
Enhan
ing Linux S
heduler S
alabilityMike KravetzIBM Linux Te
hnology CenterHubertus Franke, Shailabh Nagar, Rajan RavindranIBM Thomas J. Watson Resear
h Centerfmkravetz,frankeh,nagar,rajan
rg�us.ibm.
omhttp://lse.sour
eforge.netAbstra
tThis paper examines the s
alability of the Linux2.4.x s
heduler as the load and number of CPUsin
reases. We show that the
urrent s
heduler de-sign involving a single runqueue and lo
k
an su�erfrom lo
k
ontention problems whi
h limits its s
al-ability. We present alternate designs using multiplerunqueues and priority levels that
an redu
e lo
k
ontention while maintaining the same fun
tionalbehavior as the
urrent s
heduler. These implemen-tations demonstrate better overall s
heduling per-forman
e over a wide spe
trum of loads and system
on�gurations.1 Introdu
tionLinux has seen tremendous growth as a server op-erating system and has been su

essfully deployedin enterprise environments for Web, �le and printserving. Often, the in
reased demand in su
h en-vironments
an be met by horizontally s
aling thesystem with
lustering. For su
h appli
ations, theoperating system needs to eÆ
iently support SMPs
onsisting of only a small number of CPUs.More demanding appli
ations, su
h as database, e-business or departmental servers, tend to be de-ployed on larger SMP systems. To support su
h ap-pli
ations, Linux must s
ale well verti
ally as moreCPUs are added to an SMP. It must also s
alewith the in
reased number of pro
esses and threadsthat su
h SMPs are expe
ted to handle. In boththese situations, the s
heduler
an be a key fa
torin a
hieving or limiting operating system s
alabil-

ity. The
urrent Linux s
heduler (2.4.x kernel) hastwo de�ning
hara
teristi
s. First, there is a sin-gle unordered runqueue for all runnable tasks inthe system, prote
ted by a single spinlo
k. Se
ond,during s
heduling, every task on the runqueue isexamined while the runqueue lo
k is held. Thesehave a two-fold e�e
t on s
alability. As the num-ber of CPUs in
reases, there is more potential forlo
k
ontention. As the number of runnable tasksin
reases, lo
k hold time in
reases due to the linearexamination of the runqueue. Independent of thenumber of CPUs, in
reased lo
k hold time
an also
ause in
reased lo
k
ontention, depending on thefrequen
y of s
heduling de
isions. For spinlo
ks, in-
reased lo
k hold time and lo
k
ontention result ina dire
t in
rease in lo
k wait time whi
h is a wasteof CPU
y
les. These observations are reinfor
edby re
ent studies. Measurements using Java ben
h-marks [2℄ show that the s
heduler
an
onsume upto 25% of the total system time for workloads witha large number of tasks. Another study [3℄ has ob-served run queue lo
k
ontention to be as high as75% on a 32-way SMP.Lo
k
ontention problems
an generally be ad-dressed in two ways. First, the prote
ted data stru
-ture
an be reorganized so that it
an be traversedfaster with a
orresponding de
rease in the aver-age lo
k hold time. Se
ond, the data stru
ture
anbe broken up or partitioned into smaller parts, ea
hprote
ted by its own separate lo
k. This redu
es theprobability of lo
k
ontention overall. Additionally,it allows multiple examinations of the subparts topro
eed in parallel, redu
ing lo
k wait time for thedata stru
ture as a whole.The main
ontribution of this paper is the design,implementation and evaluation of two new Linuxs
hedulers whi
h improve s
alability using these two

approa
hes. The priority level s
heduler (PLS) aimsat redu
ing lo
k hold time by maintaining runnabletasks in priority lists. The multiqueue s
heduler(MQ) redu
es lo
k
ontention by maintaining per-
pu runqueues. Both of these solutions are deployedon
ommer
ial operating systems but have not beenseriously
onsidered for Linux. Though prioritylevel s
hedulers have been implemented for Linux[5℄ and have shown improvements over the vanillas
heduler, we show here that the redu
tion in lo
khold time by su
h methods only improves s
alabilitywith an in
reased number of tasks. However, it isnot suÆ
ient to improve s
alability with in
reasingCPU
ounts. In parti
ular, though our PLS alsodoes better than the
urrent s
heduler at moderateto high task
ounts, MQ outperforms the
urrents
heduler and PLS over a wide range of workloads.More importantly, these improvements are obtainedwhile maintaining fun
tional equivalen
e with the
urrent s
heduler, leaving room for further improve-ments.The rest of the paper is organized as follows. Se
-tion 2 presents a des
ription of the implementationof the
urrent s
heduler. The parts whi
h de�ne thefun
tionality (and need to be retained) are identi�edalong with the bottlene
ks. Se
tion 3 presents thepriority queue s
heduler implementation. The main
ontribution of this paper, the multiqueue s
hed-uler, is des
ribed in Se
tion 4. Results using mi-
roben
hmarks and a de
ision support workload areshown in Se
tion 5. Se
tion 6
on
ludes with dire
-tions for future work.2 Default SMP S
heduler (DSS)The default SMP s
heduler (DSS) in Linux 2.4.xtreats pro
esses and threads the same way, referringto them as tasks. Ea
h task has a
orrespondingdata stru
ture whi
h maintains state related to ad-dress spa
e, memory management, signal manage-ment, open �les and privileges. Traditional thread-ing models and light-weight pro
esses are supportedthrough the
lone system
all.For the purpose of s
heduling, time is mea-sured in ar
hite
ture-dependent units
alled ti
ks.On x86 systems, timer ti
ks are generated at a10ms resolution. Ea
h task maintains a
ounter(tsk->
ounter) whi
h expresses the time quantumfor whi
h it
an exe
ute before it
an be preempted.

By de
rementing this
ounter on timer ti
k inter-rupts, DSS implements a priority-de
ay me
hanismfor non-realtime tasks. The priority of a task is de-termined by a goodness() value that depends on itsremaining time quantum, ni
e value and the aÆn-ity towards the last CPU on whi
h it ran. DSSsupports preemption of tasks only when they runin user mode. The responsiveness of lengthy kernel
ode
an be in
reased by
he
king for s
hedulingrequirements at appropriate lo
ations. Priority pre-emption
an o

ur any time the s
heduler runs.The kernel s
heduler
onsists of two primary fun
-tions :1. s
hedule(void) : This fun
tion is
alled syn-
hronously by a pro
essor to sele
t the nexttask to run e.g. at the end of sleep(),wait for IO() or s
hedule timeout(). It isalso
alled preemptively on the return pathfrom an interrupt e.g. a res
hedule-IPI (in-terpro
essor interrupt) from another pro
es-sor, I/O
ompletion or system
all. In su
h
ases, the s
hedule() fun
tion is
alled if theneed res
hed �eld of the
urrent task is set.2. res
hedule idle(task stru
t *tsk) :This fun
tion is
alled in wake up pro
ess()to �nd a suitable pro
essor on whi
hthe parameter task
an be dispat
hed.wake up pro
ess() is
alled when a task is�rst
reated or when it has to be re-enteredinto the runqueue after an I/O or sleep oper-ation. res
hedule idle() tries to �nd eitheran idle pro
essor or one whi
h is running atask with a lower goodness value. If su

essful,it sends an IPI to the target CPU, for
ing it toinvoke s
hedule() and preempt its
urrentlyrunning task.Internally, the s
heduler maintains a single run-queue prote
ted by a spinlo
k. The queue is un-ordered, whi
h allows tasks to be inserted anddeleted eÆ
iently. However, in order to sele
t anew task to run, the s
heduler has to lo
k and tra-verse the entire runqueue,
omparing the goodnessvalue of ea
h s
hedulable task. A task is
onsidereds
hedulable if it is not already running and it is en-abled for dispat
h on the target CPU. The goodnessvalue, determined by the goodness() fun
tion, dis-tinguishes between three types of tasks : realtimetasks (values 1000+), regular tasks (values between0 and 1000) and tasks whi
h have yielded the pro
es-sor (value -1). For regular tasks, the goodness value

onsists of a stati
 or non-aÆnity part and a dy-nami
 or aÆnity part. The non-aÆnity goodness de-pends on the task's
ounter and ni
e values. TheaÆnity part a

ounts for the anti
ipated overheadsof
a
he misses and page table swit
hes in
urred asa result of migrating tasks a
ross CPUs. If the in-voking CPU is the same as the one the task last ranon, the goodness value is boosted by an ar
hite
turedependent value
alled PROC CHANGE PENALTY. If thememory management obje
t (tsk->mm) is the same,goodness values are boosted by 1. The
ounter val-ues of all tasks are re
al
ulated when all s
hedula-ble tasks on the runqueue have expired their timequanta. Due to spa
e limitations, we refer thereader to detailed des
riptions of DSS in [5, 1℄.3 Priority Level S
heduler (PLS)The priority level s
heduler (PLS) seeks to redu
ethe number of tasks examined during a s
hedulingde
ision. It reorganizes the single runqueue of thedefault SMP s
heduler (DSS) into an array of listsindexed by the non-aÆnity goodness of tasks. Theindi
es of the
urrently running task, and the high-est s
hedulable task together with an aÆnity boost,determine the range of lists to be sear
hed for thenext
andidate. The priority lists are still prote
tedby a single runqueue lo
k as they
on
eptually pro-vide a single runqueue.In our implementation, we
oales
e all realtimetasks into a single list at the highest index. Thismethod of enqueueing tasks results in 61 lists forthe x86 platform and up to 335 lists for other ar
hi-te
tures. A task's goodness value
an
hange dur-ing its exe
ution, e.g. during fork, timer, exit,and re
al
ulate, requiring it to be reassigned toa di�erent priority list. To avoid frequent requeue-ing, yielding tasks are enqueued a

ording to theirnon-yield goodness values and handled appropri-ately while walking the lists. The implementationensures that yielding tasks do not exe
ute beforeany other runnable task.At s
hedule() time, the
urrently running taskis the default
andidate to run next, and if it isnot yielding, also establishes the lowest list to bes
anned (as no task on a lower list
an re
eivean aÆnity boost whi
h results in a priority higherthan that of the
urrently running task.) If thetask stopped exe
uting, e.g. due to I/O wait, the

idle-task be
omes the default
andidate and alllists need to be sear
hed by default. Tasks with ex-pired
ounters fall into the lowest list and are neverinspe
ted.The determined range of lists is now s
anned intop-down priority order for non-yielding s
hedula-ble tasks and if one is found and its goodness valueis better then the default
andidates, it be
omes thedefault
andidate. Further sear
h
an be limited tolists whose priority lie within PROC CHANGE PENALTYof the default
andidate's list, as no list below that
an have a higher goodness value even after get-ting an aÆnity boost. Even within this range, thesear
h
an be terminated as soon as a task is foundthat last ran on the invoking CPU. As a furtheroptimization, we maintain a bitmap of non-emptylist indi
es that allows us to eÆ
iently skip emptylists, using the find first zero() fun
tion. Wedisregard the tsk->mm boost, whi
h essentially pro-vides a tie-breaker between two task of equal prior-ity, as it would require a
omplete s
an of the lastrea
hed list and the one below it. We have also im-plemented versions of priority level s
hedulers thata

ount for the tsk->mm boost but only observedinfrequent di�eren
es in s
heduling behavior
om-pared to DSS, while su�ering from degraded per-forman
e. We
hose to present the best performingPLS implementation to highlight the need for re-du
ing lo
k
ontention as done in MQ. We have alsoimplemented versions that limit the number of lists,by utilizing a di�erent hash fun
tion, but did not ob-serve performan
e improvements. Sin
e PLS keepsrunning tasks on the runqueue (i.e. in their list) andtherefore inspe
ts these tasks during s
heduling, we
an expe
t that for low task
ounts (� #CPUs),PLS will introdu
e additional overhead
omparedto DSS. However, with the in
rease in the numberof tasks, the probability of �nding a task that ranlast on the invoking CPU in
reases as does the ben-e�t of limiting the number of tasks that need to betraversed. Together, we expe
t an redu
ed averagelo
k hold time.4 Multi-Queue S
heduler (MQ)The multi-queue s
heduler (MQ) is designed to ad-dress s
alability by redu
ing lo
k
ontention andlo
k hold times while maintaining fun
tional equiv-alen
e with DSS. It breaks up the global run-queueand global run-queue lo
k into
orresponding per-

CPU stru
tures. Lo
k hold times are redu
ed bylimiting the examination of tasks to those on therunqueue of the invoking CPU along with an in-telligent examination of data
orresponding to thenon-lo
al runqueues. Moreover, the absen
e of aglobal lo
k allows multiple instan
es of the s
hed-uler to be run in parallel, redu
ing lo
k wait timerelated to lo
k
ontention. Together these redu
ethe s
heduler related lo
k
ontention seen by thesystem.MQ de�nes per-CPU runqueues whi
h are similar tothe global runqueue of the DSS s
heduler. Relatedinformation su
h as the number of runnable taskson this runqueue is maintained and prote
ted by aper-CPU runqueue lo
k.The s
hedule() routine of MQ operates in two dis-tin
t phases. In the �rst phase, it examines the lo
alrunqueue of the invoking CPU and �nds the bestlo
al task to run next. S
hedulers in
orporatingonly this phase exist [4℄, but
an lead to problemsof priority inversion and load imbalan
es amongstthe runqueues. The load imbalan
e problem is il-lustrated in Fig 1 whi
h shows the deviations fromthe mean runqueue length over time for 4-way SMPexe
uting a kernel build and using su
h a restri
tedmulti-queue s
heduler. MQ dire
tly addresses pri-ority inversion in the se
ond phase by
omparingthe lo
al
andidate with the top
andidates fromremote runqueues before making the �nal sele
tion.This also has a load balan
ing e�e
t.
-10

-5

0

5

10

15

20

25

30

0 20 40 60 80 100

D
ev

ia
tio

n
fr

om
 m

ea
n

Time

CPU 1
CPU 2
CPU 3
CPU 4
Mean

Figure 1: Deviation from mean of runqueue lengthsfor a 4-way SMP during a kernel build and runninga s
heduler whi
h only looks at the lo
al runqueueIn more detail, the s
hedule() routine of MQ a
-quires the runqueue lo
k of the invoking CPU's run-queue and s
ans the latter looking for the s
hedu-lable task with the highest goodness value. To fa-
ilitate the global de
ision in the se
ond phase, italso re
ords the se
ond highest non-aÆnity good-

ness value in the max na goodness �eld of the lo-
al runqueue. The non-aÆnity goodness (hen
e-forth
alled na goodness) is the goodness value of atask without any
onsideration for CPU or memorymap aÆnity. The best lo
al
andidate's goodnessvalue (whi
h in
ludes appropriate aÆnity boosts)is
ompared with the max na goodness of all otherrunqueues to determine the best global
andidate.If the global
andidate is on a remote runqueue,s
hedule() tries to a
quire the
orresponding lo
kand move the
andidate task over to its lo
al run-queue. If it fails to a
quire the lo
k or the remotetask is no longer a
andidate (its na goodness valuehas
hanged), s
hedule() skips the
orrespondingrunqueue and tries again with the next best global
andidate. In these situations, MQ's de
isions devi-ate slightly from those made by DSS e.g. the thirdbest task of the skipped runqueue
ould also havebeen a
andidate but is not
onsidered as one byMQ.The res
hedule idle() fun
tion attempts to �nda CPU for a task whi
h be
omes runnable. It
re-ates a list of
andidate CPUs and the na goodnessvalues of tasks
urrently running on those CPUs. It
hooses a target CPU in mu
h the same way as thes
hedule() routine, trying to a
quire a runqueuelo
k and verifying that the na goodness value is stillvalid. On
e a target CPU is determined, it movesthe task denoted by its argument onto the targetCPU's runqueue and sends an IPI to the target CPUto for
e a s
hedule(). res
hedule idle() main-tains fun
tional equivalen
e with DSS in other waystoo. If a tasks' previous CPU is idle, it is
hosenas the target. Amongst other idle CPUs, the onewhi
h has been idle the longest is
hosen �rst.MQ's treatment of realtime tasks takes into a

ountthe
on
i
ting requirements of eÆ
ient dispat
hand the need to support Round Robin and FIFOs
heduling poli
ies. Like DSS, it keeps runnable re-altime tasks on a separate global runqueue and pro-
esses them the same way.An important aspe
t of MQ's implementation is the
are taken to avoid unne
essary
a
he misses andfalse sharing. Runqueue data is allo
ated in per-CPU
a
he-aligned data stru
tures.

#CPUs #invo
ations Run queue lengthof s
hedule Mean Maximum2-way 241817 4.93 184-way 308396 7.25 238-way 816135 8.21 35Table 1: Runqueue lengths for TPC-H on DSS5 Performan
e EvaluationTo assess the s
alability of the various s
hedulerspresented, we show the performan
e impa
t ofin
reasing the number of CPUs and number ofrunnable tasks. We �rst show the s
ope of the prob-lem through statisti
s
olle
ted using the industrystandard TPC-H ben
hmark. Then we use two mi-
roben
hmarks to
ontrol an in
rease in load andevaluate the performan
e of the three s
heduler de-signs.All ben
hmarks were run on an 8-way IBM Net�nity8500R with 700MHZ PIII pro
essors, 2MB
a
hesand 2.5GB of main memory. We varied the CPUnumbers via the max
pus boot parameter and in-
reased the o�ered load through ben
hmark param-eters. All tests were run using the 2.4.3 distributionof the Linux kernel.5.1 TPC-HTPC-H is an industry standard de
ision supportben
hmark
onsisting of ad-ho
 database queries.For a detailed des
ription of TPC-H please seehttp://www.tp
.org. We
hose this ben
hmark torepresent a real world workload often servi
ed bylarge SMP systems. Due to the intri
a
ies of pub-lishing a
tual TPC-H results, we fo
ussed our atten-tion on the lo
k
ontention analysis rather than thenormally reported metri
s. Hen
e, we spent verylittle time tuning either the system or the databasefor optimal performan
e. The intent here is to mo-tivate our work by showing the extent of the lo
k
ontention problem in a realisti
 workload. Theben
hmark is run with a suÆ
iently small databaseto minimize disk I/O.Table 1 shows the length of the runqueue and the
alls to the s
hedule() fun
tion for DSS, as thenumber of CPUs is in
reased from 2 to 8. The sizeof the database is kept
onstant but its degree ofparallelism is in
reased in proportion to the number

of CPUs. As Table 1 shows, the system is fullyloaded with the average number of runnable tasksex
eeding the number of CPUs.2-Way 4-Way 8-WayDSSContention 2.4% 9.6% 47.2%Mean Hold Time 1.5us 2.2us 3.9usMean Wait Time 2.8us 3.9us 10usPLSContention 2.0% 13.6% 53.7%Mean Hold Time 1.7us 2.6us 4.4usMean Wait Time 3.1us 4.2us 11usMQNF Contention 1.9% 8.1% 11.4%Contention 3.3% 9.6% 14.2%Mean Hold Time 1.7us 2.0us 2.8usMean Wait Time 2.0us 3.2us 3.0usTable 2: Lo
k statisti
s for TPC-HTable 2 shows statisti
s for the lo
k
ontention forthe runqueue lo
k. The results were
olle
ted byrunning kernels instrumented with Lo
kmeter [3℄.We
learly see that lo
k
ontention is a signi�
antproblem as the number of CPUs in
reases, with theresulting lo
k wait times rising from 2.8us on a 2-way to 10us on the 8-way for DSS and and simi-lar in
reases for PLS. PLS does exhibit higher lo
k
ontention and lo
k hold times then DSS. This re-
e
ts that PLS's overhead at the low mean run-queue length outweighs the expe
ted gains at thehigh thread
ount. MQ does mu
h better at
on-trolling the lo
k
ontention. On an 8-way system,the lo
k
ontention is only 11.4% as
ompared tothe 47.2% in DSS and 53.7% in PLS. The lo
k waittimes show a
orresponding de
rease with MQ doing31% better than DSS on an 8-way.For MQ we report another lo
k
ontention mea-sure
alled NF(Non-failure) Contention. By default,failed spin trylo
k attempts
ontribute to the to-tal
ontention for a lo
k as reported by the lo
kstattool. However, su
h failed attempts are relativelyinexpensive and do not result in wasted CPU
y-
les
aused by spinning. The MQ s
heduler makesuse of spin trylo
k in attempting to modify dataon non-lo
al runqueues. In
ontrast, the DSS andPLS s
hedulers never make use of spin trylo
k.The measurement NF Contention is lo
k
ontention
omputed without in
luding
alls to spin trylo
k.For the 2-way and 4-way systems, we observe thesame overall performan
e amongst the three s
hed-

ulers. However, on the 8-way system MQ does 6%better than the other two whi
h agrees with themarked di�eren
e in lo
k
ontention numbers re-ported here.5.2 ChatThe Chat ben
hmark, whi
h
an be found athttp://lbs.sour
eforge.net/, simulates
hat-rooms with multiple users ex
hanging messages us-ing TCP so
kets. The ben
hmark is based on theVolano Java ben
hmark, whi
h was used in some ofthe �rst reports of s
alability limitations with thedefault SMP s
heduler (DSS) of Linux. [2℄.Ea
h
hatroom
onsists of 20 users with ea
h userbroad
asting a variable number of 100 byte mes-sages to every other user in the room. A user is rep-resented by two pairs of threads (one ea
h for sendand re
eive) on the
lient and server side, result-ing in 4 threads per user and 80 threads per room.Ea
h message is sent from the
lient send to itsserver re
eive whi
h then broad
asts it to all other
lient re
eive threads in the room. 100 messagessent by ea
h user translate to 20*100*19=38,000messages being sent and re
eived per room. Ea
hre
eive is a blo
king read and the interleaving of nu-merous reads and writes
auses the s
heduler
odeto be invoked frequently.The
hara
teristi
 parameters of the Chat ben
h-mark are the number of rooms and the number ofmessages per user. From a s
heduler perspe
tive,the former
ontrols the number of threads
reatedand the latter
ontrols the number of times threadssleep and awaken via blo
king reads. At the end of aben
hmark run, the
lient side reports the through-put in number of messages per se
ond. A higherthroughput indi
ates a more eÆ
ient kernel s
hed-uler.The Chat ben
hmark was run for three di�erent
on�gurations ranging from 10 rooms, 100 messagesper user to 30 rooms, 300 messages. For brevity,these
on�gurations are labelled (10,100), (20,200)and (30,300) where the �rst number refers to num-ber of rooms and the se
ond one refers to the num-ber of messages. To better understand the load seenby the s
heduler in these
on�gurations, Fig 5 showsa histogram of the number of tasks on the runqueueduring every invo
ation of s
hedule() on an 8-waysystem exe
uting the DSS s
heduler. The mean and

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

’0
00

)

CPUs

DSS
PLS
MQ

Figure 2: Chat (10,100)
50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

’0
00

)

CPUs

DSS
PLS
MQ

Figure 3: Chat (20,200)
50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

’0
00

)

CPUs

DSS
PLS
MQ

Figure 4: Chat (30,300)maximum values of the runqueue length for nine
on�gurations and all three s
hedulers are shown inTable 4. Per-CPU values of the runqueue lengthare shown for MQ and are mu
h lower than thosefor DSS and PLS as expe
ted. For DSS and MQ,the lo
k hold times are proportional to the runqueuelengths shown. The data also
on�rms the ability ofthe Chat ben
hmark parameters to manipulate theload.Fig. 2
ompares DSS, MQ and PLS for the (10,100)
on�guration. For 2 and 3 CPUs, all three perform
omparably. The highest throughput a
hieved byMQ is 13% higher than that of DSS, while PLS does

#CPUsDSS 2 3 4 5 6 7 8Contention 18.3% 31.2% 42.6% 54.4% 66.6% 77.5% 86.6%Hold Mean(Max) 15 (118) 13 (164) 14 (187) 19 (253) 22 (258) 21 (287) 22 (302)Wait Mean(Max) 26 (105) 24 (1045) 34 (1270) 58 (1633) 78 (2886) 87 (3753) 105 (4197)PLS 2 3 4 5 6 7 8Contention 3.7% 10.7% 15.6% 22.2% 29.6% 43.4% 50.7%Hold Mean(Max) 2.3 (28) 2.9 (101) 2.9 (56) 3.8 (114) 4.2 (97) 6.7 (212) 7.3 (170)Wait Mean(Max) 2.7 (23) 4.0 (79) 3.4 (43) 6.0 (125) 6.1 (180) 16 (379) 19 (498)MQ 2 3 4 5 6 7 8Contention 5.0% 5.2% 3.5% 5.8% 6.0% 6.7% 6.3%Hold Mean(Max) 3.2 (8.6) 2.9 (33) 2.3 (290) 2.5 (26) 2.5 (35) 2.7 (34) 2.9 (37)Wait Mean(Max) 4.3 (30) 3.6 (25) 2.8 (20) 2.9 (22) 3.1 (22) 3.1 (26) 3.4 (18)Table 3: Lo
k statisti
s for Chat (20,200)
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 100 200 300 400 500 600 700 800

F
re

qu
en

cy

Runqueue length

(10,100)
(20,200)
(30,100)

Figure 5: Distribution of runqueue lengths for Chatrunning on an 8-way using the DSS13% worse. More importantly, MQ s
ales betterthan DSS and PLS as seen by the gradual de
reasefrom the point at whi
h maximum throughput isrea
hed. Table 5 summarizes the speedup a
hievedby the s
hedulers. The ideal speedup values are re-ported using a 2-way system as the base as it is theminimum SMP
on�guration.In Figs 2, 3 and 4, results for 1-way are shown onlyfor
ompleteness. The numbers were obtained byrunning an SMP-enabled kernel with 1 CPU. Typi-
ally, the unipro
essor kernel would be used instead.Moving on to the (20,200)
on�guration, we see thatthe di�eren
es amongst the s
hedulers start showingup immediately after 2 CPUs. The peak through-puts of MQ and PLS are 68% and 34% above thoseof DSS. MQ's performan
e does not show any degra-dation for CPU
ounts s
aling up to 8-way as seenin Fig. 3 and in Table 5.In
reasing the load still further, we �nd the DSSs
heduler unable to s
ale in the (30,300)
on�gura-

Con�g. Run queue length mean(max)DSS PLS MQ(10,100) 84(165) 82(234) 6(23)(10,200) 135(276) 130(299) 14(52)(10,300) 160(306) 167(353) 18(47)(20,100) 82(169) 122(364) 7(26)(20,200) 218(484) 198(503) 24(70)(20,300) 217(571) 307(564) 31(95)(30,100) 113(232) 176(423) 6(28)(30,200) 276(763) 270(827) 36(94)(30,300) 279(899) 443(816) 47(113)Table 4: Runqueue length statisti
s for Chat(20,200) on DSStion. In fa
t its maximum throughput, a
hieved ona 4-way, is only 11% higher than the 2-way perfor-man
e and rapidly de
lines thereafter. Both PLSand MQ s
ale well and do not show any perfor-man
e degradation at higher CPU
ounts. The peakthroughputs of MQ and PLS are 124% and 57%higher than those of DSS respe
tively.While DSS s
ales up to 5 CPUs in the (10,100)
on-�guration, it starts breaking down rapidly at higherCPU
ounts or in
reased loads. Our hypothesis, asmentioned earlier, is that the in
reased lo
k
on-tention is the basi
 problem exa
erbated by the in-
reased lo
k hold time due to the linear sear
h. Toverify this, in Table 3, we show statisti
s on the run-queue lo
k for the (20,200)
on�guration. With in-
reasing CPU
ounts, the DSS s
heduler
auses lo
k
ontention to in
rease substantially from 18.3% onthe 2-way to 86.6% on the 8-way. This
auses anin
rease in lo
k wait time, with the maximum waittime in
reasing from 105 mi
rose
onds on the 2-wayto 4197 mi
rose
onds on the 8-way. As expe
ted,

Maximum On 8-wayA
hieved at Value ValueCPU# (Ideal) (Ideal)(10,100)DSS 5 1.88(2.5) 1.45(4.0)PLS 5 1.72(2.5) 1.43(4.0)MQ 6 2.31(3.0) 2.21(4.0)(20,200)DSS 4 1.27(2.0) 0.54(4.0)PLS 5 1.32(2.5) 1.43(4.0)MQ 8 2.29(4.0) 2.29(4.0)(30,300)DSS 4 1.11(2.0) 0.42(4.0)PLS 8 1.63(4.0) 1.63(4.0)MQ 8 2.22(4.0) 2.22(4.0)Table 5: Speedup for Chatthe lo
k hold times do not in
rease in the same pro-portion sin
e they primarily depend on runqueuelength. Comparing PLS to DSS, we see a signi�-
ant de
rease in lo
k
ontention. This is primarilydue to the de
rease in lo
k hold time. Redu
ed lo
k
ontention and lo
k hold times together result insubstantially redu
ed lo
k wait times. For MQ, wereport the lo
k statisti
s averaged over the per-CPUrunqueue lo
ks. We see that lo
k
ontention is vir-tually eliminated, ranging between 5.0% and 6.7%.The low lo
k hold times also re
e
t the distributionof tasks amongst the runqueues. Due to the lowlo
k
ontention, lo
k wait times are mu
h signi�-
antly lower than those for the other s
hedulers.5.3 Re
exRe
ex is a mi
roben
hmark designed to exer
ise thes
hedule() and res
hedule idle() fun
tions ina
ontrolled way. The program
reates a numberof threads whi
h are grouped into sets
alled a
-tive sets. All threads in one a
tive set pass a tokenaround using blo
king reads and writes on messagepipes. After re
eiving the token, a thread performsseveral rounds, ea
h
onsisting of some
omputationfollowed by an expli
it yield of the pro
essor. In thelast round, instead of yielding, it passes the tokenonto its neighbor in the a
tive set and blo
ks on aread for the same token. The expli
it yields result inthe invo
ation of s
hedule() (through the system
all sys s
hed yield()) whereas the blo
king readson the message pipe result in res
hedule idle()being
alled.

Re
ex reports the average time spent per round (ob-tained by dividing the ben
hmark run time by thetotal number of rounds performed by all threads).The round time
onsists of the average
omputa-tion time and the s
heduling time. The
omputa-tion time per round is a parameter of the ben
h-mark. For the results shown here, we
hoose it tobe zero so that the s
heduler overhead is overex-posed and the di�eren
es between the three s
hed-ulers
an be
learly seen. Another important pa-rameter is the number of times a thread yieldsbefore passing the token. It is determined by aprobability parameter whi
h
an e�e
tively
ontrolthe relative frequen
y of invo
ation of s
hedule()and res
hedule idle(). The results below are ob-tained by keeping these frequen
ies almost equal.The number of runnable threads in the system isdetermined by parameters whi
h
ontrols the num-ber of tokens (or a
tive sets) and the number ofthreads
reated.
1

10

100

1000

2 4 8 16 32 64 128 256 512 1024

R
ou

nd
 ti

m
e

(u
s)

Active Threads

DSS
PLS
MQ

Figure 6: Re
ex ben
hmark on 2-way SMP
1

10

100

1000

2 4 8 16 32 64 128 256 512 1024

R
ou

nd
 ti

m
e

(u
s)

Active Threads

DSS
PLS
MQ

Figure 7: Re
ex ben
hmark on 8-way SMPFig 6
ompares the three s
hedulers on a 2-way sys-tem as we in
rease the number of a
tive sets whi
his the same as the number of a
tive threads on anaverage. The y-axis is shown on a log s
ale. Atlow thread
ounts (up to 32 runnable threads), PLSand DSS are almost equivalent while MQ does bet-ter. At higher thread
ounts, MQ and PLS out-

#CPUs2 4 6 8DSSContention 27.3% 88.4% 92.6% 93.0%Hold Mean(Max) 2.0 (7.8) 2.8 (11) 3.7 (14) 4.6 (21)Wait Mean(Max) 2.6 (9.2) 8.0(131) 22 (631) 40 (777)PLSContention 32.7% 87.8% 92.1% 92.8%Hold Mean(Max) 2.1 (10.0) 2.9 (15) 3.8 (24) 4.7 (25)Wait Mean(Max) 2.7 (12) 8.0(130) 22 (654) 40 (953)MQContention 2.3% 5.7% 6.4% 11.3%Hold Mean (Max) 1.0 (7.2) 1.3 (9.4) 1.9 (22) 3.0 (52)Wait Mean (Max) 2.0 (5.4) 2.1 (21) 2.7 (35) 3.3 (48)Table 6: Lo
k statisti
s for Re
ex with 16 runnable threadsperform DSS signi�
antly. Beyond 256 runnablethreads, MQ performan
e is a�e
ted by s
anninglong runqueues and hen
e it does worse than PLSwhi
h is able to arrive at a s
heduling de
ision inalmost
onstant time.Fig 7
ompares s
heduler performan
e on an 8-waySMP. While PLS and DSS demonstrate the same
hara
teristi
s as in the 2-way graph, MQ does bet-ter than both of them at all thread
ounts and showsbetter s
aling.Table 6 shows the lo
k statisti
s for Re
ex with 16runnable threads. We see the same trends as ob-served in the Chat ben
hmark, with DSS and PLS
ausing lo
k
ontention up to 93% on an 8-way sys-tem. In
ontrast, even though the lo
k hold timesare
omparable in all three s
hedulers, MQ showssigni�
antly lower lo
k
ontention.6 Con
lusion and Future WorkThe Linux 2.4 kernel provides a
on
ise SMP s
hed-uler that does well for small SMPs running moderateloads. However, we have shown that, as the numberof CPUs or the load in
reases, the s
alability limi-tations of the s
heduler start showing up. Pro�lingdata for a range of workloads show that the problemis due to high lo
k
ontention and large lo
k holdtimes.Redu
ing the lo
k hold times, as is done in the PLSs
heduler presented here, does alleviate the prob-lem somewhat with a
orresponding improvementin s
alability. However, this is not suÆ
ient to ad-

dress the overall s
alability as the number of CPUsin
reases. Also, at low loads, the overheads of PLSmake it perform worse than DSS. The MQ s
hed-uler dire
tly addresses lo
k
ontention by breakingup the single runqueue and its asso
iated lo
ks intoper-CPU equivalents. This brings a signi�
ant im-provement in lo
k
ontention, s
alability and overallperforman
e of the s
heduler.We are
urrently working on more extensive evalua-tions of the ideas presented in this paper. We wantto use more realisti
 workloads su
h as those seenon
ompute and database servers. Further extend-ing the MQ design, we are looking at s
hedulerswhi
h use CPU pooling. CPU pooling divides theCPUs of a system into a set of pools. Ea
h pool
onsists of one or more CPUs. S
heduling de
isionsare lo
alized to the individual CPU pools, and loadbalan
ing algorithms are put in pla
e to balan
e theload among the pools. CPU Pooling provides a
on-tinuum between
omplete runqueue separation, asprovided in [4℄, and MQ with its global s
hedulingde
isions.It is our belief that CPU pooling will be bene�
ial onlarge SMP ma
hines where making global s
hedul-ing de
isions will be
ome more expensive. In addi-tion, CPU pooling may be a good
hoi
e for NUMAar
hite
tures where CPUs on individual
omputenodes
an be mapped to CPU pools.7 A
knowledgmentsWe would like to thank the many people onthe lse-te
h�lists.sour
eforge.netmailing list

who provided us with valuable
omments and sug-gestions during the development of these alterna-tive s
heduler implementations. In parti
ular, wewould like to re
ognize John Hawkes, for runningour implementations on some large systems at SGI,and Bill Hartner for related dis
ussions and helpwith the experiments. This work was developed aspart of the Linux S
alability E�ort on Sour
eForge(lse.sour
eforge.net). Here you
an �nd moredetailed des
riptions of our s
heduler implementa-tions as well as the latest sour
e
ode.Referen
es[1℄ Daniel P. Bovet and Mar
o Cesati. Understand-ing the Linux Kernel. O�Reilly Asso
iates.[2℄ R. Bryant and B. Hartner. Java Te
hnology,Threads, and S
heduling in Linux. Java Te
h-nology Update, 4(1), Jan 2000.[3℄ R. Bryant and J. Hawkes. Lo
kmeter: Highly-Informative Instrumentation for Spin Lo
ks inthe Linux Kernel. In Pro
. Fourth Annual LinuxShow
ase and Conferen
e, Atlanta, O
t 2000.[4℄ Hewlett Pa
kard In
. Pro
ess resour
e man-agers for Linux : Linux plug-in s
hedulers.http://resour
emanagement.unixsolutions.hp.
om/WaRM/s
hedpoli
y.html.[5℄ S. Molloy and P. Honeyman. S
alable LinuxS
heduling. In Usenix Annual Te
hni
al Con-feren
e (Freenix Tra
k), June 2001. To appear.

