
USENIX Association

Proceedings of the
BSDCon 2002

Conference

San Francisco, California, USA
February 11-14, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.



Locking in the Multithreaded FreeBSD Kernel

John H. Baldwin
The Weather Channel

jhb@FreeBSD.org, http://people.FreeBSD.org/˜jhb

Abstract

About a year ago, the FreeBSD Project embarked
on the ambitious task of multithreading its kernel.
The primary goal of this project is to improve per-
formance on multiprocessor (MP) systems by allow-
ing concurrent access to the kernel while not drasti-
cally hurting performance on uniprocessor (UP) sys-
tems. As a result, the project has been dubbed the
SMP next generation project, or SMPng for short.

Multithreading a BSD kernel is not just a one-
time change; it changes the way that data integrity
within the kernel is maintained. Thus, not only does
the existing code need to be reworked, but new code
must also use these different methods. The purpose
of this paper is to aid kernel programmers in using
these methods.

It is assumed that the audience is familiar with the
data integrity methods used in the traditional BSD
kernel. The paper will open with a brief overview of
these traditional methods. Next, it will describe
the synchronization primitives new to the multi-
threaded FreeBSD kernel including a set of guide-
lines concerning their use. Finally, the paper will
describe the tools provided to assist developers in
using these synchronization primitives properly.

1 Introduction

Prior to the SMPng project, SMP support in
FreeBSD was limited to the i386 architecture and
used one giant spin lock for the entire kernel as de-
scribed in Section 10.2 of [Schimmel94]. This kernel
architecture is referred to as pre-SMPng. The goal
of SMPng is to allow multiple threads to execute in
the kernel concurrently on SMP systems.

2 Current Status

The SMPng project first began in June of 2000 with
a presentation given to several FreeBSD develop-
ers by Chuck Paterson of BSDi explaining BSDi’s
SMP project to multithread their own kernel. This
meeting set the basic design, and developers started
working on code shortly after.

The first step was to implement the synchroniza-
tion primitives. Once this was done, two mutexes
were added. A spin mutex named sched lock was
used to protect the scheduler queues, sleep queues,
and other scheduler data structures. A sleep mutex
named Giant was added to protect everything else
in the kernel. The second step was to move most
interrupt handlers into interrupt threads. Interrupt
threads are necessary so that an interrupt handler
has a context in which to block on a lock without
blocking an unrelated top half kernel thread. A few
interrupt handlers such as those for clock interrupts
and serial I/O devices still run in the context of the
thread they interrupt and thus do not have a con-
text in which to block. Once this was done, the
old spl synchronization primitives were no longer
needed and could be converted into nops. They are
still left around for reference until code is converted
to use locks, however.

Now that most of the infrastructure is in place, the
current efforts are directed at adding locks to vari-
ous data structures so that portions of code can be
taken out from under Giant. There are still some
infrastructure changes that need to be implemented
as well. These include implementing a lock pro-
filer that can determine which locks are heavily con-
tested as well as where they are heavily contested.
This will allow developers to determine when lock-
ing needs to be made more fine-grained.



3 Problems Presented by Concur-
rent Access to the Kernel

Multiple threads of execution within a BSD kernel
have always presented a problem. Data structures
are generally manipulated in groups of operations.
If two concurrent threads attempt to modify the
same shared data structure, then they can corrupt
that data structure. Similarly, if a thread is inter-
rupted and another thread accesses or manipulates
a data structure that the first thread was accessing
or manipulating, corruption can result. Traditional
BSD did not need to address the first case, so it
simply had to manage the second case using the fol-
lowing three methods:

• Threads that are currently executing kernel
code are not preempted by other threads,

• Interrupts are masked in areas of the kernel
where an interrupt may access or modify data
currently being accessed or modified, and

• Longer term locks are acquired by synchroniz-
ing on a lock variable via sleep and wakeup.

With the advent of MP systems, however, these
methods are not sufficient to cover both problem-
atic cases. Not allowing threads in the kernel to
be preempted does nothing to prevent two threads
on different CPUs from accessing the same shared
data structure concurrently. Interrupt masking only
affects the current CPU, thus an interrupt on one
CPU could corrupt data structures being used on
another CPU. The third method is not completely
broken since the locks are sufficient to protect the
data they protected originally. However, race con-
ditions on the locking and unlocking thread itself
can lead to temporary hangs of threads. For a more
detailed explanation see Chapter 8 of [Schimmel94]
and Section 7.2 of [Vahalia96]. For an explanation of
how these protections were implemented in 4.4BSD
and derivatives see [McKusick96].

The pre-SMPng kernel addressed this situation on
SMP systems by only allowing one processor to exe-
cute in the kernel at a time. This preserved the UP
model for the kernel at the expense of disallowing
any concurrent access to the kernel.

4 Basic Tools

Fortunately, MP-capable CPUs provide two mech-
anisms to deal with these problems: atomic opera-
tions and memory barriers.

4.1 Atomic Operations

An atomic operation is any operation that a CPU
can perform such that all results will be made visible
to each CPU at the same time and whose operation
is safe from interference by other CPUs. For ex-
ample, reading or writing a word of memory is an
atomic operation. Unfortunately, reading and writ-
ing are only of limited usefulness alone as atomic op-
erations. The most useful atomic operations allow
modifying a value by both reading the value, mod-
ifying it, and writing it as a single atomic change.
The details of FreeBSD’s atomic operation API can
be found in the atomic manual page [Atomic]. A
more detailed explanation of how atomic operations
work can be found in Section 8.3 of [Schimmel94].

Atomic operations alone are not very useful. An
atomic operation can only modify one variable. If
one needs to read a variable and then make a deci-
sion based on the value of that variable, the value
may change after the read, thus rendering the deci-
sion invalid. For this reason, atomic operations are
best used as building blocks for higher level synchro-
nization primitives or for noncritical statistics.

4.2 Memory Barriers

Many modern CPUs include the ability to re-
order instruction streams to increase performance
[Intel00, Schimmel94, Mauro01]. On a UP machine,
the CPU still operates correctly so long as depen-
dencies are satisfied by either extra logic on the CPU
or hints in the instruction stream. On a SMP ma-
chine, other CPUs may be operating under different
dependencies, thus the data they see may be incor-
rect. The solution is to use memory barriers to con-
trol the order in which memory is accessed. This
can be used to establish a common set of depen-
dencies among all CPUs. An explanation of using
store barriers in unlock operations can be found in
Section 13.5 of [Schimmel94].

In FreeBSD, memory barriers are provided via the



atomic operations API. The API is modeled on the
memory barriers provided on the IA64 CPU which
are described in Section 4.4.7 of [Intel00]. The
API include two types of barriers: acquire and re-
lease. An acquire barrier guarantees that the cur-
rent atomic operation will complete before any fol-
lowing memory operations. This type of barrier is
used when acquiring a lock to guarantee that the
lock is acquired before any protected operations are
performed. A release barrier guarantees that all pre-
ceding memory operations will be completed and
the results visible before the current atomic opera-
tion completes. As a result, all protected operations
will only occur while the lock is held. This allows
a dependency to be established between a lock and
the data it protects.

5 Synchronization Primitives

Several synchronization primitives have been intro-
duced to aid in multithreading the kernel. These
primitives are implemented by atomic operations
and use appropriate memory barriers so that users
of these primitives do not have to worry about do-
ing it themselves. The primitives are very similar
to those used in other operating systems includ-
ing mutexes, condition variables, shared/exclusive
locks, and semaphores.

5.1 Mutexes

The mutex primitive provides mutual exclusion for
one or more data objects. Two versions of the mu-
tex primitive are provided: spin mutexes and sleep
mutexes.

Spin mutexes are a simple spin lock. If the lock is
held by another thread when a thread tries to ac-
quire it, the second thread will spin waiting for the
lock to be released. Due to this spinning nature, a
context switch cannot be performed while holding
a spin mutex to avoid deadlocking in the case of a
thread owning a spin lock not being executed on a
CPU and all other CPUs spinning on that lock. An
exception to this is the scheduler lock, which must
be held during a context switch. As a special case,
the ownership of the scheduler lock is passed from
the thread being switched out to the thread being
switched in to satisfy this requirement while still

protecting the scheduler data structures. Since the
bottom half code that schedules threaded interrupts
and runs non-threaded interrupt handlers also uses
spin mutexes, spin mutexes must disable interrupts
while they are held to prevent bottom half code from
deadlocking against the top half code it is interrupt-
ing on the current CPU. Disabling interrupts while
holding a spin lock has the unfortunate side effect
of increasing interrupt latency.

To work around this, a second mutex primitive is
provided that performs a context switch when a
thread blocks on a mutex. This second type of mu-
tex is dubbed a sleep mutex. Since a thread that
contests on a sleep mutex blocks instead of spin-
ning, it is not susceptible to the first type of dead-
lock with spin locks. Sleep mutexes cannot be used
in bottom half code, so they do not need to disable
interrupts while they are held to avoid the second
type of deadlock with spin locks.

As with Solaris, when a thread blocks on a sleep
mutex, it propagates its priority to the lock owner.
Therefore, if a thread blocks on a sleep mutex and
its priority is higher than the thread that currently
owns the sleep mutex, the current owner will inherit
the priority of the first thread. If the owner of the
sleep mutex is blocked on another mutex, then the
entire chain of threads will be traversed bumping
the priority of any threads if needed until a runnable
thread is found. This is to deal with the problem
of priority inversion where a lower priority thread
blocks a higher priority thread. By bumping the
priority of the lower priority thread until it releases
the lock the higher priority thread is blocked on,
the kernel guarantees that the higher priority thread
will get to run as soon as its priority allows.

These two types of mutexes are similar to the So-
laris spin and adaptive mutexes. One difference
from the Solaris API is that acquiring and releas-
ing a spin mutex uses different functions than ac-
quiring and releasing a sleep mutex. A difference
with the Solaris implementation is that sleep mu-
texes are not adaptive. Details of the Solaris mutex
API and implementation can be found in section 3.5
of [Mauro01].

5.2 Condition Variables

Condition variables provide a logical abstraction for
blocking a thread while waiting for a condition.



Condition variables do not contain the actual con-
dition to test, instead, one locks the appropriate
mutex, tests the condition, and then blocks on the
condition variable if the condition is not true. To
prevent lost wakeups, the mutex is passed in as an
interlock when waiting on a condition.

FreeBSD’s condition variables use an API quite sim-
ilar to those provided in Solaris. The only differ-
ences being the lack of a cv wait sig swap and the
addition of cv init and cv destroy constructors
and destructors. The implementation also differs
from Solaris in that the sleep queue is embedded in
the condition variable itself instead of coming from
the hashed pool of sleep queue’s used by sleep and
wakeup.

5.3 Shared/Exclusive Locks

Shared/Exclusive locks, also known as sx locks, pro-
vide simple reader/writer locks. As the name sug-
gests, multiple threads may hold a shared lock si-
multaneously, but only one thread may hold an ex-
clusive lock. Also, if one thread holds an exclusive
lock, no threads may hold a shared lock.

FreeBSD’s sx locks have some limitations not
present in other reader/writer lock implementa-
tions. First, a thread may not recursively acquire an
exclusive lock. Secondly, sx locks do not implement
any sort of priority propagation. Finally, although
upgrades and downgrades of locks are implemented,
they may not block. Instead, if an upgrade cannot
succeed, it returns failure, and the programmer is
required to explicitly drop its shared lock and ac-
quire an exclusive lock. This design was intentional
to prevent programmers from making false assump-
tions about a blocking upgrade function. Specifi-
cally, a blocking upgrade must potentially release
its shared lock. Also, another thread may obtain an
exclusive lock before a thread trying to perform an
upgrade. For example, if two threads are perform-
ing an upgrade on a lock at the same time.

5.4 Semaphores

FreeBSD’s semaphores are simple counting
semaphores that use an API similar to that
of POSIX.4 semaphores [Gallmeister95]. Since
sema wait and sema timedwait can potentially

block, mutexes must not be held when these
functions are called.

6 Guidelines

Simply knowing how a lock functions or what API
it uses is not sufficient to understand how a lock
should be used. To help guide kernel developers in
using locks properly, several guidelines have been
crafted. Some of these guidelines were provided by
the BSD/OS developers while others are the results
of the experiences of FreeBSD developers.

6.1 Special Rules About Giant

The Giant sleep mutex is a temporary mutex used
to protect data structures in the kernel that are not
fully protected by another lock during the SMPng
transition. Giant has to not interfere with other
locks that are added. Thus, Giant has some unique
properties.

First, no lock is allowed to be held while acquiring
Giant. This ensures that other locks can always be
safely acquired whether or not Giant is held. This
in turn allows subsystems that have their own locks
to be called directly without Giant being held, and
to be called by other subsystems that still require
Giant.

Second, the Giant mutex is automatically released
by the sleep and condition variable wait func-
tion families before blocking and reacquired when
a thread resumes. Since the Giant mutex is reac-
quired before the interlock lock and no other mu-
texes may be held while blocked, this does not result
in any lock order reversals due to the first property.
There are lock order reversals between the Giant
mutex and locks held while a thread is blocked when
the thread is resumed, but these reversals are not
problematic since the Giant mutex is dropped when
blocking on such locks.

6.2 Avoid Recursing on Exclusive Locks

A lock acquire is recursive if the thread trying to
acquire the lock already holds the lock. If the lock is



recursive, then the acquire will succeed. A recursed
lock must be released by the owning thread the same
number of times it has been acquired before it is
fully released.

When an exclusive lock is acquired, the holder usu-
ally assumes that it has exclusive access to the ob-
ject the lock protects. Unfortunately, recursive locks
can break this assumption in some cases. Suppose
we have a function F1 that uses a recursive lock
L to protect object O. If function F2 acquires lock
L, modifies object O so that is in an inconsistent
state, and calls F1, F1 will recursively acquire L1
and falsely assume that O is in a consistent state.

One way of preventing this bug from going unde-
tected is to use a non-recursive lock. Lock assertions
can be placed in internal functions to ensure that
calling functions obtain the necessary locks. This
allows one to develop a locking protocol whereby
callers of certain functions must obtain locks before
calling the functions This must be balanced, how-
ever, with a desire to not require users of a public
interface to acquire locks private to the subsystem.

For example, suppose a certain subsystem has a
function G that is a public function called from
other functions outside of this subsystem. Suppose
that G is also called by other functions within the
subsystem. Now there is a tradeoff involved. If you
use assertions to require a lock to be held when G is
called, then functions from other subsystems have
to be aware of the lock in question. If, on the other
hand, you allow recursion to make the interface to
the subsystem cleaner, you can potentially allow the
problem described above.

A compromise is to use a recursive lock, but to limit
the places where recursion is allowed. This can be
done by asserting that an acquired lock is not re-
cursed just after acquiring it in places where recur-
sion is not needed. However, if a lock is widely used,
then it may be difficult to ensure that all places that
acquire the lock make the proper assertions and that
all places that the lock may be recursively acquired
are safe.

An example of the first method is used with the
psignal function. This function posts a signal to a
process. The process has to be locked by the per-
process lock during this operation. Since psignal is
called from several places even including a few de-
vice drivers, it was desirable to acquire the lock in
psignal itself. However, in other places such as sig-

naling a parent process with SIGCHLD during process
exit, several operations need to be performed while
holding the process lock. This resulted in recurs-
ing on the process lock. Due to the wide use of the
process lock, it was determined that the lock should
remain non-recursive. Thus, psignal asserts that
a process being signaled is locked, and callers are
required to lock the process explicitly.

Currently in FreeBSD, mutexes are not recursive by
default. A mutex can be made recursive by passing
a flag to mtx init. Exclusive sx locks never allow
recursion, but shared sx locks always allow recur-
sion. If a thread attempts to recursively lock a non-
recursive lock, the kernel will panic reporting the
file and line number of the offending lock operation.

6.3 Avoid Holding Exclusive Locks for
Long Periods of Time

Exclusive locks reduce concurrency and should be
held for as short a time as possible. Since a thread
can block for an indeterminate amount of time, it
follows that exclusive locks should not be held by a
blocked thread when possible. Locks that should be
held by a blocked thread are protecting data struc-
tures already protected in the pre-SMPng kernel.
Thus, only locks present prior to SMPng should be
held by a blocked thread, but new locks should not
be held while blocked. The existing locks should be
sufficient to cover the cases when an object needs to
be locked by a blocked thread. An example of this
type of lock would be a lock associated with a file’s
contents.

Functions that block such as the sleep and cv wait
families of functions should not be called with any
locks held. Exceptions to this rule are the Giant
lock, the optional interlock lock passed to the func-
tion, and locks that can be held by a blocked thread.
Since these functions only release the interlock once,
they should not be called with the interlock recur-
sively acquired.

Note that it is better to hold a lock for a short period
of time when it is not needed than to drop the lock
only to reacquire it. Otherwise, the thread may have
to block when it tries to reacquire the lock. For
example, suppose lock L protects two lists A and B
and that the objects on the lists do not need locks
since they only have one reference at a time. Then,
a section of code may want to remove an object from



list A, set a flag in the object, and store the object
on list B. The operation of setting the flag does not
require a lock due to the nature of the object, thus
the code could drop the lock around that operation.
However, since the operations to drop and acquire
the lock are more expensive than the operation to
set a flag, it is better to lock L, remove an object
from list A, set the flag in the object, put the object
on list B, and then release the lock.

6.4 Use Sleep Mutexes Rather Than
Spin Mutexes

As described earlier, spin mutexes block interrupts
while they are held. Thus, holding spin mutexes
can increase interrupt latency and should be avoided
when possible. Sleep mutexes require a context in
case they block, however, so sleep mutexes may not
be used in interrupt handlers that do not run in a
thread context. Instead, these handlers must use
spin mutexes. Spin mutexes may also need to be
used in non-interrupt contexts or in threaded inter-
rupt handlers to protect data structures shared with
non-threaded interrupt handlers. All other mutexes
should be sleep mutexes to avoid increasing inter-
rupt latency. Also note that since locking a sleep
mutex may potentially block, a sleep mutex may not
be acquired while holding a spin mutex. Unlock-
ing a contested sleep mutex may result in switch-
ing to a higher priority thread that was waiting on
the mutex. Since we cannot switch while holding a
spin mutex, this potential switch must be disabled
by passing the MTX NOSWITCH flag when releasing a
sleep mutex while holding a spin mutex.

6.5 Lock Both Reads and Writes

Data objects protected by locks must be protected
for both reads and writes. Specifically, if a data ob-
ject needs to be locked when writing to the object,
it also needs to be locked when reading from the
object. However, a read lock does not have to be
as strong as a write lock. A read lock simply needs
to ensure that the data it is reading is coherent and
up to date. Memory barriers within the locks guar-
antee that the data is not stale. All that remains
for a read lock is that the lock block all writers un-
til it is released. A write lock, on the other hand,
must block all readers in addition to meeting the
requirements of a read lock. Note that a write lock
is always sufficient protection for reading.

Read locks and write locks can be implemented in
several ways. If an object is protected by a mutex,
then the mutex must be held for read and write
locks. If an object is protected by an sx lock, then a
shared lock is sufficient for reading, but an exclusive
lock is required for writing. If an object is protected
by multiple locks, then a read lock of at least one of
the locks is sufficient for reading, but a write lock
of all locks is required for writing.

An example of this method is the pointer to the par-
ent process within a process structure. This pointer
is protected by both the proctree lock sx lock and
the per-process mutex. Thus, to read the parent
process pointer, one only needs to either grab a
shared or exclusive lock of the proctree lock or
lock the process structure itself. However, to set the
parent process pointer, both locks must be locked
exclusively. Thus, the inferior function asserts
that the proctree lock is locked while it walks up
the process tree seeing if a specified process is a
child of the current process, while psignal simply
needs to lock the child process to read the parent
process pointer while posting SIGCHLD to the par-
ent. However, when re-parenting a process, both
the child process and the process tree must be ex-
clusively locked.

7 Diagnostic Tools

FreeBSD provides two tools that can be used to
ensure correct usage of locks. The tools are lock
assertions and a lock order verifier named witness.
To demonstrate these tools, we’ll provide code ex-
amples from a kernel module [Crash] and then ex-
plain how the tools can be used. The module works
by receiving events from a userland process via a
sysctl. The event is then handed off to a kernel
thread which performs the tasks associated with a
specific event.

Both of these tools are only enabled if the kernel
is compiled with support for them enabled. This
allows a kernel tuned for performance to avoid the
overhead of verifying the assertions while allowing
for a debug kernel used in development to perform
the extra checks. Currently both of these tools are
enabled by default, but they will be disabled when
the FreeBSD Project releases 5.0 for performance
reasons. If either tool detects a fatal problem, then
it will panic the kernel. If the kernel debugger is



compiled in, then the panic will drop into the kernel
debugger as well. For non-fatal problems, the tool
may drop into the kernel debugger if the debugger
is enabled and the tool is configured to do so.

7.1 Lock Assertions

Both mutexes and shared/exclusive locks provide
macros to assert that a lock is held at any given
point. For mutexes, one can assert that the current
thread either owns the lock or does not own the lock.
If the thread does own the lock, one can also assert
that the lock is either recursed or not recursed. For
shared/exclusive locks, one can assert that a lock is
either locked in either fashion. If an assertion fails,
then the kernel will panic and drop into the kernel
debugger if the debugger is enabled.

For example, in the crash kernel module, events 14
and 15 trigger false lock assertions. Event 14 asserts
that Giant is owned when it is not.

case 14:

mtx_assert(&Giant, MA_OWNED);

break;

When event 14 is triggered, the output on the kernel
console is:

crash: assert that Giant is locked

panic: mutex Giant not owned at crash.c:202

cpuid = 3; lapic.id = 03000000

Debugger("panic")

Stopped at Debugger+0x46: pushl %ebx

db>

Event 15 exclusively locks the sx lock foo and then
asserts that it is share locked.

case 15:

sx_xlock(&foo);

sx_assert(&foo, SX_SLOCKED);

sx_xunlock(&foo);

When event 15 is triggered, the output on the kernel
console is:

crash: assert that foo is slocked

while it is xlocked

panic: Lock (sx) foo exclusively locked

@ crash.c:206.

cpuid = 1; lapic = 01000000

Debugger("panic")

Stopped at Debugger+0x46: pushl %ebx

db>

7.2 Witness

Along with the mutex code and advice provided by
BSDi came a lock order verifier called witness. A
lock order verifier checks the order in which locks are
acquired against a specified lock order. If locks are
acquired out of order, than the code in question may
deadlock against other code which acquires locks in
the proper order. For the purposes of lock order, a
lock A is said to be acquired before lock B, if lock
B is acquired while holding lock A.

Witness does not use a static lock order, instead it
dynamically builds a tree of lock order relationships.
It starts with explicit lock orders hard-coded in the
source code. Once the system is up and running,
witness monitors lock acquires and releases to dy-
namically add new order relationships and report
violations of previously established lock orders. For
example, if a thread acquires lock B while holding
lock A, then witness will save the lock order rela-
tionship of A before B in its internal state. Later
on if another thread attempts to acquire lock B
while holding lock A, it will print a warning mes-
sage on the console and optionally drop into the
kernel debugger. The BSD/OS implementation only
worked with mutexes, but the FreeBSD Project has
extended it to work with shared/exclusive locks as
well.

Locks are grouped into classes based on their names.
Thus, witness will treat two different locks with the
same name as the same. If two locks with the same
name are acquired, witness will panic unless mul-
tiple acquires of locks of that name are explicitly
allowed. This is because witness can not check the
order in which locks of the same name are acquired.
The only lock group that witness currently allows
multiple acquires of member locks are process locks.
This is safe because process locks follow a defined
order of locking a child process before locking a par-
ent process.

The crash kernel module was originally written to
test witness on sx locks, thus it contains events to



violate lock orders to ensure that witness detects the
reversals. Event 2 locks the sx lock foo followed by
the the sx lock bar. Event 3 locks the sx lock bar
followed by the sx lock foo.

case 2:

sx_slock(&foo);

sx_slock(&bar);

sx_sunlock(&foo);

sx_sunlock(&bar);

break;

case 3:

sx_slock(&bar);

sx_slock(&foo);

sx_sunlock(&foo);

sx_sunlock(&bar);

break;

When event 2 is triggered followed by event 3, the
output on the kernel console is:

crash: foo then bar

crash: bar then foo

lock order reversal

1st 0xc335fce0 bar @ crash.c:142

2nd 0xc335fc80 foo @ crash.c:143

Debugger("witness_lock")

Stopped at Debugger+0x46: pushl %ebx

db>

Event 4 locks the sx lock bar, locks the sx lock foo,
and then locks the sx lock bar2. The locks bar and
bar2 both have the same name and thus belong to
the same lock group.

case 4:

sx_slock(&bar);

sx_slock(&foo);

sx_slock(&bar2);

sx_sunlock(&bar2);

sx_sunlock(&foo);

sx_sunlock(&bar);

break;

When event 4 is triggered, the output on the kernel
console is:

crash: bar then foo then bar

lock order reversa# l

1st 0xc3363ce0 bar @ crash.c:148

2nd 0xc3363c80 foo @ crash.c:149

3rd 0xc3363d40 bar @ crash.c:150

Debugger("witness_lock")

Stopped at Debugger+0x46: pushl %ebx

db>

Note that if there are actually three locks involved
in a reversal, all three are displayed. However, if two
locks are merely reversing a previously established
order, only the information about the two locks is
displayed.

In addition to performing checks, witness also adds
a new command to the kernel debugger. The com-
mand show locks [pid] displays the locks held by
a given thread. If a pid is not specified, then the
locks held by the current thread are displayed. For
example, after the panic in the previous example,
the output is:

db> show locks

shared (sx) foo (0xc3363c80) locked

@ crash.c:149

shared (sx) bar (0xc3363ce0) locked

@ crash.c:148

Sleep mutexes and sx locks are displayed in the or-
der they were acquired. If the thread is currently
executing on a CPU, then any spin locks held by
the current thread are displayed as well.

8 Conclusion

Multithreading a BSD kernel is not a trivial task.
However, it is a feasible task given the proper tools
and some guidelines to avoid the larger pitfalls.
Volunteers seeking to work on the SMPng Project
can check the SMPng Project web page [SMPng]
for the todo list. The FreeBSD SMP mailing list
(freebsd-smp@FreeBSD.org) is also available for
those wishing to discuss issues with other develop-
ers.

9 Acknowledgments

Thanks to The Weather Channel; Wind River Sys-
tems, Inc.; and Berkeley Software Design, Inc. for



funding some of the SMPng development as well
as this paper. Thanks also to BSDi for donat-
ing their SMP code from the BSD/OS 5.0 branch.
Special thanks are due to those who helped re-
view and critique this paper including Sam Leffler,
Robert Watson, and Peter Wemm. Finally, thanks
to all the contributors to the SMPng Project includ-
ing Jake Burkholder, Matt Dillon, Tor Egge, Ja-
son Evans, Brian Feldman, Andrew Gallatin, Greg
Lehey, Jonathan Lemon, Bosko Milekic, Mark Mur-
ray, Chuck Paterson, Alfred Perlstein, Doug Rab-
son, Robert Watson, Andrew Reiter, Dag-Erling
Smørgav, Seigo Tanimura, and Peter Wemm.

10 Availability

FreeBSD is an Open Source operating system li-
censed under the very liberal Berkeley-style license
[FreeBSD]. It is freely available from a world-wide
network of FTP servers. The SMPng work is being
done in the development branch and is not presently
in any released version of FreeBSD. It will debut in
FreeBSD 5.0. Installation snapshots for the develop-
ment versions of FreeBSD on the i386 architecture
can be found at

ftp://snapshots.jp.FreeBSD.org/ \
pub/FreeBSD/snapshots/i386

References

[Gallmeister95] Bill Gallmeister, POSIX.4 Pro-
gramming for the Real World, O’Reilly & As-
sociates, Inc. (1995) p. 134-146.

[Intel00] Intel Corporation, Intel IA-64 Architecture
Software Developer’s Manual Volume 1: IA-
64 Application Architecture, Intel Corporation
(2000).

[Mauro01] Jim Mauro and Richard McDougall, So-
laris Internals: Core Kernel Components, Sun
Microsystems Press (2001).

[McKusick96] Marshall Kirk McKusick, Keith
Bostic, Michael J. Karels, John S. Quarterman,
The Design and Implementation of the 4.4BSD
Operating System, Addison-Wesley Longman,
Inc. (1996) p. 91-92.

[Schimmel94] Curt Schimmel, UNIX Systems for
Modern Architectures: Symmetric Multipro-
cessing and Caching for Kernel Programmers,
Addison-Wesley Publishing Company (1994).

[Vahalia96] Uresh Vahalia, UNIX Internals: The
New Frontiers, Prentice-Hall, Inc. (1996).

[Atomic] Atomic, FreeBSD Kernel Developer’s
Manual, http://www.FreeBSD.org/cgi/ \
man.cgi?manpath=FreeBSD+5.0-current

[Crash] Crash Example Kernel Module,
http://people.FreeBSD.org/~jhb/ \
crash/crash.c

[FreeBSD] FreeBSD Project,
http://www.FreeBSD.org

[SMPng] FreeBSD SMPng Project,
http://www.FreeBSD.org/smp


