
Improving Linux Block I/O
for Enterprise Workloads

Peter Wai Yee Wong, Badari Pulavarty, Shailabh Nagar, Janet Morgan,
Jonathan Lahr, Bill Hartner, Hubertus Franke, Suparna Bhattacharya

IBM Linux Technology Center
{wpeter,pbadari,nagar,janetinc,lahr,bhartner,frankeh}@us.ibm.com, bsuparna@in.ibm.com

http://lse.sourceforge.net/

Abstract

The block I/O subsystem of the Linux kernel
is one of the critical components affecting the
performance of server workloads. Servers typ-
ically scale their I/O bandwidth by increasing
the number of attached disks and controllers.
Hence, the scalability of the block I/O layer is
also an important concern.

In this paper, we examine the performance of
the 2.4 Linux kernel’s block I/O subsystem on
enterprise workloads. We identify some of
the major bottlenecks in the block layer and
propose kernel modifications to alleviate these
problems in the context of the 2.4 kernel. The
performance impact of the proposed patches
is shown using a decision-support workload, a
microbenchmark, and profiling tools. We also
examine the newly rewritten block layer of the
2.5 kernel to see if it addresses the performance
bottlenecks discovered earlier.

1 Introduction

Over the past few years, Linux has made re-
markable progress in becoming a server oper-
ating system. The release of Version 2.4 of
the Linux kernel has been heralded as helping
Linux break the enterprise barrier [5]. Since

then, the kernel developer community has re-
doubled its efforts in improving the scalabil-
ity of Linux on a variety of server platforms.
All major server vendors such as IBM, HP,
SGI, Compaq, Dell and Sun not only support
Linux on their platforms, but are investing a
considerable effort in improving Linux’s enter-
prise capabilities. The Linux Technology Cen-
ter (LTC) of IBM, in particular, has been a ma-
jor contributor in improving Linux kernel per-
formance and scalability. This paper highlights
the efforts of the LTC in improving the perfor-
mance and scalability of the block I/O subsys-
tem of the Linux kernel.

Traditionally, the kernel block I/O subsystem
has been one of the critical components af-
fecting server workload performance. While
I/O hardware development has made impres-
sive gains in increasing disk capacity and re-
ducing disk size, there is an increasing gap
between disk latencies and processor speeds
or memory access times. Disk accesses are
slower than memory accesses by two orders
of magnitude. Consequently, servers running
I/O intensive workloads need to use large num-
bers of disks and controllers to provide suffi-
cient I/O bandwidth to enterprise applications.
In such environments, the kernel’s block I/O
layer faces a twofold challenge: it must scale
well with a large number of I/O devices and

Ottawa Linux Symposium 2002 391

it must minimize the kernel overhead for each
I/O transfer.

This paper examines how the Linux kernel’s
block I/O subsystem handles these twin goals
of scalability and performance. Using version
2.4.17 of the kernel as a baseline, we system-
atically identify I/O performance bottlenecks
using kernel profiling tools. We propose solu-
tions in the form of kernel patches, all but one
of which has been developed by the authors.
The performance improvements resulting from
these patches are presented using a decision-
support workload, a disk I/O microbenchmark
and profiling data. In brief, the I/O perfor-
mance bottlenecks addressed are as follows:

• Avoiding the use of bounce buffers: The
kernel can directly map only the first gi-
gabyte of physical memory. I/O to high
memory (beyond 1 GB) is done through
buffers defined in low memory and in-
volves an extra copy of the data being
transferred. Capitalizing on the ability of
PCI devices to directly address all 4GB,
the block-highmem patch written by Jens
Axboe can circumvent the need to use
bounce buffers.

• Splitting the I/O request lock: Each I/O
device in the system has an associated re-
quest queue which provides ordering and
memory resources for managing I/O re-
quests to the device. In the 2.4 kernel,
all I/O request queues are protected by
a singleio_request_lock which can
be highly contended on SMP machines
with multiple disks and a heavy I/O load.
We propose a solution that effectively re-
places the io_request_lock with per queue
locks.

• Page-sized raw I/O transfers: Raw
I/O, which refers to unbuffered I/O done
through the/dev/raw interface, breaks

I/O requests into 512-byte units (even if
the device hardware and associated driver
is capable of handling larger requests).
The 512-byte requests end up being re-
combined within the request queue before
being processed by the device driver. We
present an alternative that permits raw I/O
to be done at a page-size granularity.

• Efficient support for vector I/O : I/O in-
tensive applications often need to perform
vector (scatter/gather) raw I/O operations
which transfer a contiguous region on disk
to discontiguous memory regions in the
application’s address space. The Linux
kernel currently handles vectored raw I/O
by doing a succession of blocking I/O op-
erations on each individual element of the
I/O vector. We implement efficient sup-
port for vector I/O by allowing the vector
elements to be processed together as far as
possible.

• Lightweight kiobufs : The main data
structure used in raw I/O operations is the
kiobuf. As defined in 2.4.17, the kiobuf
data structure is very large. When raw I/O
is performed on a large number of devices,
the memory consumed by kiobufs is pro-
hibitive. We demonstrate a simple way to
reduce the size of the kiobuf structure and
allow more I/O devices to be used for a
given amount of system memory.

Most of the kernel performance bottlenecks
listed above stem from the basic design of the
2.4 block I/O subsystem which relies on buffer
heads and kiobufs. The need to maintain com-
patibility with a large number of device drivers
has limited the scope for kernel developers to
fix the subsystem as a whole. In the 2.5 devel-
opment kernel, however, the challenging task
of overhauling the block I/O layer has been
taken up. One of the goals of the rewrite
has been addressing the scalability problems of

Ottawa Linux Symposium 2002 392

earlier designs [2]. This paper discusses the
new design in light of the performance bottle-
necks described earlier.

The rest of the paper is organized as follows.
Section 2 presents an overview of the 2.4 ker-
nel block I/O subsystem. The benchmark en-
vironment and workloads used are described
in Section 3. Sections 4 through 8 describe
the performance and resource scalability bot-
tlenecks, proposed solutions and results. The
newly written 2.5 kernel block layer is ad-
dressed in Section 9. Section 10 concludes
with directions for future work.

2 Linux 2.4 Block I/O

For the purpose of this paper, our review of
the 2.4 kernel block I/O subsystem will be lim-
ited in scope. Specifically, it will focus on the
“raw” device interface, which was added by
Stephen Tweedie during the Linux 2.3 devel-
opment series.

Unix has traditionally provided a raw interface
to some devices, block devices in particular,
which allows data to be transferred between a
user buffer and a device without copying the
data through the kernel’s buffer cache. This
mechanism can boost performance if the data
is unlikely to be used again in the short term
(during a disk backup, for example), or for ap-
plications such as large database management
systems that perform their own caching.

To use the raw interface, a device binding must
be estabished via the raw command; for exam-
ple, raw /dev/raw/raw1 /dev/sda1 .
Once bound to a block device, a raw device can
be opened just like any other device.

A sampling of the kernel code path for a raw
open is as follows:

sys_open

. raw_open

. . alloc_kiovec

Notice the call toalloc_kiovec to allocate
a kernel I/O buffer, also known as a kiobuf.
The kiobuf is the primary I/O abstraction used
by the Linux kernel to support raw I/O. The
kiobuf structure describes the array of pages
that make up an I/O operation.

The fields of a kiobuf structure include:

// number of pages in the kiobuf
int nr_pages;

// number of bytes in the data buffer
int length;

// offset to first valid byte
// of the buffer
int offset;

// list of device block numbers
// for the I/O
ulong blocks[KIO_MAX_SECTORS];

// array of pointers to
// 1024 pre-allocated
// buffer heads
struct buffer_head

*bh[KIO_MAX_SECTORS];

// array of up to 129 page
// structures, one for each
// page of data in the kiobuf
struct page

**maplist[KIO_STATIC_PAGES];

The maplist array is key to the kiobuf in-
terface, since functions that operate on pages
stored in a kiobuf deal directly with page struc-
tures. This approach helps hide the complexi-
ties of the virtual memory system from device
drivers – a primary goal of the kiobuf interface.

Once the raw device is opened, it can be read
and written just like the block device to which
it is bound. However, raw I/O to a block device
must always be sector aligned, and its length

Ottawa Linux Symposium 2002 393

must be a multiple of the sector size. The sector
size for most devices is 512 bytes.

Let us examine the code path for a raw device
read:

sys_read
. raw_read
. . rw_raw_dev
. . . map_user_kiobuf(READ,

&mykiobuf,
vaddr, len)

The result of the call to
map_user_kiobuf() is that the buffer
at virtual addressvaddr of length len is
mapped into the kiobuf, and each entry of
the kiobuf maplist[] is set to the page
structure for the associated page of data. Note
that some or all of the user buffer may first
need to be paged into memory:

. . . map_user_kiobuf

. . . . find_vma

. . . . handle_mm_fault

Once all of the pages of the data buffer are
locked in memory, read processing continues
with a call to brw_kiovec() , where for
each sector-size chunk of the data buffer,
a pre-allocated buffer head associated with
the kiobuf is initialized and passed down to
__make_request . __make_request()
calls create_bounce() to create a
bounce buffer as needed, acquires the
io_request_lock , and uses buffer head
information to merge/enqueue the request onto
the device-specific request queue.

. brw_kiovec(READ, num_kiobufs=1,
&mykiobuf,dev,
mykiobuf->blocks,
sector_size=512)

. . submit_bh

. . . generic_make_request

. . . make_request(&request_queue,
&buff_head)

. create_bounce

. generic_plug_device

. <elevator processing>

. add_request (enqueue)

. kiobuf_wait_for_io

Requests are dequeued when the
scheduled tq_disk task calls
run_task_queue() which invokes
generic_unplug_device() . In the case
of SCSI, generic_unplug_device()
invokes scsi_request_fn() which de-
queues requests and sends them to the driver
associated with the request_queue/device.

run_task_queue
. generic_unplug_device
. . q->request_fn(scsi_request_fn)
. . . blkdev_dequeue_request(dequeue)
. . . scsi_dispatch_cmd

The read() system call returns once the I/O
has completed; that is, after all buffer heads as-
sociated with the kiobuf have been processed
for completion.

3 Workload and experimental
setup

We have been using a decision support bench-
mark and a disk I/O microbenchmark to study
the performance of block I/O. The decision
support workload (henceforth called DSW)
consists of a suite of highly complex queries
accessing a 30GB database. We use IBM DB2
UDB 7.2 as the database management system.

The disk I/O microbenchmark (henceforth
called DM) is a multi-threaded disk test. There
are a total of 32 raw devices which are mapped
to 32 physical disks. DM creates 32 processes.
For the read test, each process issues 4096
reads of 64KB each to a raw device. The readv
test issues the same number of reads, but uses
16 iovecs of 4KB each.

For both benchmarks, the system was rebooted
before each set of runs. For DSW, each set con-
sisted of a sequence of queries run back to back
three times. For DM, each set consisted of the
read/readv runs performed back to back three

Ottawa Linux Symposium 2002 394

times. We took the average of three runs for
the score and CPU utilization.

The benchmarks were run on an 8-way
700MHz Pentium III machine with 4 GB of
main memory. The system used for DSW had
a 2 MB L2 cache and 6 RAID controllers. The
system used for DM had a 1 MB L2 cache
and 4 RAID controllers. Each controller was
connected to two storage enclosures with each
enclosure containing 10 9.1 GB, 10000 RPM
drives. The large number of attached disks
allowed a high degree of parallel data access
and is typical of the environments in which
decision-support workloads are run.

Our baseline (henceforth called Baseline)
was Linux 2.4.17 with Ingo Molnar’s SMP
timer patch applied, plus a number of
resource-related changes. In addition, readv
was used by the database management sys-
tem for I/O prefetching. The four main
patches discussed in subsequent sections are
block-highmem, io_request_lock, rawvary and
readv/writev. To measure their performance
impact incrementally, we used 4 kernels:
SB for Baseline+block-highmem, SBI for
SB+io_request_lock, SBIR for SBI+rawvary
and SBIRV for SBIR+readv/writev.

As a first step towards identifying I/O bot-
tlenecks, the Baseline kernel was profiled us-
ing the Kernprof tool [4]. Table 1 shows the
percentage of time spent in the most time-
consuming kernel functions running a DSW
query on the Baseline kernel. We see that
bounce_end_io_read() is the most ex-
pensive function of non-idle time. This func-
tion is used when the kernel performs I/O us-
ing bounce buffers. The problem caused by
bounce buffers and its resolution is described
in the next section.

Kernel Function % Total
Time

default_idle 52
bounce_end_io_read 8

do_softirq 7
tasklet_hi_action 6
__make_request 3

Table 1: Profiling data showing percentage of
time spent in different kernel functions while
running a DSW query on the Baseline kernel.

4 Avoiding the use of bounce
buffers

To explain the bounce buffer problem we first
take a look at how the Linux 2.4 kernel ad-
dresses physical memory. The discussion as-
sumes an x86 architecture though most of the
concepts apply to all 32-bit systems. The 4 GB
address space defined by 32 bits is divided into
two parts: a user virtual address space (0-3GB)
and a kernel virtual address space (3-4GB).
The physical memory of a system (which is not
limited to 4 GB) is divided into three zones:

• DMA Zone (0-16 MB): ISA cards with
only 24-bit DMA space use this zone.

• Normal Zone (16 MB-896 MB): Mem-
ory in this range is directly mapped into
the kernel’s 1 GB of virtual address
space starting at PAGE_OFFSET (nor-
mally 0xC0000000).

• High Memory Zone (896 MB-64 GB):
Page frames in this zone need an explicit
mapping into kernel virtual address space
(via thekmap() system call) before they
can be used by the kernel.

DMA operations on memory by I/O devices
use physical addresses. Since the kernel can-
not address high-memory DMA buffers di-
rectly while setting up a buffer for DMA, it

Ottawa Linux Symposium 2002 395

Kernel Increase CPU Utilization (%)
in MOI (%) user kernel idle

Baseline — 16 43 41
SB 37 22 71 7
SBI 78 41 37 22
SBIR 16 47 34 19
SBIRV 18 55 9 36

Table 2: Performance impact of various patches on the metric of interest (MOI) and CPU uti-
lization for the decisions support workload (DSW). Increases are reported w.r.t the kernel on the
previous line.

Kernel I/O transfer rate CPU Idle Time
Value Increase Value Increase

(MB/s) (%) (%) (%)
Using read

Baseline 54 — 64 —
SB 133 147 21 -68
SBI 235 77 61 192
SBIR 240 2 94 55
2.5.17 kernel 243 — 97 —
Using readv
SBIR 104 — 41 —
SBIRV 241 132 94 130
2.5.17 kernel 150 — 61 —

Table 3: Performance impact of various patches on the I/O transfer rate and CPU utilization for
the disk I/O microbenchmark (DM). Increases are reported w.r.t the kernel on the previous line.
Results are also shown for the 2.5.17 kernel.

allocates an area in low memory called the
bounce buffer. It then supplies the buffers
physical address to the I/O device. Conse-
quently, data transfer between the device and
the high-memory target buffer necessitates an
extra copy through the bounce buffer. This de-
grades system performance by using up low
memory (for the bounce buffer) and adding the
overhead of a memory copy for each I/O trans-
fer.

The bounce buffer is unnecessary for 32-bit
PCI devices, which can normally address 4
GB of physical memory directly. Such devices
can access high memory directly even though

the kernel cannot. The block-highmem patch
from Jens Axboe utilizes this property to per-
mit high-memory DMA to occur without the
use of bounce buffers.

To make use of the block-highmem patch, most
device drivers require a few changes which are
documented in the I/O Performance HOWTO
[9].

The elimination of bounce buffers is illus-
trated by Table 4 which again shows the most
time-consuming kernel functions while run-
ning DSW using theSBkernel. Comparing the
entries to those shown in Table 1, we find that

Ottawa Linux Symposium 2002 396

Kernel Function % Total
Time

__make_request 35
default_idle 17

scsi_dispatch_cmd 4
do_ipsintr 4

scsi_request_fn 4

Table 4: Profiling data showing percentage of
time spent in different kernel functions while
running a DSW query on theSBkernel

bounce buffers are no longer being used.

The second row of Table 2 indicates the perfor-
mance improvement seen by DSW using the
block-highmem patch. The metric of interest
(MOI) increases by 37%. Similar trends are
seen in the performance of DM in Table 3 with
the I/O throughput of the read test increasing
from 54 MB/s to 133 MB/s (corresponding to
a 147% improvement).

Eliminating bounce buffer usage causes an-
other I/O bottleneck to appear. Comparing Ta-
bles 4 and 1 we find that__make_request
is now the most expensive kernel function and
the idle time has been reduced from 64% to
around 21% under DM, 41% to 7% under
DSW. Both these changes are due to the I/O
request lock which is the next bottleneck dis-
cussed.

5 Splitting the I/O request lock

As mentioned in the last part of the previous
section, Tables 1 and 4 indicate a large fraction
of time spent in __make_request and a large
drop in idle time when DSW is run onSB. Us-
ing the Lockmeter [3] profiling tool allows us
to investigate whether there are any highly con-
tended locks (spinlocks or reader/writer locks).
Table 5 shows the lockmeter statistics for the
io_request_lock when DSW is run onSB. It

shows that 66.2% of 8 CPUs are consumed by
spinning on the globalio_request_lock
and the function in which the lock sees high
contention also corresponds to the most expen-
sive kernel function in Table 1.

The io_request_lock , which is a global
serialization device, imposes system-wide se-
rialization on enqueuing block I/O requests.
The request enqueuing functions use the lock
to protect all request queues collectively which
means that only one request can be queued at a
time.

During normal I/O operations, request queues
are accessed and modified by enqueuing and
dequeuing functions. Since multiple threads
execute these functions, queue integrity must
be protected. Code analysis shows that queu-
ing operations on a given queue involve ac-
cess to queue-specific data, request list anchor
(queue_head), request free list (rq), plug state
(plugged), but do not require access to data
used by queuing operations on other queues.
This means that maintaining queue data in-
tegrity does not require serialization of queu-
ing to different queues. Queuing operations on
different queues are logically independent and
can execute concurrently. Of course, multiple
queuing operations to the same queue must still
be serialized.

To implement concurrent enqueuing, we
replaced io_request_lock in en-
queuing functions with per queue locks
(request_queue.queue_lock). This
serializes enqueuing to the same queue while
allowing concurrent enqueuing to different
queues. With this change dequeuing functions
can no longer rely onio_request_lock to
serialize with enqueuing functions. To restore
this serialization, dequeuing functions were
modified to acquirequeue_lock in addition
to io_request_lock when accessing
queues.

Ottawa Linux Symposium 2002 397

Kernel function Lock Mean Lock Lock Spin Time Number of lock
holding lock Utilization (%) Hold Time (µs) Mean (µs) % CPU acquisitions
All spinlocks 3.7 62.0 66.8 68774051
io_request_lock 50.2 5.2 65.0 66.2 15640659
. __make_request 23.5 3.8 64.0 42.8 9973270
. do_ipsintr 8.3 20.0 66.0 3.1 660212
. scsi_dispatch_cmd 6.8 13.0 66.0 3.9 877838
. generic_unplug_device 4.5 8.8 65.0 3.2 835530

Table 5: Lockmeter data for io_request_lock with DSW on the SB kernel.

To minimize interlocking between dequeue-
ing and enqueueing functions, we added an-
other level of locks inside dequeueing func-
tions. This allows us to maintain our focus on
enqueuing and avoid the impact of further re-
ducing the scope of theio_request_lock .

When the above modifications to the generic
block I/O code were published for comment,
the Linux development community expressed
concern about making such major changes to
the mature 2.4 kernel. Since the patch modified
the locking structure in code which affected
all block I/O devices, many viewed the code
impact as undesirably pervasive. Unforeseen
impacts to other code such as IDE and some
device drivers were also pointed out. Since
SCSI configurations represent a significant part
of our scalability goal and concurrent queu-
ing can be implemented for SCSI without af-
fecting generic i/o code, we decided to isolate
SCSI code for our development purposes. For-
tunately, the block I/O subsystem provides for
such isolation through dynamically assigned
I/O queuing functions stored in the request
queue and indirectly invoked as function point-
ers.

To contain code impact within the SCSI
subsystem, generic enqueuing and dequeuing
functions were copied, renamed, and modi-
fied for concurrent queuing. The following
generic block I/O (ll_rw_blk.c) functions pro-
vided baselines for SCSI functions:

__make_request => scsi_make_request

generic_plug_device =>
scsi_plug_device

generic_unplug_device =>
scsi_unplug_device

get_request => scsi_get_request
get_request_wait =>

scsi_get_request_wait
blk_init_queue => scsi_init_queue

Concurrent queuing is activated for all de-
vices under an adapter driver by setting
the newconcurrent_queue field of the
Scsi_Host_Template structure used for
driver registration. This allows control over
which drivers use concurrent queuing and pre-
serves original request queuing behavior by de-
fault. Drivers which enable concurrent queu-
ing must protect any request queue access with
queue locks.

With the application of the
io_request_lock patch (IORL), the
MOI of DSW improves by 78% over the base-
line SB, as is seen in row three of Table 2. The
transfer rate of DM also increases significantly
from 133 MB/sec to 235 MB/sec (Table 3).
Note that there is a significant increase of
idle time in both cases due to the reduction of
the spin time. Table 6 verifies that the lock
contention seen by the io_request_lock has
been reduced. scsi_make_request()
is shown using a per-queue lock and the
aggregate contention on the per-queue locks is
reduced as well.

Table 7 lists the most expensive kernel func-

Ottawa Linux Symposium 2002 398

Kernel function Lock Mean Lock Lock Spin Time Number of lock
holding lock Contention (%) Hold Time (µs) Mean (µs) % CPU acquisitions
All spinlocks 2.1 15.0 13.9 63777886
io_request_lock 39.6 8.7 32.0 7.6 2490263
. do_ipsintr 16.3 26.0 32.0 1.4 339486
. scsi_unplug_device 11.7 18.0 32.0 1.2 357540
. scsi_dispatch_cmd 8.4 13.0 31.0 1.4 363421
scsi_make_request 15.3 0.9 13.0 0.3 9520872

Table 6: Lockmeter data showing benefits of the IORL patch for DSW on the SBI kernel.

Kernel Function % Total
Time

default_idle 41
schedule 4

ips_make_passthru 4
tasklet_hi_action 3

do_softirq 3
brw_kiovec 3

scsi_back_merge_fn_dc 3
scsi_release_buffers 3

scsi_back_merge_fn_ 2
scsi_dispatch_cmd 2

end_buffer_io_kiobuf 2

Table 7: Kernprof data for DSW on the SBI
kernel.

tions for DSW running onSBI . A signif-
icant fraction of kernel time is spent in
brw_kiovec() and many SCSI mid-layer
functions. One reason for that is the use of 512-
byte blocks for raw I/O as explained in the next
section.

6 Raw I/O optimization patch

This section provides information on the opti-
mization patch that we developed to increase
the block size used for raw I/O. The patch can
significantly improve CPU utilization by re-
ducing the number of buffer heads needed for
such operations.

As explained in Section 2,rw_raw_dev calls
map_user_kiobuf to map the user buffer
into a kiobuf, and then invokesbrw_kiovec
to submit the I/O.brw_kiovec breaks up
each mapped page into sector-size pieces (nor-
mally 512 bytes) and passes them one at a
time to make_request . Each sector-size
piece is represented using one of the 1024
pre-allocated buffer heads associated with the
kiobuf. Assuming a sector-size of 512 bytes,
brw_kiovec would use 512 buffer heads and
invokemake_request 512 times to process
a 256K raw read or write.

make_request uses the buffer head
information to enqueue the request
on the device-specific request queue
and returns to brw_kiovec . When
the lesser of all mapped pages or
KIO_STATIC_PAGES of the kiobuf have
been processed in this way,brw_kiovec
calls kiobuf_wait_for_io .
kiobuf_wait_for_io returns after
the I/O completion routine has been called for
all of the mapped buffer heads of the kiobuf.

While the block I/O subsystem will normally
merge buffer heads into larger requests, there
is still overhead incurred with each buffer head.
For example, the interrupt handler for the block
device must invoke theb_end_io method for
each buffer head at I/O completion. The sec-
ond column of Table 8 shows function call fre-
quencies in a call graph trace for 128 reads of
128KB each using a 512-byte block size. The

Ottawa Linux Symposium 2002 399

Kernel function Frequency
Baseline Baseline+rawvary

sys_read 138 138
. raw_read 128 128
. . rw_raw_dev 128 128
. . . brw_kiovec 128 128
. . . . submit_bh 32768 4096
. generic_make_request 32789 4160
. _make_request 32789 4160
. elevator_linus_merge 32659 4029
. scsi_back_merge_fn_c 32641 4013

Table 8: Reduction in frequencies of function calls using the rawvary patch for 128 reads of
128KB each.

large number of calls tosubmit_bh() indi-
cates the severity of the problem.

The patch we developed can reduce 8-fold the
number of buffer heads required for a raw I/O
operation. This was accomplished by chang-
ing brw_kiovec to break up the user buffer
into sector-size pieces only until the buffer ad-
dress is aligned on a page boundary. Once
properly aligned, the remainder of the mapped
pages are submitted tomake_request with
a block size (b_size) of 4 KB instead of
sector-size. Note that the last buffer head may
have ab_size which is neither sector-size
nor 4 KB depending on the total length of the
I/O request.

Since we could not practically determine
whether a given device driver can sup-
port buffer heads of variable-block sizes
in a merged request, the patch enables
the optimization for the Adaptec, Qlogic
SCSI and IBM ServeRAID drivers only.
Other drivers can make use of the patch
by setting the can_do_varyio bit in
theScsi_Host_Template structure before
callingscsi_register .

The third column of Table 8 highlights the re-
duction in kernel overhead as a result of using

the patch. The number of calls tosubmit_bh
are reduced by a factor of 8. The MOI of
DSW improved by 16% over SBI, as seen in
the fourth row of Table 2. The transfer rate of
DM also increased slightly from 235 MB/sec
to 240 MB/sec (Table 3). However, there was
an improvement of 55% in the idle time.

The raw I/O optimization patch, also known
as the rawvary patch, has been integrated into
Andrea Arcangeli’s 2.4.18pre7aa2 kernel and
Alan Cox’s 2.4.18pre9-ac2 kernel.

7 Efficient support for vector I/O

Scatter-gather I/O is needed by an applica-
tion when it needs to transfer data between
a contiguous portion of a disk file and non-
contiguous memory buffers in its address
space. Typically this is done by invoking
the readv()/writev() system calls and
passing an array ofstruct iovec entries.
Each iovec entry represents a contiguous
memory buffer of lengthiov_len located at
iov_base . This entry is henceforth called an
iochunksince the kernel does not define a dis-
tinct name for it and the term iovec suggests
an array rather than an individual element. To
simplify the discussion, we refer only to the

Ottawa Linux Symposium 2002 400

readv operation. For raw I/O operations, writev
differs mainly in the direction of data transfer.

In the 2.4 kernel, the readv system call us-
ing a file descriptor is implemented by calling
the corresponding file’s readv function. When
there is no readv function exported, as is the
case for raw I/O, the kernel defaults to using
repeated invocations of the file’s read func-
tion which is always defined. Each iochunk
of the iovec leads to a separate blocking read
being performed. This imposes a dual penalty
on the application. It imposes the overhead
of multiple calls to various functions in the
entire I/O processing path from the top level
sys_readv() down to the SCSI layer ele-
vator and merging functions. Worse, it seri-
alizes the I/O requests seen by the low-level
device driver. Since a separate read/write is
performed for each iochunk and these calls
block until I/O completes, the kernel’s abil-
ity to take advantage of large DMA opera-
tions is severely limited. The elevator code
invoked by themake_request() function
cannot merge requests from different iochunks
and hence the SCSI device driver cannot create
large scatter-gather lists for the controller.

To reduce this inefficiency, we created a patch
defining readv and writev functions for raw de-
vices. The functions operate in two phases
while processing an iovec. In the first phase,
they map the pages of several iochunk buffers
into a single kiobuf. The number of pages
mapped to a single kiobuf is limited by the
KIO_STATIC_PAGES limit (which is 65 when
the system page size is 4 KB). Once this limit
is reached (or if the entire iovec has been
mapped),brw_kiovec() is invoked to sub-
mit the I/O represented by the kiobuf. As ex-
plained in Section 2,brw_kiovec() is a
blocking function that returns only when the
corresponding I/O is complete or if there is an
error. The two phases are repeated until all
iochunks of the iovec are processed.

The patch relies upon one important modifi-
cation to struct kiobuf . As explained
in Section 2,struct kiobuf has only one
offset and length field. The offset field rep-
resents the offset into the (virtual) memory
buffer. When the pages of multiple memory
buffers are mapped in to the same kiobuf, we
need a per-page offset and length information.
We modifiedstruct kiobuf to add this in-
formation using the following structure:

struct pinfo
{

int poffset[KIO_STATIC_PAGES];
int plen[KIO_STATIC_PAGES];

};

struct kiobuf
{

:
:
struct pinfo *pinfo;

}

There are other approaches to providing
readv/writev support. In an earlier attempt,
we tried to map an iovec onto akiovec con-
sisting of multiple kiobufs. However, that ap-
proach increased memory consumption since
struct kiobuf is quite heavyweight and
also because thebrw_kiovec() function
only submits I/O forKIO_STATIC_PAGES
one at a time. Mapping one iochunk onto one
kiobuf would have resulted in wasted point-
ers in themap_array without increasing the
granularity at which I/O was submitted to the
lower layers. Our current approach fits in well
with the 2.4 kernel’s practice of using only one
kiobuf per file. The issue of the heavyweight
struct kiobuf is discussed in Section 8
though the changes shown there do not war-
rant reexamining our choice to map multiple
iochunks into a single kiobuf.

Using the readv/writev patch improves the
MOI of DSW by 18% (Table 2) and the I/O

Ottawa Linux Symposium 2002 401

transfer rate of DM from 104 MB/s to 241
MB/s (Table 3). CPU utilization also decreases
significantly for both cases.

8 Lightweight kiobufs

In the 2.4.17 kernel, a kiobuf is allocated for
each raw device open. The allocated kiobuf is
saved in thef_iobuf field of the file ob-
ject for the device special file and is used for
doing reads/writes on the raw device. Each
kiobuf is 8792 bytes in size and is allocated
from vmalloc() space which is generally
128 MB. Middleware such as database man-
agers often keep a large number of files open.
For raw I/O, the number of open calls generally
scales with the number of devices (which are
accessed through device special files). In such
cases, a heavyweight kiobuf is a drain on the
kernel’s low memory in general andvmalloc
space in particular.

To enable a large number of raw devices to be
opened simultaneously, we modified the kiobuf
structure to reduce its memory footprint. Much
of the memory consumed by a kiobuf is due to
the two arrays:

struct buffer_head
*bh[KIO_MAX_SECTORS];

unsigned long
blocks[KIO_MAX_SECTORS];

With KIO_MAX_SECTORSbeing 1024, these
arrays consume 8192 bytes.

We changed the kiobuf structure as follows:

1. The buffer head arraybh was replaced
by a linked list. To link the various
buffer heads of a kiobuf together, we
used theb_next_free field of struct
buffer_head. This field is not used in

buffer-head processing in the raw I/O
path.

2. Theblocks array was replaced by a sin-
gle number. Normally, theblocks array
contains the physical disk block numbers
corresponding to the logical blocks of a
file. For accesses which don’t go through
a filesystem, the logical and physical disk
blocks are the same. Hence, for raw I/O,
the blocks array contains sequential num-
bers. We replaced the blocks array by a
single number indicating the starting disk
block and modified the code doing raw
I/O to generate the remaining sequence of
disk block numbers.

Together these modifications reduced the size
of the kiobuf to 608 bytes and allowed them
to be allocated usingkmalloc() instead of
vmalloc() .

A further reduction in the memory footprint of
the kiobuf was enabled by the use of the raw-
vary patch described in Section 6. Since I/O
is done 4KB at a time, a kiobuf needs only
KIO_STATIC_PAGES (65) buffer heads in-
stead ofKIO_MAX_SECTORS(1024) to rep-
resent the maximum I/O that can be done using
a single kiobuf.

9 2.5 changes – tackling the root of
the problem?

In part, the block layer rewrite in 2.5 was mo-
tivated by some of the well known shortcom-
ings of the 2.4 block layer that we came across
in the earlier sections. Of major concern was
the suboptimal performance and resource over-
head in the case of large I/O requests, I/O on
high memory addresses, and I/O operations
that do not originate directly from the buffer
cache like raw/direct I/O and page I/O.

Ottawa Linux Symposium 2002 402

Most of these problems stemmed from the use
of the buffer head as the unit of I/O at the
generic block layer, and the basic limitations
on the size and nature of I/O buffers that could
be represented by a single buffer head. It
could only be a contiguous chunk at a vir-
tually mapped address, of size one blocksize
unit, which could not exceed a page and had
to be aligned at a block boundary (as per the
block size used). This led to the described in-
efficiencies in handling large I/O requests and
readv/writev style operations, as it forced such
requests to be broken up into small chunks so
that they could be mapped to buffer heads be-
fore being passed on one by one to the generic
block layer, only to be merged back by the I/O
scheduler when the underlying device is capa-
ble of handling the I/O in one shot. Also, using
the buffer head as an I/O structure for I/Os that
didn’t originate from the buffer cache unnec-
essarily added to the weight of the descriptors
which were generated for each such chunk.

At the same time, one of the good things about
the original design was that splitting and merg-
ing of requests was a simple matter of break-
ing or chaining pointers, without requiring any
memory allocation or move.

In the context of raw or direct I/O, a second as-
pect of concern was the weighty nature of the
higher level kiobuf data structure as discussed
in earlier sections. One of the shortcomings of
the kiobuf is that a single kiobuf can represent
only a contiguous user address range, which
makes it unsuitable for user space memory
vectors of the form supplied by readv/writev.
While arrays of kiobufs, namely kiovecs, are
defined, they are too heavyweight for use in
readv/writev.

Another crucial issue addressed in the rewrite
was the matter of the single global I/O request
lock bottleneck, especially in the case of inde-
pendent/parallel I/Os to multiple disks.

9.1 The origin of BIO

The solution implemented in 2.5 by Jens
Axboe [2] addresses these inefficiencies at a
fundamental level by defining some new data
structures. A flexible structure called BIO has
been created for the block layer instead of
using the buffer head structure directly, thus
eliminating any associated baggage and restric-
tions. The abstraction is sector oriented and is
unaware of filesystem block sizes.

The BIO structure uses a generic vector rep-
resentation pointing to an array of tuples of
<page, offset, len> to describe the
I/O buffer and has various other fields describ-
ing I/O parameters and state that needs to be
maintained for performing the I/O. The core
memory vector representation is capable of de-
scribing a set of non-page aligned fragments in
a uniform manner across various layers includ-
ing zero copy network I/O, and kernel asyn-
chronous I/O [1]. This makes it possible for
the same descriptor to be passed across sub-
systems and be useful for things like streaming
I/O from network to disk and vice-versa. Such
a descriptor can directly refer to user space
buffers in a process context independent way,
and forms an I/O currency similar to that pro-
posed in [7].

The new scheme enables large, as well as vec-
tored I/Os, to be described as a single unit
within the limits of the device capabilities and
is adequate for specifying high memory buffers
as well since it doesn’t require a virtual address
mapping. The underlying DMA mapping func-
tions have been modified to work with this rep-
resentation. Bounce buffers become necessary
only where the device does not support I/O into
high memory buffers. In situations where the
driver needs to access the buffer by virtual ad-
dress, it performs a temporary kmap (e.g. if
falling back to PIO in IDE).

Ottawa Linux Symposium 2002 403

A low level request structure may consist of a
chain of BIOs (potentially arising from mul-
tiple sources or callers) for a contiguous area
on disk, a concept which retains some of the
goodness of the original design in terms of ease
of request merging, and treatment of individual
completion units. The BIO structure maintains
an index into the vector to help keep track of
which fragments have been transferred so far,
in case the transfer or a subsequent copy hap-
pens in stages. Notice also, that potentially, a
single entry in the vector could describe a frag-
ment greater than a page size, i.e. across con-
tiguous physical (or perhaps more accurately,
logical) pages. Splitting an I/O request in-
volves cloning the BIO structure and adjusting
the indices to cover the desired portions of the
original vector.

Using a separate structure introduces a level of
allocation and setup in some cases as a BIO has
to be constructed for each I/O (e.g. rather than
directly utilizing a bh in the case of buffered
I/O). Typically BIOs are allocated from a des-
ignated BIO mempool, where mempool refers
to Ingo Molnar’s new memory pool infrastruc-
ture in 2.5. The allocation scheme is designed
to avoid deadlocks as in a scenario when the
I/O in question is a writeout issued under mem-
ory pressure. A caller avoids possibilities of
holding on to a BIO without initiating any ac-
tion (like starting low level I/O) that would
eventually recycle it back to the pool. The sit-
uation gets tricky if further BIO allocations be-
come necessary in order to proceed with the
request (e.g. a bounce BIO in situations where
the device doesn’t support highmem I/O, or
BIO allocations required for splitting the I/O in
the case of lvm/md/evms). To avoid any pos-
sibility of a deadlock, multiple allocations held
at a time from the same pool by a thread ought
to be atomic or pipelined. Alternatively, the al-
locations could be spread across multiple pools
in an established order.

9.2 Elimination of IORL

Another major improvement in 2.5 is the re-
moval of the global I/O request lock present
in 2.4. Instead, every queue is associated
with a pointer to a lock, which is held dur-
ing queuing. This enables per-queue locks or
shared locks across queues depending on the
level of concurrency supported by the under-
lying mid/driver layers. The SCSI mid-layer,
for example, sets the lock pointer to the same
per adapter value for all request queues asso-
ciated with the devices connected to a given
host adapter. Unlike our patched 2.4 SCSI mid-
layer which serializes enqueuing per device,
this locking scheme serializes at a coarser per
adapter granularity.

A notion of command pre-building outside of
the queue lock and ahead of request processing
by the device has been considered for its po-
tential to improve throughput and interrupt re-
sponses, but it has not been explored entirely.
Choosing the right moment to prebuild is not
trivial—done too early, it would require re-
building on every subsequent merge; done too
late, e.g. at the time of actually scheduling a re-
quest, it takes up cycles in request processing
context which dilutes the desired effect.

9.3 Better per-queue tuning

Improved modularization at the generic block
level now enables better per-queue level tun-
ing and consideration of higher level attributes
for I/O scheduler performance under specific
configurations and workloads. There is support
for efficient I/O barriers in cases where corre-
sponding hardware support exists, which could
be useful for transaction oriented I/O.

9.4 A job to do – utilizing the framework

At this point, work remains to be done in terms
of modifying higher levels in the OS to make

Ottawa Linux Symposium 2002 404

optimum use of this new infrastructure. Pre-
liminary experiments running DM show that
the 2.5.17 kernel outperforms SBIR for reads
but does worse than SBIRV when readv is used
(Table 3. This is consistent with the current
state of implementation of the new block layer
where the readv path has not seen the bene-
fits of the bio structure. In fact, we can even
expect a slight degradation for small I/Os be-
cause the memory vector structure is inherently
a little more complex than the simple virtually
mapped buffer in 2.4. For small single segment
I/O the drivers end up with an added check for
the end of the array, and many of the BIO fields
become almost redundant.

Therefore, intelligent pre-merging at higher
levels makes sense in this context. A 1:1
mapping between buffer heads and BIOs is
not quite efficient. There is ongoing work
to rewrite some of the filesystem interfaces
to move in this direction. Andrew Morton’s
multi-page read and writeout patches [8] as-
semble large BIOs for pagecache pages (for as
many corresponding blocks that are contiguous
on disk) and submit them directly to the request
layer, bypassing buffer heads altogether.

From the perspective of raw/direct I/O, which
are the main areas of consideration in the cur-
rent paper, the relatively heavyweight kiobuf
infrastructure would have to be replaced by
something like the lighter kvec data structures
in Ben LaHaise’s asynchronous I/O patches
[6], which can support readv/writev operations
efficiently.

A kvec is pretty close to a bare abstraction of
a memory vector array of the form used in a
BIO, each tuple of the vector being referred to
as a kveclet. It is usually more useful to pass
around akvec_cb structure which refers to a
kvec and its associated callback data for I/O
completion purposes.

struct kveclet {
struct page *page;
unsigned offset;
unsigned length;

}

struct kvec {
unsigned max_nr;
unsigned nr;
struct kveclet veclet[0];

}

struct kvec_cb {
struct kvec *vec;
void (*fn)(...);
void *data;

}

A kvec can be mapped to BIO structures
for block I/O and similarly to equivalentskb
fragment structures in the case of network
I/O. A single kvec may be split across multi-
ple BIO structures (each pointing to the corre-
sponding section of thekvec), each of which
acts as a distinct completion unit when more
than one low level device requests are involved
in serving the I/O. A large user space buffer
(especially in the case of vectored I/O), might
even be mapped to a bigkvec a section at
a time, and appropriately pipelined for I/O
through multiple BIO requests to potentially
enhance throughput and latencies for partial
completions.

In the case of direct I/O, extents of non-
contiguous blocks would have to be mapped to
separate BIO units.

There also has been some discussion on the
maximum size of BIOs that may be pushed
down to the block layer, from the perspective
of avoiding chopping up an I/O unless it vi-
olates the underlying device limits. Because
this decision is more complex than just a mat-
ter of absolute size, and may even depend on

Ottawa Linux Symposium 2002 405

request queue state, Linus Torvalds has sug-
gested that drivers could supply agrow_bio
helper function to handle this. Further com-
plications arise in the case of layered drivers
like lvm/md/evms. Andrew Morton has pro-
posed a dynamicget_max_bytes interface
exported by drivers (cascaded down layered
drivers if required), to help build up appropri-
ately sized BIOs to avoid splitting by the lower
layers.

Observe that in 2.4 with fixed size (small)
buffer heads, the approach was to never split
a buffer, but include it as part of the request or
create a new request depending on whether it
could be fitted within the limits allowable for
the device in question. In 2.5, the BIO rep-
resents larger variable sizes, having variable
number of segments. Such a simplistic ap-
proach could result in underutilization of re-
quest slots when merging I/Os from different
sources. If a buffer exceeds the request size
which the device can handle, it breaks up the
request. However, splitting up a BIO for a cor-
rect fit requires an additional memory alloca-
tion. Some points of caution with regard to
such allocations at the block layer level have
been discussed in an earlier subsection. This is
why the question of constructing BIOs of right
size arises.

A suitable solution would have to take into
account that splitting is expected to be rel-
atively infrequent. Since the general di-
rection is to move towards merging early,
get_max_bytes() could turn out to be a
useful hint even for the corresponding cluster-
ing decisions. At the same time, it may not
always be feasible or efficient in practice to ab-
solutely guarantee elimination of the need to
split I/Os. Thus, a provision for splitting may
be required with due caution possibly with a
structured use of multiple (layered) mempools
and pipelined piecewise submissions to avoid
deadlocks.

10 Conclusion and Future Work

In this paper we have highlighted some of the
scalability and performance limitations of the
2.4 Linux kernel’s block I/O subsystem. Using
a decision-support benchmark that is represen-
tative of real-world enterprise workloads, we
have shown that the 2.4.17 kernel sees I/O re-
lated performance bottlenecks when large I/O’s
are done on raw devices. We systematically in-
vestigated these bottlenecks and proposed so-
lutions (as kernel patches) to alleviate them. As
a result of using these patches, the decision-
support workload sees an 233% improvement
in its metric of interest. The benefits of these
patches, all but one of which were written by
the authors, are further demonstrated through a
disk I/O microbenchmark and profiling data.

Most of the problems that we demonstrated
are seen because of the use of the buffer head
and kiobuf data structures. The new block I/O
layer being written for the 2.5 kernel looks very
promising as it addresses almost all the prob-
lems outlined here. Much work remains to be
done to efficiently utilize the new data struc-
tures introduced in 2.5. We will continue to
actively participate in the kernel community’s
efforts to improve the performance of both the
2.4 and 2.5 kernels for enterprise workloads.

11 Acknowledgments

We would like to thank the many people on the
lse-tech@lists.sourceforge.net
mailing list who provided us with valuable
comments and suggestions during the de-
velopment of these patches. In particular,
we would like to thank Ruth Forester for
helping resolve numerous issues with the
decision-support workload and Helen Pang for
collecting data on the disk I/O microbench-
mark. We also appreciate the excellent DB2
performance analysis provided by John Tran,

Ottawa Linux Symposium 2002 406

Karen Sullivan and James Cho.

This work was developed as part of the Linux
Scalability Effort (LSE) on SourceForge
(sourceforge.net/projects/lse).
All the patches mentioned in this paper can be
found in the “I/O Scalability Package” at the
LSE site.

This work represents the view of the authors,
and does not necessarily represent the view of
IBM.

References

[1] Suparna Bhattacharya. Design Notes on
Asynchronous I/O (aio) for Linux.
http://lse.sourceforge.net/io/aionotes.txt.

[2] Suparna Bhattacharya. Notes on 2.5
Block I/O Layer Changes.
http://lse.sourceforge.net/io/bionotes.txt.

[3] R. Bryant and J. Hawkes. Lockmeter:
Highly-Informative Instrumentation for
Spin Locks in the Linux Kernel. InProc.
Fourth Annual Linux Showcase and
Conference, Atlanta, Oct 2000.

[4] John Hawkes et. al (Silicon
Graphics Inc.). Kernprof. Available at
http://oss.sgi.com/projects/kernprof
/index.html.

[5] InfoWorld Test Center K. Railsback.
Linux 2.4 breaks the enterprise barrier.
http://www.infoworld.com/articles/tc/xml
/01/01/15/010115tclinux.xml.

[6] Benjamin LaHaise. Kernel Asynchronous
I/O Patches.
http://www.kvack.org/˜blah/aio.

[7] Larry McVoy. The Splice I/O Model.

[8] Andrew Morton. Multi-page writeout and
readahead patch. http://www.zip.com.au
/˜akpm/linux/patches/2.5/2.5.8.

[9] Sharon Snider. I/O Performance HOWTO.
http://www.tldp.org/HOWTO/IO-Perf-
HOWTO/index.html.

Trademarks

The following terms are trademarks or regis-
tered trademarks of International Business Ma-
chines Corporation in the United States, other
countries, or both:

IBM, DB2, ServeRAID

Pentium is a trademark of Intel Corporation in
the United States, other countries, or both.

Linux is a trademark of Linus Torvalds.

UNIX is a registered trademark of The Open
Group in the United States and other countries.

Other trademarks are the property of their re-
spective owners.

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

