Translation Lookaside Buffer Synchronization in a Multi-Processor
System

M. Y. Thompson
J. M. Barton
T. A. Jermoluk

J. C. Wagner

Silicon Graphics, Incorporated

ABSTRACT

Most current computer architectures use a high—-speed cache to translate user virtual
addresses into physical memory addresses. On machines that require software to imple-
ment cache fills and validations, the software task isifly straightforvard. In a
multi—-processor multi—-cache configuration,wewer, where processes are allowed to
migrate across processors, there is an inherant synchronization problem, as well as per
formance issues.

This paper discusses a solution to these issues that is general enough to implement with-
out specialized hardware, yet offers good performance.

1. Introduction

Most current computer architectures use a high—speed cache to translate user virtual addresgsisahto ph
memory addresses {eandation lookaside buffer, or TLB). When a translation entry does not exist for a
particular user virtual address, some combination of soéand hardware must be employed to create that
translation and supply it to the TLBWhen a current virtualphysical translation changes or becomes
invalid, as happens when aydical page is'stolen” from one process and assigned to anptrertant

TLB entry must be replaced or remed. Themethodology to perform these functions is well~knoon a
traditional single—processor (SP) computer system.

It was found, havever, that the methodologyvailable was insufficient when applied to a multi-processor
(MP) configuration where processes are allowed to migrate across procéssmagicular the methodol-
ogy fails on a multi-processor system where each processor is coupled witate PpkiB: replacing or
removing an entry in one TLB does not change eglidate otheyrpossibly extant, entries on other system
processors.

This paper discusses theemll strategy that was devised to manage the TLB. The various situations in
which TLB entries must be replaced ovalidated are enumerated, as are the details of both the SP and MP
implementation.

2. Translation Lookaside Buffer

The target hardare is a system using the MIPS R2000 simplified—instruction—set proc@$soiTLB is

part of the system coprocessame of which is associated with each proces3tie TLB does not he a
direct connection to memargnd it knows neither the form nor the location for page tables. TLB manage-
ment is accomplished by sofiwe via coprocessor instructions. This approach requires slightly longer refill
times than might occur with dedicated hardware, but has ttatades of simplified hardware anditel-
ity.[MIPS86]

-2-

Each TLB entry consists of t.wwvords. Thelow word contains a physical page frame number ambus
hardware bits (valid, dirtyetc.). Thehigh word contains a virtual page number (VPN) and an id (TLBID).
The id field is currently six bits —— thus, 64 TLB ids aveilable. Additionally there exist tw index reg-

isters which are used to address TLB entries (arxlrefgster and a Random register), and an EntryLo and
EntryHi register pair The formats of the EntryLo and EntryHi registers pairs are the same as the TLB
entries. Figurd shows these formatsA TLB match occurs when thergists an entry which matches the
input virtual address and the current TLBID field in the Entryldister Misses cause an exception, as do
references to wralid entries, or stores to an address that matches a TLB entry that is not marked dirty.

EntryHi EntryLo
VPN TLBID 0 PFN N|D|V|G 0
20 6 6 20 11 1 1 8

Figure 1 Translation Lookaside Buffer Format

Coprocessor instructions exist to probe for an extant entry (the a@fdee entry is left in the Inderegs-
ter); to read a specific TLB entry (EntryHi and EntryLo reedhe contents of the TLB entry incel by
the Inde regster); to write to a specific entry (EntryHi and EntryLo via the ¥ndgjster); and to write to
a “random’ TLB entry (the pseudo-random Random register is used as the index).

hard bit
soft bit
PFN N[D|[V |G SV|C N
20 11 1 1 1 11 2 3

Figure 2Software Page Table Format

The page table is the software counterpart of the TWBen a TLB entry is written, it is the software page
table entry that is copied into the TLERIt fields not used by the TLB hardware are used for (soétjv
valid and copy—on-write flags, and for a reference courfiglure 2 shows the page table entry format.

3. Operating System Support

There are fie dfferent situations in which, on our system, (a port of the 5.3 UNIX Operating System) TLB
entries can become inconsistent with process statey &rée

1. Aprocess shrinking its address space.

2. Plysical pages being “stolerfrom a process.
3. Systenvirtual address reallocation.

4. Systenphysical address reallocation.

5. Writesto copy—on—-write pages.

The first situation occurs when a process sets its maximum data valuemer addue, when it releases a
shared memory segment, or when it releases all its address space on exit.

The second scenario occurs imwtanemory situations when the memory management daemon takss ph
cal pages from a process to hailable to others.

The system also keeps a map of virtual addresses which are allocated for short durations for purposes such
as mapping user physical addresses into system virtual space for DMA. After each use, the virtual
addresses are returned to the system address map for reuse.

"UNIX is a trademark of AT&T Bell Laboratories"

-3-

Similarly, physical pages are often assigned for varying durations to steadfast system virtual addresses such
as file system bedrs. Ower time, pages may be assigned, usurped, amghages assigned.

Lastly, when a process writes to a sharedye@m-write page, a cgpof the page is created and thewne
page is assigned to the writing process.

In all of these situations, there can exist entries in the various TLBs that are suddenly intoaéabdf

these situations it is necessary to ensure that the processt @oesess addresses that it has surrendered.

To that end, there must be no entries in the TLB on the processor on which a user process is running that
map virtual/physical addresses which are no longer corf&iatilarly, the kernel process must &akains

not to access kernel virtual addresses which are no longefvalid.

In our original SP port, the TLB replacement anddlidation policies were situationalThat is, for each
situation an expedient method was devised to keep the TLB synchronized with the systemt<gtedes b
existed no werall stratgy for TLB management. On the MP system, it became clear thatearab pol-
icy was essential, both to malhe various mechanisms worldieiently (severally and together), and to
male the problem manageable.

While on an SP system itag often appropriate to replace or remdLB entries immediately as the entry
became iwalid, on an MP system this strgiesuffers from werenthusiasm. Itould well be the case that a
process which has \disted itself of pages or has hadwnphysical pages assigned to particular virtual
addresses mer runs on other processors on the system, or runs on another processor orilyagaftat™
evants hae aused the welid entries to be replaced or rewed. We decided to accentuate this tendgnc
and put of TLB invalidations until absolutely necessary.

To implement this strategy (which we labeled “lazyaeation”), system and process state is recorded to
understand when TLB entries on a particular processor must be replacedlidated. Whensuch an
event does occutthe entire TLB is flushed, and the state structures are adjusted so that, lahiedllysh
creates the greatest effect.

The following sections explicate the various situations and mechanigohseith

3.1. Shrinking Processes

There are seeral scenarios in which a process mightedt itself of current address space. These range
from a process resetting its break value to a process detaching a shared memory region or unmapping a
mapped file region to a process exiting.

The last case is benign —— an exiting process no longer has the ability to reference its address space.

The other cases are surmountalfiénce a TLB match requires that an entry match both the input virtual
address and the current TLBID (in EntryHi), assigningva TieB id to the process ffctively renders cur

rent (possibly stale) entries inaccessibldis approach is more efficient than the altemeati-— flushing

the entire TLB whener a process shrinks its address space, or probing for amfidisting each possible
(now invdid) TLB entry.

It is only when there are no readilyadable TLB ids that drastic action needs to bestakInthat case,

each process’ TLB id is set to awvatid value (the id is kept in the proc structure) and the TLB is flushed.
It is safe to imalidate the id field of an ast pocess since it is guaranteed that, on an SP system, no other
process besides the one requesting an id is currently running, and thus, there is no proggassamdi

TLB ids. When a process resumes, it checks if its TLB id is still valid; if not, it requeatisl advfrom the

id allocator.

On an MP system, there is no such guarantee —— processes on other processors may well bbeacti
TLB id reallocation problem is easily sel#, havever, by freeing only those ids whose associated process
is not currently runningA field in the proc structure indicates whether the process is currently running on
ary processar With suitable spin locks and semaphores to protect bit fields and TLB id allocation code,
process shrinking becomes quite tenable for the operating system.

TLBIDs are managed as a site—wide resource, so, at the time that ids mugthsirait TLBs on the site
must be flushedTo dfect site-wide flushing, it is only necessary to set bits in a global bit field, one bit for

1. The implication is that, while user processes are not to be trusteeytiet ¢an certainly understand itsro
memory management state andetakre not to abrogate its policies.

each actie processar Wheneer a processor flushes its TLB, it clears its corresponding bit in the field.
The initiating routine merely sets all appropriate bits beforehand, flushes its own TLB, and waits until the
entire field has been clearefOn systems that kia an inter—processor interrupadility, this wait is mini-

mal. Onsystems without hardware support, simple messaging can be used to initiate TLB flushing on the
various processors.)

3.2. ReclaimingPages

The major functions of the paging daemon are to determine page usage and to free pages into the page pool
when memory gets tight. As there are no hardware referencevaitbbe, page usage on our system is
determined by periodically decrementing software reference counters and tufnihg bardware alid

bits in the page table entrie3he paging daemon has only toalidate the corresponding entries in the

TLB to cause subsequent references to produce referaute fThefault code resets the valid bit and the
reference counter for the faulting page, and drops the entry into the TLB.

Similarly, to reclaim a page for the free pool, the paging daemon clears the software and hardware valid bits
in the page table entries, and inserts the pages into the fre8distaphores associated with each virtual
memory region [Bach86] are used to ensure that page faults and page manumissitatireyeétomic.

For both reference fault enabling and page manumission, TLB entries arevalidaited indvidually.
Instead, a number of pages, possibly spanningaeregions, are operated on at on8wfore the rgion
semaphores are released, TLBs are flushed site—wide.

3.3. SystenVirtual Addresses

In general, the operating system runs without TLB mappings. €heekis divided into three gments

which cane aut the addresses from 0x80000000 througliffé#f(the user segment —— kgge— includes

all virtual addresses from zero through 0ffff). Referenceso kseg0 (0x80000000 to 0xa0000000) are
cached but not mapped into the TLBlost of the lernel’s executable code and some of its data reside here.
The ksegl segment (0xa0000000 to 0xc000000@)jges uncached, unmapped references —— HiBters

and ROM code are mapped to these addresses. Both ksegO ghdch#tdeesses are direct-mapped onto
the first 512MB of phsical address spacdike kusey, the kseg2 segment (0xcO000000 througfHfferi

uses TLB entries to map virtual address to arbitrary physical ones. The operating system allag2ates kse
addresses for some dynamic structures and for performing DMA into user space.

ed)
Vigtial Memory |
Map Physical Memo
1Y Mageg2
(TLB mapp

0xc000000! ksegl
(uncached)s

(=)

0xa00000006

0x8000000

1/0 Space

kuseg
(TLB mapp

0x00000000

Memory

Figure 3 Hardware Defined Virtual Memory Map

For user DMA, the system allocatesrkel virtual addresses from a system address map and double—-maps
the usess pages into the system space. The interrupt code which transfers data then does notwieed kno
edge of the user process for which the transfer occurs. On an SP system, droppind LB remtries for

the system virtual pages whenraee allocated is sufficient to ensure that no stale TLB entries exist from
the previous allocation. (The dropin code probes for a current entry for the TLBID/virtual-address pair and
replaces that entry if itésts.) Buton an MP system, dropping inmd LB entries on one processor does

not affect other processors’ TLB#&gain, instead of signalling each processor and having each processor
replace or imdidate entries, we takthe lazy deauation approach. Theavious TLBs are allowed to fill

with new entries ‘naturally”, that is, by referenceUpon deallocation, heever, the page is not returned to

the free map, Wt is instead placed in a stale address map. If the system map becomes depleted, the
site-wide TLB flush routine is calledlhis routine alays merges the stale address map back into the sys-
tem map while waiting for other processors to flush their TLBs.

3.4. SystenKseg2 Mappings

A variation of the page reclaiming problem exists with certain kernel routines that allocate ang/dree ph

cal pages associated witbrkel virtual addresses (for example, pages for file systéfarg). Unlike the

memory management paging daemon, which frege laumbers of pages at a time, pages are released in
small numbers. Because of this, wholesale TLB flushing is inappropriate. Instead, we apply the precept of
lazy devaluation. Weé track page usage through state tables and postpone TLB flushing.

When a page is returned to the free list, takdvbits are reset, but the page frame number persists in the
system page tabledt is only when the virtual address is surrendered that the page table pags'frame

-6-

number is cleared, indicating that there is no “remembleasdociation with a physical page.

When allocating a page for a system virtual address, if thésts @ page frame number in the page table
entry, the named page it is reassigned to the virtual address if the page i freepage is notwailable,

the system-wide TLB flush routine is called. At this time, alblid system page table entriesvhaheir

physical page frame number fields cleared, indicating that there is no longer a residual relationship between
the virtual addresses and the physical pages.

As a performance enhancement, when a physical page that was mapped to a system virtual address gets
returned to the free memory list, its corresponding system page table entryed dimla dirty list. The

TLB flush routine traerses this list when clearing the physical page frame numbfesisprocess is surren-

dering both the virtual and physical pages, this linking is not necessary —— returning the virtual addresses
into a stale map ensures that the system e’ the address without first flushing the TLB.

When a preiously—assigned page is reassigned to the same virtual address, it must, of course, be dequeued
from the dirty list.

Overloaded fields in the parallel disk block descriptor (DBD) [Bach86] are currently used for this chore.
(The descriptors are unused since the corresponding pagesvarewapped to disk, and, in the current
implementation, the DBDs are not separably allocatatiie.facilitate dequeuing, a doubly-linked list is
used; in order to fit into the DBDs, the fields are actually offsets into the system page table.

Framag/gtem Page Tab

le Pege
(unused)
: . Sys
tem Disk Block Desgviptors Forward
) X
(list head Back
X
AAA 1
3 7
BBB 0
0 0
6 1
DDD 1
EEE 0
FFF 0
7 3
1 6

Figure 4. System Page Table with Stale Relationships

Figure 4 shavs an example in which page table entries three, six areth $ave been chained into the
“ stale relationshipslist. Entryfour is not chained —— the virtual address was released with trsgcph
page. Figur& shows the same system page table entries after a system—TLB flush.

Framag/gtem Page Tab

le Pege
(unused)
: . Sys
tem Disk Block Desgviptors Forward
) X
(list head Back
X
AAA 1
1 1
0 0
0 0
0 0
DDD 1
0 0
0 0
0 0
0 0

Figure 5 System Page Table After TLB FLush"

3.5. Raults —— Misses, Reference, Protection

The strategy for handling TLB misses &@rly straightforvard. For first-level misses, the page table entry

is copied to EntryLo, the VPN/TLBID pair is written into EntryHi, and the pair is randomly deposited into
the TLB. Second-leel misses are handled in a similar manrexcept that the second-+vig entry (the

TLB entry for the page table itself) is deposited into a specific TLB location, that location determined by
software. Onthe current implementation, the processor constrains the Random register to coataé a v
from eight to 63. This allws entries zero throughsm to be esered for page tables, the kernel stack,
and the like.

Reference faults and protecticaufts are handled similarly —— the page table entry for the faulting address
is fetched (possibly causing a secondellaniss), sanity checking is performed, and thev remtry is
dropped in, either replacing artant entry or, if none exists, dropped into a random TLB locatidvhen

a \valid reference is made to an address to whichyaigél page is not currently assigned, the fault code
must assign a physical page for the process and fill it appropriately.

None of these actions are a problem on an SP system, and, for the most part, on an MFDsypfEnyY

an unchanged entry into a TLB is innocuolropping in an entry for a newly—assigned page is trou-
ble-free, too —— the assumption is made that the routine that disassociated the page from its previous pro-
cessaddress took care to purge the (possibly extant) entries from the TLB(s).

Protection faults pose a problem on an MP systemgba, when the &ult is on a copy—on-write pagé
copy—on—-write page might be referenced by multiple processes at the time one process writes to it. The SP
approach is simple: if more than one process is currently referencing the pagepageds assigned for

the writer the data are copied, and awmELB entry is deposited (with the dirty bit seBut on an MP sys-

tem, there could exist entries on other TLBs (had the proceg®ysly run on other processors) that
reflect the previous virtual/physical mapping. If the process migrated to another processor (on which it had
previously run) without ensuring that the entry wasged, further references could access the wrong page.

Again, the approach is to keep state tables &oiil @ction until necessaryinstead of actiely searching

out and removing entries on TLBs throughout the system, it is just noted thatxisergpassibly) stale

TLB entries for this process on other processors. The minimal data structure is a bit field the size of the
number of processors in the system, one for each TLB jdofer for each proc structure, for small

-8-

systems). Aftemssigning a ne page, it is only necessary to set the bits corresponding to all but the current
processqrindicating there might bevalid entries for this TLBID (process) on the flagged process@s.

new entry is deposited in the current processdl.B, so it is not necessary to set the dirty bit for the cur
rent processor Whena pocess resumes, it checks whether a bit is set for the processor on which the
process is n@ running. Ifso, the current processeiTLB is flushed. To further performance, a parallel bit

field is kept that indicates the processors on which the process has actualtyiswomly necessary to set

dirty bits for processors other than the current one on which the process has previously run.

When a process is assigned avriELB id (either because the process is just starting up, or because it
shrank, or because its id was takemafor reassignment), dirty bits in the entry irde by the TLB id are
cleared, as are the history bits for all but the current proce6EbB ids are deliered ‘clean’, that is,
without ary entries in ag TLB using that id.) Similarly, wheneer a processor flushes its TLB, the dirty
bits for that processor in all entries are cleared, as are the history bits in all extjatsfer the currently
running process.

history

1| 00100000| dirty
00000000

2| 01010001| 00000000 Before Write

3| 00000101| 00000001
7 07 0

history

1| 00100000 dirty
00000000

2| 01010001 | 01000001 After Write

3| 00000101| 00000001
7 o7 0

history

1| 00100000| dirty
00000000

2| 01010000 01000000 After TLB Flush on Processor 0

3| 00000101| 00000000
7 07 0

Figure 6. Example TLBID State Structures

Figure 6 shas three snapshots of an abbreviated TLBPID state structure. The first and second are just
before a process owning TLBPID 2 running on processor 4 writes to a shared copy—-on-writ&tfhge.

time of the write, the process has a history ofifigarun on processors 0, 4 and 6. The last snapshot is the
same TLBPID state structure just after processor 0 has flushed its TLB. Note that the persistence of the
history bit 0 for TLBPID 3 implies that it is currently running on processor 0.

4. Summary

There are certainly other approaches that migi liaen followed to sok the problem of keeping multi-
ple TLBs correct. Preliminary performance figureswbgr, indicate that the lazy dauation approach
succeeds without causing excegesILB flushing.

-O-

Most importantly the various state structures can be enhanced and routines tuned tdveakage of
added information without changing the underlying mechanisms.

For example, the TLBPID state structures could be extended to list thedingi stale entries. Instead of
flushing the entire TLB, those entries (if still extant) could be individually flushed. If TLB id information
were to be madevailable to the memory management daemon (currethtére is no path from agmen
structure, upon which the daemon operates, to process and TLB ids), a similar refinement could be made.
It is not clear if these change®wd be of benefit, but the changes could be implemented and tested with-
out restructuring the entire TLB management system.

-10-

References
MIPS System Programmer Guide, Beta Version. Mips Computer Systems, Inc., Mountaire¥, CA, 1986.
Bach, Maurice J.The Design of the UNIX Operating System, Prentice Hall, Ner Jersey, 1986.

