
1

An Implementation Of Multiprocessor
Linux

This document describes the implementation of a simple SMP Linux kernel ex-
tension and how to use this to develop SMP Linux kernels for architectures other
than the Intel MP v1.1 architecture for Pentium and 486 processors.

Alan Cox, 1995

The author wishes to thank Caldera Inc (http://www.caldera.com) whose do-
nation of an ASUS dual pentium board made this project possible, and Thomas
Radke, whose initial work on multiprocessor Linux formed the backbone of this
project.

1 Background: The Intel MP specification.

Most IBM PC style multiprocessor motherboards combine Intel 486 or Pentium
processors and glue chipsets with a hardware/software specification. The spec-
ification places much of the onus for hard work on the chipset and hardware
rather than the operating system.

The Intel pentium processors have a wide variety of inbuilt facilities for support-
ing multiprocessing, including hardware cache coherency, built in interprocessor
interrupt handling and a set of atomic test and set, exchange and similar oper-
ations. The cache coherency in particular makes the operating systems job far
easier.

The specification defines a detailed configuration structure in ROM that the
boot up processor can read to find the full configuration of the processors and
busses. It also defines a procedure for starting up the other processors.

2 Mutual Exclusion Within A Single Processor
Linux Kernel

For any kernel to function in a sane manner it has to provide internal locking
and protection of its own tables to prevent two processes updating them at once
and for example allocating the same memory block. There are two strategies
for this within current Unix and Unixlike kernels. Traditional unix systems
from the earliest of days use a scheme of ’Coarse Grained Locking’ where the
entire kernel is protected as a small number of locks only. Some modern systems
use fine grained locking. Because fine grained locking has more overhead it is
normally used only on multiprocessor kernels and real time kernels. In a real
time kernel the fine grained locking reduces the amount of time locks are held
and reduces the critical (to real time programming at least) latency times.

2

Within the Linux kernel certain guarantees are made. No process running in
kernel mode will be pre-empted by another kernel mode process unless it vol-
untarily sleeps. This ensures that blocks of kernel code are effectively atomic
with respect to other processes and greatly simplifies many operation. Secondly
interrupts may pre-empt a kernel running process, but will always return to
that process. A process in kernel mode may disable interrupts on the processor
and guarantee such an interruption will not occur. The final guarantee is that
an interrupt will not be pre-empted by a kernel task. That is interrupts will
run to completion or be pre-empted by other interrupts only.

The SMP kernel chooses to continue these basic guarantees in order to make
initial implementation and deployment easier. A single lock is maintained across
all processors. This lock is required to access the kernel space. Any processor
may hold it and once it is held may also re-enter the kernel for interrupts and
other services whenever it likes until the lock is relinquished. This lock ensures
that a kernel mode process will not be pre-empted and ensures that blocking
interrupts in kernel mode behaves correctly. This is guaranteed because only the
processor holding the lock can be in kernel mode, only kernel mode processes
can disable interrupts and only the processor holding the lock may handle an
interrupt.

Such a choice is however poor for performance. In the longer term it is necessary
to move to finer grained parallelism in order to get the best system performance.
This can be done hierarchically by gradually refining the locks to cover smaller
areas. With the current kernel highly CPU bound process sets perform well but
I/O bound task sets can easily degenerate to near single processor performance
levels. This refinement will be needed to get the best from Linux/SMP.

2.1 Changes To The Portable Kernel Components

The kernel changes are split into generic SMP support changes and architecture
specific changes necessary to accommodate each different processor type Linux
is ported to.

2.1.1 Initialisation

The first problem with a multiprocessor kernel is starting the other processors
up. Linux/SMP defines that a single processor enters the normal kernel entry
point start kernel(). Other processors are assumed not to be started or to
have been captured elsewhere. The first processor begins the normal Linux
initialisation sequences and sets up paging, interrupts and trap handlers. After
it has obtained the processor information about the boot CPU, the architecture
specific function

void smp store cpu info(int processor id)

3

is called to store any information about the processor into a per processor array.
This includes things like the bogomips speed ratings.

Having completed the kernel initialisation the architecture specific function

void smp boot cpus(void)

is called and is expected to start up each other processor and cause it to enter
start kernel() with its paging registers and other control information correctly
loaded. Each other processor skips the setup except for calling the trap and irq
initialisation functions that are needed on some processors to set each CPU up
correctly. These functions will probably need to be modified in existing kernels
to cope with this.

Each additional CPU the calls the architecture specific function

void smp callin(void)

which does any final setup and then spins the processor while the boot up proces-
sor forks off enough idle threads for each processor. This is necessary because
the scheduler assumes there is always something to run. Having generated these
threads and forked init the architecture specific

void smp commence(void)

function is invoked. This does any final setup and indicates to the system
that multiprocessor mode is now active. All the processors spinning in the
smp callin() function are now released to run the idle processes, which they will
run when they have no real work to process.

2.1.2 Scheduling

The kernel scheduler implements a simple but very and effective task scheduler.
The basic structure of this scheduler is unchanged in the multiprocessor kernel.
A processor field is added to each task, and this maintains the number of the
processor executing a given task, or a magic constant (NO PROC ID) indicating
the job is not allocated to a processor.

Each processor executes the scheduler itself and will select the next task to run
from all runnable processes not allocated to a different processor. The algorithm
used by the selection is otherwise unchanged. This is actually inadequate for
the final system because there are advantages to keeping a process on the same
CPU, especially on processor boards with per processor second level caches.

Throughout the kernel the variable ’current’ is used as a global for the cur-
rent process. In Linux/SMP this becomes a macro which expands to cur-
rent set[smp processor id()]. This enables almost the entire kernel to be un-
aware of the array of running processors, but still allows the SMP aware kernel
modules to see all of the running processes.

The fork system call is modified to generate multiple processes with a process

4

id of zero until the SMP kernel starts up properly. This is necessary because
process number 1 must be init, and it is desirable that all the system threads
are process 0.

The final area within the scheduling of processes that does cause problems is
the fact the uniprocessor kernel hard codes tests for the idle threads as task[0]
and the init process as task[1]. Because there are multiple idle threads it is
necessary to replace these with tests that the process id is 0 and a search for
process ID 1, respectively.

2.1.3 Memory Management

The memory management core of the existing Linux system functions ade-
quately within the multiprocessor framework providing the locking is used. Cer-
tain processor specific areas do need changing, in particular invalidate() must
invalidate the TLB’s of all processors before it returns.

2.1.4 Miscellaneous Functions

The portable SMP code rests on a small set of functions and variables that are
provided by the processor specification functionality. These are

int smp processor id(void)

which returns the identity of the process the call is executed upon. This call is
assumed to be valid at all times. This may mean additional tests are needed
during initialisation.

int smp num cpus;

This is the number of processors in the system.

void smp message pass(int target, int msg, unsigned long data, int
wait)

This function passes messages between processors. At the moment it is not
sufficiently defined to sensibly document and needs cleaning up and further
work. Refer to the processor specific code documentation for more details.

2.2 Architecture Specific Code For the Intel MP Port

The architecture specific code for the intel port splits fairly cleanly into four
sections. Firstly the initialisation code used to boot the system, secondly the
message handling and support code, thirdly the interrupt and kernel syscall
entry function handling and finally the extensions to standard kernel facilities
to cope with multiple processors.

5

2.2.1 Initialisation

The intel MP architecture captures all the processors except for a single proces-
sor known as the ’boot processor’ in the BIOS at boot time. Thus a single
processor enters the kernel bootup code. The first processor executes the boot-
strap code, loads and uncompresses the kernel. Having unpacked the kernel it
sets up the paging and control registers then enters the C kernel startup.

The assembler startup code for the kernel is modified so that it can be used
by the other processors to do the processor identification and various other low
level configurations but does not execute those parts of the startup code that
would damage the running system (such as clearing the BSS segment).

In the initialisation done by the first processor the arch/i386/mm/init code is
modified to scan the low page, top page and BIOS for intel MP signature blocks.
This is necessary because the MP signature blocks must be read and processed
before the kernel is allowed to allocate and destroy the page at the top of low
memory. Having established the number of processors it reserves a set of pages
to provide a stack come boot up area for each processor in the system. These
must be allocated at startup to ensure they fall below the 1Mb boundary.

Further processors are started up in smp boot cpus() by programming the APIC
controller registers and sending an inter-processor interrupt (IPI) to the proces-
sor. This message causes the target processor to begin executing code at the
start of any page of memory within the lowest 1Mb, in 16bit real mode. The
kernel uses the single page it allocated for each processor to use as stack. Before
booting a given CPU the relocatable code from trampoline.S and trampoline32.S
is copied to the bottom of its stack page and used as the target for the startup.

The trampoline code calculates the desired stack base from the code segment
(since the code segment on startup is the bottom of the stack), enters 32bit
mode and jumps to the kernel entry assembler. This as described above is
modified to only execute the parts necessary for each processor, and then to
enter start kernel(). On entering the kernel the processor initialises its trap
and interrupt handlers before entering smp callin(), where it reports its status
and sets a flag that causes the boot processor to continue and look for further
processors. The processor then spins until smp commence() is invoked.

Having started each processor up the smp commence() function flips a flag.
Each processor spinning in smp callin() then loads the task register with the
task state segment (TSS) of its idle thread as is needed for task switching.

2.2.2 Message Handling and Support Code

The architecture specific code implements the smp processor id() function by
querying the APIC logical identity register. Because the APIC isn’t mapped
into the kernel address space at boot, the initial value returned is rigged by
setting the APIC base pointer to point at a suitable constant. Once the system

6

starts doing the SMP setup (in smp boot cpus()), the APIC is mapped with a
vremap() call and the apic pointer is adjusted appropriately. From then on the
real APIC logical identity register is read.

Message passing is accomplished using a pair of IPI’s on interrupt 13 (unused
by the 80486 FPU’s in SMP mode) and interrupt 16. Two are used in order to
separate messages that cannot be processed until the receiver obtains the kernel
spinlock from messages that can be processed immediately. In effect IRQ 13 is a
fast IRQ handler that does not obtain the locks, and cannot cause a reschedule,
while IRQ 16 is a slow IRQ that must acquire the kernel spinlocks and can cause
a reschedule. This interrupt is used for passing on slave timer messages from
the processor that receives the timer interrupt to the rest of the processors, so
that they can reschedule running tasks.

2.2.3 Entry And Exit Code

A single spinlock protects the entire kernel. The interrupt handlers, the syscall
entry code and the exception handlers all acquire the lock before entering the
kernel proper. When the processor is trying to acquire the spinlock it spins
continually on the lock with interrupts disabled. This causes a specific deadlock
problem. The lock owner may need to send an invalidate request to the rest of
the processors and wait for these to complete before continuing. A processor
spinning on the lock would not be able to do thus. Thus the loop of the spinlock
tests and handles invalidate requests. If the invalidate bit for the spinning CPU
is set the processor invalidates its TLB and atomically clears the bit. When the
spinlock is obtained that processor will take an IPI and in the IPI test the bit
and skip the invalidate as the bit is clear.

One complexity of the spinlock is that a process running in kernel mode can
sleep voluntarily and be pre-empted. A switch from such a process to a process
executing in user space may reduce the lock count. To track this the kernel uses
a syscall count and a per process lock depth parameter to track the kernel lock
state. The switch to() function is modified in SMP mode to adjust the lock
appropriately.

The final problem is the idle thread. In the single processor kernel the idle
thread executes ’hlt’ instructions. This saves power and reduces the running
temperature of the processors when they are idle. However it means the process
spends all its time in kernel mode and would thus hold the kernel spinlock. The
SMP idle thread continually reschedules a new task and returns to user mode.
This is far from ideal and will be modified to use ’hlt’ instructions and release
the spinlock soon. Using ’hlt’ is even more beneficial on a multiprocessor system
as it almost completely takes an idle processor off the bus.

Interrupts are distributed by an i82489 APIC. This chip is set up to work as an
emulation of the traditional PC interrupt controllers when the machine boots
(so that an Intel MP machine boots one CPU and PC compatible). The kernel

7

has all the relevant locks but does not yet reprogram the 82489 to deliver in-
terrupts to arbitrary processors as it should. This requires further modification
of the standard Linux interrupt handling code, and is particularly messy as the
interrupt handler behaviour has to change as soon as the 82489 is switched into
SMP mode.

2.2.4 Extensions To Standard Facilities

The kernel maintains a set of per processor control information such as the
speed of the processor for delay loops. These functions on the SMP kernel look
the values up in a per processor array that is set up from the data generated at
boot up by the smp store cpu info() function. This includes other facts such as
whether there is an FPU on the processor. The current kernel does not handle
floating point correctly, this requires some changes to the techniques the single
CPU kernel uses to minimise floating point processor reloads.

The highly useful atomic bit operations are prefixed with the ’lock’ prefix in
the SMP kernel to maintain their atomic properties when used outside of (and
by) the spinlock and message code. Amongst other things this is needed for the
invalidate handler, as all CPU’s will invalidate at the same time without any
locks.

Interrupt 13 floating point error reporting is removed. This facility is not usable
on a multiprocessor board, nor relevant to the Intel MP architecture which does
not cover the 80386/80387 processor pair.

The /proc filesystem support is changed so that the /proc/cpuinfo file contains
a column for each processor present. This information is extracted from the
data save by smp store cpu info().

8

