Improving the FreeBSD SMP implementation

Gregg Lehey
Nan Yang Computer Services Ltd.
PO Box 460
Echun@ SA 5153
grog@em s. com

11 September 2000

ABSTRACT

UNIX-derived operating systems ka trraditionally hae a amplistic approach to process
synchronization which is unsuited to multiprocessor applicatloitial FreeBSD SMP
support kept this approach by allowing only one process to ruerirekmode at an

time, and also blocked interrupts across multiple processors, causing seriously suboptimal
performance of 1/0 bound systenighis paper describes work done to remdhis bot-
tleneck. Itderives from work done on BSD/OS and has mpasimilarities with the ap-
proach taken in SunOS Synchronization is performed lmyutexes In general, mutees

attempt to block rather than to spin in cases where the likely wait time is long enough to
warrant a process switch. The issue of blocking interrupt handlers is addressed by attach-
ing a process context to the interrupt handlers.

This paper is a snapshot of @nk in progress. An up-to-date version igitable at
http://www.lemis.com/SMPng/

| ntroduction

A crucial issue in the design of an operating system is the manner in which it shares re-
sources such as mempgdata structures and processor tima.the UNIX model, the

main clients for resources are processes and interrupt handiiensupt handlers operate
completely in lernel space, primarily on behalf of the system. Processes normally run in
one of two different modes, user mode and kernel mode. User mode code is the code of
the program from which the process is detj and kernel mode code is part of thes-k

nel. Thisstructure gies rise to multiple potential conflicts.

Use of processor time

The most obvious demand a process or interrupt routine places on the system is that it
wants to run: it mustxecute instructions. The rulesg@ning this sharing are:

* There is only one processokll code runs on it.

* If both an interrupt handler and a process amdlable to run, the interrupt handler
runs.

* Interrupt handlers v dfferent priorities.If one interrupt handler is running and one
with a higher priority becomes runnable, the higher priority interrupt immediately pre-
empts the lower priority interrupt.

* The scheduler runs when a procestuntarily relinquishes the processais time
slice epires, or a higher-priority process becomes runnable. The scheduler chooses
the highest priority process which is ready to run.

* If the process is indenel mode when its time slice expires or a higher priority process
becomes runnable, the system waits until it returns to user mode or sleeps before run-
ning the scheduler.

This method works acceptably for the single processor machines for whics itev
signed. Inthe following section, we’ll see the reasoning behind the last decision.

Kernel data objects

The most obvious problem is access to memidpdern UNIX systems run witmemo-
ry protection which prevents processes in user mode from accessing the address space of
other processesThis protection no longer applies in kernel mode: all processes share the
kernel address space, andythieed to access data shared between all proceSeeesx-
ample, thef or k() system call needs to allocateomoc structure for the rve process.
The filesys/kern_fork.contains the following code:

i nt

forkl(pl, flags, procp)

struct proc *pl;

int flags;
struct proc **procp;

struct proc *p2, *pptr;

/* Allocate new proc. */
newproc = zal |l oc(proc_zone);

The functionzal | oc takes ast ruct proc entry of a freelist and returns its address:
item= z->zitenmns;
z->zitems = ((void **) item[0];

return item

What happens if the currentlxeeuting process is interrupted exactly between the first
two lines of the code abe, maybe because a higher priority process wants to run?

i t emcontains the pointer to the process structuezb>z i t ens still points to it. If

the interrupting code also allocates a process structure, it will go through the same code
and return a pointer to the same memory area, creating the procesteatjoi Siamese

twins.

UNIX solves this issue with the rule “The UNIX kernel is non-preewgti This means

that when a process is running in kernel mode, no other processecateekernel code
until the first process relinquishes the kerr@umtarily, either by returning to user mode,
or by sleeping.

Synchronizing processes and interrupts

The non-preemption rule only applies to processes. Interrupts happen independently of
process context, so a different method is neediedlevice dwers, the process conte

(“'top half”) and the interrupt context (“bottom half must share dataTwo separate is-

sues arise here:

Protection

Each half must protect its data against change by the otherHualéxample, the bffer
header structure contains a flags word with 32 flags, some set and reset by lesth halv
Setting and resetting bits requires multiple instructions on most architectures, so without
some kind of synchronization the data would be corrupted. UNIX performs this synchro-
nization by locking out interrupts during critical sectio®p half code mustelicitly

lock out interrupts with thepl functions! One of the most significant sources afb

in drivers is inadequate synchronization with the bottom half.

Interrupt code does not need to perforng gmecial synchronization: by definition, pro-
cesses dohtun when interrupt code is aodi

Blocking interrupts has a potential danger that an interrupt will not be serviced in a time-
ly fashion. OrPC hardware, this is particularlyident with serial 1/0, which frequently
generates an interrupt foveey character At 115200 bps, this equates to an interrupt
evay 85 ps. In the past, this haven rise to the dreaded siloverflows; esen on fast
modern hardware it can be a probleltis dso not easy to decide interrupt priorities: in
the early days, disk 1/0 waswvgn a high priority in order to @oid overruns, while serial

I/O had a lav priority. Nowadays disk controllers can handle transfers by therasehut
overuns are still a problem with serial 1/0.

Waiting for the other half

In other cases, a process will need to wait for soreetéo complete. The most vious
example is 1/0O: a process issues an 1/O request, and tree idhitiates the transfert can

be a long time before the transfer completes: sfréading leyboard input, for @ample,

it could be weeks before the 1/0 completes. When the transfer completes, it causes an in-
terrupt, so it the interrupt handler which finally determines that the transfer is complete
and notifies the proces$INIX performs this synchronization with the functiosiseep
andwakeup.? The top half of a dvier callss| eep ort sl eep when it wants to wait for

an event, and the bottom half calgakeup when the gent occurs. In more detalil,

1. The naming goes back to the early days of UNIX on the PDPFh&. PDP-11 had a reletly simplistic level-based interrupt
structure. Whenmunning at a specific Wel, only higher priority interrupts were alled. UNIX named functions for setting the
interrupt priority level after the PDP-1BPL instruction, so initially the functions had nhame£Bipl 4 andspl 7. Later machines
came out with interrupt masks, and BSD changed the names to more desceptes such aspl bi o (for block 1/0) and
spl hi gh (block out all interrupts).

2. FreeBSD no longer uss$ eep, having replaced it with sl eep, which offers additional functionality.

3

* The process issues a system cathd, which brings it into kernel mode.
¢ 1 ead locates the dvier for the device and calls it to initiate a transfer.

* read next callst sl eep, passing it the address of some unique object related to the
request.t sl eep stores the address in the proc structure, marks the process as sleep-
ing and relinquishes the processét this point, the process is sleeping.

* At some later point, when the request is complete, the interrupt handlexadefisp
with the address whichag passed tosl eep. wakeup runs through a list of sleep-
ing processes and wakes all processes waiting on this particular address.

This method has problemsen on sngle processors: the time take processes depends

on the number of sleeping processes, which is usually only slightly less than the number
of processes in the system. FreeBSD addresses this problem with 128 hashed sleep
gqueues, déctively diminishing the search time by actor of 128.A large system might

have 10,000 processes running at the same time, so this is only a partial solution.

In addition, it is permissible for more than one processdib @n a specific addresn
extreme cases dozens of processes wait on a specific additemslybone will be able to
run when the resource becomeailable; the rest cali s| eep again. Thetermthunder-
ing hode has been devised to describe this situatiereeBSD has partially solved this
issue with thavakeup_one function, which only vakes the first process it findS his
still involves a linear search through a possibly large number of process structures.

Adapting the UNIX model to SMP

A number of the basic assumptions of this model no longer apply to &lBthers be-
come more of a problem:

* More than one processor igadable. Codecan run in parallel.
* Interrupt handlers and user processes can run on different processors at the same time.

* The *non-preemptiori’rule is no longer sfitient to ensure that wvprocesses cat’
execute at the same time, so it would theoretically be possible toprivcesses to al-
locate the same memory.

* Locking out interrupts must happen wegy processor This can adversely affect per
formance.

Theinitial FreeBSD modéel

The original ersion of FreeBSD SMP support solved these problems in a manner de-
signed for reliability rather than performancefeefively it found a method to simulate

the single-processor paradigm on multiple process8gsecifically only one process
could run in the &rnel at ap one time. The system ensured this with a spinlock, the so-
called Big Kernel Lo& (BKL), which ensured that only one processor could be in the
kernel at a time.On entry to the kernel, each processor attempted to get the BKL. If an-
other processor waseeuting in kernel mode, the other processor performiaaby wait

4

until the lock became free:

MPget | ock_edx:

1:

novl (%dx), Y%eax /* Get current contents of |ock */
nmovl Y%eax, %ecx

and| $CPU_FI ELD, %ecx

cnpl _cpu_| ocki d, %ecx /* Do we already own the | ock? */
j ne 2f

i ncl Yeax /* yes, just bunp the count */
nmovl %ax, (%edx) /* serialization not required */
ret

nmov| $FREE_LOCK, %eax /* lock nust be free */

nmovl _cpu_l ockid, %cx

i ncl %ecx

| ock

cnpxchg %ecx, (%edx) /* attenpt to replace %ax<->%cx */
j ne

GRAB_HW /* 1st acquire, grab hw INTs */

ret

In an extreme case, this waiting couldydele SMP performance to belthat of a single
processor machine.

How to solve the dilemma

Multiple processor machinesveleen around for a long time, since before UNIXsw
written. Duringthis time, a number of solutions to this kind of problemehbeen de-
vised. Theproblem was less to find a solution than to find a solution whadafit in
the UNIX ervironment. Atleast the following synchronization prinwés havebeen used
in the past:

Counting semaphes were originally designed to share a certain number of resources
amongst potentially more consumer$o get access, a consumer decrements the
semaphore counteand when it is finished it increments itag. If the semaphore
counter goes mgtive, the process is placed orskeep queuelf it goes from -1 to 0,

the first process on the sleep queue isvatetl. Thisapproach is a possible alterna-
tive o t sl eep andwakeup synchronization. Irparticular it avoids a lengtl se-
guential search of sleeping processes.

SunOS 5 useturnstiles to address the sequential search problerhsheep and
wakeup synchronization. Aurnstile is a separate queue associated with a specific
wait address, so the need for a sequential search disappears.

Spin loks have dready been mentioned. FreeBSD used to spin indefinitely on the
BKL, which doesnt make any ®nse, but theare useful in cases where the wait is
short; a longer wait will result in a process being suspended and subsequently
rescheduled. Ithe arerage vait for a resource is less than this time, then itesak
sense to spin instead.

Blocking loks are the alternate © pin locks when the wait is likely to be longer
than it would tak to reschedule. Aypical implementation is similar to a counting
semaphore with a count of 1.

* Condition variablesare a kind of blocking lock where the lock is based on a condi-
tion, for example the absence of entries in a queue.

* Read/write loks address a dérent issue: frequently multiple processes may read
specific data in parallel, but only one may write it.

There is some confusion in terminology with these locking pwesiti In particular the
term mutex has been applied to nearly all of them at different tim&gll ook at hev
FreeBSD uses the term in the next section.

One big problem with all locking primites with the exception of spin locks is that yhe
can block. This requires a process context: an interrupt handleét@k. Thisis one
of the reasons that the old BGlasva spinlock,en though it could potentially use up
most of processor time spinning.

The new FreeBSD implementation

The nev implementation of SMP on FreeBSD bases heavily on the implementation in
BSD/OS 5.0, which has not yet been releadéden the namé&MPng (“new genera-

tion”) was taken from BSD/OS. Due to the open source nature of FreeBSD, SMPng is
available on FreeBSD before on BSD/OS.

The most radical diérence in SMPng is that interrupt lockout prineti (spl foo) have
been remeed. Thelow-level interrupt code still needs to block interrupts bridiiyt the
interrupt service routines themselves run with interrupts enabled. Instead of locking out
interrupts, the system uses nxg® which may be either spin locks or blocking locks.

| nterrupt threads

The use of blocking locks requires a process context, so interruptsvarigandled as
threads. Thenitial implementation is very similar to normal processes, with theviello
ing differences:

* Interrupt processes run in their own scheduling class, which is scheduled ahead of the
other three classes which FreeBSD supplies.

* An additional process sta\Al T has been introduced for interrupt processes which
are currently idle: the normdldle’’ state isSSLEEP, which implies that the process
is sleeping.

The current implementation imposes a schedulirgh@ad which decreases performance
significantly but it is relatvely stable. In the month up to the time when this papes w
submitted, we ha ®en no stability problems with the implementatidxt. a later date,

but before release, we will reimplement interrupt threads in a manner similar to the
BSD/OS implementation. This lightweight theads implementation iwolves lazy
schedulingof the interrupt thread: since normally interrupts interrupt processes and not
other interrupts, and since ththus normally run at a higher priorithey can take @on-

trol of the processor directlyThey only need to be scheduled if theaveto block. The
situation becomes significantly more complicated if interrupts occur while an interrupt

6

handler is running, in particular gading relatve interrupt priorities. As a result we
have decided to do the implementation inadweps, particularly after reports okpeeri-
ence with BSD/OS, which implemented light-weight threads directly.

Not all interrupts hee been changed to threaded interrupts. In partictharoldfast in-
terrupts remain relatrely unchanged, with the restriction that yhmay not use an
blocking mutaes. Fast interrupts hae typically been used for the serial\dis.

M utexes
The mute implementation defines twbasic types of mutex:

* The default muteis the spin/sleep mute If the process cannot obtain the mutex, it is
placed on a sleep queue anoken when the resource becomeailable. Thisis sim-
ilar in concept to semaphores, but the implementation allows spinning for a certain pe-
riod of time if this appears to be of benefit (in other words, if it eyikhat the mute
will become free in less time than it would ¢atk schedule another process). It also
allows the user to specify that the mushouldnot spin.

* Alternatively, a mutex may be defined asspin mut&. In this case, it will neer sleep.
Effectively, this is the spin lock which was already present in the system.

The mute implementation was derd dmost directly from BSD/OS.

Removing the Big Kernel Lock

These modifications made it possible to reenthe Big Kernel Lock. The current imple-
mentation has replaced it withawnutexes:

* @ ant is used in a similar manner to the BKL, but it is a blocking suteurrently
it protects all entry to the kernel, including interrupt handlénsorder to be able to
block, it must allav scheduling to continue.

* sched_I ock is a spin lock which protects the scheduler queues.

This combination of locks supplies the bare minimum of locks necessary to buildvhe ne
framework. Initself, it does not impne the performance of the system, since processes
still block on Giant.

| dle processes

The planned light-weight interrupt threads need a processxtamtader to vork. Inthe
traditional UNIX kernel, there is notvadlys a process context: the pointerr pr oc can
be NULL. SMPng solves this problem by having &le processwhich runs when no
other process is avét.

Other features

In addition to the basic changes afoa rumber of debugging aids were ported from
BSD/OS:

* Thektr package provides a method of tracing kerwvehts. For example, the func-
tion sched_i t hd, which schedules the interrupt threads, contains thewfwitp
code:

CTR3(KTR_I NTR, "sched_ithd pid %(%) need=%l",
ir->it_proc->p_pid, ir->it_proc->p_conm ir->it_need);

if (ir->t_proc->p_stat == SWAIT) { /* not on run queue */
CTR1(KTR_I NTR, "sched_ithd: setrunqueue %",
ir->it_proc->p_pid);

The functioni t hd_I| oop, which runs the interrupt in process cotifecontains the
following code at the beginning and end of the main loop:
for (;;) {
CTR3(KTR_INTR, "ithd_l oop pid %d(%) need=%d"
me->it_proc->p_pid, me->it_proc->p_conm nme->it_need);
CTRL(KTR_INTR, "ithd_l oop pid %d: done"
ne->it_proc->p_pid);
m _switch();

CTRL(KTR_INTR, "ithd_loop pid %: resunmed"
me->it_proc->p_pid);

The callsCTR1 andCTR3 are two macros which only compile grkind of code when

the kernel is built with th&TR kernel option. If the krnel contains this option and
the BIT KTR_I NTR is set in the ariable kt r _nmask, then these wents will be
masled to a circular wffer in the lkernel. Currentlygdb macros are\ailable to de-
code them, giving a relatly useful means of tracing the interaction between process-
es:

2791 968643993: 219224100 cpul ../../i386/isalithread.c: 214
ithd_| oop pid 21 i h=0xc235f200: 0xc0324d98(0) fl g=100

2790 968643993: 219214043 cpul ../../i386/isalithread.c: 197
ithd_|l oop pid 21(irq0: clk) need=1

2789 968643993: 219205383 cpul ../../i386/isalithread.c:243
ithd_loop pid 21: resuned

2788 968643993: 219190856 cpul ../../i386/isalithread.c: 158
sched_i thd: setrunqueue 21

2787 968643993: 219179402 cpul ../../i386/isalithread.c: 120
sched_ithd pid 21(irq0: clk) need=0

The lines here are too wide for the paser hey are shavn wrapped as twlines.
This example traces the amii and processing of a clock interrupt on the i386 plat-
form, in reverse chronological orderThe number at the beginning of the line is the
trace entry number.

* Entry 2787 shows the avdl of an interrupt at the beginning afched_i t hd.
The second alue on the trace line is the time since the epoch, followed by the
CPU number and the file name and line num@dre remaining values are sup-
plied by the program to th&TR3 function.

* Entry 2788 shas the second trace callgthed_i t hd, where the interrupt han-
dler is placed on the run queue.

* Entry 2789 shows the entry into the main loop bhd_I| oop.
* Entries 2790 and 2791 shidhe exit from the main loop aft hd_| oop.

* Thewitnesscode was designed specifically to dgbmutex code. Atpresent it is not
greatly needed, since there is little scope for deadlockydsed on the BSD/OS-e
perience we expect it will be of great use in the future.

Thefuture

With this nev basic structure in place, implementation of finer grained locking can pro-
ceed. Gianwill remain as a lgacy locking mechanism for code which has not been con-
verted to the ne locking mechanism.For example, the main loop of the function
i t hd_| oop, which runs an interrupt handjeontains the following code:
if ((ih->flags & | NTR MPSAFE) == 0)
nt x_enter (&G ant, MIX_DEF);
i h->handl er (i h->ar gunent) ;

if ((ih->flags & | NTR_MPSAFE) == 0)
ntx_exit (&G ant, MIX_DEF);

The flagl NTR_MPSAFE indicates that the interrupt handler has its own synchronization
primitives.

A typical strategy planned for migrating devicevdrs involves the following steps:

* Add a mute to the drver sof t c.

* Set thd NTR_MPSAFE flag when registering the interrupt.

* Obtain the mute in the same kind of situation where previouslysgl was used.
Unlike spl s, havever, the interrupt handlers must also obtain the mifore ac-
cessing shared data structures.

Probably the most difficult part of the process willdive larger components of the sys-
tem, such as the file system and the networking st&ék. have the example of the
BSD/OS code, but & aurrently not clear that this is the best path to fello

Bibliography

Per Brinch HanserQperating System Principle$rentice-Hall, 1973.

Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, John S. Quartermba,De-
sign and Implementation of the 4.4BSD Operating Sy#edison-Weslg 1996.

Uresh VahaliaUNIX Internals Prentice-Hall, 1996.

Greg L ehey: short biography

Greg Lehe is an ndependent computer consultant specializing in UNIX. Born in Mel-
bourne, Australia, he was educated in Malaysia, Geyraad England. He returned to
Australia in 1997 after spending most of his professional career in Germiaere he
worked for computer mana€turers such as Umic, Tandem, and Siemens-Nixdorf, the
German space research agemameless software houses and a large user and finally for
himself as a consultant. In the course of more than 25 years in the industry he-has per
formed most jobs, ranging from kernelvd®pment to product maeking, from systems
programming to operating, from processing satellite data to programming petrol pumps,
from the production of CD-ROMs of ported free software to DSP instruction set design.
He is also a member of thgeeutive ommittee of the AUUG and the author &#orting

UNIX Software’ (O’Reilly and Associates, 1995), “Installing and Running FreeBSD’
(Walnut Creek, 1996), andThe Complete FreeBSD(Walnut Creek, 1997—1999).
About the only thing he hadrdone is writing commercial applications sofing. Bravse

his home page &ittp://www.lemis.com/"gg/.

When he can drag himselivay from his collection of old UNIX hardware, he ivalved

in performing baroque and classical woodwind music on his collection of original instru-
ments, exploring the Australian countryside with his family on their Arabian horses, or
exploring nav cookery techniques or ancient and obscure European languages.

10

