
 1

Linux Technology Center Testing

The purpose of this paper is to summarize enterprise test results from the IBM
Linux Technology Center Test Team (LTC Test). LTC testing is an integral part
of IBM's vision to work with the community to ensure Linux remains enterprise
ready. The LTC Test team is responsible for engaging with the Linux community
and delivering test suites, documented stress runs, reliability assessment, and
verifying defect fixes found by the test team through regression testing.

LTC Test is part of the greater Linux test community whose goal is to ensure that
the Linux OS, as delivered by the community to the distros, is as robust and
defect free as possible. The work of the test community enables the distros to
take the Linux OS, combine it with many other packages into Linux Distributions
and test that combination. IBM brands can then take Linux Distributions and
system test the appropriate HW/SW product and application stacks before
delivering Linux-enabled IBM products to the field. A measure of the success of
the LTC Test team's contribution to this process is the activity of the Linux Test
Project (LTP) test suite hosted on SourceForge: There are approximately 400
downloads of the test suite per month with over 100 subscribers to the project.

Background
The Linux Technology Center was formed in August, 1999. In late 2000, the LTC
team grew from 50 to 250 members. The LTC Test team was added as a critical
mission in January, 2001. In just one year, the LTC Test team has accelerated
Linux System test. While establishing the lab topology and infrastructure, the
team immediately began engaging with the Linux community to deliver robust
test suites and patches that focus on the Linux operating system through the
Linux Test Project (LTP). The LTP was seeded with 100 test cases developed by
SGI™. Since that time, the test suite has grown to almost 600 test cases with
contributions from IBM, SGI, OSDL, and Group Bull® along with individual Linux
developers. The LTC test team ported many AIX system test cases and enabled
several hundred Dynix / PTX test cases, originally developed by Sequent, to run
under the SGI PAN test harness.

 The team has also developed many test cases, some deriving from defects
found during testing and Linux community feedback. Using the LTP, the test
team has tested 50 new versions of the kernel. Eight releases of the LTP test
suite are hosted on SourceForge, one of the major Linux developer sites. There
are approximately 400 downloads of the test suite per month with over 100
subscribers to the project. The Linux Test Project support multiple architectures
s/390 (32 & 64-bit), PPC32, and IA32/64 platforms. Another aspect of our testing
is working with the Linux Standards Base group and delivering Linux Standards
Base test suites to the community.

 2

The test results reported in this document represent results obtained from
running tests under specific conditions at IBM's laboratory facility in Austin,
Texas. Users may achieve different results depending on their particular
installations, configurations, workloads, or other factors. Users are, thus, advised
to evaluate the code referenced in this document as is appropriate for their
specific installations.

Why is Linux Test Infrastructure Needed in the
Linux Community?

As the Linux operating system evolved, there was no formal testing environment
available for Linux developers and maintainers to access system level tests to
verify that their new code and patches would run in a system environment. There
were no test suites available to check for compliance to standards being
established to make application development consistent across distributions.

Has Linux improved over the past 12 months? Yes,
and here’s how.

The overall robustness, reliability of the Linux OS has matured and the following
is a summary of enterprise workloads that have been successfully tested on the
2.4 kernel series:

� 1.7 Terabyte files have been created and successfully accessed for over

60 hours
o 1.2 million 1K blocks successfully read
o 2.005 billion 1K blocks successfully created
o 1.241 million read requests
o 51.383 million write requests
o 87.891 million 1K blocks read
o 494.452 million written

� Over 15 million NGPT threads have been successfully created during a 96
hour stress run and utilized by the OS and LTP testcases

� 250 GB databases have been created and stressed for 96 hours with over
12.9 million inserts, queries, and update transactions

o 4.360 million inserts
o 4.361 million updates
o 4.361 million queries

� 7488 hours stress testing against the 2.4 Linux kernel (72 hour runs are
executed (twice weekly))

� VMM was stressed for 96 hours on 8-way machines using high memory
scenarios that utilized 90 - 99% of real memory

� 168 hour continuous stress runs have been executed against the NFS v2
and NFS v3 concurrently using 2047 MB file sizes

� 161 Linux defects have been opened and115 have been resolved

 3

What is the Linux Test Strategy?

The Test Strategy is to execute test scenarios in a system environment focusing
on component stability, integration of component workloads and robustness of
the overall system components. Linux reliability runs validate the robustness of
the kernel subsystems to support enterprise level computing. The testing strategy
is designed to ensure product stability prior to integration. Stress tests are
executed during the focus test timeframe. The Test team demonstrates Linux
components integrate successfully.

The following areas are tested using the LTP test suite and community workload
tools:

� The goal of Focus Test is to isolates and validates Linux component and
application stability. Linux components are regression tested on new
release candidate kernels. Early testing of Linux packages is geared to
identify or isolate pervasive or critical defects before packages are
released in the Open Source Community. New tests are developed as
needed for component testing.

� The goal of Integration Test is to merge component workloads and
validates component interactions using the integration test stack. See Fig.
1.0 for additional details.

� The goal of Reliability or Stress Test is to validate the robustness of the
overall system components during 96 hours stress tests.

Focus, integration and reliability test the following components with various
configurations as appropriate.

� Memory management
� VMM, Paging space
� Scheduler (process, stack handler)
� Linux Threads
� Next Generation POSIX Threads (NGPT)
� System Calls
� Filesystem / enterprise volume management
� Networking Subsystems
� Applications
� Databases
� Web Servers (Apache, HTTP server)
� Web application servers

 4

Integration Test Stacks
Integration tests create customer scenarios that view the system as a
whole.
The integration test efforts utilize stress tests to verify robustness of the
product during high system usage. Tests are run using various
combinations of the following integration components.

Distros Threads Filesystems Networking Databases Web
Servers

Architecture

Red Hat Linux
Threads

Ext2 NFSv2 DB2 Websphere X86

SuSE POSIX
Threads

JFS NFSv3 MY SQL Apache z-Series S/390

TurboLinux ReiserFS TCP/ IP v4 Sybase HTTP PPC

Caldera Ext3 TCP/ IP v6 Oracle Trade2
APP

IA-64

Monta
Vista

 Bonnie ++ UDP Postgres AKstress

 Dbench 10/100 ETH Dots

 Cerebus GB ETH T3

 Iozone NetPerf

 Postmark Volanomark

 EVMS Connectathon

 AIX 5.1

Table 1.0 Integration Test Stacks

 5

Linux Test Integration Runs

Integration Test merges component workloads and validates OS component
interactions. The integration test effort requires stress tests that verify robustness
of the product during high system usage. Components of Linux are integrated
using the following component stacks.

Test Area Distro Kernel Duration Processors Memory Dasd Tool Results
Kernel Red

Hat,
SuSE,
Turbo

2.4.17 100 hrs. 8-way 12GB 30 GB LTP 99% Pass

Kernel SuSE
7.2

2.4.14 140 hrs. 8-way 12GB 30 GB LTP 99% Pass

WebSphere
AES 4.0
(WAS)

Red
Hat 7.2
SuSE
7.3

2.4.16 2.4.17 72 hrs. 8-way DB
4-way WAS
4-way WAS

12GB
1 GB
1 GB

4 TB
180 GB
180 GB

Trade 2
akstress

Pages :
17,472,505
Connects:
17,472,492

Filesystems SuSE
7.3

2.4.17 + JFS
1.0.14

48 hrs 8-way 10GB 35Gb
+5.2
Terabyte
 SAN

lftest 100% pass
1.9 Terabye
contigous file
succ created
2,005,991,424
(1K) blocks.

Filesystems SuSE
7.3

2.4.17 + JFS
1.0.14

 2Terabytes Bonnie
++

100% pass
Read requests:
1,241,600
Write requests:
51,383,325
Blocks
Read(1K):
87,891,700
Blocks
Written(1K):
494,452,650

DB2 7.2
Database

SuSE
7.2

2.4.7 96 hrs. 4-way 256MB 64GB Dots 100% pass
Inserts 4360277
Updates
4361666
Queries
4361943

 6

NGPT Red
Hat 7.2

2.4.16+NGPT
1.1.1 Patch

96 hrs 2-way 512MB 4GB LTP 99% pass
test halted

VMM (High
memory)

SuSE
7.3

2.4.16 24 hrs 8-way 10GB 12GB LTP 99% Pass
5GB swap

Networking SuSE
7.3

2.4.18 96 hours 8-way
8-way

9 GB
9 GB

36GB
36GB

Netpipe
LTP

 99% pass
 (12) GB ETH
cards, Direct
Connect

Table 2.0 Linux Test Integration Runs
Note: All runs were terminated gracefully at the end of duration unless otherwise noted.
Bug reports have been opened for problems that resulted in a success rate of <100%. All
testcase failures are documented on ltp.sf.net .

 7

LTP run summary

The following seven diagrams snapshot typical integration test runs:

� Fig. 01 NGPT and Linux threads Integration runs on a 1-Way

� Fig. 02 NGPT and Linux threads Integration runs on a 8-Way

� Fig. 03 Database, JFS and EVMS Integration runs on a 8-Way

� Fig. 04 NGPT and Apache Integration runs on a 1-Way

� Fig. 05 Virtual Memory Manager stress runs on a 8-Way

� Fig. 06 LTP Testcase Executions

� Fig. 07 NFS integration runs

 8

24 48 72 96
of hours

0

5

10

15

20

25

30

Th
ou

sa
nd

s
Q

ua
nt

ity

Linux Threads (1022)
NGPT(24935)

Fig. 01

NGPT and Linux threads
Integration runs on a 1-Way

Linux Threads
Machine: PIII - 866Mhz
Kernel: Linux 2.4.18-rc2
1022 Threads created by max thread creation test
1073 processes running on machine
59.6% User CPU utilization
40.3% System CPU utilization
97.81% Memory utilization (256 MB total memory)

Next Generation POSIX Threads
Machine: PIII - 866Mhz
Kernel: Linux 2.4.17
24935 Threads created by max thread creation test
55 processes running on machine
99.6% User CPU utilization
00.3% System CPU utilization
98.18% Memory utilization (256 MB total memory)

Observations
NGPT will provide better performance for multi-threaded
applications
LTP pth_str02 was used as the max thread creation tool
The maximum number of threads ranged between 23K -24.9
per process for the LTP pth_str02 testcase
The average was < 180 seconds elapsed time to create 24k
threads for 4 pth_str02 processes, 896 MB memory
Internal thread resource utilization was minimized

 9

24 48 72 96
of hours

0

20

40

60

80

100

120

Th
ou

sa
nd

s
Q

ua
nt

ity

Linux Threads (1022)
NGPT(105000)

Fig. 02

NGPT and Linux threads
Integration runs on a 8-Way

Linux Threads
Machine: (8)PIII - 700Mhz
Kernel: Linux 2.4.17
1022 Threads created by max thread creation test
1073 processes running on machine
59.6% User CPU utilization
40.3% System CPU utilization
97.81% Memory utilization (896 MB total memory)

Next Generation POSIX Threads
Machine: (8) PIII - 700Mhz
Kernel: Linux 2.4.17
105000 Threads created by max thread creation test
55 processes running on machine
99.6% User CPU utilization
00.3% System CPU utilization
98.18% Memory utilization (896 MB total memory)

Observations
NGPT will provide better performance for multi-threaded
applications in particular on SMP machines.
LTP pth_str02 was used as the thread creation tool
The maximum number of threads ranged between 23K -24.9
per process for the LTP pth_str02 testcase
The average was < 60 seconds elapsed time to create 24k
threads for 4 user processes
Internal thread resource utilization was minimized

 10

24 48 60
of hours

200

210

220

230

240

250

260

Q
ua

nt
ity

Linux Processes (250)

Fig. 03

Database, JFS and EVMS
Integration runs on a 8-Way

Linux Threads
Machine: (8)PIII - 700Mhz
Kernel: Linux 2.4.18-rc2
218 Processes created by DB2 transactions
46.44 % User CPU utilization
9.83 % System CPU utilization
99.94 % Max Memory Utilization (12112628 KB)
76.97 % Average Memory Utilization during 60 hours run

Observations
Database transactions generate significant stress on Linux
tasks (processes)
DB2 7.2 using JFS 1.0.15 on EVMS 0.9.0 were used as the
integration components during the run.

 11

24 48 72 96
of hours

2
4
6
8

10
12
14
16
18

M
illi

on
s

Q
ua

nt
ity Web pages served

(15633289)
NGPTthreads created
(15206024)

Fig. 04

NGPT and Apache Integration runs
on a 1-Way

Next Generation POSIX Threads, Apache 2.0.28
Machine: PIII - 866Mhz
Kernel: Linux 2.4.16
15206024 NGPT Threads created
71 processes running on machine
26.08% User CPU utilization
8.67% System CPU utilization
90.69% Memory utilization (256 MB total memory)
40.47% Swap space used (1 GB total swap)

Observations
The results indicate that the ratio for threads vs web pages
served is 1:1 plus OS generated tasks
Note: Automated Web test tool is been used as the client of
the Apache server. 30 virtual clients are created and each
client has 3 threads. 15633289 web pages are served by
Apache server.

 12

8
16

24

of Hours

0
2
4
6
8

10
12

G
B

M
em

or
y

Fig. 05

Virtual Memory Manager stress runs on a
8-Way

Linux Memory utilization
Machine: (8)PIII - 700Mhz
Kernel: Linux 2.4.18-rc4
80 Average Linux Processes(tasks) per second
23.15 % User CPU utilization
68.53 % System CPU utilization
99.77 % Max Memory Utilization (10GB RAM)
2 GB Swap size
97.77 % Average Memory Utilization during 24 hours run

Observations
The Linux 2.4.16 and later kernels successfully ran the
following VMM scenarios:

Performed memory Stress with Race conditions
Simultaneous map/unmap/read
Repeated map/write/unmap of a of a large GB size file.
Repeated map/write/unmap of a of random size file.
Repeated mallocs and frees of random size chunks of
memory
VMM was successfully stressed for 96 hours on the
2.4.16 and later kernels

 13

LTP Testcase Executions

8-way
Machine: (8)PIII - 700Mhz
Kernel: Linux 2.4.17
32.34 % User CPU utilization
21.42 % System CPU utilization
99.05 % Max Memory Utilization (12112628 KB)
45.00 % Average Memory Utilization during the run

1-way
Machine: PIII - 866Mhz
56.04 % User CPU utilization
21.56 % System CPU utilization
99.11 % Max Memory Utilization (256MB)
47.04 % Average Memory Utilization during the run

24 48 72 96 140
of hours

0

500

1000

1500

Th
ou

sa
nd

s
Q

ua
nt

ity

1344877 LTP Testcases 8-Way
168142 LTP Testcases 1-Way

Fig. 06

Observations
LTP2000207 was the test tool
8-way (8) instances of each test were executed for 140 hrs
1-way (1) instances of each test were executed 140 hrs
7.9 more testcases were executed on the 8-way vs 1-way
Linux scheduler successfully balanced the testcase tasks for 96 hours
8-way does provide significant scalability enhancements

 14

Appendix A: NFS integration runs:

The robustness of NFSv2 /v3 is defined by how well it handles large amounts of
data and traffic between multiple clients, while other tasks are being performed
on the system. LTP kernel tests were run on the server. NFS traffic was
generated by various applications and tests that ran on multiple clients.

Fig. 07

The following tests were executed for successfully for 72 hours.

• Bonnie - Intense, stressful filesystem and I/O bottleneck benchmark.
• nfslock01 - Two processes open FLOCK_IDATA file simultaneously each one

locks odd and even lines of the file simultaneously and fill them with '0's and '1's.
After they find eof, the datafiles are compared.

• nfs03 - Rapidly creates and deletes files through multiple processes running in the
background. The user may specify the number of subdirectories to create, the
number of files to create (per subdirectory), and the number of times to repeat the
creation/deletion cycle.

 15

Fig. 08

The following tests were executed for successfully for 72 hours.

• Red Hat -> SuSE
1. Bonnie was able to generate enough traffic to help occupy the CPU at approx.
80% load, with about 30% going to the rpciod process. Bonnie ran successfully
without any recorded errors.

2. The nfslock01 test completed 111586 iterations a success rate of 99%.

SuSE -> AIX
1. Bonnie was able to generate enough traffic to help occupy the CPU at approx.
80% load, with about 28% going to the rpciod process and 15% going to the nfsd
process. The rpciod deamon is the client-side NFS process daemon, and the nfsd
daemon is the server-side NFS process. Bonnie ran successfully without any
recorded errors.

2. The nfslock01 test completed 110134 iterations a success rate of 99%.

• AIX -> Red Hat
The NFS server daemon, nfsd, occupied 31% of the Red Hat machine's CPU.
This high usage was obtained by lowering the number of server daemons from the

 16

default number of 8 down to 1, and running 2 copies of the nfs03 test (one over
NFSv2 and the other over NFSv3).

Appendix B: LTP release history on
http://ltp.sourceforge.net

� April 2001 – Project moved to SourceForge 100 test cases
� June 2001 – 50 test cases added to the release
� Sept. 2001 – 400 test cases added to the release
� Nov. 2001 – Bug release
� Dec 2001 – Database Open source Test Suite released
� Jan 2002 – Bug release
� Feb 2002 – Cross architecture support IBM s/390, PPC, IA-64

Significant web activity after each release

 17

Appendix C: LTP Tools details

The Linux Test Project is a joint project with SGI™, IBM®, OSDL™, and
Bull® with a goal to deliver test suites to the open source community that
validate the reliability, robustness, and stability of Linux. The Linux Test
Project is a collection of tools for testing the Linux kernel and related
features. Our goal is to improve the Linux kernel by bringing test automation to
the kernel testing effort. Interested open source contributors are
encouraged to join the project.

The LTP has released over 600 tests to the Open Source Community.
Several complex IO tests (doio, growfiles, pipeio) and over 25 reliability network
tests for remote procedure calls, network file systems, multicast, and various
network commands, pthreads, memory, filesystems, disk I/O and test driver
(pan). Tools is an area we continue to enhance and several analysis tools for pan
output are available. The LTP also contains several tests for commands
commonly used in an application development environment.

Enterprise Volume Management System
The EMVS System Test effort utilizes a variety of tools, each of which exercises
different aspects of the installed filesystem and, as a result, the EVMS layers
upon which the filesystem is installed.

FS_INOD
FS_INOD was originally created for AIX testing and was modified to test Linux
filesystems. FS_INOD requires four parameters:

� Volume name upon which FS_INOD runs.
Number of directories FS_INOD creates. These directories are created
beneath two parent directories (dir1 and dir2), there are actually twice this
number of directories created.
Number of files created in each directory. FS_INOD uses Touch to create
these files.

� Number of loops for FS_INOD to execute.

When invoked, FS_INOD creates two parent directories and populates them with
the specified number of subdirectories. Then it begins the loop of creating the
specified number of files in each directory, using a separate process for each
parent directory, and removing all files. FS_INOD executes the specified number
of loops, at the end of which it will clean up by removing all files and directories it
has created.

 18

The larger the disk, the longer it takes to execute each loop. Experience has
shown that 30 loops on an approximately 4GB disk execute for about 72 hours.
During this time FS_INOD consumes an average of approximately 15 to 20% of
the cpu's cycles, with 100% utilization peaks occurring regularly. Greater cpu
utilization percentages can be obtained by running multiple instances of
FS_INOD.

FTHRASHER
 FTHRASHER, or File Thrasher, is a tool that can hammer a filesystem and
utilize significant cpu cycles. It is an internal IBM tool that was originally written to
test on the OS/390, and has been modified for use on Linux. FTHRASHER
requires the following parameters:

� Size of blocks used to create each test file.
� Number of blocks used to create each test file.
� Number of test files to create.
� Number of seconds between reports.
� Number of processes accessing the test files.
� Ratio of reads to writes, expressed as a percentage.
� Number of hours to run the test.

LFTEST
The Large File Test, created by the LTC Test Team, explores a filesystem's
boundaries with regards to the maximum file size that can be created or
manipulated. LFTEST is designed to create large files and lseek from the
beginning of the file to the end of the file after each block write. This test verifies
large file support and can be used to generate large files for other filesystem
tests to use.

WebSphere Integration Testing
WebSphere is used to test the ability of Linux to withstand the stresses placed on
it in a web application server environment. We have taken IBM Websphere 4.0
matched with IBM DB2 and added the Trade2 stock trading application. This
scenario is driven with Linux clients using the IBM akstress test tool. By testing
in this manner we are able to simulate thousands of clients wanting to perform
stock transactions. As a result we can place a heavy load on components of
Linux from network communications to file systems.

DOTS
Database Opensource Test Suite, DOTS, is a set of test cases designed to
generate stress on database server systems. Dots will stress threads, process
scheduling and memory utilization of the OS. Dots will measure database server

 19

reliability and robustness on Linux. DOTS is made up of two test case
categories: Basic and Advanced test cases. The primary goals of the Basic
Cases are stress testing and 100% JDBC API coverage. The goals of the
Advanced Cases are modeling a real-world business application in addition to
stress testing on database systems. There are ten test cases in total, all written
in Java. The supported (Relational Database Management Systems (RDBMS)
are DB2, Oracle, and Sybase.

Next Generation POSIX Threads (NGPT)

NGPT introduces an M:N threading model to the Linux system. This
model will provide better performance for multi-threaded applications
that utilizes the POSIX pthreads library functionality. This will be
particularly true on SMP machines. The goal of this project is to make
threading on Linux more robust, more POSIX compliant and more in line
with the services provided by commercial Unix operating systems.

Description of available NGPT tests:
test_str01: Creates a large tree of threads
test_str02: Creates a large number of threads sequentially
test_str03: Creates a large tree of threads, each child performs
calculations and returns the result to the parent
test_pthread: General test of Pthread API
test_pthread_cancel: Test the pthread_cancel() function
test_pthread_segv: Pthread signal handling test
test_pthread_sig: Test signal handling in pthreads
test_cleanup: Test using cleanup function on thread cancellation

 20

IBM, the IBM logo, AIX are trademarks of the IBM Corporation.

Linux is a registered trademark of Linus Torvalds.

All other trademarks and registered trademarks are the property of their
respective owners.

This publication reflects the views of the author, and not the IBM Corporation.
This publication may include typographical errors and technical inaccuracies and
may be changed or withdrawn at any time. The content is provided AS IS,
without warranties of any kind, either express or implied, including the implied
warranties of merchantability and fitness for a particular purpose.

This publication may contain links to third party sites that are not under the
control of or maintained by IBM. Access to any such third party site is at the
user’s own risk and IBM is not responsible for the accuracy or reliability of any
information, data, opinions, advice or statements made on these sites. IBM
provides these links merely as a convenience and the inclusion of such links
does not imply an endorsement.

The test results reported in this document represent results obtained from
running tests under specific conditions at IBM's laboratory facility in Austin,
Texas. Users may achieve different results depending on their particular
installations, configurations, workloads, or other factors. The information in this
document is provided solely for the information of the user. The information is
provided on an "AS IS" basis, without liability or warranty. Users use such
information at their own risk. Users are, thus, advised to evaluate the code
referenced in this document as is appropriate for their specific installations.

Document Author:
Linda J. Scott
IBM Linux Technology Center

4/4/2002

