
Linux System Administrator's Guide 0.3

Linux System Administrator's Guide 0.3Lars Wirzenius

The Linux Documentation Project

This is version 0.3 of the Linux System Administrators' Guide.Published August 6, 1995.The LATEX source code and other machine readable formats can be found on the Inter-net via anonymous ftp on sunsite.unc.edu, in the directory /pub/Linux/docs/LDP.Also available are Postscript and TEX .DVI formats, and possibly a plain text version(to be released after the other formats). HTML versions may also be forthcoming.Copyright c 1993, 1995 Lars Wirzenius.Hernesaarenkatu 15 A 2, Fin-00150 Helsinki, Finland, lars.wirzenius@helsinki.fi.UNIX is a trademark of Novell, Inc. Linux is not a trademark, and has no connectionto UNIXTM or Novell.Permission is granted to make and distribute verbatim copies of this manual provided the copyright noticeand this permission notice are preserved on all copies.Permission is granted to process the document source code through TEX or other formatters and print theresults, provided the printed document carries copying permission notice identical to this one.Permission is granted to copy and distribute modi�ed versions of this manual under the conditions for ver-batim copying, provided that the entire resulting derived work is distributed under the terms of a permissionnotice identical to this one.Permission is granted to copy and distribute translations of this manual into another language, under theabove conditions for modi�ed versions, except that this permission notice may be stated in a translationapproved by the Free Software Foundation.The Free Software Foundation may be contacted at:59 Temple Place Suite 330Boston, MA 02111-1307 USAThe appendices not written by Lars Wirzenius are copyrighted by their authors, and can be copied anddistributed only in unmodi�ed form.The author would appreciate a noti�cation of modi�cations, translations, and printed versions. Thank you.

This page is dedicated to a future dedication.

Contents1 Introduction 51.1 The Linux Documentation Project : : : : : : : : : : : : : : : : : : : 82 Overview of a Linux System 92.1 Various parts of an operating system : : : : : : : : : : : : : : : : : : 92.2 Important parts of the kernel : 102.3 Major services in a UNIX system : 112.4 The �lesystem layout : 153 Boots And Shutdowns 173.1 An overview of boots and shutdowns : : : : : : : : : : : : : : : : : : 173.2 The boot process in closer look : 183.3 More about shutdowns : 213.4 Rebooting : 223.5 Single user mode : 233.6 Emergency boot oppies : 234 Using Disks and Other Storage Media 254.1 Two kinds of devices : 264.2 Hard disks : 274.3 Floppies : 304.4 Formatting : 31i

ii CONTENTS4.5 Partitions : 334.6 Filesystems : 374.7 Disks without �lesystems : 474.8 Allocating disk space : 485 Directory Tree Overview 535.1 Background : 535.2 The root �lesystem : 555.3 The /usr �lesystem : 595.4 The /var �lesystem : 605.5 The /proc �lesystem : 616 Memory Management 636.1 What is virtual memory? : 636.2 Creating a swap area : 646.3 Using a swap area : 656.4 Sharing swap areas with other operating systems : : : : : : : : : : : 666.5 Allocating swap space : 676.6 The bu�er cache : 687 Logging In And Out 717.1 Logins via terminals : 717.2 Logins via the network : 727.3 What login does : 737.4 X and xdm : 747.5 Access control : 747.6 Shell startup : 75A Design and Implementation of the Second Extended Filesystem 77A.1 History of Linux �lesystems : 78

CONTENTS iiiA.2 Basic File System Concepts : 79A.3 The Virtual File System : 82A.4 The Second Extended File System : 83A.5 The Ext2fs library : 88A.6 The Ext2fs tools : 89A.7 Performance Measurements : 91A.8 Conclusion : 93B Measuring Holes 97C The Linux Device List 99C.1 Introduction : 99C.2 Major numbers : 100C.3 Minor numbers : 101C.4 Additional /dev directory entries : 115

iv CONTENTS

Introduction to the ALPHAVersions In the beginning, the �le was without form, and void; andemptiness was upon the face of the bits. And the Fingers ofthe Author moved upon the face of the keyboard. And the Authorsaid, Let there be words, and there were words.This is an ALPHA version of the Linux System Administrators' Guide. That meansthat I don't even pretend it contains anything useful, or that anything containedwithin it is factually correct. In fact, if you believe anything that I say in this version,and you are hurt because of it, I will cruelly laugh at your face if you complain.Well, almost. I won't laugh, but I also will not consider myself responsible foranything.The purpose of an ALPHA version is to get the stu� out so that other people canlook at it and comment on it. The latter part is the important one: Unless the authorgets feedback, the ALPHA version isn't doing anything good. Therefore, if you readthis `book', please, please, please let me hear your opinion about it. I don't carewhether you think it is good or bad, I want you to tell me about it.If at all possible, you should mail your comments directly to me, otherwise thereis a largish chance I will miss them. If you want to discuss things in public (on oneof the comp.os.linux newsgroups or the mailing list), that is ok by me, but pleasesend a copy via mail directly to me as well.I do not much care about the format in which you send your comments, but it isessential that you clearly indicate what part of my text you are commenting on.I can be contacted at the following e-mail addresses:lars.wirzenius@helsinki.fi 1

2 CONTENTSwirzeniu@cc.helsinki.fiwirzeniu@cs.helsinki.fiwirzeniu@kruuna.helsinki.fiwirzeniu@hydra.helsinki.fi(they're all actually the same account, but I give all these, just in case there is someweird problem).This text contains a lot of notes that I have inserted as notes to myself. They areidenti�ed with \META: ". They indicate things that need to be worked on, that aremissing, that are wrong, or something like that. They are mostly for my own bene�tand for your amusement, they are not things that I am hoping someone else will writefor me.If you think that this version of the manual is missing a lot, you are right. I amincluding only those chapters that are at least half �nished. New chapters will bereleased as they are written.

CONTENTS 3The LDP Rhyme1A wondrous thing,and beautiful,'tis to write,a book.I'd like to sing,of the sweat,the blood and tear,which it also took.It started back in,nineteen-ninety-two,when users whined,"we can nothing do!"They wanted to know,what their problem was,and how to �x it(by yesterday).We put the answers in,a Linux f-a-q,hoped to get away,from any more writin'."That's too long,it's hard to search,and we don't read it,any-which-way!"Then a few of us,joined toghether(virtually, you know),to start the LDP.
1The author wishes to remain anonymous. It wasposted to the LDP mailing list by Matt Welsh.

We started to write,or plan, at least,several books,one for every need.The start was fun,a lot of talk,an outline,then a slew.Then silence came,the work began,some wrote less,others more.A blank screen,oh its horrible,it sits there,laughs in the face.We still await,the �nal day,when everything,will be done.Until then,all we have,is a draft,for you to comment on.

4 CONTENTS

Chapter 1Introduction I pride myself on the fact that my work hasno socially redeeming value.(John Waters)This manual, the Linux System Administrators' Guide, describes the system admin-istration aspects of using Linux. It is intended for people who know next to nothingabout system administration (as in \what is it?"), but who have already mastered atleast the basics of normal usage, which means roughly the material covered by theLinux Users' Guide. This manual also doesn't tell you how to install Linux; that isdescribed in the Installation and Getting Started document. There is some overlapbetween all the Linux Documentation Project manuals, but they all look at thingsfrom slightly di�erent angles. See below for more information about Linux manuals.What, then, is system administration? It is all the things that one has to do tokeep a computer system in a useable shape. Things like backing up �les (and restoringthem if necessary), installing new programs, creating accounts for users (and deletingthem when no longer needed), making certain that the �lesystem is not corrupted,and so on. If a computer were, say, a house, system administration would be calledmaintenance, and would include cleaning, �xing broken windows, and other suchthings. System administration is not called maintenance, because that would be toosimple. 1The structure of this manual is such that many of the chapters should be usableindependently, so that if you need information about, say, backups, you can read just1There are some people who do call it that, but that's just because they have never read this manual, poor things.5

6 Chapter 1. Introductionthat chapter.2 This hopefully makes the book easier to use as a reference manual, andmakes it possible to read just a small part when needed, instead of having to readeverything. However, this manual is �rst and foremost a tutorial, and a referencemanual only as a lucky coincidence.This manual is not intended to be used completely by itself. Plenty of the rest of theLinux documentation is also important for system administrators. After all, a systemadministrator is just a user with special privileges and duties. A very importantresource is the man pages, which should always be consulted when a command is notfamiliar.While this manual is targeted at Linux, a general principle has been that it shouldbe useful with other UNIX based operating systems as well. Unfortunately, sincethere is so much variance between di�erent versions of UNIX in general, and in systemadministration in particular, there is little hope to cover all variants. Even coveringall possibilities for Linux is di�cult, due to the nature of its development. Thereis no one o�cial Linux distribution, so di�erent people have di�erent setups, manypeople have a setup they have built up themselves. When possible, I have tried topoint out di�erences, and explain several alternatives. In order to cater to the hackersand DIY types that form the driving force behind Linux development, I have tried todescribe how things work, rather than just listing \�ve easy steps" for each task. Thismeans that there is much information here that is not necessary for everyone, butthose parts are marked as such and can be skipped if you use a precon�gured system.Reading everything will, naturally, increase your understanding of the system andshould make using and administering it more pleasant.Like all other Linux related development, the work was done on a volunteer basis: Idid it because I thought it might be fun and because I felt it should be done. However,like all volunteer work, there is a limit to how much e�ort I have been able to spend,and also on how much knowledge and experience I have. This means that the manualis not necessarily as good as it would be if a wizard had been paid handsomely towrite it and had spent a few years to perfect it. I think, of course, that it is prettynice, but be warned.One particular point where I have cut corners is that I have not covered verythoroughly many things that are already well documented in other freely availablemanuals. This applies especially to program speci�c documentation, such as all thedetails of using mkfs(8). I only describe the purpose of the program, and as much2If you happen to be reading a version that has a chapter on backups, that is.

7of its usage as is necessary for the purposes of this manual. For further informa-tion, I refer the gentle reader to these other manuals. Usually, all of the referred todocumentation is part of the full Linux documentation set.While I have tried to make this manual as good as possible, I would really liketo hear from you if you have any ideas on how to make it better. Bad language,factual errors, ideas for new areas to cover, rewritten sections, information about howvarious UNIX versions do things, I am interested in all of it. You can contact me viaelectronic mail with the Internet domain address lars.wirzenius@helsinki.fi, orby traditional paper mail using the addressLars Wirzenius / Linux docsHernesaarentie 15 A 200150 HelsinkiFinlandMany people have helped me with this book, directly or indirectly. I would liketo especially thank Matt Welsh for inspiration and LDP leadership, Andy Oramfor igniting an almost dead spark again with much-valued feedback, Olaf Kirch forshowing me that it can be done, and Adam Richter at Yggdrasil and others forshowing me that other people can �nd it interesting as well.H. Peter Anvin, R�emy Card, Theodore Ts'o, and Stephen Tweedie have let meborrow their work (and thus make the book look thicker and much more impressive).I am most grateful for this, and very apologetic for the earlier versions that sometimeslacked proper attribution. Stephen Tweedie also let me borrow his comparison of thexia and ext2 �lesystems, but that has since been dropped, since xia is no longer verypopular.In addition, I would like to thank Mark Komarinski for sending his material in1993 and the many system administration columns in Linux Journal. They are quiteinformative.Thanks to Erik Troan at Red Hat, for promising to make a plain text version ofthis book available.3A minor accusation goes to Linus Torvalds for writing the damn system to writeabout in the �rst place. That applies for the rest of /usr/src/linux/CREDITS aswell. Be ashamed, be ver ashamed.Many useful comments have been sent by a large number of people. My miniatureblack hole of an archive doesn't let me �nd all their names, but some of them are in3Erik, you can color yourself pressurized.

8 Chapter 1. Introductionalphabetical order: Paul Caprioli, Ales Cepek, Marie-France Declerfayt, Olaf Flebbe,Helmut Geyer, Larry Green�eld and his father, Stephen Harris, Jyrki Havia, JimHaynes, York Lam, Timothy Andrew Lister, Jim Lynch, Dan Poirier, Daniel Quinlan,Philippe Steindl. My apologies to anyone I have forgotten.1.1 The Linux Documentation ProjectThe Linux Documentation Project, or LDP, is a loose team of writers, proofreaders,and editors who are working together to provide complete documentation for theLinux operating system. The overall coordinator of the project is Matt Welsh, whois aided by Lars Wirzenius and Michael K. Johnson.This manual is one in a set of several being distributed by the LDP, including aLinux Users' Guide, System Administrators' Guide, Network Administrators' Guide,and Kernel Hackers' Guide. These manuals are all available in LATEX source format,.dvi format, and postscript output by anonymous FTP from sunsite.unc.edu, inthe directory /pub/Linux/docs/LDP, and from tsx-11.mit.edu, in the directory/pub/linux/docs/guides.We encourage anyone with a penchant for writing or editing to join us in improvingLinux documentation. If you have Internet e-mail access, you can contact Matt Welshat mdw@sunsite.unc.edu.

Chapter 2Overview of a Linux SystemA quote is needed.This chapter gives an overivew of a Linux system. First, the major services providedby the operating system are described. Then, the programs that implement theseservices are described with a considerable lack of detail. The purpose of this chapteris to give an understanding of the system as a whole, so each part is described indetail elsewhere.2.1 Various parts of an operating systemA UNIX operating system consists of a kernel and some system programs. Therealso some application programs for doing work. The kernel is the heart of theoperating system1. It keeps track of �les on the disk, starts programs and multiplexesthe processor and other hardware between them to provide multitasking, assignsmemory and other resources to various processes, receives packets from and sendspackets to the network, and so on. The kernel does very little by itself, but it providestools with which all services can be built. It also prevents anyone from accessing thehardware directly, forcing everyone to use the tools it provides. This way the kernelcan control who gets to do what and can provide some protection for users from eachother. The tools provided by the kernel are used via system calls; see manual pagesection 2 for more information on these.The system programs use the tools provided by the kernel to implement the var-1In fact, it is often mistakenly considered to be the operating system itself, but it is not. An operating systemprovides many more services than a plain kernel. 9

10 Chapter 2. Overview of a Linux Systemious services required from an operating system. System programs, and all otherprograms, run `on top of the kernel', in what is called the user mode. The di�erencebetween system and application programs is one of intent: applications are intendedfor getting useful things done (or for playing, if it happens to be a game), whereassystem programs are needed to get the system working. A word processor is anapplication; telnet is a system program. The di�erence is often somewhat blurry,however, and is important only to compulsive categorizers.An operating system can also contain compilers and their corresponding libraries(GCC and the C library in particular under Linux), although not all programminglanguages need be part of the operating system. Documentation, and sometimes evengames, can also be part of it. Traditionally, the oeprating system has been de�nedby the contents of the installation tape or disks; with Linux it is not as clear sincethe stupid thing is spread all over the FTP sites of the world.2.2 Important parts of the kernelThe Linux kernel consists of several important parts: process management, memorymanagement, hardware device drivers, �lesystem drivers, network management, andvarious other bits and pieces. Figure 2.1 shows some of them.Probably the most important parts of the kernel (nothing else works without them)are the memory management and the process management. Memory managementtakes care of assigning memory areas and swap space areas to processes, parts ofthe kernel, and for the bu�er cache. Process management creates processes, andimplements the multitasking by switching the active process on the processor.At the lowest level, the kernel contains a hardware device driver for each kindof hardware it supports. Since the world is full of di�erent kinds of hardware, thenumber of hardware device drivers is large. There are often many otherwise similarpieces of hardware that di�er in how they are controlled by software. The similaritiesmake it possible to have general classes of drivers that support similar operations;each member of the class has the same interface to the rest of the kernel but di�ersin what it needs to do to implement them. For example, all hard disk drivers lookalike to the rest of the kernel, i.e., they all have operations like `initialize the drive',`read sector N', and `write sector N'.Some software services provided by the kernel itself have similar properties. Forexample, the various network protocols have been abstracted into one programminginterface, the BSD socket library. Another example are the various �lesystems Linux

2.3. Major services in a UNIX system 11
System call interface

Virtual filesystem

management

IDE harddisk

driver

Floppy diskIDE hard disk

Various filesystem

drivers

Floppy disk

driver

Memory

manager

Process

manager

Ethernet card

Abstract network

services (sockets)

TCP/IP protocol

drivers

Ethernet card

driver

Hardware

Kernel

Normal programs

Kernel

User level programs

Figure 2.1: Some of the more important parts of the Linux kernel.supports: the kernel contains a virtual �lesystem (VFS) that contains all the op-erations for a �lesystem, and a �lesystem driver for each supported �lesystem. Whensome entity tries to use a �lesystem, the request goes via the VFS, which routes therequest to the proper �lesystem driver.2.3 Major services in a UNIX systemThis section describes some of the more important UNIX services, but without muchdetail. They are described more thorougly in later chapters.

12 Chapter 2. Overview of a Linux System2.3.1 initThe single most important service in a UNIX system is provided by init. init isstarted as the �rst process of every UNIX system, as the last thing the kernel doeswhen it boots. When init starts, it continues the boot process by doing variousstartup chores (checking and mounting �lesystems, starting daemons, etc).The exact list of things that init does depends on which avor it is; there areseveral to choose from. init usually provides the concept of single user mode, inwhich no one can log in and root uses a shell at the console; the usual mode is calledmultiuser mode. Some avors generalize this as run levels; single and multiusermodes are considered to be two run levels, and there can be additional ones as well,for example, to run X on the console.When the system is running, the two most important tasks of init is to make suregettys are working (to make sure logins work), that various daemons are running, andto adopt orphan processes (processes whose parent has died; in UNIX all processesmust be in a single tree, so orphans must be adopted).When the system is shut down, it is init that is in charge of killing all otherprocesses, unmounting all �lesystems and stopping the processor, along with anythingelse that it feels like doing.2.3.2 Logins from terminalsLogins from terminals (via serial lines) and the console (when not running X) areprovided by the getty program. init starts a separate instance of getty for eachterminal for which logins are to be allowed. getty reads the username and runs thelogin program, which reads the password. If the username and password match,login runs the shell. When the shell terminates, i.e., the user logs out, or whenlogin terminated because the username and password didn't match, init noticesthis and starts a new instance of getty. The kernel has no notion of logins, this isall handled by the system programs.2.3.3 SyslogThe kernel and many system programs produce error, warning, and other messages.It is often important that these messages can be viewed later, even much later, so theyshould be written to a �le. The program doing this is syslog. It can be con�guredto sort the messages to di�erent �les according to writer or degree of importance.

2.3. Major services in a UNIX system 13For example, kernel messages are often directed to a separate �le from the others,since kernel messages are often more important and need to be read regularly to spotproblems.2.3.4 Periodic command execution: cron and atBoth users and the system administrator often need to run speci�c commands peri-odically. For example, the system administrator might want to run a command toclean the directories with temporary �les (/tmp and /var/tmp) from old �les, to keepthe disks from �lling up, since not all programs clean up after themselves correctly.The cron service is set up to do this. Each user has a crontab, where he lists thecommands he wants to execute and the times they should be executed. The cronddaemon takes care of starting the commands when speci�ed.The at service is similar to cron, but it is once only: the command is executed atthe given time, but it is not repeated.2.3.5 Graphical user interfaceUNIX and Linux don't incorporate the user interface into the kernel; instead, theylet it be implemented by user level programs. This applies for both text mode andgraphical environments.This arrangement makes the systemmore exible, but has the disadvantage that itis simple to implement a di�erent user interface for each program, making the systemharder to learn.The graphical environment primarily used with Linux is called the X WindowSystem (X for short). X also does not implement a user interface; it only implementsa window system, i.e., tools with which a graphical user interface can be implemented.The three most popular user interface styles implemented over X are Athena, Motif,and Open Look.2.3.6 NetworkingNetworking is the act of connecting two or more computers so that the can commu-nicate with each other. The actual methods of connecting and communicating areslightly complicated, but the end result is very attractive.

14 Chapter 2. Overview of a Linux SystemUNIX operating systems have many networking features. Most basic services|�lesystems, printing, backups, etc|can be done over the network. This can makesystem administration easier, since it allows centralized administration, while stillreaping in the bene�ts of microcomputing and distributed computing, such as lowercosts and better fault tolerance.However, this book merely glances at networking; see the Linux Network Admin-istrators' Guide for more information, including a basic descriptions of how networksoperate.2.3.7 Network loginsNetwork logins work a little di�erently than normal logins. There is a separate phys-ical serial line for each terminal via which it is possible to log in. For each personlogging in via the network, there is a separate virtual network connection, and therecan be any number of these2. It is therefore not possible to run a separate getty foreach possible virtual connection. There are also several di�erent ways to log in vianetwork, telnet and rlogin being the major ones in TCP/IP networks.Network logins have, instead of a herd of gettys, a single daemon (per way oflogging in; telnet and rlogin have separate daemons) that listens for all incominglogin attempts. When it notices one, it starts a new instance of itself to handle thatsingle attempt; the original instance continues to listen for other attempts. The newinstance works similarly to getty.2.3.8 Network �le systemsOne of the more useful things that can be done with networking services is sharing�les via a network �le system. The one usually used is called the Network FileSystem, or NFS, developed by Sun.With a network �le system any �le operations done by a program on one machineare sent over the network to another computer. This fools the program to thinkthat all the �les on the other computer are actually on the computer the program isrunning on. This makes information sharing extremely simple, since it requires nomodi�cations to programs.2Well, at least there can be many. Network bandwidth still being a scarce resource, there is still some practicalupper limit to the number of concurrent logins via one network connection.

2.4. The �lesystem layout 152.3.9 MailElectronic mail is usually the most important method for communicating via com-puter. An electronic letter is stored in a �le using a special format, and special mailprograms are used to send and read the letters.Each user has an incoming mailbox (a �le in the special format), where all newmail is stored. When someone sends a mail, the mail program locates the receiver'smailbox and appends the letter to the mailbox �le. If the receiver's mailbox is inan another machine, the letter is sent to the other machine, which delivers it to themailbox as it best sees �t.The mail system consists of many programs. The delivery of mail to local or remotemailboxes is done by one program (e.g., sendmail or smail), while the programsusers use are many and varied (e.g., Pine or elm). The mailboxes are usually storedin /var/spool/mail.2.3.10 PrintingOnly one person can use a printer at one time, but it is uneconomical not to shareprinters between users. The printer is therefore managed by software that implementsa print queue: all print jobs are put into a queue and whenever the printer is donewith one job, the next one is sent to it automatically. This relieves the users fromorganizing the print queue and �ghting over control of the printer.3The print queue software also spools the printouts on disk, i.e., the text is keptin a �le while the job is in the queue. This allows an application program to spit outthe print jobs quickly to the print queue software; the application does not have towait until the job is actually printed to continue. This is really convenient, since itallows one to print out one version, and not have to wait for it to be printed beforeone can make a completely revised new version.2.4 The �lesystem layoutThe �lesystem is divided into many parts; usually along the lines of a root �lesystemwith /bin, /lib, /etc, /dev, and a few others; a /usr �lesystem with programs andunchanging data; a /var �lesystem with changing data (such as log �les); and a /home3Instead, they form a new queue at the printer, waiting for their printouts, since no-one ever seems to be able toget the queue software to know exactly when anyone's printout is really �nished. This is a great boot for intra-o�cesocial relations.

16 Chapter 2. Overview of a Linux System�lesystem for everyone's personal �les. Depending on the hardware con�guration andthe decisions of the system administrator, the division can be di�erent; it can evenbe all in one �lesystem.Chapter 5 describes the �lesystem layout in some detail; the Linux FilesystemStandard covers it in somewhat more detail.

Chapter 3Boots And ShutdownsThis chapter needs a quote. Suggestions, anyone?This section explains what goes on when a Linux system is turned on and o�, andhow it should be done properly.3.1 An overview of boots and shutdownsThe act of turning on a computer system and making its operating system to beloaded1 is called booting. The name comes from an image of the computer pullingitself up from its bootstraps, but the act itself slightly more realistic.During bootstrapping the computer �rst loads a small piece of code called thebootstrap loader, which in turn loads and starts the operating system. The boot-strap loader is usually stored in a �xed location on a hard disk or a oppy. The reasonfor this two step process is that the operating system is big and complicated, but the�rst piece of code that the computer loads must be very small (a few hundred bytes),to avoid making the hardware unnecessarily complicated.Di�erent computers do the bootstrapping di�erently. For PC's, the computer(well, it's BIOS) reads in the �rst sector (called the boot sector) of a oppy or harddisk. The bootstrap loader is contained withing this sector. It loads the operatingsystem from elsewhere on the disk (or from some other place).After Linux has been loaded, it initializes the hardware and device drivers, and1On early computers, it wasn't enough to merely turn on the computer, you had to manually load the operatingsystem as well. These new-fangled thing-a-ma-gigs do it all by themselves.17

18 Chapter 3. Boots And Shutdownsthen runs init(8). init starts other processes to allow users to log in, and do things.The details of this part will be discussed below.In order to shut down a Linux system, �rst all processes are told to terminate (thismakes them close any �les and do other necessary things to keep things tidy), then�lesystems and swap areas are unmounted, and �nally a message is printed to theconsole that the power can be turned o�. If the proper procedure is not followed,terrible things can and will happen; most importantly, the �lesystem bu�er cachemight not be ushed, which means that all data in it is lost and the �lesystem ondisk is inconsistent, and therefore possibly unusable.3.2 The boot process in closer lookYou can boot Linux either from a oppy or from the hard disk. The installationsection in the Getting Started guide tells you how to install Linux so you can boot itthe way you want to.When the computer is booted, the BIOS will do various tests to check that ev-erything looks all-right,2 and will then start the actual booting. It will choose a diskdrive (typically the �rst oppy drive, if there is a oppy inserted, otherwise the �rsthard disk, if one is installed in the computer; the order might be con�gurable, how-ever) and will then read its very �rst sector. This is called the boot sector; for ahard disk, it is also called the master boot record, since a hard disk can containseveral partitions, each with their own boot sectors.The boot sector contains a small program (small enough to �t into one sector)whose responsibility is to read the actual operating system from the disk and startit. When booting Linux from a oppy disk, the boot sector contains code that justreads the �rst few hundred blocks (depending on the actual kernel size, of course) toa predetermined place in memory. On a Linux boot oppy, there is no �lesystem, thekernel is just stored in consecutive sectors, since this simpli�es the boot process. Itis possible, however, to boot from a oppy with a �lesystem, by using LILO.When booting from the hard disk, the code in the master boot record will examinethe partition table (also in the master boot record), identify the active partition (thepartition that is marked to be bootable), read the boot sector from that partition, andthen start the code in that boot sector. The code in the partition's boot sector doeswhat a oppy disk's boot sector does: it will read in the kernel from the partitionand start it. The details vary, however, since it is generally not useful to have a2These is called the power on self test, or POST for short.

3.2. The boot process in closer look 19separate partition for just the kernel image, so the code in the partition's boot sectorcan't just read the disk in sequential order, it has to �nd the sectors whereever the�lesystem has put them. There are several ways around this problem, but the mostcommon way is to use LILO. (The details about how to do this are irrelevant for thisdiscussion, however; see the LILO documentation for more information, it is mostthorough.)When booting with LILO, it will normally go right ahead and read in and boot thedefault kernel. It is also possible to con�gure LILO to be able to boot one of severalkernels, or even other operating systems than Linux, and it is possible for the user tochoose which kernel or operating system is to be booted at boot time. LILO can becon�gured so that if one holds down the alt , shift , or ctrl key at boot time (i.e.when LILO is loaded), LILO will ask what is to be booted and not boot the defaultright away. Alternatively, LILO can be con�gured so that it will always ask, with anoptional timeout that will cause the default kernel to be booted.The are other boot loaders than LILO. However, since LILO has been writtenespecially for Linux, it has some features that are useful and that only it provides,for example the ability to pass arguments to the kernel at boot time, or overridingsome con�guration options built into the kernel. Hence, it is usually the best choice.Among the alternatives are bootlin and bootactv.3Booting from oppy and from hard disk have both their advantages, but generallybooting from the hard disk is nicer, since it avoids the hassle of playing around withoppies. It is also faster. However, it can be more troublesome to install the systemso it can boot from the hard disk, so many people will �rst boot from oppy, then,when the system is otherwise installed and working well, will install LILO and startbooting from the hard disk.After the Linux kernel has been read into the memory, by whatever means, and isstarted for real, roughly the following things happen:� The Linux kernel is installed compressed, so it will �rst uncompress itself. Thebeginning of the compressed kernel contains a small uncompressed program thatdoes this.� If you have a super-VGA card that Linux recognizes and that has some specialtext modes (such as 100 columns by 40 rows), Linux asks you which mode youwant to use. During the kernel compilation, it is possible to preset a video mode,so that this is never asked. This can also be done with LILO or rdev(8).3I don't know much about any of the alternatives. If and when I learn, I will add more descriptions.

20 Chapter 3. Boots And Shutdowns� After this the kernel checks what other hardware there is (hard disks, oppies,network adapters: : :), and con�gures some of its device drivers appropriately;while it does this, it outputs messages about its �ndings. For example, when Iboot, I it looks like this:LILO boot:Loading linux.Console: colour EGA+ 80x25, 8 virtual consolesSerial driver version 3.94 with no serial options enabledtty00 at 0x03f8 (irq = 4) is a 16450tty01 at 0x02f8 (irq = 3) is a 16450lp_init: lp1 exists (0), using polling driverMemory: 7332k/8192k available (300k kernel code, 384k reserved, 176k data)Floppy drive(s): fd0 is 1.44M, fd1 is 1.2MLoopback device initWarning WD8013 board not found at i/o = 280.Math coprocessor using irq13 error reporting.Partition check:hda: hda1 hda2 hda3VFS: Mounted root (ext filesystem).Linux version 0.99.pl9-1 (root@haven) 05/01/93 14:12:20The exact texts are di�erent on di�erent systems, depending on the hardware,the version of Linux being used, and how it has been con�gured.� Then the kernel will try to mount the root �lesystem. The place is con�gurableat compilation time, or any time with rdev or LILO. The �lesystem type isdetected automatically. If the mounting of the root �lesystem fails, for examplebecause you didn't remember to include the corresponding �lesystem driver inthe kernel, the kernel panics and halts the system (there isn't much it can do,anyway).The root �lesystem is usually mounted read-only (this can be set in the sameway as the place). This makes it possible to check the �lesystem while it ismounted; it is not a good idea to check a �lesystem that is mounted read-write.� After this, the kernel starts the program init(8) (located in /sbin/init) inthe background (this will always become process number 1). init does variousstartup chores. The exact things it does depends on the version being used; seechapter ?? for more information.� init then starts a getty(8) for virtual consoles and serial lines. getty is theprogram which lets people log in via virtual consoles and serial terminals. initmay also start some other programs, depending on how it is con�gured.� After this, the boot is complete, and the system is up and running normally.

3.3. More about shutdowns 213.3 More about shutdownsMETA: two di�erent implemetnations of shutdown? one that uses reboot/halt asinternal binaries that shouldn't be run by hand?It is important to follow the correct procedures when you shut down a Linuxsystem. If you fail do so, your �lesystems probably will become trashed and the �lesprobably will become scrambled. This is because Linux has a disk cache that won'twrite things to disk at once, but only at intervals. This greatly improves performancebut also means that if you just turn o� the power at a whim the cache may hold a lotof data and that what is on the disk may not be a fully working �lesystem (becauseonly some things have been written to the disk).Another reason against just ipping the power switch is that in a multi-taskingsystem there can be lots of things going on in the background, and shutting the powercan be quite disastrous. This is especially true for machines that several people useat the same time.The commands for properly shutting down a Linux system are shutdown(8) andhalt(8) (both are located in /sbin). There are two usual ways of using them.If you are running a system where you are the only user, the usual way of usingshutdown is to quit all running programs, log out on all virtual consoles, log in as rooton one of them (or stay logged in as root if you already are, but you should changeto the root directory, to avoid problems with unmounting), then give the commandhalt or shutdown -h now (substitute now with a plus sign and a number in minutesif you want a delay, though you usually don't on a single user system) or halt.Alternatively, if your system has many users, use the command shutdown -h +timemessage, where time is the time in minutes until the system is halted, and messageis a short explanation of why the system is shutting down.root # shutdown -h +10 'We will install a new disk. System should> be back on-line in three hours.'This will warn everybody that the system will shut down in ten minutes, and thatthey'd better get lost or loose data. The warning is printed to every terminal onwhich someone is logged in, including all xterms.Broadcast message from root (ttyp0) Wed Aug 2 01:03:25 1995...We will install a new disk. System should

22 Chapter 3. Boots And Shutdownsbe back on-line in three hours.The system is going DOWN for system halt in 10 minutes !!The warning is automatically repeated a few times before the boot, with shorter andshorter intervals as the time runs out. You can't use a delay with halt; it is seldomappropriate to use halt on a multiuser system.META: /etc/inittab can give commands to execute when halting/rebootingWhen the real shutting down starts after any delays, all �lesystems (except the rootone) are unmounted, user processes (if anybody is still logged in) are killed, daemonsare shut down, all �lesystem are unmounted, and generally everything settles down.When that is done, shutdown prints out a message that you can power down themachine. Then, and only then, should you move your �ngers towards the powerswitch.Sometimes, although rarely on any good system, it is impossible to shut downproperly. For instance, if the kernel panics and crashes and burns and generallymisbehaves, it might be completely impossible to give any new commands, henceshutting down properly is somewhat di�cult, and just about everything you can dois hope that nothing has been too severely damaged and turn o� the power. If thetroubles are a bit less severe (say, somebody merely hit your keyboard with an axe),and the kernel and the update program still run normally, it is probably a good ideato wait a couple of minutes to give update(8) a chance to ush the bu�er cache, andonly cut the power after that.Some people like to shut down using the command sync(8)4 three times, waitingfor the disk I/O to stop, then turn o� the power. If there are no running programs, thisis about equivalent to using shutdown. However, it does not unmount any �lesystemsand this can lead to problems with the ext2fs \clean �lesystem" ag. The triple-syncmethod is not recommended.(In case you're wondering: the reason for three syncs is that in the early days ofUNIX, when the commands were typed separately, that usually gave su�cient timefor most disk I/O to be �nished.)3.4 RebootingRebooting means booting the system again. This can be accomplished by �rst shut-ting it down completely, turning power o�, and then turning it back on. A simpler4sync ushes the bu�er cache.

3.5. Single user mode 23way is to ask shutdown to reboot the system, instead of merely halting it. This isaccomplished by using the -r option to shutdown, for example, by giving the com-mand shutdown -r now. You can also use the reboot command (which, like halt,doesn't wait until it perpetrates its foul deed).3.5 Single user modeThe shutdown command can also be used to bring the system down to single usermode, in which no one can log in, but root can use the console. This is useful forsystem administration tasks that can't be done while the system is running normally.Single user mode is discussed more thoroughly in chapter ??.3.6 Emergency boot oppiesIt is not always possible to boot a computer from the hard disk. For example, if youmake a mistake in con�guring LILO, you might make your system unbootable. Forthese situations, you need an alternative way of booting that will always work (aslong as the hardware works). For typical PC's, this means booting from the oppydrive.Most Linux distributions allow one to create an emergency boot oppy duringinstallation. It is a good idea to do this. However, many such boot disks containonly the kernel, and assume you will be using the programs on the distributions'installation disks to �x whatever problem you have. Sometimes those programs aren'tenough; for example, you might have to restore some �les from backups made withsoftware not on the installation disks.Thus, it might be necessary to create a custom root oppy as well. The BootdiskHOWTO by Graham Chapman contains instructions for doing this. You must, ofcourse, remember to keep your emergency boot and root oppies up to date.You can't use the oppy drive you use to mount the root oppy for anything else.This can be inconvenient if you only have one oppy. However, if you have enoughmemory, you can con�gure your boot oppy to load the root disk to a ramdisk (theboot oppy's kernel needs to be specially con�gured for this). This frees the oppydrive after the root oppy has been loaded to a ramdisk.

24 Chapter 3. Boots And Shutdowns

Chapter 4Using Disks and Other StorageMedia On a clear disk you can seek forever.When you install or upgrade your system, you need to do a fair amount of work onyour disks. You have to make �lesystems on your disks so that �les can be stored onthem and reserve space for the di�erent parts of your system.This chapter explains all these initial activities. Usually, once you get your systemset up, you won't have to go through the work again, except for using oppies. You'llneed to come back to this chapter if you add a new disk or want to �ne-tune yourdisk usage.The basic tasks in administering disks are:� Format your disk. This does various things to prepare it for use, such as checkingfor bad sectors. (Formatting is nowadays not necessary for most hard disks.)� Partition a hard disk, if you want to use it for several activities that aren'tsupposed to interfere with one another. One reason for partitioning is to storedi�erent operating systems on the same disk. Another reason is to keep user�les separate from system �les, which simpli�es back-ups and helps protect thesystem �les from corruption.� Make a �lesystem (of a suitable type) on each disk or partition. The disk meansnothing to Linux until you make a �lesystem; then �les can be created andaccessed on it. 25

26 Chapter 4. Using Disks and Other Storage Media� Mount di�erent �lesystems to form a single tree structure, either automatically,or manually as needed. (Manually mounted �lesystems usually need to be un-mounted manually as well.)Chapter 6 contains information about virtual memory and disk caching, of whichyou also need to be aware of when using disks.This chapter explains what you need to know for hard disks and oppies. Unfortu-nately, because I lack the equipment, I cannot tell you much about using other typesof media, such as tapes or CD-ROM's.4.1 Two kinds of devicesUNIX, and therefore Linux, recognizes two di�erent kinds of devices: random-accessblock devices (such as disks), and character devices (such as tapes and serial lines),some of which may be serial, and some random-access. Each supported device isrepresented in the �lesystem as a device �le. When you read or write a device �le,the data comes from or goes to the device it represents. This way no special programs(and no special application programming methodology, such as catching interruptsor polling a serial port) are necessary to access devices; for example, to send a �le tothe printer, one could just sayttyp5 root ~ $ cat �lename > /dev/lp1ttyp5 root ~ $and the contents of the �le are printed (the �le must, of course, be in a form that theprinter understands). However, since it is not a good idea to have several people cattheir �les to the printer at the same time, one usually uses a special program to sendthe �les to be printed (usually lpr(1)). This program makes sure that only one �leis being printed at a time, and will automatically send �les to the printer as soon asit �nishes with the previous �le. Something similar is needed for most devices. Infact, one seldom needs to worry about device �les at all.Since devices show up as �les in the �lesystem (in the /dev directory), it is easyto see just what device �les exist, using ls(1) or another suitable command. In theoutput of ls -l, the �rst column contains the type of the �le and its permissions.For example, inspecting a serial device gives on my systemttyp5 root ~ $ ls -l /dev/cua0crw-rw-rw- 1 root uucp 5, 64 Nov 30 1993 /dev/cua0

4.2. Hard disks 27ttyp5 root ~ $The �rst character in the �rst column, i.e., `c' in crw-rw-rw- above, tells an informeduser the type of the �le, in this case a character device. For ordinary �les, the �rstcharacter is `-', for directories it is `d', and for block devices `b'; see the ls(1) manpage for further information.Note that usually all device �les exist even though the device itself might be notbe installed. So just because you have a �le /dev/sda, it doesn't mean that youreally do have an SCSI hard disk. Having all the device �les makes the installationprograms simpler, and makes it easier to add new hardware (there is no need to �ndout the correct parameters for and create the device �les for the new device).4.2 Hard disksThis subsection introduces terminology related to hard disks. If you already knowthe terms and concepts, you can skip this subsection.See �gure 4.1 for a schematic picture of the important parts in a hard disk. A harddisk consists of one or more circular platters,1 of which either or both surfaces arecoated with a magnetic substance used for recording the data. For each surface, thereis a read-write head that examines or alters the recorded data. The platters rotateon a common axis; a typical rotation speed is 3600 rotations per minute, althoughhigh-performance hard disks have higher speeds. The heads move along the radiusof the platters; this movement combined with the rotation of the platters allows thehead to access all parts of the surfaces.The processor (CPU) and the actual disk communicate through a disk controller.This relieves the rest of the computer from knowing how to use the drive, since thecontrollers for di�erent types of disks can be made to use the same interface towardsthe rest of the computer. Therefore, the computer can say just \hey disk, gimmewhat I want", instead of a long and complex series of electric signals to move thehead to the proper location and waiting for the correct position to come under thehead and doing all the other unpleasant stu� necessary. (In reality, the interface tothe controller is still complex, but much less so than it would otherwise be.) Thecontroller can also do some other stu�, such as caching, or automatic bad sectorreplacement.The above is usually what one needs to understand about the hardware. There1The platters are made of a hard substance, e.g., aluminium, which gives the hard disk its name.

28 Chapter 4. Using Disks and Other Storage Mediais also a bunch of other stu�, such as the motor that rotates the platters and movesthe heads, and the electronics that control the operation of the mechanical parts, butthat is mostly not relevant for understanding the working principle of a hard disk.The surfaces are usually divided into concentric rings, called tracks, and these inturn are divided into sectors. This division is used to specify locations on the harddisk and to allocate disk space to �les. To �nd a given place on the hard disk, onemight say \surface 3, track 5, sector 7". Usually the number of sectors is the samefor all tracks, but some hard disks put more sectors in outer tracks (all sectors areof the same physical size, so more of them �t in the longer outer tracks). Typically,a sector will hold 512 bytes of data. The disk itself can't handle smaller amounts ofdata than one sector.
From above

From the side

Rotation

Track

Sector

Read/write head

Cylinder

Platter

SurfacesFigure 4.1: A schematic picture of a hard disk.Each surface is divided into tracks (and sectors) in the same way. This means thatwhen the head for one surface is on a track, the heads for the other surfaces are alsoon the corresponding tracks. All the corresponding tracks taken together are calleda cylinder. It takes time to move the heads from one track (cylinder) to another,so by placing the data that is often accessed together (say, a �le) so that it is withinone cylinder, it is not necessary to move the heads to read all of it. This improves

4.2. Hard disks 29performance. It is not always possible to place �les like this; �les that are stored inseveral places on the disk are called fragmented.The number of surfaces (or heads, which is the same thing), cylinders, and sectorsvary a lot; the speci�cation of the number of each is called the geometry of a harddisk. The geometry is usually stored in a special, battery-powered memory locationcalled theCMOS RAM, from where the operating system can fetch it during bootupor driver initialization.Unfortunately, the BIOS2 has a design limitation, which makes it impossible tospecify a track number that is larger than 1024 in the CMOS RAM, which is toolittle for a large hard disk. To overcome this, the hard disk controller lies about thegeometry, and translates the addresses given by the computer into something that�ts reality. For example, a hard disk might have 8 heads, 2048 tracks, and 35 sectorsper track3. Its controller could lie to the computer and claim that it has 16 heads, 1024tracks, and 35 sectors per track, thus not exceeding the limit on tracks, and translatesthe address that the computer gives it by halving the head number, and doubling thetrack number. The math can be more complicated in reality, because the numbersare not as nice as here (but again, the details are not relevant for understandingthe principle). This translation distorts the operating system's view of how the diskis organized, thus making it impractical to use the all-data-on-one-cylinder trick toboost performance.The translation is only a problem for IDE disks. SCSI disks use a sequential sectornumber (i.e., the controller translates a sequential sector number to head/cylinder/sector),and a completely di�erent method for the CPU to talk with the controller, so theyare insulated from the problem. Note, however, that the computer might not knowthe real geometry of an SCSI disk either.Since Linux often will not know the real geometry of a disk, its �lesystems don'teven try to keep �les within a single cylinder. Instead, it tries to assign sequentiallynumbered sectors to �les, which almost always gives similar performance. The issueis further complicated by on-controller caches, and automatic prefetches done by thecontroller.Each hard disk is represented by a separate device �le. There can (usually) be onlytwo IDE hard disks. These are known as /dev/hda and /dev/hdb, respectively. SCSIhard disks are known as /dev/sda, /dev/sdb, and so on. Similar naming conventionsexist for other hard disk types Note that the device �les for the hard disks give access2The BIOS is some built-in software stored on ROM chips. It takes care, among other things, of the initial stagesof booting.3The numbers are completely imaginary.

30 Chapter 4. Using Disks and Other Storage Mediato the entire disk, with no regard to partitions (which will be discussed below), andit's easy to mess up the partitions or the data in them if you aren't careful. The disks'device �les are usually used only to get access to the master boot record (which willalso be discussed below).4.3 FloppiesA oppy disk consists of a exible membrane covered on one or both sides with similarmagnetic substance as a hard disk. The oppy disk itself doesn't have a read-writehead, that is included in the drive. A oppy corresponds to one platter in a harddisk, but is removable and one drive can be used to access di�erent oppies, whereasthe hard disk is one indivisible unit.Like a hard disk, a oppy is divided into tracks and sectors (and the two corre-sponding tracks on either side of a oppy form a cylinder), but there are many fewerof them than on a hard disk.A oppy drive can usually use several di�erent types of disks; for example, a 312inch drive can use both 720 kB and 1.44 MB disks. Since the drive has to operate a bitdi�erently and the operating system must know how big the disk is, there are manydevice �les for oppy drives, one per combination of drive and disk type. Therefore,/dev/fd0H1440 is the �rst oppy drive (fd0), which must be a 312 inch drive, usinga 312 inch, high density disk (H) of size 1440 kB (1440), i.e., a normal 312 inch HDoppy. For more information on the naming conventions for the oppy devices.The names for oppy drives are complex, however, and Linux therefore has aspecial oppy device type that automatically detects the type of the disk in the drive.It works by trying to read the �rst sector of a newly inserted oppy using di�erentoppy types until it �nds the correct one. This naturally requires that the oppy isformatted �rst. The automatic devices are called /dev/fd0, /dev/fd1, and so on.The parameters the automatic device uses to access a disk can also be set usingthe program setfdprm(8). This can be useful if you need to use disks that do notfollow any usual oppy sizes, e.g., if they have an unusual number of sectors, or if theautodetecting for some reason fails and the proper device �le is missing.Linux can handle many nonstandard oppy disk formats in addition to all thestandard ones. Some of these require using special formatting programs. We'll skipthese disk types for now.

4.4. Formatting 314.4 FormattingFormatting is the process of writing marks on the magnetic media that are usedto mark tracks and sectors. Before a disk is formatted, its magnetic surface is acomplete mess of magnetic signals. When it is formatted, some order is brought intothe chaos by essentially drawing lines where the tracks go, and where they are dividedinto sectors. The actual details are not quite exactly like this, but that is irrelevant.What is important, is that a disk cannot be used unless it has been formatted.The terminology is a bit confusing here: in MS-DOS, the word formatting is used tocover also the process of creating a �lesystem (which will be discussed below). There,the two processes are often combined, especially for oppies. When the distinctionneeds to be made, the real formatting is called low-level formatting, while makingthe �lesystem is called high-level formatting. In UNIX circles, the two are calledformatting and making a �lesystem, so that's what is used in this book as well.For IDE and some SCSI disks the formatting is actually done at the factory anddoesn't need to be repeated; hence most people rarely need to worry about it. Infact, formatting a hard disk can cause it to work less well, for example because a diskmight need to be formatted in some very special way to allow automatic bad sectorreplacement to work.Disks that need or can be formatted, often require a special program anyway,because the interface to the formatting logic inside the drive is di�erent from drive todrive. The formatting program is often either on the controller BIOS, or is suppliedas an MS-DOS program; neither of these can easily be used from within Linux.During formatting one might encounter bad spots on the disk, called bad blocksor bad sectors. These are sometimes handled by the drive itself, but even then, ifmore of them develop, something needs to be done to avoid using those parts of thedisk. The logic to do this is built into the �lesystem; how to add the information intothe �lesystem is described below. Alternatively, one might create a small partitionthat covers just the bad part of the disk; this approach might be a good idea if thebad spot is very large, since �lesystems can sometimes have trouble with very largebad areas.Floppies are formatted with fdformat(8). The oppy device �le to use is givenas the parameter. For example, the following command would format a high density,312 inch oppy in the �rst oppy drive:ttyp5 root ~ $ fdformat /dev/fd0H1440Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.

32 Chapter 4. Using Disks and Other Storage MediaFormatting ... doneVerifying ... donettyp5 root ~ $Note that if you want to use an autodetecting device (e.g., /dev/fd0), you must setthe parameters of the device with setfdprm(8) �rst. To achieve the same e�ect asabove, one would have to do the following:ttyp5 root ~ $ setfdprm /dev/fd0 1440/1440ttyp5 root ~ $ fdformat /dev/fd0Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.Formatting ... doneVerifying ... donettyp5 root ~ $It is usually more convenient to choose the correct device �le that matches the typeof the oppy. Note that it is unwise to format oppies to contain more informationthan what they are designed for.fdformatwill also validate the oppy, i.e., check it for bad blocks. It will try a badblock several times (you can usually hear this, the drive noise changes dramatically).If the oppy is only marginally bad (due to dirt on the read/write head, some errorsare false signals), fdformat won't complain, but a real error will abort the validationprocess. The kernel will print log messages for each I/O error it �nds; these will goto the console or, if syslog is being used, to the �le /usr/adm/messages. fdformatitself won't tell where the error is (one usually doesn't care, oppies are cheap enoughthat a bad one is automatically thrown away).ttyp5 root ~ $ fdformat /dev/fd0H1440Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.Formatting ... doneVerifying ... read: Unknown errorttyp5 root ~ $The badblocks(8) command can be used to search any disk or partition for badblocks (including a oppy). It does not format the disk, so it can be used to checkeven existing �lesystems. The example below checks a 312 inch oppy with two badblocks.ttyp5 root ~ $ badblocks /dev/fd0H1440 1440718

4.5. Partitions 33719ttyp5 root ~ $badblocks outputs the block numbers of the bad blocks it �nds. Most �lesystems canavoid such bad blocks. They maintain a list of known bad blocks, which is initializedwhen the �lesystem is made, and can be modi�ed later. The initial search for badblocks can be done by the mkfs command (which initializes the �lesystem), but laterchecks should be done with badblocks and the new blocks should be added withfsck. We'll describe mkfs and fsck later.4.5 PartitionsA hard disk can be divided into several partitions. Each partition functions as if itwere a separate hard disk. The idea is that if you have one hard disk, and want tohave, say, two operating systems on it, you can divide the disk into two partitions.Each operating system uses its partition as it wishes and doesn't touch the otherone's. This way the two operating systems can co-exist peacefully on the same harddisk. Without partitions one would have to buy a hard disk for each operating system.Floppies are not partitioned. There is no technical reason against this, but sincethey're so small, partitions would be useful only very rarely.4.5.1 The MBR, boot sectors and partition tableThe information about how a hard disk has been partitioned is stored in its �rst sector(that is, the �rst sector of the �rst track on the �rst disk surface). The �rst sector isthe master boot record (MBR) of the disk; this is the sector that the BIOS readsin and starts when the machine is �rst booted. The master boot record contains asmall program that reads the partition table, checks which partition is active (thatis, marked bootable), and reads the �rst sector of that partition, the partition's bootsector (the MBR is also a boot sector, but it has a special status and therefore aspecial name). This boot sector contains another small program that reads the �rstpart of the operating system stored on that partition (assuming it is bootable), andthen starts it.The partitioning scheme is not built into the hardware, or even into the BIOS. It isonly a convention that many operating systems follow. Not all operating systems dofollow it, but they are the exceptions. Some operating systems support partitions, butthey occupy one partition on the hard disk, and use their internal partitioning method

34 Chapter 4. Using Disks and Other Storage Mediawithin that partition. The latter type exists peacefully with other operating systems(including Linux), and does not require any special measures, but an operating systemthat doesn't support partitions cannot co-exist on the same disk with any otheroperating system.As a safety precaution, it is a good idea to write down the partition table on apiece of paper, so that if it ever corrupts you don't have to lose all your �les. (A badpartition table can be �xed with fdisk).4.5.2 Extended and logical partitionsThe original partitioning scheme for PC hard disks allowed only four partitions. Thisquickly turned out to be too little in real life, partly because some people want morethan four operating systems (Linux, MS-DOS, OS/2, Minix, FreeBSD, NetBSD, orWindows/NT, to name a few), but primarily because sometimes it is a good idea tohave several partitions for one operating system. For example, swap space is usuallybest put in its own partition for Linux instead of in the main Linux partition forreasons of speed (see below).To overcome this design problem, extended partitions were invented. This trickallows partitioning a primary partition into sub-partitions. The primary partitionthus subdivided is the extended partition; the subpartitions are logical partitions.They behave like primary4 partitions, but are created di�erently.The partition structure of a hard disk might look like that in �gure 4.2. The disk isdivided into three primary partitions, the second of which is divided into two logicalpartitions. Part of the disk is not partitioned at all. The disk as a whole and eachprimary partition has a boot sector.4.5.3 Partition typesThe partition tables (the one in the MBR, and the ones for extended partitions)contain one byte per partition that identi�es the type of that partition. This attemptsto identify the operating system that uses the partition, or what it uses it for. Thepurpose is to make it possible to avoid having two operating systems accidentallyusing the same partition. However, in reality, operating systems do not really careabout the partition type byte; e.g., Linux doesn't care at all what it is. Worse, someof them use it incorrectly; e.g., at least some versions of DR-DOS ignore the mostsigni�cant bit of the byte, while others don't.4Illogical?

4.5. Partitions 35
Logical

partition

Logical

partition

Extended

partition

Primary

partition

Primary

partition

MBR
Boot sector

Data area
of partition

Boot sector

Boot sector

Unused disk space

Data area

Data area

Data area

Unused boot sector

Unused boot sectorFigure 4.2: A sample hard disk partitioning.There is no standardization agency to specify what each byte value means, butsome commonly accepted ones are included in the table in table 4.1. The same list isavailable in the Linux fdisk(8) program.Table 4.1: Partition types (from the Linux fdisk(8) program).0 Empty 40 Venix 80286 94 Amoeba BBT1 DOS 12-bit FAT 51 Novell? a5 BSD/3862 XENIX root 52 Microport b7 BSDI fs3 XENIX usr 63 GNU HURD b8 BSDI swap4 DOS 16-bit <32M 64 Novell c7 Syrinx5 Extended 75 PC/IX db CP/M6 DOS 16-bit �32M 80 Old MINIX e1 DOS access7 OS/2 HPFS 81 Linux/MINIX e3 DOS R/O8 AIX 82 Linux swap f2 DOS secondary9 AIX bootable 83 Linux native � BBTa OS/2 Boot Manag 93 Amoeba4.5.4 Partitioning a hard diskThere are many programs for creating and removing partitions. Most operatingsystems have their own, and it can be a good idea to use each operating system's

36 Chapter 4. Using Disks and Other Storage Mediaown, just in case it does something unusual that the others can't. Many of theprograms are called fdisk, including the Linux one, or variations thereof. Details onusing the Linux fdisk are given on its man page. The cfdisk command is similarto fdisk, but has a nicer (full screen) user interface.When using IDE disks, the boot partition (the partition with the bootable kernelimage �les) must be completely within the �rst 1024 cylinders. This is because thedisk is used via the BIOS during boot (before the system goes into protected mode),and BIOS can't handle more than 1024 cylinders. It is sometimes possible to use aboot partition that is only partly within the �rst 1024 cylinders. This works as longas all the �les that are read with the BIOS are within the �rst 1024 cylinders. Sincethis is di�cult to arrange, it is a very bad idea to do it; you never know when a kernelupdate or disk defragmentation will result in an unbootable system. Therefore, makesure your boot partition is completely within the �rst 1024 cylinders.Some newer versions of the BIOS and IDE disks can, in fact, handle disks withmore than 1024 cylinders. If you have such a system, you can forget about theproblem; if you aren't quite sure of it, put it within the �rst 1024 cylinders.Each partition should have an even number of sectors, since the Linux �lesystemsuse a 1 kB block size, i.e., two sectors. An odd number of sectors will result in thelast sector being unused. This won't result in any problems, but it is ugly, and someversions of fdisk will warn about it.Changing a partition's size usually requires �rst backing up everything you wantto save from that partition (preferably the whole disk, just in case), deleting thepartition, creating new partition, then restoring everything to the new partition.There is a program for MS-DOS, called fips, which does this without requiring thebackup and restore, but for other �lesystems it is still necessary.4.5.5 Device �les and partitionsEach partition and extended partition has its own device �le. The naming conventionfor these �les is that a partition's number is appended after the name of the wholedisk, with the convention that 1{4 are primary partitions (regardless of how manyprimary partitions there are) and 5{8 are logical partitions (regardless of within whichprimary partition they reside). For example, /dev/hda1 is the �rst primary partitionon the �rst IDE hard disk, and /dev/sdb7 is the third extended partition on thesecond SCSI hard disk.

4.6. Filesystems 374.6 Filesystems4.6.1 What are �lesystems?A �lesystem is the methods and data structures that an operating uses to keeptrack of �les on a disk or partition that is, the way the �les are organized on the disk.The word is also used to refer to a partition or disk that is used to store the �lesor the type of the �lesystem. Thus, one might say \I have two �lesystems" meaningone has two partitions on which one stores �les, or that one is using the \extended�lesystem", meaning the type of the �lesystem.The di�erence between a disk or partition and the �lesystem it contains is impor-tant. A few programs|including, reasonably enough, programs that create �lesystems|operate directly on the raw sectors of a disk or partition; if there is an existing �lesystem there it will be destroyed or seriously corrupted. Most programs operate on a�lesystem, and therefore won't work on a partition that doesn't contain one (or thatcontains one of the wrong type).Before a partition or disk can be used as a �lesystem, it needs to be initialized,and the bookkeeping data structures need to be written to the disk. This process iscalled making a �lesystem.Most UNIX �lesystem types have a similar general structure, although the exactdetails vary quite a bit. The central concepts are superblock, inode, data block,directory block, and indirection block. The superblock contains informationabout the �lesystem as a whole, such as its size (the exact information here dependson the �lesystem). An inode contains all information about a �le, excepts its name.The name is stored in the directory, together with the number of the inode. Adirectory entry consists of a �lename and the number of the inode which representsthe �le. The inode contains the numbers of several data blocks, which are used tostore the data in the �le. There is space only for a few data block numbers in theinode, however, and if more are needed, more space for pointers to the data blocksis allocated dynamically. These dynamically allocated blocks are indirect blocks; thename indicates that in order to �nd the data block, one has to �nd its number in theindirect block �rst.UNIX �lesystems usually allow one to create a hole in a �le (this is done withlseek(2); check the manual page), which means that the �lesystem just pretendsthat at a particular place in the �le there is just zero bytes, but no actual disk sectorsare reserved for that place in the �le (this means that the �le will use a bit less diskspace). This happens especially often for small binaries, Linux shared libraries, some

38 Chapter 4. Using Disks and Other Storage Mediadatabases, and a few other special cases. (Holes are implemented by storing a specialvalue as the address of the data block in the indirect block or inode. This specialaddress means that no data block is allocated for that part of the �le, ergo, there isa hole in the �le.)Holes are moderately useful. On the author's system, a simple measurementshowed a potential for about 4 MB of savings through holes of about 200 MB to-tal used disk space. That system, however, contains relatively few programs and nodatabase �les. The measurement tool is described in appendix B.4.6.2 Filesystems galoreLinux supports several types of �lesystems. As of this writing the most importantones are:minix The oldest, presumed to be the most reliable, but quite lim-ited in features (some time stamps are missing, at most 30character �lenames) and restricted in capabilities (at most64 MB per �lesystem).xia A modi�ed version of the minix �lesystem that lifts the limitson the �lenames and �lesystem sizes, but does not otherwiseintroduce new features. It is not very popular, but is reportedto work very well.ext2 The most featureful of the native Linux �lesystems, currentlyalso the most popular one. It is designed to be easily upwardscompatible, so that new versions of the �lesystem code do notrequire re-making the existing �lesystems.ext An older version of ext2 that wasn't upwards compatible. Itis hardly ever used in new installations any more, and mostpeople have converted to ext2.In addition, support for several foreign �lesystem exists, to make it easier to exchange�les with other operating systems. These foreign �lesystems work just like nativeones, except that they may be lacking in some usual UNIX features, or have curiouslimitations, or other oddities.msdos Compatibility with MS-DOS (and OS/2 and Windows NT)FAT �lesystems.

4.6. Filesystems 39umsdos Extends the msdos �lesystem driver under Linux so that Linuxcan see long �lenames, owners, permissions, links, and device�les. This allows a normal msdos �lesystem to be used as ifit were a Linux one, thus removing the need for a separatepartition for Linux.iso9660 The standard CD-ROM �lesystem; the popular Rock Ridgeextension to the CD-ROM standard that allow longer �lenames is supported automatically.nfs A networked �lesystem that allows sharing a �lesystem be-tween many computers to allow easy access to the �les fromall of them.hpfs The OS/2 �lesystem.sysv SystemV/386, Coherent, and Xenix �lesystems.META: ifs, userfs The choice of �lesystem to use depends on the situation. Ifcompatibility or other reasons make one of the non-native �lesystems necessary, thenthat one must be used. If one can choose freely, then it is probably wisest to use ext2,since it has all the features but does not su�er from lack of performance.There is also the proc �lesystem, usually accessible as the /proc directory, whichis not really a �lesystem at all, even though it looks like one. The proc �lesystemmakes it easy to access certain kernel data structures, such as the process list (hencethe name). It makes these data structures look like a �lesystem, and that �lesystemcan be manipulated with all the usual �le tools. For example, to get a listing of allprocesses one might use the commandttyp5 root ~ $ ls -l /proctotal 0dr-xr-xr-x 4 root root 0 Jan 31 20:37 1dr-xr-xr-x 4 liw users 0 Jan 31 20:37 63dr-xr-xr-x 4 liw users 0 Jan 31 20:37 94dr-xr-xr-x 4 liw users 0 Jan 31 20:37 95dr-xr-xr-x 4 root users 0 Jan 31 20:37 98dr-xr-xr-x 4 liw users 0 Jan 31 20:37 99-r--r--r-- 1 root root 0 Jan 31 20:37 devices-r--r--r-- 1 root root 0 Jan 31 20:37 dma-r--r--r-- 1 root root 0 Jan 31 20:37 filesystems

40 Chapter 4. Using Disks and Other Storage Media-r--r--r-- 1 root root 0 Jan 31 20:37 interrupts-r-------- 1 root root 8654848 Jan 31 20:37 kcore-r--r--r-- 1 root root 0 Jan 31 11:50 kmsg-r--r--r-- 1 root root 0 Jan 31 20:37 ksyms-r--r--r-- 1 root root 0 Jan 31 11:51 loadavg-r--r--r-- 1 root root 0 Jan 31 20:37 meminfo-r--r--r-- 1 root root 0 Jan 31 20:37 modulesdr-xr-xr-x 2 root root 0 Jan 31 20:37 netdr-xr-xr-x 4 root root 0 Jan 31 20:37 self-r--r--r-- 1 root root 0 Jan 31 20:37 stat-r--r--r-- 1 root root 0 Jan 31 20:37 uptime-r--r--r-- 1 root root 0 Jan 31 20:37 versionttyp5 root ~ $(There will be a few extra �les that don't correspond to processes, though. The aboveexample has been shortened.)Note that even though it is called a �lesystem, no part of the proc �lesystemtouches any disk. It exists only in the kernel's imagination. Whenever anyone triesto look at any part of the proc �lesystem, the kernel makes it look as if the partexisted somewhere, even though it doesn't. So, even though there is a multi-megabyte/proc/kmem �le, it doesn't take any disk space.4.6.3 Which �lesystem should be used?There is usually little point in using many di�erent �lesystems. Currently, ext2fsis the most popular one, and it is probably the wisest choice. Depending on theoverhead for bookkeeping structures, speed, (perceived) reliability, compatibility, andvarious other reasons, it may be advisable to use another �le system. This needs tobe decided on a case-by-case basis.4.6.4 Creating a �lesystemFilesystems are created, i.e., initialized, with the mkfs(8) command. There is actuallya separate program for each �lesystem type. mkfs is just a front end that runs theappropriate program depending on the desired �lesystem type. The type is selectedwith the -t fstype option.The programs called by mkfs have slightly di�erent command line interfaces. The

4.6. Filesystems 41common and most important options are summarized below; see the manual pagesfor more.-t fstype Select the type of the �lesystem.-c Search bad bad blocks and initialize the bad block list accordingly.-l �lename Read the initial bad block list from the �le �lename.To create an ext2 �lesystem on a oppy, one would give the following commands:ttyp6 root ~ $ fdformat -n /dev/fd0H1440Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.Formatting ... donettyp6 root ~ $ badblocks /dev/fd0H1440 1440 > bad-blocksttyp6 root ~ $ mkfs -t ext2 -l bad-blocks /dev/fd0H1440mke2fs 0.5a, 5-Apr-94 for EXT2 FS 0.5, 94/03/10360 inodes, 1440 blocks72 blocks (5.00%) reserved for the super userFirst data block=1Block size=1024 (log=0)Fragment size=1024 (log=0)1 block group8192 blocks per group, 8192 fragments per group360 inodes per groupWriting inode tables: doneWriting superblocks and filesystem accounting information: donettyp6 root ~ $First, the oppy was formatted (the -n option prevents validation, i.e., bad blockchecking). Then bad blocks were searched with badblocks, with the output redirectedto a �le, bad-blocks. Finally, the �lesystem was created, with the bad block listinitialized by whatever badblocks found.The -c option could have been used with mkfs instead of badblocks and a separate�le. The example below does that.ttyp6 root ~ $ mkfs -t ext2 -c /dev/fd0H1440mke2fs 0.5a, 5-Apr-94 for EXT2 FS 0.5, 94/03/10360 inodes, 1440 blocks

42 Chapter 4. Using Disks and Other Storage Media72 blocks (5.00%) reserved for the super userFirst data block=1Block size=1024 (log=0)Fragment size=1024 (log=0)1 block group8192 blocks per group, 8192 fragments per group360 inodes per groupChecking for bad blocks (read-only test): doneWriting inode tables: doneWriting superblocks and filesystem accounting information: donettyp6 root ~ $The -c is more convenient than a separate use of badblocks, but badblocks isnecessary for checking after the �lesystem has been created.The process to prepare to �lesystems on hard disks or partitions is the same as foroppies, except that the formatting isn't needed.4.6.5 Mounting and unmountingBefore one can use a �lesystem, it has to be mounted. The operating system thendoes various bookkeeping things to make sure that everything works. Since all �lesin UNIX are in a single directory tree, the mount operation will make it look like thecontents of the new �lesystem are the contents of an existing subdirectory in somealready mounted �lesystem.For example, �gure 4.3 shows three separate �lesystems, each with their own rootdirectory. When the last two �lesystems are mounted below /home and /usr, respec-tively, on the �rst �lesystem, we can get a single directory tree, as in �gure 4.4..���� SSSS ���� @@@@!!!!!!!!!! ������ ���� SSSSQQQQQQaaaaaaaaaa liw bin lib//bin dev home etc lib usr/ abc ftp etcFigure 4.3: Three separate �lesystems.The mounts could be done as in the following example:

4.6. Filesystems 43
.���� SSSSliwabc ftp ���� @@@@bin libetc!!!!!!!!!! ������ ���� SSSSQQQQQQaaaaaaaaaabin dev home etc lib usr/

Figure 4.4: /home and /usr have been mounted.ttyp6 root ~ $ mount /dev/hda2 /homettyp6 root ~ $ mount /dev/hda3 /usrttyp6 root ~ $The mount(8) command takes two arguments. The �rst one is the device �le cor-responding to the disk or partition containing the �lesystem. The second one is thedirectory below which it will be mounted. After these commands the contents of thetwo �lesystems look just like the contents of the /home and /usr directories, respec-tively. One would then say that \/dev/hda2 is mounted on /home", and similarlyfor /usr. To look at either �lesystem, one would look at the contents of the directoryon which it has been mounted, just as it were any other directory. Note the di�erencebetween the device �le, /dev/hda2, and the mounted-on directory, /home. The device�le gives access to the raw contents of the disk, the mounted-on directory gives accessto the �les on the disk. The mounted-on directory is called the mount point.The mounted-on directory need not be empty, although it must exist. Any �lesin it, however, will be inaccessible by name while the �lesystem is mounted. (Any�les that have already been opened will still be accessible. Files that have hard linksfrom other directories can be accessed using those names.) There is no harm donewith this, and it can even be useful. For instance, some people like to have /tmpand /usr/tmp synonymous, and make /tmp be a symbolic link to /usr/tmp. Whenthe system is booted, before the /usr �lesystem is mounted, a /usr/tmp directoryresiding on the root �lesystem is used instead. When /usr is mounted, it will makethe /usr/tmp directory on the root �lesystem inaccessible. If /usr/tmp didn't existon the root �lesystem, it would be impossible to use temporary �les before mounting/usr.If you don't intend to write anything to the �lesystem, use the -r switch for mount

44 Chapter 4. Using Disks and Other Storage Mediato do a readonly mount. This will make the kernel stop any attempts at writingto the �lesystem, and will also stop the kernel from updating �le access times in theinodes. Read-only mounts are necessary for unwritable media, e.g., CD-ROM's.The alert reader has already noticed a slight logistical problem. How is the�rst �lesystem (called the root �lesystem, because it contains the root directory)mounted, since it obviously can't be mounted on another �lesystem? Well, the answeris that it is done by magic.5 The root �lesystem is magically mounted at boot time,and one can rely on it to always be mounted|if the root �lesystem can't be mounted,the system does not boot. The name of the �lesystem that is magically mounted asroot is either compiled into the kernel, or set using LILO or rdev.The root �lesystem is usually �rst mounted readonly. The startup scripts will thenrun fsck(8) to verify its validity, and if there are no problems, they will re-mountit so that writes will also be allowed. fsck must not be run on a mounted �lesystem,since any changes to the �lesystem while fsck is running will cause trouble. Sincethe root �lesystem is mounted readonly while it is being checked, fsck can �x anyproblems without worry, since the remount operation will ush any metadata thatthe �lesystem keeps in memory.On many systems there are other �lesystems that should also be mounted auto-matically at boot time. These are speci�ed in the /etc/fstab �le; see the fstab(5)man page for details on the format. The details of exactly when the extra �lesystemsare mounted depend on many factors, and can be con�gured by each administratorif need be. When the chapter on booting is �nished, you may read all about it there.When a �lesystem no longer needs to be mounted, it can be unmounted withumount(8)6. umount takes one argument: either the device �le or the mount point.For example, to unmount the directories of the previous example, one could use thecommandsttyp6 root ~ $ umount /dev/hda2ttyp6 root ~ $ umount /usrttyp6 root ~ $See the man page for further instructions on how to use the command. It is imperativethat you always unmount a mounted oppy. Don't just pop the oppy out of the drive!Because of disk caching, the data is not necessarily written to the oppy until youunmount it, so removing the oppy from the drive too early might cause the contents5For more information, see the kernel source or the Kernel Hackers' Guide.6It should of course be unmount(8), but the n mysteriously disappeared in the 70's, and hasn't been seen since.Please return it to Bell Labs, NJ, if you �nd it.

4.6. Filesystems 45to become garbled. If you just read from the oppy, this is not very likely, but if youwrite, even accidentally, the result may be catastrophic.Mounting and unmounting requires super user priviledges, i.e., only root can doit. The reason for this is that if any user can mount a oppy on any directory, thenit is rather easy to create a oppy with, say, a Trojan horse disguised as /bin/sh, orany other often used program. However, it is often necessary to allow users to useoppies, and there are several ways to do this:� Give the users the root password. This is obviously bad security, but is theeasiest solution. It works well if there is no need for security anyway, which isthe case on many non-networked, personal systems.� Use a program such as sudo(8) to allow users to use mount. This is still badsecurity, but doesn't directly give super user priviledges to everyone.7� Make the users use mtools, a package for manipulating MS-DOS �lesystems,without mounting them. This works well if MS-DOS oppies are the only thingthat is needed, but is rather awkward otherwise.� List the oppy devices and their allowable mount points together with the suit-able options in /etc/fstab.The last alternative can be implemented by adding a line like the following to /etc/fstab:/dev/fd0 /floppy msdos user,noautoThe columns are: device �le to mount, directory to mount on, �lesystem type, andoptions. The noauto option stops this mount to be done automatically when thesystem is started (i.e., it stops mount -a from mounting it). The user option allowsany user to mount the �lesystem, and, because of security reasons, disallows executionof programs (normal or setuid) and interpretation of device �les from the mounted�lesystem. After this, any user can mount a oppy with an msdos �lesystem with thefollowing command:ttyp6 root ~ $ mount /oppyttyp6 root ~ $The oppy can (and needs to, of course) be unmounted with the corresponding umountcommand.META: What to do if several types of oppies are needed?7It requires several seconds of hard thinking on the users' behalf.

46 Chapter 4. Using Disks and Other Storage Media4.6.6 Keeping �lesystems healthyFilesystems are complex creatures, and as such, they tend to be somewhat error-prone.A �lesystem's correctness and validity can be checked using the fsck(8) command.It can be instructed to repair any minor problems it �nds, and to alert the user ifthere any unrepairable problems. Fortunately, the code to implement �lesystems isdebugged quite e�ectively, so there are seldom any problems at all, and they areusually caused by power failures, failing hardware, or operator errors; for example,by not shutting down the system properly.Most systems are setup to run fsck automatically at boot time, so that any errorsare detected (and hopefully corrected) before the system is used. Use of a corrupted�lesystem tends to make things worse: if the data structures are messed up, usingthe �lesystem will probably mess them up even more, resulting in more data loss.However, fsck can take a while to run on big �lesystems, and since errors almostnever occur if the system has been shut down properly, a couple of tricks are used toavoid doing the checks in such cases. The �rst is that if the �le /etc/fastboot exists,no checks are made. The second is that the ext2 �lesystem has a special marker inits superblock that tells whether the �lesystem was unmounted properly after theprevious mount. This allows e2fsck (the version of fsck for the ext2 �lesystem)to avoid checking the �lesystem if the ag indicates that the unmount was done(the assumption being that a proper unmount indicates no problems). Whether the/etc/fastboot trick works on your system depends on your startup scripts, but theext2 trick works every time you use e2fsck|it has to be explicitly bypassed with anoption to e2fsck to be avoided. (See the e2fsck(8) man page for details on how.)The automatic checking only works for the �lesystems that are mounted automat-ically at boot time. Use fsck manually to check other �lesystems, e.g., oppies.If fsck �nds unrepairable problems, you need either in-depth knowlege of how�lesystems work in general, and the type of the corrupt �lesystem in particular, orgood backups. The latter is easy (although sometimes tedious) to arrange, the formercan sometimes be arranged via a friend, the Linux newsgroups and mailing lists, orsome other source of support, if you don't have the know-how yourself. I'd like to tellyou more about it, but my lack of education and experience in this regard hindersme. The debugfs(8) program by Theodore T'so should be useful.fsck must only be run on unmounted �lesystems, never on mounted �lesystems(with the exception of the read-only root during startup). This is because it accessesthe raw disk, and can therefore modify the �lesystem without the operating systemrealizing it. There will be trouble, if the operating system is confused.

4.7. Disks without �lesystems 47It can be a good idea to periodically check for bad blocks. This is done with thebadblocks command. It outputs a list of the numbers of all bad blocks it can �nd.This list can be fed to fsck to be recorded in the �lesystem data structures so thatthe operating system won't try to use the bad blocks for storing data. The followingexample will show how this could be done.ttyp6 root ~ $ badblocks /dev/fd0H1440 1440 > bad-blocksttyp6 root ~ $ fsck -t ext2 -l bad-blocks /dev/fd0H1440Parallelizing fsck version 0.5a (5-Apr-94)e2fsck 0.5a, 5-Apr-94 for EXT2 FS 0.5, 94/03/10Pass 1: Checking inodes, blocks, and sizesPass 2: Checking directory structurePass 3: Checking directory connectivityPass 4: Check reference counts.Pass 5: Checking group summary information./dev/fd0H1440: ***** FILE SYSTEM WAS MODIFIED *****/dev/fd0H1440: 11/360 files, 63/1440 blocksttyp6 root ~ $4.7 Disks without �lesystemsNot all disks or partitions are used as �lesystems. A swap partition, for example, willnot have a �lesystem on it. Many oppies are used in a tape-drive emulating fashion,so that a tar or other �le is written directly on the raw disk, without a �lesystem.This has the advantages of making more of the disk usable (a �lesystem always hassome bookkeeping overhead) and more easily compatible with other systems: the tar�le format is the same on all systems, while �lesystems are di�erent on most systems.You will quickly get used to disks without �lesystems if you need them. BootableLinux oppies also do not necessarily have a �lesystem, although that is also possible.One reason to use raw disks is to make image copies of them. For instance, if thedisk contains a partially damaged �lesystem, it is a good idea to make an exact copyof it before trying to �x it, since then you can start again if your �xing breaks thingseven more. One way to do this is to use dd(1):ttyp2 root /usr/tmp $ dd if=/dev/fd0H1440 of=oppy-image2880+0 records in

48 Chapter 4. Using Disks and Other Storage Media2880+0 records outttyp2 root /usr/tmp $ dd if=oppy-image of=/dev/fd0H14402880+0 records in2880+0 records outttyp2 root /usr/tmp $The �rst dd makes an exact image of the oppy to the �le floppy-image, the secondone writes the image to the oppy. (The user has presumably switched the oppybefore the second command. Otherwise the command pair is of doubtful usefulness.)4.8 Allocating disk space4.8.1 Partitioning schemesIt is not easy to partition a disk in the best possible way. Worse, there is no universallycorrect way to do it; there are too many factors involved.The traditional way is to have a (relatively) small root �lesystem, which contains/bin, /etc, /dev, /lib, /tmp, and other stu� that is needed to get the systemup and running. This way, the root �lesystem (in its own partition or on its owndisk) is all that is needed to bring up the system. The reasoning is that if the root�lesystem is small and is not heavily used, it is less likely to become corrupt whenthe system crashes, and you will therefore �nd it easier to �x any problems caused bythe crash. Then you create separate partitions or use separate disks for the directorytree below /usr, the users' home directories (often under /home), and the swap space.Separating the home directories (with the users' �les) in their own partition makesbackups easier, since it is usually not necessary to backup programs (which residebelow /usr). In a networked environment it is also possible to share /usr amongseveral machines (e.g., by using NFS), thereby reducing the total disk space requiredby several tens or hundreds of megabytes times the number of machines.The problem with having many partitions is that it splits the total amount of freedisk space into many small pieces. Nowadays, when disks and (hopefully) operatingsystems are more reliable, many people prefer to have just one partition that holdsall their �les. On the other hand, it can be less painful to back up (and restore) asmall partition.For a small hard disk (assuming you don't do kernel development), the best way togo is probably to have just one partition. For large hard disks, it is probably better tohave a few large partitions, just in case something does go wrong. (Note that `small'

4.8. Allocating disk space 49and `large' are used in a relative sense here; your needs for disk space decide whatthe threshold is.)If you have several disks, you might wish to have the root �lesystem (including/usr) on one, and the users' home directories on another.It is a good idea to be prepared to experiment a bit with di�erent partitioningschemes (over time, not just while �rst installing the system). This is a bit of work,since it essentially requires you to install the system from scratch several times, butit is the only way to be sure you do it right.4.8.2 Space requirementsThe Linux distribution you install will give some indication of how much disk spaceyou need for various con�gurations. Programs installed separately may also do thesame. This will help you plan your disk space usage, but you should prepare for thefuture and reserve some extra space for things you will notice later that you need.The amount you need for user �les depends on what your users wish to do. Mostpeople seem to need as much space for their �les as possible, but the amount theywill live happily with varies a lot. Some people do only light text processing and willsurvive nicely with a few megabytes, others do heavy image processing and will needgigabytes.By the way, when comparing �le sizes given in kilobytes or megabytes and diskspace given in megabytes, it can be important to know that the two units can bedi�erent. Some disk manufacturers like to pretend that a kilobyte is 1000 bytes anda megabyte is 1000 kilobytes, while all the rest of the computing world uses 1024 forboth factors. Therefore, my 345 MB hard disk is really a 330 MB hard disk.8Swap space allocation is discusses in section 6.5.4.8.3 Examples of hard disk allocationI used to have a 109 MB hard disk. Now I am using a 330 MB hard disk. I'll explainhow and why I partitioned these disks.The 109 MB disk I partitioned in a lot of ways, when my needs and the operatingsystems I used changed; I'll explain two typical scenarios. First, I used to run MS-DOS together with Linux. For that, I needed about 20 MB of hard disk, or just8Sic transit discus mundi.

50 Chapter 4. Using Disks and Other Storage Mediaenough to have MS-DOS, a C compiler, an editor, a few other utilities, the programI was working on, and enough free disk space to not feel claustrophobic. For Linux,I had a 10 MB swap partition, and the rest, or 79 MB, was a single partition withall the �les I had under Linux. I experimented with having separate root, /usr, and/home partitions, but there was never enough free disk space in one piece to do muchinteresting.When I didn't need MS-DOS anymore, I repartitioned the disk so that I had a12 MB swap partition, and again had the rest as a single �lesystem.The 330 MB disk is partitioned into several partitions, like this:5 MB root �lesystem10 MB swap partition180 MB /usr �lesystem120 MB /home �lesystem15 MB scratch partitionThe scratch partition is for playing around with things that require their own par-tition, e.g., trying di�erent Linux distributions, or comparing speeds of �lesystems.When not needed for anything else, it is used as swap space (I like to have a lot ofopen windows).4.8.4 Adding more disk space for LinuxAdding more disk space for Linux is easy, at least after the hardware has been properlyinstalled (the hardware installation is outside the scope of this book). You formatit if necessary, then create the partitions and �lesystem as described above, and addthe proper lines to /etc/fstab so that it is mounted automatically.4.8.5 Tips for saving disk spaceThe best tip for saving disk space is to avoid installing unnecessary programs. MostLinux distributions have an option to install only part of the packages they contain,and by analyzing your needs you might notice that you don't need most of them. Thiswill help save a lot of disk space, since many programs are quite large. Even if youdo need a particular package or program, you might not need all of it. For example,some on-line documentation might be unnecessary, as might some of the Elisp �lesfor GNU Emacs, some of the fonts for X11, or some of the libraries for programming.

4.8. Allocating disk space 51If you cannot uninstall packages, you might look into compression. Compressionprograms such as gzip(1) or zip(1) will compress (and uncompress) individual �lesor groups of �les. The gzexe system will compress and uncompress programs invisiblyto the user (unused programs are compressed, then uncompressed as they are used).The experimental DouBle system will compress all �les in a �lesystem, invisibly tothe programs that use them. (If you are familiar with products such as Stacker forMS-DOS, the principle is the same.)

52 Chapter 4. Using Disks and Other Storage Media

Chapter 5Directory Tree OverviewThis chapter needs a quote. Suggestions, anyone?This chapter describes the important parts of a standard Linux directory tree, basedon the FSSTND �lesystem standard. It outlines the normal way of breaking the di-rectory tree into separate �lesystems with di�erent purposes and gives the motivationbehind this particular split. Some alternative ways of splitting are also described.META: The next version of the FSSTND (1.3?) will cause many minor changes,and some new ones, due to work to make the FSSTND work for BSD systems as well.5.1 BackgroundThis chapter is loosely based on the Linux �lesystem standard, FSSTND, version 1.2(see the bibliography), which attempts to set a standard for how the directory treein a Linux system is organized. Such a standard has the advantage that it will beeasier to write or port software for Linux, and to administer Linux machines, sinceeverything will be in their usual places. There is no authority behind the standardthat forces anyone to comply to it, but it has got the support of most, if not allLinux distributions. It is not a good idea to break with the FSSTND without verycompelling reasons. The FSSTND attempts to follow Unix tradition and currenttrends, making Linux systems familiar to those with experience with other Unixsystems, and vice versa.This chapter is not as detailed as the FSSTND. A system administrator shouldalso read the FSSTND for a complete understanding.53

54 Chapter 5. Directory Tree OverviewThis chapter does not explain all �les in detail. The intention is not to describeevery �le, but to give an overview of the system from a �lesystem point of view.Further information of each �le is available elsewhere in this manual or the manualpages.The full directory tree is intended to be breakable into smaller parts, each onits own disk or partition, to accomodate to disk size limits and to ease backup andother system administration. The major parts are the root, /usr, /var, and /home�lesystems. Each part has a di�erent purpose. The directory tree has been designedso that it works well in a network of Linux machines which may share some parts ofthe �lesystems over a read-only device (e.g., a CD-ROM), or over the network withNFS.The roles of the di�erent parts of the directory tree are described below.� The root �lesystem is speci�c for each machine (it is generally stored on a localdisk, although it could possibly be downloaded to a ramdisk during bootup) andcontains the �les that are necessary for booting the system up, and to bring itup to such a state that the other �lesystems may be mounted. The contents ofthe root �lesystem will therefore be su�cient for the single user state. It willalso contain tools for �xing a broken system, and for recovering lost �les frombackups.� The /usr �lesystem contains all commands, libraries, manual pages, and otherunchanging �les needed during normal operation. No �les in /usr should bespeci�c for any given machine, nor should they be modi�ed during normal use.This allows the �les to be shared over the network, which can be cost-e�ectivesince it saves disk space (there can easily be hundreds of megabytes in /usr), andcan make administration easier (only the master /usr needs to be changed whenupdating an application, not each machine separately). Even if the �lesystem ison a local disk, it could be mounted read-only, to lessen the chance of �lesystemcorruption during a crash.� The /var �lesystem contains �les that change, such as spool directories (formail, news, printers, etc), log �les, formatted manual pages, and temporary�les. Traditionally everything in /var has been somewhere below /usr, but thatmade it impossible to mount /usr read-only.� The /home �lesystem contains the users' home directories, i.e., all the real data onthe system. Separating home directories to their own directory tree or �lesystemmakes backups easier; the other parts often do not have to be backed up, or at

5.2. The root �lesystem 55least not as often (they seldom change). A big /home might have to be brokenon several �lesystems, which requires adding an extra naming level below /home,e.g., /home/students and /home/staff.Although the di�erent parts have been called �lesystems above, there is no require-ment that they actually be on separate �lesystems. They could easily be kept in asingle one if the system is a small single-user system and he wants to keep things sim-ple. The directory tree might also be divided into �lesystems di�erently, depending onhow large the disks are, and how space is allocated for various purposes. The impor-tant part, though, is that all the standard names work; even if, say, /var and /usr areactually on the same partition, the names /usr/lib/libc.a and /var/adm/messagesmust work, for example by moving �les below /var into /usr/var, and making /vara symlink to /usr/var.The Unix �lesystem structure groups �les according to purpose, i.e., all commandsare in one place, all data �les in another, documentation in a third, and so on. Analternative would be to group �les �les according to the program they belong to,i.e., all Emacs �les would be in one directory, all TEX in another, and so on. Theproblem with the latter approach is that it makes it di�cult to share �les (the programdirectory often contains both static and shareable and changing and non-shareable�les), and sometimes to even �nd the �les (e.g., manual pages in a huge numberof places, and making the manual page programs �nd all of them is a maintenancenightmare).5.2 The root �lesystemThe root �lesystem should generally be small, since it contains very critical �les anda small, infrequently modi�ed �lesystem has a better chance of not getting corrupted.A corrupted root �lesystem will generally mean that the system becomes unbootableexcept with special measures (e.g., from a oppy), so you don't want to risk it.The root directory generally doesn't contain any �les, except perhaps the standardboot image for the system, usually called /vmlinuz. All other �les are in subdirecto-ries in the root �lesystems:/bin Commands needed during bootup that might be used by normal users(probably after bootup)./sbin Like /bin, but the commands are not intended for normal users, al-

56 Chapter 5. Directory Tree Overviewthough they may use them if necessary and allowed./etc Con�guration �les speci�c to the machine./root The home directory for user root./lib Shared libraries needed by the programs on the root �lesystem./lib/modules Loadable kernel modules, especially those that are needed to bootthe system when recovering from disasters (e.g., network and �lesystemdrivers)./dev Device �les./tmp Temporary �les. Programs running after bootup should use /var/tmp,not /tmp, since the former is probably on a disk with more space./boot Files used by the bootstrap loader, e.g., LILO. Kernel images are oftenkept here instead of in the root directory. If there are many kernelimages, the directory can easily grow rather big, and it might be betterto keep it in a separate �lesystem. Another reason would be to makesure the kernel images are within the �rst 1024 cylinders of an IDEdisk./mnt Mount point for temporary mounts by the system administrator. Pro-grams aren't supposed to mount on /mnt automatically. /mntmight bedivided into subdirectories (e.g., /mnt/dosa might be the oppy driveusing an MS-DOS �lesystem, and /mnt/exta might be the same withan ext2 �lesystem)./proc, /usr, /var, /home Mount points for the other �lesystems.5.2.1 The /etc directoryThe /etc directory contains a lot of �les. Some of them are described below. Forothers, you should determine which program they belong to and read the manualpage for that program. Many networking con�guration �les are in /etc as well, andare described in the Networking Administrators' Guide./etc/rc or /etc/rc.d or /etc/rc?.d Scripts or directories of scripts to run at startupor when changing the run level. See the chapter on init for further

5.2. The root �lesystem 57information./etc/passwd The user database, with �elds giving the username, real name, homedirectory, encrypted password, and other information about each user.The format is documented in the passwd(5) manual page./etc/fdprm Floppy disk parameter table. Describes what di�erent oppy disk for-mats look like. Used by setfdprm(1). See the setfdprm(8) manualpage for more information./etc/fstab Lists the �lesystems mounted automatically at startup by the mount-a command (in /etc/rc or equivalent startup �le). Under Linux, alsocontains information about swap areas used automatically by swapon-a. See section 4.6.5 and the mount(8)manual page for more informa-tion./etc/group Similar to /etc/passwd, but describes groups instead of users. See thegroup(5) manual page for more information./etc/inittab Con�guration �le for init(8)./etc/issue Output by getty before the login prompt. Usually contains a shortdescription or welcoming message to the system. The contents are upto the system administrator./etc/magic The con�guration �le for file(1). Contains the descriptions of various�le formats based on which file guesses the type of the �le. See themagic(8) and file(1) manual pages for more information./etc/motd Themessage of the day, automatically output after a successful login.Contents are up to the system administrator. Often used for gettinginformation to every user, such as warnings about planned downtimes./etc/mtab List of currently mounted �lesystems. Initially set up by the scripts,and updated automatically by the mount command. Used when a listof mounted �lesystems is needed, e.g., by the df(1) command./etc/shadow Shadow password �le on systems with shadow password software in-stalled. Shadow passwords move the encrypted password from /etc/passwdinto /etc/shadow; the latter is not readable by anyone except root.This makes it harder to crack passwords.

58 Chapter 5. Directory Tree Overview/etc/login.defs Con�guration �le for the login(1) command./etc/printcap Like /etc/termcap, but intended for printers. Di�erent syntax./etc/profile, /etc/csh.login, /etc/csh.cshrc Files executed at login or startuptime by the Bourne or C shells. These allow the system administrator toset global defaults for all users. See the manual pages for the respectiveshells./etc/securetty Identi�es secure terminals, i.e., the terminals from which root isallowed to log in. Typically only the virtual consoles are listed, so thatit becomes impossible (or at least harder) to gain superuser privilegesby breaking into a system over a modem or a network./etc/shells Lists trusted shells. The chsh(1) command allows users to changetheir login shell only to shells listed in this �le. ftpd, the server processthat provides FTP services for a machine, will check that the user's shellis listed in /etc/shells and will not let people log in unles the shell islisted there./etc/termcap The terminal capability database. Describes by what \escape se-quences" various terminals can be controlled. Programs are written sothat instead of directly outputting an escape sequence that only workson a particular brand of terminal, they look up the correct sequence todo whatever it is they want to do in /etc/termcap. As a result mostprograms work with most kinds of terminals. See the termcap(5),curs termcap(3), and terminfo(5) manual pages for more informa-tion.META: HOSTNAME, adjtime, disktab, gettydefs, networking (exports, host.conf,hosts, hosts.equiv, inetd.conf, named.*, networks, ntp.conf, protocols, resolv.conf,rpc, services, syslog.conf), mtools, and so forth.5.2.2 The /dev directoryThe /dev directory contains the special device �les for all the devices. The device �lesare named using special conventions; these are described in appendix C. The device�les are created during installation, and later with the /dev/MAKEDEV script. The/dev/MAKEDEV.local is a script written by the system administrator that createslocal-only device �les or links (i.e., those that are not part of the standard MAKEDEV,

5.3. The /usr �lesystem 59such as device �les for some non-standard device driver).5.3 The /usr �lesystemThe /usr �lesystem is often large, since all programs are installed there. All �les in/usr usually come from a Linux distribution; locally installed programs and otherstu� goes below /usr/local. This makes it possible to update the system froma new version of the distribution, or even a completely new distribution, withouthaving to install all programs again. Some of the subdirectories of /usr are listedbelow (some of the less important directories have been dropped; see the FSSTNDfor more information)./usr/X11R6 The X Window System, all �les. To simplify the development andinstallation of X, the X �les have not been integrated into the rest ofthe system. There is a directory tree below /usr/X11R6 similar to thatbelow /usr itself./usr/X386 Similar to /usr/X11R6, but for X11 Release 5./usr/bin Almost all user commands. Some commands are in /bin or in /usr/local/bin./usr/sbin System administration commands that are not needed on the root�lesystem, e.g., most server programs./usr/man, /usr/info, /usr/doc Manual pages, GNU Info documents, and miscel-laneous other documentation �les, respectively./usr/include Header �les for the C programming language. This should actuallybe below /usr/lib for consistency, but the tradition is overwhelminglyin support for this name./usr/lib Unchanging data �les for programs and subsystems, including somesite-wide con�guration �les. The name lib comes from library; origi-nally libraries of programming subroutines were stored in /usr/lib./usr/local The place for locally installed software and other �les.

60 Chapter 5. Directory Tree Overview5.4 The /var �lesystemThe /var contains data that is changed when the system is running normally. It isspeci�c for each system, i.e., not shared over the network with other computers./var/catman A cache for man pages that are formatted on demand. The sourcefor manual pages is usually stored in /usr/man/man*; some manualpages might come with a pre-formatted version, which is stored in/usr/man/cat*. Other manual pages need to be formatted when theyare �rst viewed; the formatted version is then stored in /var/man sothat the next person to view the same page won't have to wait forit to be formatted. (/var/catman is often cleaned in the same waytemporary directories are cleaned.)/var/lib Files that change while the system is running normally./var/local Variable data for programs that are installed in /usr/local (i.e., pro-grams that have been installed by the system administrator). Note thateven locally installed programs should use the other /var directories ifthey are appropriate, e.g., /var/lock./var/lock Lock �les. Many programs follow a convention to create a lock �le in/var/lock to indicate that they are using a particular device or �le.Other programs will notice the lock �le and won't attempt to use thedevice or �le./var/log Log �les from various programs, especially login (/var/log/wtmp,which logs all logins ans logouts into the system) and syslog (/var/log/messages,where all kernel and system program message are usually stored). Filein /var/log can often grow inde�nitely, and may require cleaning atregular intervals./var/run Files that contain information about the system that is valid until thesystem is next booted. For example, /var/run/utmp contains informa-tion about people currently logged in./var/spool Directories for mail, news, printer queues, and other queued work. Eachdi�erent spool has its own subdirectory below /var/spool, e.g., themailboxes of the users are in /var/spool/mail.

5.5. The /proc �lesystem 61/var/tmp Temporary �les that are large or that need to exist for a longer timethan what is allowed for /tmp. (Although the system administratormight not allow very old �les in /var/tmp either.)5.5 The /proc �lesystemThe /proc �lesystem contains a illusionary �lesystem. It does not exist on a disk.Instead, the kernel creates it in memory. It is used to provide information about thesystem (originally about processes, hence the name). Some of the more important�les and directories are explained below. The /proc �lesystem is described in moredetail in the proc(5) manual page./proc/1 A directory with information about process number 1. Each process hasa directory below /proc with the name being its process identi�cationnumber./proc/cpuinfo Information about the processor, such as its type, make, model, andperfomance./proc/devices List of device drivers con�gured into the currently running kernel./proc/dma Shows which DMA channels are being used at the moment./proc/filesystems Filesystems con�gured into the kernel./proc/interrupts Shows which interrupts are in use, and how many of each therehave been./proc/ioports Which I/O ports are in use at the moment./proc/kcore An image of the physical memory of the system. This is exactly thesame size as your physical memory, but does not really take up thatmuch memory; it is generated on the y as programs access it. (Re-member: unless you copy it elsewhere, nothing under /proc takes upany disk space at all.)/proc/kmsg Messages output by the kernel. These are also routed to syslog./proc/ksyms Symbol table for the kernel.

62 Chapter 5. Directory Tree Overview/proc/loadavg The `load average' of the system; three meaningless indicators ofhow much work the system has to do at the moment./proc/meminfo Information about memory usage, both physical and swap./proc/modules Which kernel modules are loaded at the moment./proc/net Status information about network protocols./proc/self A symbolic link to the process directory of the program that is lookingat /proc. When two processes look at /proc, they get di�erent links.This is mainly a convenience to make it easier for programs to get attheir process directory./proc/stat Various statistics about the system, such as the number of page faultssince the system was booted./proc/uptime The time the system has been up./proc/version The kernel version.Note that while the above �les tend to be easily readable text �les, they can sometimesbe formatted in a way that is not easily digestable. There are many commands thatdo little more than read the above �les and format them for easier understanding. Forexample, the free program reads /proc/meminfo and converts the amounts given inbytes to kilobytes (and adds a little more information, as well).

Chapter 6Memory ManagementMinnet, jag har tappat mitt minne,�ar jag svensk eller �nnekommer inte ih�ag: : :Inne, �ar jag ute eller innejag har luckor i minnet,s�ad�ar sm�a ALKO-H�ALMen besinne,man t�atar med det br�annvin man f�ar,fast�an minnet och helan g�ar.(Bosse �Osterberg)This section describes the Linux memory management features, i.e., virtual memoryand the disk bu�er cache. The purpose and workings and the things the systemadministrator needs to take into consideration are described.6.1 What is virtual memory?Linux supports virtual memory, that is, using a disk as an extension of RAM sothat the e�ective size of usable memory grows correspondingly. The kernel will writethe contents of a currently unused block of memory to the hard disk so that thememory can be used for another purpose. When the original contents are neededagain, they are read back into memory. This is all made completely transparent63

64 Chapter 6. Memory Managementto the user; programs running under Linux only see the larger amount of memoryavailable and don't notice that parts of them reside on the disk from time to time.Of course, reading and writing the hard disk is slower (on the order of a thousandtimes slower) than using real memory, so the programs don't run as fast. The partof the hard disk that is used as virtual memory is called the swap space.Linux can use either a normal �le in the �lesystem or a separate partition for swapspace. A swap partition is faster, but it is easier to change the size of a swap �le(there's no need to repartition the whole hard disk, and possibly install everythingfrom scratch). When you know how much swap space you need, you should go for aswap partition, but if you are uncertain, you can use a swap �le �rst, use the systemfor a while so that you can get a feel for how much swap you need, and then make aswap partition when you're con�dent about its size.You should also know that Linux allows one to use several swap partitions and/orswap �les at the same time. This means that if you only occasionally need an unusualamount of swap space, you can set up an extra swap �le at such times, instead ofkeeping the whole amount allocated all the time.6.2 Creating a swap areaA swap �le is an ordinary �le; it is in no way special to the kernel. The only thingthat matters to the kernel is that it has no holes, and that it is prepared for use withmkswap(8). It must reside on a local disk, however; it can't reside in a �lesystemthat has been mounted over NFS.The bit about holes is important. The swap �le reserves the disk space so thatthe kernel can quickly swap out a page without having to go through all the thingsthat are necessary when allocating a disk sector to a �le. The kernel merely uses anysectors that have already been allocated to the �le. Because a hole in a �le meansthat there are no disk sectors allocated (for that place in the �le), it is not good forthe kernel to try to use them.One good way to create the swap �le without holes is through the following com-mand:ttyp5 root ~ $ dd if=/dev/zero of=/extra-swap bs=1024 count=10241024+0 records in1024+0 records outttyp5 root ~ $

6.3. Using a swap area 65where /extra-swap is the name of the swap �le and the size of is given after thecount=. It is best for the size to be a multiple of 4, because the kernel writes outmemory pages, which are 4 kilobytes in size. If the size is not a multiple of 4, thelast couple of kilobytes may be unused.A swap partition is also not special in any way. You create it just like any otherpartition; the only di�erence is that it is used as a raw partition, that is, it willnot contain any �lesystem at all. It is a good idea to mark swap partitions as type82 (Linux swap); this will the make partition listings clearer, even though it is notstrictly necessary to the kernel.After you have created a swap �le or a swap partition, you need to write a signatureto its beginning; this contains some administrative information and is used by thekernel. The command to do this is mkswap(8), used like this:ttyp5 root ~ $ mkswap /extra-swap 1024Setting up swapspace, size = 1044480 bytesttyp5 root ~ $Note that the swap space is still not in use yet: it exists, but the kernel does not useit to provide virtual memory.The Linux memory manager limits the size of each swap area to 127.5 MB. Alarger swap space can be created, but only the �rst 127.5 MB are actually used. Youcan, however, use up to 16 swap spaces simultaneously, for a total of almost 2 GB.16.3 Using a swap areaAn initialized swap area is taken into use with swapon(8). This command tells thekernel that the swap area can be used. The path to the swap area is given as theargument, so to start swapping on a temporary swap �le one might use the followingcommand.swapon /usr/tmp/temporary-swap-file ttyp5 root ~ $ swapon /extra-swapttyp5 root ~ $Swap areas can be used automatically by listing them in the /etc/fstab �le./dev/hda8 swap swap defaults1A gigabyte here, a gigabyte there, pretty soon we start talking about real memory.

66 Chapter 6. Memory ManagementThe startup scripts will run the command swapon -a, which will start swapping onall the swap areas listed in /etc/fstab. Therefore, the swapon command is usuallyused only when extra swap is needed.You can monitor the use of swap areas with free(1). It will tell the total amountof swap space used. The same information is available via top(1), or using the proc�lesystem in �le /proc/meminfo. It is currently di�cult to get information on theuse of a speci�c swap area.A swap area can be removed from use with swapoff(8). It is usually not necessaryto do it, except for temporary swap areas. Any pages in use in the swap area areswapped in �rst; if there is not su�cient physical memory to hold them, they will thenbe swapped out (to some other swap area). If there is not enough virtual memory tohold all of the pages Linux will start to trash; after a long while it should recover,but meanwhile the system is unusable. You should check (e.g., with free) that thereis enough free memory before removing a swap space from use.All the swap areas that are used automatically with swapon -a can be removedfrom use with swapoff -a; it looks at the �le /etc/fstab to �nd what to remove.Any manually used swap areas will remain in use.Sometimes a lot of swap space can be in use even though there is a lot of freephysical memory. This can happen for instance if at one point there is need to swap,but later a big process that occupied much of the physical memory terminates andfrees the memory. The swapped-out data is not automatically swapped in until it isneeded, so the physical memory may remain free for a long time. There is no need toworry about this, but it can be comforting to know what is happening.6.4 Sharing swap areas with other operating systemsVirtual memory is built into many operating systems. Since they each need it onlywhen they are running, i.e., never at the same time, the swap areas of all but thecurrently running one are being wasted. It would be more e�cient for them to share asingle swap area. This is possible, but can require a bit of hacking. The Tips-HOWTOcontains some advice on how to implement this.

6.5. Allocating swap space 676.5 Allocating swap spaceSome people will tell you that you should allocate twice as much swap space as youhave physical memory, but this is a bogus rule. Here's how to do it properly:1. Estimate your total memory needs. This is the largest amount of memory you'llprobably need at a time, that is the sum of the memory requirements of all theprograms you want to run at the same time. This can be done by running at thesame time all the programs you are likely to ever be running at the same time.For instance, if you want to run X, you should allocate about 8 MB for it,gcc wants several megabytes (some �les need an unusually large amount, up toseveral tens of megabytes, but usually about four should do), and so on. Thekernel will use about a megabyte by itself, and the usual shells and other smallutilities perhaps a few hundred kilobytes (say a megabyte together). There is noneed to try to be exact, rough estimates are �ne, but you might want to be on thepessimistic side. Remember that if there are going to be several people using thesystem at the same time, they are all going to consumememory. (However, if twopeople run the same program at the same time, the total memory consumptionis usually not double, since code pages and shared libraries exist only once.) Thefree(8) and ps(1) commands are useful for estimating the memory needs.2. Add some security to the estimate in step 1. This is because estimates of programsizes will probably be wrong, because you'll probably forget some programs youwant to run, and to make certain that you have some extra space just in case. Acouple of megabytes should be �ne. (It is better to allocate too much than toolittle swap space, but there's no need to over-do it and allocate the whole disk,since unused swap space is wasted space; see later about adding more swap.)Also, since it is nicer to deal with even numbers, you can round the value up tothe next full megabyte.3. Based on the computations in steps 1 and 2, you know how much memory you'llbe needing in total. So, in order to allocate swap space, you just need to subtractthe size of your physical memory from the total memory needed, and you knowhow much swap space you need. (On some versions of UNIX, you need to allocatespace for an image of the physical memory as well, so the amount computed instep 2 is what you need and you shouldn't do the subtraction.)4. If your calculated swap area is very much larger than your physical memory(more than a couple times larger), you should probably invest in more physicalmemory, otherwise performance will be too low.

68 Chapter 6. Memory Management6.6 The bu�er cacheReading from a disk2 is very slow compared to accessing (real) memory. In addition,it is common to read the same part of a disk several times during relatively shortperiods of time. For example, one might �rst read an e-mail message, then read theletter into an editor when replying to it, then make the mail program read it againwhen copying it to a folder. Or, consider how often the command ls might be runon a system with many users. By reading the information from disk only once andthen keeping it in memory until no longer needed, one can speed up all but the �rstread. This is called disk bu�ering, and the memory used for the purpose is calledthe bu�er cache.Since memory is, unfortunately, a �nite, nay, scarce resource, the bu�er cacheusually cannot be big enough (it can't hold all the data one ever wants to use). Whenthe cache �lls up, the data that has been unused for the longest time is discarded andthe memory thus freed is used for the new data.Disk bu�ering works for writes as well. On the one hand, data that is writtenis often soon read again (e.g., a source code �le is saved to a �le, then read by thecompiler), so putting data that is written in the cache is a good idea. On the otherhand, by only putting the data into the cache, not writing it to disk at once, theprogram that writes runs quicker. The writes can then be done in the background,without slowing down the other programs.Most operating systems have bu�er caches (although they might be called some-thing else), but not all of them work according to the above principles. Some arewrite-through: the data is written to disk at once (it is kept in the cache as well,of course). The cache is called write-back if the writes are done at a later time.Write-back is more e�cient than write-through, but also a bit more prone to errors:if the machine crashes, or the power is cut at a bad moment, or the oppy is removedfrom the disk drive before the data in the cache waiting to be written gets written,the changes in the cache are usually lost. This might even mean that the �lesystem(if there is one) is not in full working order, perhaps because the unwritten data heldimportant changes to the bookkeeping information. Because of this, you should neverturn o� the power without using a proper shutdown procedure (see an as yet unwrit-ten chapter), or remove a oppy from the disk drive until it has been unmounted (ifit was mounted) or after whatever program is using it has signaled that it is �nishedand the oppy drive light doesn't shine anymore. The sync(8) command ushesthe bu�er, i.e., forces all unwritten data to be written to disk, and can be used when2Except a RAM disk, for obvious reasons.

6.6. The bu�er cache 69one wants to be sure that everything is safely written. In traditional UNIX systems,there is a program running in the background which does a sync every 30 seconds, soit is usually not necessary to use sync. Linux has an additional daemon, bdflush(8),that does a more imperfect sync more frequently to avoid the sudden freeze due toheavy disk I/O that sync sometimes causes.The cache does not actually bu�er �les, but blocks, which are the smallest unitsof disk I/O (under Linux, they are usually 1 kB). This way, also directories, superblocks, other �lesystem bookkeeping data, and non-�lesystem disks are cached.The e�ectiveness of a cache is primarily decided by its size. A small cache is nextto useless: it will hold so little data that all all cached data is ushed from the cachebefore it is reused. The critical size depends on how much data is read and written,and how often the same data is accessed. The only way to know is to experiment.If the cache is of a �xed size, it is not very good to have it too big, either, becausethat might make the free memory too small and cause swapping (which is also slow).To make the most e�cient use of real memory, Linux automatically uses all free RAMfor bu�er cache, but also automatically makes the cache smaller when programs needmore memory.Under Linux, you do not need to do anything to make use of the cache, it happenscompletely automatically. Except for following the proper procedures for shutdownand removing oppies, you do not need to worry about it.

70 Chapter 6. Memory Management

Chapter 7Logging In And OutThis chapter needs a quote. Suggestions, anyone?This section describes what happens when a user logs in or out. The various inter-actions of background processes, log �les, con�guration �les, and so on are describedin some detail.7.1 Logins via terminalsFigure 7.1 shows how logins happen via terminals. First, init makes sure there is agetty program for the terminal connection (or console). getty listens at the terminaland waits for the user to notify that he is ready to login in (this usually means thatthe user must type something). When it notices a user, getty outputs a welcomemessage (stored in /etc/issue), and prompts for the username, and �nally runs thelogin program. login gets the username as a parameter, and prompts the user forthe password. If these match, login starts the shell con�gured for the user; else itjust exits and terminates the process (perhaps after giving the user another chanceat entering the username and password). init notices that the process terminated,and starts a new getty for the terminal.Note that the only process new process is created by init (using the fork(2)system call); getty and login only replace the program running in the process (usingthe exec(3) system call).A separate program for noticing the user is needed for serial lines, since it can be(and traditionally was) complicated to notice when a terminal becomes active. getty71

72 Chapter 7. Logging In And Outalso adapts to the speed and other settings of the connection, which is importantespecially for dial-in connections, where these parameters may change from call tocall.There are several versions of getty and init in use, all with their good and badpoints. It is a good idea to learn about the versions on your system, and also aboutthe other versions (you could use the Linux Software Map to search them). If youdon't have dial-in's, you probably don't have to worry about getty, but init is stillimportant.7.2 Logins via the networkTwo computers in the same network are usually linked via a single physical cable.When they communicate over the network, the programs in each computer that takepart in the communication are linked via a virtual connection, a sort of imaginarycable. As far as the programs at either end of the virtual connection are concerned,they have a monopoly on their own cable. However, since the cable is not real, onlyimaginary, the operating systems of both computers can have several virtual con-nections share the same physical cable. This way, using just a single cable, severalprograms can communicate without having to know of or care about the other com-munications. It is even possible to have several computers use the same cable; thevirtual connections exist between two computers, and the other computers ignorethose connections that they don't take part in.That's a complicated and over-abstracted description of the reality. It might,however, be good enough to understand the important reason why network logins aresomewhat di�erent from normal logins. The virtual connections are established whenthere are two programs on di�erent computers that wish to communicate. Since it isin principle possible to login from any computer in a network to any other computer,there is a huge number of potential virtual communications. Because of this, it is notpractical to start a getty for each potential login.There is a single process corresponding to getty that handles all network logins.When it notices an incoming network login (i.e., it notices that it gets a new virtualconnection to some other computer), it starts a new process to handle that singlelogin. The original process remains and continues to listen for new logins.To make things a bit more complicated, there is more than one communicationprotocol for network logins. The two most important ones are telnet and rlogin.In addition to logins, there are many other virtual connections that may be made (for

7.3. What login does 73FTP, Gopher, HTTP, and other network services). It would be ine�ective to have aseparate process listening for a particular type of connection, so instead there is onlyone listener that can recognize the type of the connection and can start the correcttype of program to provide the service. This single listener is called inetd; see the\Linux Network Administrators' Guide" for more information.7.3 What login doesThe login program takes care of authenticating the user (making sure that the user-name and password match), and of setting up an initial environment for the user bysetting permissions for the serial line and starting the shell.Part of the initial setup is outputting the contents of the �le /etc/motd (shortfor message of the day) and checking for electronic mail. These can be disabled bycreating a �le called .hushlogin in the user's home directory.If the �le /etc/nologin exists, logins are disabled. That �le is typically createdby shutdown(8) and relatives. login checks for this �le, and will refuse to accept alogin if it exists. If it does exist, login outputs it contents to the terminal before itquits.login logs all failed login attempts in a system log �le (via syslog). It also logsall logins by root. Both of these can be useful when tracking down intruders.Currently logged in people are listed in /var/run/utmp. This �le is valid only untilthe system is next rebooted or shut down; it is cleared when the system is booted. Itlists each user and the terminal (or network connection) he is using, along with someother useful information. The who, w, and other similar commands look in utmp tosee who are logged in.All successful logins are recorded into /var/log/wtmp. This �le will grow withoutlimit, so it must be cleaned regularly, for example by having a weekly cron job toclear it.1 The last command browses wtmp.Both utmp and wtmp are in a binary format (see the utmp(5) manual page); it isunfortunately not convenient to examine them without special programs.1Good Linux distributions do this out of the box.

74 Chapter 7. Logging In And Out7.4 X and xdmMETA: X implements logins via xdm; also: xterm -ls7.5 Access controlThe user database is traditionally contained in the /etc/passwd �le. Some systemsuse shadow passwords, and have moved the passwords to /etc/shadow. Sites withmany computers that share the accounts use NIS or some other method to storethe user database; they might also automatically copy the database from one centrallocation to all other computers.The user database contains not only the passwords, but also some additional infor-mation about the users, such as their real names, home directories, and login shells.This other information needs to be public, so that anyone can read it. Therefore thepassword is stored encrypted. This does have the drawback that anyone with accessto the encrypted password can use various cryptographical methods to guess it, with-out trying to actually log into the computer. Shadow passwords try to avoid thisby moving the password into another �le, which only root can read (the passwordis still stored encrypted). However, installing shadow passwords later onto a systemthat did not support them can be di�cult.With or without passwords, it is important to make sure that all passwords in asystem are good, i.e., not easily guessable. The crack program can be used to crackpasswords; any password it can �nd is by de�nition not a good one. While crackcan be run be intruders, it can also be run by the system adminstrator to avoid badpasswords. Good passwords can also be enforced by the passwd(1) program; this isin fact more e�ective in CPU cycles, since cracking passwords requires quite a lot ofcomputation.The user group database is kept in /etc/group; for systems with shadow pass-words, there can be a /etc/shadow.group.root usually can't login via most terminals or the network, only via terminalslisted in the /etc/securetty �le. This makes it necessary to get physical access toone of these terminals. It is, however, possible to log in via any terminal as any otheruser, and use the su command to become root.

7.6. Shell startup 757.6 Shell startupWhen an interactive login shell starts, it automatically executes one or more pre-de�ned �les. Di�erent shells execute di�erent �les; see the documentation of eachshell for further information.Most shells �rst run some global �le, for example, the Bourne shell (/bin/sh)and its derivatives execute /etc/profile; in addition, they execute ~/.profile./etc/profile allows the system administrator to have set up a common user en-vironment, especially by setting the PATH to include local command directories inaddition to the normal ones. On the other hand, ~/.profile allows the user to cus-tomize the environment to his own tastes by overriding, if necessary, the defaultenvironment.

76 Chapter 7. Logging In And Out
init: fork +

exec("/sbin/getty")

getty: wait for user

do they match?

login: exec("/bin/sh")

sh: read and execute

commands

sh: exit

login: exit

login: read password

exec("/bin/login")

getty: read username,

no

yes

START

Figure 7.1: Logins via terminals: the interaction of init, getty, login, and the shell (here,/bin/sh).

Appendix ADesign and Implementation of theSecond Extended FilesystemThis appendix is a paper written by R�emy Card (card@masi.ibp.fr), TheodoreTs'o (tytso@mit.edu), and Stephen Tweedie (sct@dcs.ed.ac.uk), the designers andimplementors of the ext2 �lesystem. It was �rst published in the Proceedings of theFirst Dutch International Symposium on Linux, ISBN 90 367 0385 9.IntroductionLinux is a Unix-like operating system, which runs on PC-386 computers. It wasimplemented �rst as extension to the Minix operating system [9] and its �rst versionsincluded support for the Minix �lesystem only. The Minix �lesystem contains twoserious limitations: block addresses are stored in 16 bit integers, thus the maximal�lesystem size is restricted to 64 mega bytes, and directories contain �xed-size entriesand the maximal �le name is 14 characters.We have designed and implemented two new �lesystems that are included in thestandard Linux kernel. These �lesystems, called \Extended File System" (Ext fs) and\Second Extended File System" (Ext2 fs) raise the limitations and add new features.In this paper, we describe the history of Linux �lesystems. We briey introduce thefundamental concepts implemented in Unix �lesystems. We present the implemen-tation of the Virtual File System layer in Linux and we detail the Second ExtendedFile System kernel code and user mode tools. Last, we present performance measure-ments made on Linux and BSD �lesystems and we conclude with the current status77

78 Appendix A. Design and Implementation of the Second Extended Filesystemof Ext2fs and the future directions.A.1 History of Linux �lesystemsIn its very early days, Linux was cross-developed under the Minix operating system.It was easier to share disks between the two systems than to design a new �lesystem,so Linus Torvalds decided to implement support for the Minix �lesystem in Linux.The Minix �lesystem was an e�cient and relatively bug-free piece of software.However, the restrictions in the design of the Minix �lesystem were too limiting,so people started thinking and working on the implementation of new �lesystems inLinux.In order to ease the addition of new �lesystems into the Linux kernel, a VirtualFile System (VFS) layer was developed. The VFS layer was initially written by ChrisProvenzano, and later rewritten by Linus Torvalds before it was integrated into theLinux kernel. It will be described in section A.3 of this paper.After the integration of the VFS in the kernel, a new �lesystem, called the \Ex-tended File System" was implemented in April 1992 and added to Linux 0.96c. Thisnew �lesystem removed the two big Minix limitations: its maximal size was 2 gigabytes and the maximal �le name size was 255 characters. It was an improvement overthe Minix �lesystem but some problems were still present in it. There was no supportfor the separate access, inode modi�cation, and data modi�cation timestamps. The�lesystem used linked lists to keep track of free blocks and inodes and this producedbad performances: as the �lesystem was used, the lists became unsorted and the�lesystem became fragmented.As a response to these problems, two new �lesytems were released in Alpha versionin January 1993: the Xia �lesystem and the Second Extended File System. The Xia�lesystem was heavily based on the Minix �lesystem kernel code and only added a fewimprovements over this �lesystem. Basically, it provided long �le names, support forbigger partitions and support for the three timestamps. On the other hand, Ext2fs wasbased on the Extfs code with many reorganizations and many improvements. It hadbeen designed with evolution in mind and contained space for future improvements.It will be described with more details in section A.4.When the two new �lesystems were �rst released, they provided essentially thesame features. Due to its minimal design, Xia fs was more stable than Ext2fs. As the�lesystems were used more widely, bugs were �xed in Ext2fs and lots of improvements

A.2. Basic File System Concepts 79and new features were integrated. Ext2fs is now very stable and has become the de-facto standard Linux �lesystem.The table A.1 contains a summary of the features provided by the di�erent �lesys-tems. Table A.1: Summary of the �lesystem featuresMinix FS Ext FS Ext2 FS Xia FSMax FS size 64 MB 2 GB 4 TB 2 GBMax �le size 64 MB 2 GB 2 GB 64 MBMax �le name 16/30 c 255 c 255 c 248 c3 times support No No Yes YesExtensible No No Yes NoVar. block size No No Yes NoMaintained Yes No Yes ?A.2 Basic File System ConceptsEvery Linux �lesystem implements a basic set of common concepts derivated fromthe Unix operating system [2]: �les are represented by inodes, directories are simply�les containing a list of entries and devices can be accessed by requesting I/O onspecial �les.A.2.1 InodesEach �le is represented by a structure, called an inode. Each inode contains thedescription of the �le: �le type, access rights, owners, timestamps, size, pointers todata blocks. The addresses of data blocks allocated to a �le are stored in its inode.When a user requests an I/O operation on the �le, the kernel code converts thecurrent o�set to a block number, uses this number as an index in the block addressestable and reads or writes the physical block. Figure A.1 represents the structure ofan inode.

80 Appendix A. Design and Implementation of the Second Extended Filesystem
Direct blocks

Indirect blocks

Double indirect

blocks

inode

Infos

Figure A.1: Structure of an inodeA.2.2 DirectoriesDirectories are structured in a hierarchical tree. Each directory can contain �les andsubdirectories.Directories are implemented as a special type of �les. Actually, a directory is a �lecontaining a list of entries. Each entry contains an inode number and a �le name.When a process uses a pathname, the kernel code searchs in the directories to �ndthe corresponding inode number. After the name has been converted to an inodenumber, the inode is loaded into memory and is used by subsequent requests.Figure A.2 represents a directory.A.2.3 LinksUnix �lesystems implement the concept of link. Several names can be associatedwith a inode. The inode contains a �eld containing the number associated with the�le. Adding a link simply consists in creating a directory entry, where the inodenumber points to the inode, and in incrementing the links count in the inode. Whena link is deleted, i.e. when one uses the rm command to remove a �lename, the kerneldecrements the links count and deallocates the inode if this count becomes zero.

A.2. Basic File System Concepts 81
Inode table

Directory

i1

i2

i4

i1

name1

name2

name3

name4Figure A.2: Structure of a directoryThis type of link is called a hard link and can only be used within a single �lesystem:it is impossible to create cross-�lesystem hard links. Moreover, hard links can onlypoint on �les: a directory hard link cannot be created to prevent the apparition of acycle in the directory tree.Another kind of links exists in most Unix �lesystems. Symbolic links are simply�les which contain a �lename. When the kernel encounters a symbolic link duringa pathname to inode conversion, it replaces the name of the link by its contents,i.e. the name of the target �le, and restarts the pathname interpretation. Since asymbolic link does not point to an inode, it is possible to create cross-�lesystemssymbolic links. Symbolic links can point to any type of �le, even on nonexistent �les.Symbolic links are very useful because they don't have the limitations associated tohard links. However, they use some disk space, allocated for their inode and theirdata blocks, and cause an overhead in the pathname to inode conversion because thekernel has to restart the name interpretation when it encounters a symbolic link.A.2.4 Device special �lesIn Unix-like operating systems, devices can be accessed via special �les. A devicespecial �le does not use any space on the �lesystem. It is only an access point to thedevice driver.Two types of special �les exist: character and block special �les. The former allowsI/O operations in character mode while the later requires data to be written in blockmode via the bu�er cache functions. When an I/O request is made on a special �le,it is forwarded to a (pseudo) device driver. A special �le is referenced by a major

82 Appendix A. Design and Implementation of the Second Extended Filesystemnumber, which identi�es the device type, and a minor number, which identi�es theunit.A.3 The Virtual File SystemA.3.1 PrincipleThe Linux kernel contains a Virtual File System layer which is used during systemcalls acting on �les. The VFS is an indirection layer which handles the �le orientedsystem calls and calls the necessary functions in the physical �lesystem code to dothe I/O.This indirection mechanism is frequently used in Unix-like operating systems toease the integration and the use of several �lesystem types [5, 8].When a process issues a �le oriented system call, the kernel calls a function con-tained in the VFS. This function handles the structure independent manipulationsand redirects the call to a function contained in the physical �lesystem code, whichis responsible for handling the structure dependent operations. Filesystem code usesthe bu�er cache functions to request I/O on devices. This scheme is illustrated on�gure A.3.A.3.2 The VFS structureThe VFS de�nes a set of functions that every �lesystem has to implement. This inter-face is made up of a set of operations associated to three kinds of objects: �lesystems,inodes, and open �les.The VFS knows about �lesystem types supported in the kernel. It uses a tablede�ned during the kernel con�guration. Each entry in this table describes a �lesystemtype: it contains the name of the �lesystem type and a pointer on a function calledduring the mount operation. When a �lesystem is to be mounted, the appropriatemount function is called. This function is responsible for reading the superblockfrom the disk, initializing its internal variables, and returning a mounted �lesystemdescriptor to the VFS. After the �lesystem is mounted, the VFS functions can usethis descriptor to access the physical �lesystem routines.A mounted �lesystem descriptor contains several kinds of data: informations thatare common to every �lesystem types, pointers to functions provided by the physical�lesystem kernel code, and private data maintained by the physical �lesystem code.

A.4. The Second Extended File System 83
Buffer Cache

User process

System call (trap)

System calls interface

VFS

Linux Kernel
Minix FS DOS FS ext FS ext2 FS

Device drivers

I/O request

Disk controler HardwareFigure A.3: The VFS LayerThe function pointers contained in the �lesystem descriptors allow the VFS to accessthe �lesystem internal routines.Two other types of descriptors are used by the VFS: an inode descriptor and anopen �le descriptor. Each descriptor contains informations related to �les in useand a set of operations provided by the physical �lesystem code. While the inodedescriptor contains pointers to functions that can be used to act on any �le (e.g.create, unlink), the �le descriptors contains pointer to functions which can only acton open �les (e.g. read, write).A.4 The Second Extended File SystemA.4.1 MotivationsThe Second Extended File System has been designed and implemented to �x someproblems present in the �rst Extended File System. Our goal was to provide a pow-erful �lesystem, which implements Unix �le semantics and o�ers advanced features.

84 Appendix A. Design and Implementation of the Second Extended FilesystemOf course, we wanted to Ext2fs to have excellent performance. We also wanted toprovide a very robust �lesystem in order to reduce the risk of data loss in intensiveuse. Last, but not least, Ext2fs had to include provision for extensions to allow usersto bene�t from new features without reformatting their �lesystem.A.4.2 \Standard" Ext2fs featuresThe Ext2fs supports standard Unix �le types: regular �les, directories, device special�les and symbolic links.Ext2fs is able to manage �lesystems created on really big partitions. While theoriginal kernel code restricted the maximal �lesystem size to 2 GB, recent work inthe VFS layer have raised this limit to 4 TB. Thus, it is now possible to use big diskswithout the need of creating many partitions.Ext2fs provides long �le names. It uses variable length directory entries. Themaximal �le name size is 255 characters. This limit could be extended to 1012 ifneeded.Ext2fs reserves some blocks for the super user (root). Normally, 5% of the blocksare reserved. This allows the administrator to recover easily from situations whereuser processes �ll up �lesystems.A.4.3 \Advanced" Ext2fs featuresIn addition to the standard Unix features, Ext2fs supports some extensions which arenot usually present in Unix �lesystems.File attributes allow the users to modify the kernel behavior when acting on a setof �les. One can set attributes on a �le or on a directory. In the later case, new �lescreated in the directory inherit these attributes.BSD or System V Release 4 semantics can be selected at mount time. A mountoption allows the administrator to choose the �le creation semantics. On a �lesystemmounted with BSD semantics, �les are created with the same group id as their parentdirectory. System V semantics are a bit more complex: if a directory has the setgidbit set, new �les inherit the group id of the directory and subdirectories inherit thegroup id and the setgid bit; in the other case, �les and subdirectories are created withthe primary group id of the calling process.BSD-like synchronous updates can be used in Ext2fs. A mount option allowsthe administrator to request that metadata (inodes, bitmap blocks, indirect blocks

A.4. The Second Extended File System 85and directory blocks) be written synchronously on the disk when they are modi�ed.This can be useful to maintain a strict metadata consistency but this leads to poorperformances. Actually, this feature is not normally used, since in addition to theperformance loss associated with using synchronous updates of the metadata, it cancause corruption in the user data which will not be agged by the �lesystem checker.Ext2fs allows the administrator to choose the logical block size when creating the�lesystem. Block sizes can typically be 1024, 2048 and 4096 bytes. Using big blocksizes can speed up I/O since fewer I/O requests, and thus fewer disk head seeks, needto be done to access a �le. On the other hand, big blocks waste more disk space: onthe average, the last block allocated to a �le is only half full, so as blocks get bigger,more space is wasted in the last block of each �le. In addition, most of the advantagesof larger block sizes are obtained by Ext2 �lesystem's preallocation techniques (seesection A.4.5).Ext2fs implements fast symbolic links. A fast symbolic link does not use any datablock on the �lesystem. The target name is not stored in a data block but in the inodeitself. This policy can save some disk space (no data block needs to be allocated) andspeeds up link operations (there is no need to read a data block when accessing sucha link). Of course, the space available in the inode is limited so not every link can beimplemented as a fast symbolic link. The maximal size of the target name in a fastsymbolic link is 60 characters. We plan to extend this scheme to small �les in a nearfuture.Ext2fs keeps track of the �lesystem state. A special �eld in the superblock is usedby the kernel code to indicate the status of the �le system. When a �lesystem ismounted in read/write mode, its state is set to \Not Clean". When it is unmountedor remounted in read-only mode, its state is reset to \Clean". At boot time, the�lesystem checker uses this information to decide if a �lesystem must be checked.The kernel code also records errors in this �eld. When an inconsistency is detectedby the kernel code, the �lesystem is marked as \Erroneous". The �lesystem checkertests this to force the check of the �lesystem regardless of its apparently clean state.Always skipping �lesystem checks may sometimes be dangerous so Ext2fs providestwo ways to force checks at regular intervals. A mount counter is maintained in thesuperblock. Each time the �lesystem is mounted in read/write mode, this counteris incremented. When it reaches a maximal value (also recorded in the superblock),the �lesystem checker forces the check even if the �lesystem is \Clean". A last checktime and a maximal check interval are also maintained in the superblock. Thesetwo �elds allow the administrator to request periodical checks. When the maximalcheck interval has been reached, the checker ignores the �lesystem state and forces a

86 Appendix A. Design and Implementation of the Second Extended Filesystem�lesystem check.Ext2fs o�ers tools to tune the �lesystem behavior. The tune2fs program can beused to modify:� the error behavior. When an inconsistency is detected by the kernel code, the�lesystem is marked as \Erroneous" and one of the three following actions canbe done: continue normal execution, remount the �lesystem in read-only modeto avoid corrupting the �lesystem, make the kernel panic and reboot to run the�lesystem checker.� the maximal mount count.� the maximal check interval.� the number of logical blocks reserved for the super user.Mount options can also be used to change the kernel error behavior.An attribute allows the users to request secure deletion on �les. When such a �leis deleted, random data is written in the disk blocks previously allocated to the �le.This prevents malicious people from gaining access to the previous content of the �leby using a disk editor.Last, new types of �les inspired from the 4.4 BSD �lesystem have recently beenadded to Ext2fs. Immutable �les can only be read: nobody can write or deletethem. This can be used to protect sensitive con�guration �les. Append-only �les canbe opened in write mode but data is always appended at the end of the �le. Likeimmutable �les, they cannot be deleted or renamed. This is especially useful for log�les which can only grow.A.4.4 Physical StructureThe physical structure of Ext2 �lesystems has been strongly inuenced by the layoutof the BSD �lesystem [6]. A �lesystem is made up of block groups. Block groups areanalogous to BSD FFS's cylinder groups. However, block groups are not tied to thephysical layout of the blocks on the disk, since modern drives tend to be optimizedfor sequential access and hide their physical geometry to the operating system.The physical structure of a �lesystem is represented on �gure A.4.Each block group contains a redundant copy of crucial �lesystem control infor-mations (superblock and the �lesystem descriptors) and also contains a part of the�lesystem (a block bitmap, an inode bitmap, a piece of the inode table, and datablocks). The structure of a block group is represented on �gure A.5.

A.4. The Second Extended File System 87Boot Block Block ... BlockSector Group 1 Group 2 ... Group NFigure A.4: Physical structure of an Ext2 �lesystemSuper FS desc- Block Inode Inode Data BlocksBlock riptors Bitmap Bitmap TableFigure A.5: Structure of a block groupUsing block groups is a big win in terms of reliability: since the control structuresare replicated in each block group, it is easy to recover from a �lesystem where thesuperblock has been corrupted. This structure also helps to get good performances:by reducing the distance between the inode table and the data blocks, it is possibleto reduce the disk head seeks during I/O on �les.In Ext2fs, directories are managed as linked lists of variable length entries. Eachentry contains the inode number, the entry length, the �le name and its length.By using variable length entries, it is possible to implement long �le names withoutwasting disk space in directories. The structure of a directory entry is shown on�gure A.6. inode number entry length name length �lenameFigure A.6: Structure of a directory entryAs an example, �gure A.7 represents the structure of a directory containing three�les: file1, long file name, and f2.A.4.5 Performance optimizationsThe Ext2fs kernel code contains many performance optimizations, which tend toimprove I/O speed when reading and writing �les.Ext2fs takes advantage of the bu�er cache management by performing readaheads:when a block has to be read, the kernel code requests the I/O on several contiguousblocks. This way, it tries to ensure that the next block to read will already be loadedinto the bu�er cache. Readaheads are normally performed during sequential reads on

88 Appendix A. Design and Implementation of the Second Extended Filesystemi1 16 05 file1 i2 40 14 long file name i3 12 02 f2Figure A.7: Example of directory�les and Ext2fs extends them to directory reads, either explicit reads (readdir(2)calls) or implicit ones (namei kernel directory lookup).Ext2fs also contains many allocation optimizations. Block groups are used tocluster together related inodes and data: the kernel code always tries to allocate datablocks for a �le in the same group as its inode. This is intended to reduce the diskhead seeks made when the kernel reads an inode and its data blocks.When writing data to a �le, Ext2fs preallocates up to 8 adjacent blocks whenallocating a new block. Preallocation hit rates are around 75% even on very full�lesystems. This preallocation achieves good write performances under heavy load.It also allows contiguous blocks to be allocated to �les, thus it speeds up the futuresequential reads.These two allocation optimizations produce a very good locality of:� related �les through block groups� related blocks through the 8 bits clustering of block allocations.A.5 The Ext2fs libraryTo allow user mode programs to manipulate the control structures of an Ext2 �lesys-tem, the libext2fs library was developed. This library provides routines which canbe used to examine and modify the data of an Ext2 �lesystem, by accessing the�lesystem directly through the physical device.The Ext2fs library was designed to allow maximal code reuse through the use ofsoftware abstraction techniques. For example, several di�erent iterators are provided.A program can simply pass in a function to ext2fs block interate(), which will becalled for each block in an inode. Another iterator function allows an user-providedfunction to be called for each �le in a directory.Many of the Ext2fs utilities (mke2fs, e2fsck, tune2fs, dumpe2fs, and debugfs)use the Ext2fs library. This greatly simpli�es the maintainance of these utilities, sinceany changes to reect new features in the Ext2 �lesystem format need only be madein one place | in the Ext2fs library. This code reuse also results in smaller binaries,since the Ext2fs library can be built as a shared library image.

A.6. The Ext2fs tools 89Because the interfaces of the Ext2fs library are so abstract and general, new pro-grams which require direct access to the Ext2fs �lesystem can very easily be written.For example, the Ext2fs library was used during the port of the 4.4BSD dump andrestore backup utilities. Very few changes were needed to adapt these tools to Linux:only a few �lesystem dependent functions had to be replaced by calls to the Ext2fslibrary.The Ext2fs library provides access to several classes of operations. The �rst classare the �lesystem-oriented operations. A program can open and close a �lesystem,read and write the bitmaps, and create a new �lesystem on the disk. Functions arealso available to manipulate the �lesystem's bad blocks list.The second class of operations a�ect directories. A caller of the Ext2fs library cancreate and expand directories, as well as add and remove directory entries. Functionsare also provided to both resolve a pathname to an inode number, and to determinea pathname of an inode given its inode number.The �nal class of operations are oriented around inodes. It is possible to scan theinode table, read and write inodes, and scan through all of the blocks in an inode.Allocation and deallocation routines are also available and allow user mode programsto allocate and free blocks and inodes.A.6 The Ext2fs toolsPowerful management tools have been developed for Ext2fs. These utilities are usedto create, modify, and correct any inconsistencies in Ext2 �lesystems. The mke2fsprogram is used to initialize a partition to contain an empty Ext2 �lesystem.The tune2fs program can be used to modify the �lesystem parameters. As ex-plained in section A.4.3, it can change the error behavior, the maximal mount count,the maximal check interval, and the number of logical blocks reserved for the superuser.The most interesting tool is probably the �lesystem checker. E2fsck is intendedto repair �lesystem inconsistencies after an unclean shutdown of the system. Theoriginal version of e2fsck was based on Linus Torvald's fsck program for the Minix�lesystem. However, the current version of e2fsck was rewritten from scratch, usingthe Ext2fs library, and is much faster and can correct more �lesystem inconsistenciesthan the original version.The e2fsck program is designed to run as quickly as possible. Since �lesystem

90 Appendix A. Design and Implementation of the Second Extended Filesystemcheckers tend to be disk bound, this was done by optimizing the algorithms used bye2fsck so that �lesystem structures are not repeatedly accessed from the disk. Inaddition, the order in which inodes and directories are checked are sorted by blocknumber to reduce the amount of time in disk seeks. Many of these ideas were originallyexplored by [3] although they have since been further re�ned by the authors.In pass 1, e2fsck iterates over all of the inodes in the �lesystem and performschecks over each inode as an unconnected object in the �lesystem. That is, thesechecks do not require any cross-checks to other �lesystem objects. Examples of suchchecks include making sure the �le mode is legal, and that all of the blocks in theinode are valid block numbers. During pass 1, bitmaps indicating which blocks andinodes are in use are compiled.If e2fsck notices data blocks which are claimed by more than one inode, it invokespasses 1B through 1D to resolve these conicts, either by cloning the shared blocksso that each inode has its own copy of the shared block, or by deallocating one ormore of the inodes.Pass 1 takes the longest time to execute, since all of the inodes have to be readinto memory and checked. To reduce the I/O time necessary in future passes, critical�lesystem information is cached in memory. The most important example of thistechnique is the location on disk of all of the directory blocks on the �lesystem. Thisobviates the need to re-read the directory inodes structures during pass 2 to obtainthis information.Pass 2 checks directories as unconnected objects. Since directory entries do notspan disk blocks, each directory block can be checked individually without referenceto other directory blocks. This allows e2fsck to sort all of the directory blocks byblock number, and check directory blocks in ascending order, thus decreasing diskseek time. The directory blocks are checked to make sure that the directory entriesare valid, and contain references to inode numbers which are in use (as determinedby pass 1).For the �rst directory block in each directory inode, the `.' and `..' entries arechecked to make sure they exist, and that the inode number for the `.' entry matchesthe current directory. (The inode number for the `..' entry is not checked until pass3.)Pass 2 also caches information concerning the parent directory in which each di-rectory is linked. (If a directory is referenced by more than one directory, the secondreference of the directory is treated as an illegal hard link, and it is removed).It is noteworthy to note that at the end of pass 2, nearly all of the disk I/O which

A.7. Performance Measurements 91e2fsck needs to perform is complete. Information required by passes 3, 4 and 5 arecached in memory; hence, the remaining passes of e2fsck are largely CPU bound,and take less than 5-10% of the total running time of e2fsck.In pass 3, the directory connectivity is checked. E2fsck traces the path of eachdirectory back to the root, using information that was cached during pass 2. At thistime, the `..' entry for each directory is also checked to make sure it is valid. Anydirectories which can not be traced back to the root are linked to the /lost+founddirectory.In pass 4, e2fsck checks the reference counts for all inodes, by iterating over all theinodes and comparing the link counts (which were cached in pass 1) against internalcounters computed during passes 2 and 3. Any undeleted �les with a zero link countis also linked to the /lost+found directory during this pass.Finally, in pass 5, e2fsck checks the validity of the �lesystem summary informa-tion. It compares the block and inode bitmaps which were constructed during theprevious passes against the actual bitmaps on the �lesystem, and corrects the on-diskcopies if necessary.The �lesystem debugger is another useful tool. Debugfs is a powerful programwhich can be used to examine and change the state of a �lesystem. Basically, itprovides an interactive interface to the Ext2fs library: commands typed by the userare translated into calls to the library routines.Debugfs can be used to examine the internal structures of a �lesystem, manuallyrepair a corrupted �lesystem, or create test cases for e2fsck. Unfortunately, thisprogram can be dangerous if it is used by people who do not know what they aredoing; it is very easy to destroy a �lesystem with this tool. For this reason, debugfsopens �lesytems for read-only access by default. The user must explicitly specify the-w ag in order to use debugfs to open a �lesystem for read/wite access.A.7 Performance MeasurementsA.7.1 Description of the benchmarksWe have run benchmarks to measure �lesystem performances. Benchmarks have beenmade on a middle-end PC, based on a i486DX2 processor, using 16 MB of memoryand two 420 MB IDE disks. The tests were run on Ext2 fs and Xia fs (Linux 1.1.62)and on the BSD Fast �lesystem in asynchronous and synchronous mode (FreeBSD2.0 Alpha | based on the 4.4BSD Lite distribution).

92 Appendix A. Design and Implementation of the Second Extended FilesystemWe have run two di�erent benchmarks. The Bonnie benchmark tests I/O speed ona big �le | the �le size was set to 60 MB during the tests. It writes data to the �leusing character based I/O, rewrites the contents of the whole �le, writes data usingblock based I/O, reads the �le using character I/O and block I/O, and seeks into the�le. The Andrew Benchmark was developed at Carneggie Mellon University and hasbeen used at the University of Berkeley to benchmark BSD FFS and LFS. It runsin �ve phases: it creates a directory hierarchy, makes a copy of the data, recursivelyexamine the status of every �le, examine every byte of every �le, and compile severalof the �les.A.7.2 Results of the Bonnie benchmarkThe results of the Bonnie benchmark are presented in table A.2.Table A.2: Results of the Bonnie benchmarkChar Block Rewrite Char BlockWrite Write Read Read(KB/s) (KB/s) (KB/s) (KB/s) (KB/s)BSD Async 710 684 401 721 888BSD Sync 699 677 400 710 878Ext2 fs 452 1237 536 397 1033Xia fs 440 704 380 366 895The results are very good in block oriented I/O: Ext2 fs outperforms other �lesys-tems. This is clearly a bene�t of the optimizations included in the allocation routines.Writes are fast because data is written in cluster mode. Reads are fast because con-tiguous blocks have been allocated to the �le. Thus there is no head seek betweentwo reads and the readahead optimizations can be fully used.On the other hand, performance is better in the FreeBSD operating system incharacter oriented I/O. This is probably due to the fact that FreeBSD and Linux donot use the same stdio routines in their respective C libraries. It seems that FreeBSDhas a more optimized character I/O library and its performance is better.A.7.3 Results of the Andrew benchmarkThe results of the Andrew benchmark are presented in table A.3.

A.8. Conclusion 93Table A.3: Results of the Andrew benchmarkP1 P2 P3 P4 P5Create Copy Stat Grep Compile(ms) (ms) (ms) (ms) (ms)BSD Async 2203 7391 6319 17466 75314BSD Sync 2330 7732 6317 17499 75681Ext2 fs 790 4791 7235 11685 63210Xia fs 934 5402 8400 12912 66997The results of the two �rst passes show that Linux bene�ts from its asynchronousmetadata I/O. In passes 1 and 2, directories and �les are created and BSD syn-chronously writes inodes and directory entries. There is an anomaly, though: evenin asynchronous mode, the performance under BSD is poor. We suspect that theasynchronous support under FreeBSD is not fully implemented.In pass 3, the Linux and BSD times are very similar. This is a big progress againstthe same benchmark run six months ago. While BSD used to outperform Linux bya factor of 3 in this test, the addition of a �le name cache in the VFS has �xed thisperformance problem.In passes 4 and 5, Linux is faster than FreeBSD mainly because it uses an uni�edbu�er cache management. The bu�er cache space can grow when needed and use morememory than the one in FreeBSD, which uses a �xed size bu�er cache. Comparisonof the Ext2fs and Xiafs results shows that the optimizations included in Ext2fs arereally useful: the performance gain between Ext2fs and Xiafs is around 5{10 %.A.8 ConclusionThe Second Extended File System is probably the most widely used �lesystem in theLinux community. It provides standard Unix �le semantics and advanced features.Moreover, thanks to the optimizations included in the kernel code, it is robust ando�ers excellent performance.Since Ext2fs has been designed with evolution in mind, it contains hooks that canbe used to add new features. Some people are working on extensions to the current�lesystem: access control lists conforming to the Posix semantics [7], undelete, andon the y �le compression.

94 Appendix A. Design and Implementation of the Second Extended FilesystemExt2fs was �rst developed and integrated in the Linux kernel and is now activelybeing ported to other operating systems. An Ext2fs server running on top of the GNUHurd has been implemented. People are also working on an Ext2fs port in the LITESserver, running on top of the Mach microkernel [1], and in the VSTa operating system.Last, but not least, Ext2fs is an important part of the Masix operating system [4],currently under development by one of the authors.AcknowledgmentsThe Ext2fs kernel code and tools have been written mostly by the authors of thispaper. Some other people have also contributed to the development of Ext2fs either bysuggesting new features or by sending patches. We want to thank these contributorsfor their help.

Bibliography[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid A. Tevanian, andM. Young. Mach: A New Kernel Foundation For UNIX Development. In Pro-ceedings of the USENIX 1986 Summer Conference, June 1986.[2] M. Bach. The Design of the UNIX Operating System. Prentice Hall, 1986.[3] E. Bina and P. Emrath. A Faster fsck for BSD Unix. In Proceedings of theUSENIX Winter Conference, January 1986.[4] R. Card, E. Commelin, S. Dayras, and F. M�evel. The MASIX Multi-Server Op-erating System. In OSF Workshop on Microkernel Technology for DistributedSystems, June 1993.[5] S. Kleiman. Vnodes: An Architecture for Multiple File System Types in SunUNIX. In Proceedings of the Summer USENIX Conference, pages 260{269, June1986.[6] M. McKusick, W. Joy, S. Le�er, and R. Fabry. A Fast File System for UNIX.ACM Transactions on Computer Systems, 3:181{197, August 1984.[7] Institute of Electrical and Inc Electronics Engineers. Security interface for theportable operating system interface for computer environments - draft 13, 1992.[8] M. Seltzer, K. Bostic, M. McKusick, and C. Staelin. An Implementation of aLog-Structured File System for UNIX. In Proceedings of the USENIX WinterConference, January 1993.[9] A. Tanenbaum. Operating Systems: Design and Implementation. Prentice Hall,1987. 95

96 BIBLIOGRAPHY

Appendix BMeasuring HolesThis appendix contains the interesting part of the program used to measure thepotential for holes in a �lesystem. The source distribution of the book contains thefull source code (sag/measure-holes/measure-holes.c).int process(FILE *f, char *filename) {static char *buf = NULL;static long prev_block_size = -1;long zeroes;char *p;if (buf == NULL || prev_block_size != block_size) {free(buf);buf = xmalloc(block_size + 1);buf[block_size] = 1;prev_block_size = block_size;}zeroes = 0;while (fread(buf, block_size, 1, f) == 1) {for (p = buf; *p == '\0';)++p;if (p == buf+block_size)zeroes += block_size;}if (zeroes > 0)printf("%ld %s\n", zeroes, filename);if (ferror(f)) {errormsg(0, -1, "read failed for `%s'", filename);return -1;}return 0;} 97

98 Appendix B. Measuring Holes

Appendix CThe Linux Device ListThis is the device list, maintained by H. Peter Anvin (Peter.Anvin@linux.org), atftp://ftp.yggdrasil.com/pub/device-list/devices.tex. The rest of this textis by Peter.C.1 IntroductionThis list is the successor to Rick Miller's Linux Device List, which he stopped main-taining when he lost network access in 1993. It is a registry of allocated major devicenumbers, as well as the recommended /dev directory nodes for these devices.This list is available via FTP from ftp.yggdrasil.com in the directory /pub/device-list;�lename is devices.format where format is txt (ASCII), tex (LATEX), dvi (DVI) orps (PostScript). In cases of discrepancy, the LATEX version has priority.This document is included by reference into the Linux FilesystemStandard (FSSTND).The FSSTND is available via FTP from tsx-11.mit.edu in the directory/pub/linux/docs/linux-standards/fsstnd.To have a major number allocated, or a minor number in situations where thatapplies (e.g. busmice), please contact me. Also, if you have additional informationregarding any of the devices listed below, I would like to know.Allocations marked (68k) apply to Linux/68k only.99

100 Appendix C. The Linux Device ListC.2 Major numbers0 Unnamed devices (NFS mounts, loopback devices)1 char Memory devicesblock RAM disk2 char Reserved for PTY's <tytso@athena.mit.edu>block Floppy disks3 char Reserved for PTY's <tytso@athena.mit.edu>block First MFM, RLL and IDE hard disk/CD-ROM interface4 char TTY devices5 char Alternate TTY devices6 char Parallel printer devices7 char Virtual console access devices8 block SCSI disk devices9 char SCSI tape devicesblock Multiple disk devices10 char Non-serial mice, misc features11 block SCSI CD-ROM devices12 char QIC-02 tapeblock MSCDEX CD-ROM callback support13 char PC speakerblock 8-bit MFM/RLL/IDE controller14 char Sound cardblock BIOS harddrive callback support15 char Joystickblock Sony CDU-31A/CDU-33A CD-ROM16 char Reserved for scannersblock GoldStar CD-ROM17 char Chase serial card (Under development)block Optics Storage CD-ROM (Under development)18 char Chase serial card { alternate devicesblock Sanyo CD-ROM (Under development)19 char Cyclades serial cardblock Double compressed disk20 char Cyclades serial card { alternate devicesblock Hitachi CD-ROM (Under development)21 char Generic SCSI access22 char Digiboard serial card

C.3. Minor numbers 101block Second MFM, RLL and IDE hard disk/CD-ROM interface23 char Digiboard serial card { alternate devicesblock Mitsumi proprietary CD-ROM24 char Stallion serial cardblock Sony CDU-535 CD-ROM25 char Stallion serial card { alternate devicesblock First Matsushita (Panasonic/SoundBlaster) CD-ROM26 block Second Matsushita (Panasonic/SoundBlaster) CD-ROM27 char QIC-117 tapeblock Third Matsushita (Panasonic/SoundBlaster) CD-ROM28 char Stallion serial card { card programmingblock Fourth Matsushita (Panasonic/SoundBlaster) CD-ROMblock ACSI disk (68k)29 char Universal frame bu�erblock Aztech/Orchid/Okano/Wearnes CD-ROM30 char iBCS-2block Philips LMS-205 CD-ROM31 char MPU-401 MIDIblock ROM/ash memory card32 block Philips LMS-206 CD-ROM33 block Modular RAM disk34{223 Unallocated224{254 Local use255 ReservedC.3 Minor numbers0 Unnamed devices (NFS mounts, loopback devices)0 reserved as null device number1 char Memory devices1 /dev/mem Physical memory access2 /dev/kmem Kernel virtual memory access3 /dev/null Null device4 /dev/port I/O port access

102 Appendix C. The Linux Device List5 /dev/zero Null byte source6 /dev/core OBSOLETE { should be a link to /proc/kcore7 /dev/full Returns ENOSPC on writeblock RAM disk1 /dev/ramdisk RAM disk2 char Reserved for PTY's <tytso@athena.mit.edu>block Floppy disks0 /dev/fd0 Controller 1, drive 1 autodetect1 /dev/fd1 Controller 1, drive 2 autodetect2 /dev/fd2 Controller 1, drive 3 autodetect3 /dev/fd3 Controller 1, drive 4 autodetect128 /dev/fd4 Controller 2, drive 1 autodetect129 /dev/fd5 Controller 2, drive 2 autodetect130 /dev/fd6 Controller 2, drive 3 autodetect131 /dev/fd7 Controller 2, drive 4 autodetectTo specify format, add to the autodetect device number0 /dev/fd? Autodetect format4 /dev/fd?d360 5.25" 360K in a 360K drive120 /dev/fd?h360 5.25" 360K in a 1200K drive148 /dev/fd?h410 5.25" 410K in a 1200K drive64 /dev/fd?h420 5.25" 420K in a 1200K drive24 /dev/fd?h720 5.25" 720K in a 1200K drive80 /dev/fd?h880 5.25" 880K in a 1200K drive18 /dev/fd?h1200 5.25" 1200K in a 1200K drive140 /dev/fd?h1440 5.25" 1440K in a 1200K drive156 /dev/fd?h1476 5.25" 1476K in a 1200K drive72 /dev/fd?h1494 5.25" 1494K in a 1200K drive92 /dev/fd?h1600 5.25" 1600K in a 1200K drive112 /dev/fd?u360 3.5" 360K Double Density16 /dev/fd?u720 3.5" 720K Double Density1120 /dev/fd?u800 3.5" 800K Double Density252 /dev/fd?u820 3.5" 820K Double Density68 /dev/fd?u830 3.5" 830K Double Density

C.3. Minor numbers 10384 /dev/fd?u1040 3.5" 1040K Double Density188 /dev/fd?u1120 3.5" 1120K Double Density128 /dev/fd?u1440 3.5" 1440K High Density1124 /dev/fd?u1600 3.5" 1600K High Density144 /dev/fd?u1680 3.5" 1680K High Density360 /dev/fd?u1722 3.5" 1722K High Density76 /dev/fd?u1743 3.5" 1743K High Density96 /dev/fd?u1760 3.5" 1760K High Density116 /dev/fd?u1840 3.5" 1840K High Density3100 /dev/fd?u1920 3.5" 1920K High Density132 /dev/fd?u2880 3.5" 2880K Extra Density1104 /dev/fd?u3200 3.5" 3200K Extra Density108 /dev/fd?u3520 3.5" 3520K Extra Density112 /dev/fd?u3840 3.5" 3840K Extra Density136 /dev/fd?CompaQ Compaq 2880K drive; probably obsolete1 Autodetectable format2 Autodetectable format in a Double Density (720K) drive only3 Autodetectable format in a High Density (1440K) drive onlyNOTE: The letter in the device name (d, q, h or u) signi�es the type of drivesupported: 5.25" Double Density (d), 5.25" Quad Density (q), 5.25" High Density(h) or 3.5" (any type, u). The capital letters D, H, or E for the 3.5" models have beendeprecated, since the drive type is insigni�cant for these devices.3 char Reserved for PTY's <tytso@athena.mit.edu>block First MFM, RLL and IDE hard disk/CD-ROM interface0 /dev/hda Master: whole disk (or CD-ROM)64 /dev/hdb Slave: whole disk (or CD-ROM)For partitions, add to the whole disk device number0 /dev/hd? Whole disk1 /dev/hd?1 First primary partition2 /dev/hd?2 Second primary partition3 /dev/hd?3 Third primary partition4 /dev/hd?4 Fourth primary partition

104 Appendix C. The Linux Device List5 /dev/hd?5 First logical partition6 /dev/hd?6 Second logical partition7 /dev/hd?7 Third logical partition: : :63 /dev/hd?63 59th logical partition4 char TTY devices0 /dev/console Console device1 /dev/tty1 First virtual console: : :63 /dev/tty63 63rd virtual console64 /dev/ttyS0 First serial port: : :127 /dev/ttyS63 64th serial port128 /dev/ptyp0 First pseudo-tty master: : :191 /dev/ptysf 64th pseudo-tty master192 /dev/ttyp0 First pseudo-tty slave: : :255 /dev/ttysf 64th pseudo-tty slavePseudo-tty's are named as follows:� Masters are pty, slaves are tty;� the fourth letter is one of pqrs indicating the 1st, 2nd, 3rd, 4th series of 16pseudo-ttys each, and� the �fth letter is one of 0123456789abcdef indicating the position within theseries.5 char Alternate TTY devices0 /dev/tty Current TTY device64 /dev/cua0 Callout device corresponding to ttyS0: : :127 /dev/cua63 Callout device corresponding to ttyS63

C.3. Minor numbers 1056 char Parallel printer devices0 /dev/lp0 First parallel printer (0x3bc)1 /dev/lp1 Second parallel printer (0x378)2 /dev/lp2 Third parallel printer (0x278)Not all computers have the 0x3bc parallel port, hence the "�rst" printer may beeither /dev/lp0 or /dev/lp1.7 char Virtual console access devices0 /dev/vcs Current vc text access1 /dev/vcs1 tty1 text access: : :63 /dev/vcs63 tty63 text access128 /dev/vcsa Current vc text/attribute access129 /dev/vcsa1 tty1 text/attribute access: : :191 /dev/vcsa63 tty63 text/attribute accessNOTE: These devices permit both read and write access.8 block SCSI disk devices0 /dev/sda First SCSI disk whole disk16 /dev/sdb Second SCSI disk whole disk32 /dev/sdc Third SCSI disk whole disk: : :240 /dev/sdp Sixteenth SCSI disk whole diskPartitions are handled in the same way as for IDE disks (see major number 3) exceptthat the limit on logical partitions is 11 rather than 59 per disk.9 char SCSI tape devices0 /dev/st0 First SCSI tape1 /dev/st1 Second SCSI tape: : :128 /dev/nst0 First SCSI tape, no rewind-on-close129 /dev/nst1 Second SCSI tape, no rewind-on-close

106 Appendix C. The Linux Device List: : :block Multiple disk devices0 /dev/md0 First device group1 /dev/md1 Second device group: : :The multiple device driver is used to span a �lesystem across multiple physical disks.10 char Non-serial mice, misc features0 /dev/logibm Logitech bus mouse1 /dev/psaux PS/2-style mouse port2 /dev/inportbm Microsoft Inport bus mouse3 /dev/atibm ATI XL bus mouse4 /dev/jbm J-mouse4 /dev/amigamouse Amiga Mouse (68k)5 /dev/atarimouse Atari Mouse (68k)128 /dev/beep Fancy beep device129 /dev/modreq Kernel module load request11 block SCSI CD-ROM devices0 /dev/sr0 First SCSI CD-ROM1 /dev/sr1 Second SCSI CD-ROM: : :The pre�x /dev/scd instead of /dev/sr has been used as well, and might make moresense.12 char QIC-02 tape2 /dev/ntpqic11 QIC-11, no rewind-on-close3 /dev/tpqic11 QIC-11, rewind-on-close4 /dev/ntpqic24 QIC-24, no rewind-on-close5 /dev/tpqic24 QIC-24, rewind-on-close6 /dev/ntpqic120 QIC-120, no rewind-on-close7 /dev/tpqic120 QIC-120, rewind-on-close8 /dev/ntpqic150 QIC-150, no rewind-on-close

C.3. Minor numbers 1079 /dev/tpqic150 QIC-150, rewind-on-closeThe device names speci�ed are proposed { if there are \standard" names for thesedevices, please let me know.block MSCDEX CD-ROM callback support0 /dev/dos cd0 First MSCDEX CD-ROM1 /dev/dos cd1 Second MSCDEX CD-ROM: : :13 char PC speaker0 /dev/pcmixer Emulates /dev/mixer3 /dev/pcsp Emulates /dev/dsp (8-bit)4 /dev/pcaudio Emulates /dev/audio5 /dev/pcsp16 Emulates /dev/dsp (16-bit)block 8-bit MFM/RLL/IDE controller0 /dev/xda First XT disk whole disk64 /dev/xdb Second XT disk whole diskPartitions are handled in the same way as IDE disks (see major number 3).14 char Sound card0 /dev/mixer Mixer control1 /dev/sequencer Audio sequencer2 /dev/midi00 First MIDI port3 /dev/dsp Digital audio4 /dev/audio Sun-compatible digital audio6 /dev/sndstat Sound card status information8 /dev/sequencer2 Sequencer { alternate device16 /dev/mixer1 Second soundcard mixer control17 /dev/patmgr0 Sequencer patch manager18 /dev/midi01 Second MIDI port19 /dev/dsp1 Second soundcard digital audio20 /dev/audio1 Second soundcard Sun digital audio33 /dev/patmgr1 Sequencer patch manager

108 Appendix C. The Linux Device List34 /dev/midi02 Third MIDI port50 /dev/midi03 Fourth MIDI portblock BIOS harddrive callback support0 /dev/dos hda First BIOS harddrive whole disk64 /dev/dos hdb Second BIOS harddrive whole disk128 /dev/dos hdc Third BIOS harddrive whole disk192 /dev/dos hdd Fourth BIOS harddrive whole diskPartitions are handled in the same way as IDE disks (see major number 3).15 char Joystick0 /dev/js0 First joystick1 /dev/js1 Second joystickblock Sony CDU-31A/CDU-33A CD-ROM0 /dev/sonycd Sony CDU-31A CD-ROM16 char Reserved for scannersblock GoldStar CD-ROM0 /dev/gscd GoldStar CD-ROM17 char Chase serial card (Under development)0 /dev/ttyH0 First Chase port1 /dev/ttyH1 Second Chase port: : :block Optics Storage CD-ROM (Under development)0 /dev/optcd Optics Storage CD-ROM18 char Chase serial card { alternate devices0 /dev/cuh0 Callout device corresponding to ttyH01 /dev/cuh1 Callout device corresponding to ttyH1: : :

C.3. Minor numbers 109block Sanyo CD-ROM (Under development)0 ? Sanyo CD-ROM19 char Cyclades serial card32 /dev/ttyC0 First Cyclades port: : :63 /dev/ttyC31 32nd Cyclades portIt would make more sense for these to start at 0...block \Double" compressed disk0 /dev/double0 First compressed disk: : :7 /dev/double7 Eighth compressed disk128 /dev/cdouble0 Mirror of �rst compressed disk: : :135 /dev/cdouble7 Mirror of eighth compressed diskSee the Double documentation for an explanation of the \mirror" devices.20 char Cyclades serial card { alternate devices32 /dev/cub0 Callout device corresponding to ttyC0: : :63 /dev/cub31 Callout device corresponding to ttyC31block Hitachi CD-ROM (Under development)0 /dev/hitcd Hitachi CD-ROM21 char Generic SCSI access0 /dev/sg0 First generic SCSI device1 /dev/sg1 Second generic SCSI device: : :22 char Digiboard serial card

110 Appendix C. The Linux Device List0 /dev/ttyD0 First Digiboard port1 /dev/ttyD1 Second Digiboard port: : :block Second MFM, RLL and IDE hard disk/CD-ROM interface0 /dev/hdc Master: whole disk (or CD-ROM)64 /dev/hdd Slave: whole disk (or CD-ROM)Partitions are handled the same way as for the �rst interface (see major number 3).23 char Digiboard serial card { alternate devices0 /dev/cud0 Callout device corresponding to ttyD01 /dev/cud1 Callout device corresponding to ttyD1: : :block Mitsumi proprietary CD-ROM0 /dev/mcd Mitsumi CD-ROM24 char Stallion serial card0 /dev/ttyE0 Stallion port 0 board 01 /dev/ttyE1 Stallion port 1 board 0: : :64 /dev/ttyE64 Stallion port 0 board 165 /dev/ttyE65 Stallion port 1 board 1: : :128 /dev/ttyE128 Stallion port 0 board 2129 /dev/ttyE129 Stallion port 1 board 2: : :192 /dev/ttyE192 Stallion port 0 board 3193 /dev/ttyE193 Stallion port 1 board 3: : :block Sony CDU-535 CD-ROM0 /dev/cdu535 Sony CDU-535 CD-ROM25 char Stallion serial card { alternate devices0 /dev/cue0 Callout device corresponding to ttyE01 /dev/cue1 Callout device corresponding to ttyE1

C.3. Minor numbers 111: : :64 /dev/cue64 Callout device corresponding to ttyE6465 /dev/cue65 Callout device corresponding to ttyE65: : :128 /dev/cue128 Callout device corresponding to ttyE128129 /dev/cue129 Callout device corresponding to ttyE129: : :192 /dev/cue192 Callout device corresponding to ttyE192193 /dev/cue193 Callout device corresponding to ttyE193: : :block First Matsushita (Panasonic/SoundBlaster) CD-ROM0 /dev/sbpcd0 Panasonic CD-ROM controller 0 unit 01 /dev/sbpcd1 Panasonic CD-ROM controller 0 unit 12 /dev/sbpcd2 Panasonic CD-ROM controller 0 unit 23 /dev/sbpcd3 Panasonic CD-ROM controller 0 unit 326 char Frame grabbers0 /dev/wvisfgrab Quanta WinVision frame grabberblock Second Matsushita (Panasonic/SoundBlaster) CD-ROM0 /dev/sbpcd4 Panasonic CD-ROM controller 1 unit 01 /dev/sbpcd5 Panasonic CD-ROM controller 1 unit 12 /dev/sbpcd6 Panasonic CD-ROM controller 1 unit 23 /dev/sbpcd7 Panasonic CD-ROM controller 1 unit 327 char QIC-117 tape0 /dev/rft0 Unit 0, rewind-on-close1 /dev/rft1 Unit 1, rewind-on-close2 /dev/rft2 Unit 2, rewind-on-close3 /dev/rft3 Unit 3, rewind-on-close4 /dev/nrft0 Unit 0, no rewind-on-close5 /dev/nrft1 Unit 1, no rewind-on-close6 /dev/nrft2 Unit 2, no rewind-on-close7 /dev/nrft3 Unit 3, no rewind-on-close

112 Appendix C. The Linux Device Listblock Third Matsushita (Panasonic/SoundBlaster) CD-ROM0 /dev/sbpcd8 Panasonic CD-ROM controller 2 unit 01 /dev/sbpcd9 Panasonic CD-ROM controller 2 unit 12 /dev/sbpcd10 Panasonic CD-ROM controller 2 unit 23 /dev/sbpcd11 Panasonic CD-ROM controller 2 unit 328 char Stallion serial card { card programming0 /dev/staliomem0 First Stallion I/O card memory1 /dev/staliomem1 Second Stallion I/O card memory2 /dev/staliomem2 Third Stallion I/O card memory3 /dev/staliomem3 Fourth Stallion I/O card memoryblock Fourth Matsushita (Panasonic/SoundBlaster) CD-ROM0 /dev/sbpcd12 Panasonic CD-ROM controller 3 unit 01 /dev/sbpcd13 Panasonic CD-ROM controller 3 unit 12 /dev/sbpcd14 Panasonic CD-ROM controller 3 unit 23 /dev/sbpcd15 Panasonic CD-ROM controller 3 unit 3block ACSI disk (68k)0 /dev/ada First ACSI disk whole disk16 /dev/adb Second ACSI disk whole disk32 /dev/adc Third ACSI disk whole disk: : :240 /dev/adp Sixteenth ACSI disk whole diskPartitions are handled in the same way as for IDE disks (see major number 3) exceptthat the limit on logical partitions is 11 rather than 59 per disk.29 char Universal frame bu�er0 /dev/fb0current First frame bu�er1 /dev/fb0autodetect: : :16 /dev/fb1current Second frame bu�er17 /dev/fb1autodetect: : :

C.3. Minor numbers 113The universal frame bu�er device is currently supported only on Linux/68k. Thecurrent device accesses the frame bu�er at current resolution; the autodetect one atbootup (default) resolution. Minor numbers 2{15 within each frame bu�er assignmentare used for speci�c device-dependent resolutions. There appears to be no standardnaming for these devices.block Aztech/Orchid/Okano/Wearnes CD-ROM0 /dev/aztcd Aztech CD-ROM30 char iBCS-2 compatibility devices0 /dev/socksys Socket access1 /dev/spx SVR3 local X interface2 /dev/inet/arp Network access2 /dev/inet/icmp Network access2 /dev/inet/ip Network access2 /dev/inet/udp Network access2 /dev/inet/tcp Network accessiBCS-2 requires /dev/nfsd to be a link to /dev/socksys and /dev/X0R to be a linkto /dev/null.block Philips LMS CM-205 CD-ROM0 /dev/cm205cd Philips LMS CM-205 CD-ROM/dev/lmscd is an older name for this drive. This driver does not work with theCM-205MS CD-ROM.31 char MPU-401 MIDI0 /dev/mpu401data MPU-401 data port1 /dev/mpu401stat MPU-401 status portblock ROM/ash memory card0 /dev/rom0 First ROM card (rw): : :7 /dev/rom7 Eighth ROM card (rw)8 /dev/rrom0 First ROM card (ro)

114 Appendix C. The Linux Device List: : :15 /dev/rrom0 Eighth ROM card (ro)16 /dev/flash0 First ash memory card (rw): : :23 /dev/flash7 Eighth ash memory card (rw)24 /dev/rflash0 First ash memory card (ro): : :31 /dev/rflash7 Eighth ash memory card (ro)The read-write (rw) devices support back-caching written data in RAM, as well aswriting to ash RAM devices. The read-only devices (ro) support reading only.32 block Philips LMS CM-206 CD-ROM0 /dev/cm206cd Philips LMS CM-206 CD-ROM33 block Modular RAM disk0 /dev/ram0 First modular RAM disk1 /dev/ram1 Second modular RAM disk: : :255 /dev/ram255 256th modular RAM disk34{223 Unallocated224{254 Local/experimental useFor devices not assigned o�cial numbers, this range should be used, in order to avoidconict with future assignments. Please note that MAX CHRDEV and MAX BLKDEV inlinux/include/linux/major.hmust be set to a value greater than the highest usedmajor number. For a kernel using local/experimental devices, it is probably easiestto set both of these equal to 256. The memory cost above using the default value of64 is 3K.255 Reserved

C.4. Additional /dev directory entries 115C.4 Additional /dev directory entriesThis section details additional entries that should or may exist in the /dev directory.It is preferred that symbolic links use the same form (absolute or relative) as isindicated here. Links are classi�ed as hard or symbolic depending on the preferredtype of link; if possible, the indicated type of link should be used.C.4.1 Compulsory linksThese links should exist on all systems:/dev/fd /proc/self/fd symbolic File descriptors/dev/stdin fd/0 symbolic Standard input �le descriptor/dev/stdout fd/1 symbolic Standard output �le descriptor/dev/stderr fd/2 symbolic Standard error �le descriptorC.4.2 Recommended linksIt is recommended that these links exist on all systems:/dev/X0R null symbolic Used by iBCS-2/dev/nfsd socksys symbolic Used by iBCS-2/dev/core /proc/kcore symbolic Backward compatibility/dev/scd? sr? hard Alternate name for CD-ROMsC.4.3 Locally de�ned linksThe following links may be established locally to conform to the con�guration of thesystem. This is merely a tabulation of existing practice, and does not constitute arecommendation. However, if they exist, they should have the following uses./dev/mouse mouse port symbolic Current mouse device/dev/tape tape device symbolic Current tape device/dev/cdrom CD-ROM device symbolic Current CD-ROM device/dev/modem modem port symbolic Current dialout device/dev/root root device symbolic Current root �lesystem

116 Appendix C. The Linux Device List/dev/swap swap device symbolic Current swap device/dev/modem should not be used for a modem which supports dialin as well as dialout,as it tends to cause lock �le problems. If it exists, /dev/modem should point to theappropriate dialout (alternate) device.C.4.4 Sockets and pipesNon-transient sockets or named pipes may exist in /dev. Common entries are:/dev/printer socket lpd local socket/dev/log socket syslog local socket

Bibliography[Car95] R�emy Card. The second extended �lesystem: current state, fu-ture development, 1995. Slides used during presentation at the Sec-ond International Linux and Internet Conference, in Berlin, May 1995.Available via anonymous FTP from ftp.ibp.fr, in the directory/pub/linux/packages/ext2fs/slides/berlin.[NSS89] Evi Nemeth, Garth Snyder, and Scott Seebass. UNIX System Administra-tion Handbook. Prentice-Hall, 1989. From Anonymous: I haven't seen anyothers to compare this one to, so I don't know that I'd particularly recom-mend it. It does cover both BSD and SYSV, though, so it might be moreuseful to a Linux sysadmin than a single book that focussed on BSD orSYSV exclusively.[POL93] Jerry Peek, Tim O'Reilly, and Mike Loukide. UNIX Power Tools. Bantam,1993. From Anonymous: Not a comprehensive guide to much of anything,but it does include a LOT of hints and tips at the sysadmin level. Thiscomes with a CD-ROM full of useful Unix programs, too.[Qui95] Daniel Quinlan. Linux Filesystem Structure|Release 1.2, March 1995. Adescription of and a proposal for a standard Linux directory tree, with theintention is to make it easier to package software and administer Linux sys-tems by making �les appear in standard places. Follows fairly closely tra-ditional Unix practice, and has got support from most Linux distributions.Available via FTP from ftp.funet.fi, directory /pub/Linux/doc/fsstnd.[Ray91] Eric Raymond, editor. The New Hacker's Dictionary. MIT Press, 1991. Adictionary of the slang and jargon used by hackers. A book version of theJargon File, which contains all the text of the book (typically in a moreup-to-date form), and which is in the public domain.117

