usage through state tables and postpone TLB flushing.

When a page is returned to the free list, the valid bits are reset, but the page frame number persists in the
system page tables.It is only when the virtual address is surrendered that the page table entry’s page frame
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number is cleared, indicating that there is no ‘‘remembered’’ association with a physical page.

When allocating a page for a system virtual address, if there exists a page frame number in the page table
entry, the named page it is reassigned to the virtual address if the page is free.If the page is not available,
the system−wide TLB flush routine is called. At this time, all invalid system page table entries have their
physical page frame number fields cleared, indicating that there is no longer a residual relationship between
the virtual addresses and the physical pages.

As a performance enhancement, when a physical page that was mapped to a system virtual address gets
returned to the free memory list, its corresponding system page table entry is linked on a dirty list.The
TLB flush routine traverses this list when clearing the physical page frame numbers.If a process is surren-
dering both the virtual and physical pages, this linking is not necessary −− returning the virtual addresses
into a stale map ensures that the system won’t use the address without first flushing the TLB.

When a previously−assigned page is reassigned to the same virtual address, it must, of course, be dequeued
from the dirty list.

Overloaded fields in the parallel disk block descriptor (DBD) [Bach86] are currently used for this chore.
(The descriptors are unused since the corresponding pages are never swapped to disk, and, in the current
implementation, the DBDs are not separably allocatable.)To facilitate dequeuing, a doubly−linked list is
used; in order to fit into the DBDs, the fields are actually offsets into the system page table.
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Figure 4. System Page Table with Stale Relationships

Figure 4 shows an example in which page table entries three, six and seven hav ebeen chained into the
‘‘ stale relationships’’ l ist. Entry four is not chained −− the virtual address was released with the physical
page. Figure5 shows the same system page table entries after a system−TLB flush.
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3.5. Faults −− Misses, Reference, Protection

The strategy for handling TLB misses is fairly straightforward. For first−level misses, the page table entry
is copied to EntryLo, the VPN/TLBID pair is written into EntryHi, and the pair is randomly deposited into
the TLB. Second−level misses are handled in a similar manner, except that the second−level entry (the
TLB entry for the page table itself) is deposited into a specific TLB location, that location determined by
software. Onthe current implementation, the processor constrains the Random register to contain a value
from eight to 63. This allows entries zero through seven to be reserved for page tables, the kernel stack,
and the like.

Reference faults and protection faults are handled similarly −− the page table entry for the faulting address
is fetched (possibly causing a second−level miss), sanity checking is performed, and the new entry is
dropped in, either replacing an extant entry, or, if none exists, dropped into a random TLB location.When
a valid reference is made to an address to which a physical page is not currently assigned, the fault code
must assign a physical page for the process and fill it appropriately.

None of these actions are a problem on an SP system, and, for the most part, on an MP system.Dropping
an unchanged entry into a TLB is innocuous.Dropping in an entry for a newly−assigned page is trou-
ble−free, too −− the assumption is made that the routine that disassociated the page from its previous pro-
cessaddress took care to purge the (possibly extant) entries from the TLB(s).

Protection faults pose a problem on an MP system, however, when the fault is on a copy−on−write page.A
copy−on−write page might be referenced by multiple processes at the time one process writes to it. The SP
approach is simple: if more than one process is currently referencing the page, a new page is assigned for
the writer, the data are copied, and a new TLB entry is deposited (with the dirty bit set).But on an MP sys-
tem, there could exist entries on other TLBs (had the process previously run on other processors) that
reflect the previous virtual/physical mapping. If the process migrated to another processor (on which it had
previously run) without ensuring that the entry was purged, further references could access the wrong page.

Again, the approach is to keep state tables and avoid action until necessary. Instead of actively searching
out and removing entries on TLBs throughout the system, it is just noted that there exist (possibly) stale
TLB entries for this process on other processors. The minimal data structure is a bit field the size of the
number of processors in the system, one for each TLB id (or, one for each proc structure, for small
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systems). Afterassigning a new page, it is only necessary to set the bits corresponding to all but the current
processor, indicating there might be invalid entries for this TLBID (process) on the flagged processors.(A
new entry is deposited in the current processor’s TLB, so it is not necessary to set the dirty bit for the cur-
rent processor.) Whena process resumes, it checks whether a bit is set for the processor on which the
process is now running. Ifso, the current processor’s TLB is flushed.To further performance, a parallel bit
field is kept that indicates the processors on which the process has actually run.It is only necessary to set
dirty bits for processors other than the current one on which the process has previously run.

When a process is assigned a new TLB id (either because the process is just starting up, or because it
shrank, or because its id was taken away for reassignment), dirty bits in the entry indexed by the TLB id are
cleared, as are the history bits for all but the current processor. (TLB ids are delivered ‘‘clean’’, that is,
without any entries in any TLB using that id.)Similarly, whenever a processor flushes its TLB, the dirty
bits for that processor in all entries are cleared, as are the history bits in all entries except for the currently
running process.
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Figure 6. Example TLBID State Structures

Figure 6 shows three snapshots of an abbreviated TLBPID state structure. The first and second are just
before a process owning TLBPID 2 running on processor 4 writes to a shared copy−on−write page.At the
time of the write, the process has a history of having run on processors 0, 4 and 6. The last snapshot is the
same TLBPID state structure just after processor 0 has flushed its TLB. Note that the persistence of the
history bit 0 for TLBPID 3 implies that it is currently running on processor 0.

4. Summary

There are certainly other approaches that might have been followed to solve the problem of keeping multi-
ple TLBs correct. Preliminary performance figures, however, indicate that the lazy devaluation approach
succeeds without causing excessive TLB flushing.
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Most importantly, the various state structures can be enhanced and routines tuned to take advantage of
added information without changing the underlying mechanisms.

For example, the TLBPID state structures could be extended to list the individual stale entries. Instead of
flushing the entire TLB, those entries (if still extant) could be individually flushed. If TLB id information
were to be made available to the memory management daemon (currently, there is no path from a region
structure, upon which the daemon operates, to process and TLB ids), a similar refinement could be made.
It is not clear if these changes would be of benefit, but the changes could be implemented and tested with-
out restructuring the entire TLB management system.
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