
Enhaning Linux Sheduler SalabilityMike KravetzIBM Linux Tehnology CenterHubertus Franke, Shailabh Nagar, Rajan RavindranIBM Thomas J. Watson Researh Centerfmkravetz,frankeh,nagar,rajanrg�us.ibm.omhttp://lse.soureforge.netAbstratThis paper examines the salability of the Linux2.4.x sheduler as the load and number of CPUsinreases. We show that the urrent sheduler de-sign involving a single runqueue and lok an su�erfrom lok ontention problems whih limits its sal-ability. We present alternate designs using multiplerunqueues and priority levels that an redue lokontention while maintaining the same funtionalbehavior as the urrent sheduler. These implemen-tations demonstrate better overall sheduling per-formane over a wide spetrum of loads and systemon�gurations.1 IntrodutionLinux has seen tremendous growth as a server op-erating system and has been suessfully deployedin enterprise environments for Web, �le and printserving. Often, the inreased demand in suh en-vironments an be met by horizontally saling thesystem with lustering. For suh appliations, theoperating system needs to eÆiently support SMPsonsisting of only a small number of CPUs.More demanding appliations, suh as database, e-business or departmental servers, tend to be de-ployed on larger SMP systems. To support suh ap-pliations, Linux must sale well vertially as moreCPUs are added to an SMP. It must also salewith the inreased number of proesses and threadsthat suh SMPs are expeted to handle. In boththese situations, the sheduler an be a key fatorin ahieving or limiting operating system salabil-

ity. The urrent Linux sheduler (2.4.x kernel) hastwo de�ning harateristis. First, there is a sin-gle unordered runqueue for all runnable tasks inthe system, proteted by a single spinlok. Seond,during sheduling, every task on the runqueue isexamined while the runqueue lok is held. Thesehave a two-fold e�et on salability. As the num-ber of CPUs inreases, there is more potential forlok ontention. As the number of runnable tasksinreases, lok hold time inreases due to the linearexamination of the runqueue. Independent of thenumber of CPUs, inreased lok hold time an alsoause inreased lok ontention, depending on thefrequeny of sheduling deisions. For spinloks, in-reased lok hold time and lok ontention result ina diret inrease in lok wait time whih is a wasteof CPU yles. These observations are reinforedby reent studies. Measurements using Java benh-marks [2℄ show that the sheduler an onsume upto 25% of the total system time for workloads witha large number of tasks. Another study [3℄ has ob-served run queue lok ontention to be as high as75% on a 32-way SMP.Lok ontention problems an generally be ad-dressed in two ways. First, the proteted data stru-ture an be reorganized so that it an be traversedfaster with a orresponding derease in the aver-age lok hold time. Seond, the data struture anbe broken up or partitioned into smaller parts, eahproteted by its own separate lok. This redues theprobability of lok ontention overall. Additionally,it allows multiple examinations of the subparts toproeed in parallel, reduing lok wait time for thedata struture as a whole.The main ontribution of this paper is the design,implementation and evaluation of two new Linuxshedulers whih improve salability using these two



approahes. The priority level sheduler (PLS) aimsat reduing lok hold time by maintaining runnabletasks in priority lists. The multiqueue sheduler(MQ) redues lok ontention by maintaining per-pu runqueues. Both of these solutions are deployedon ommerial operating systems but have not beenseriously onsidered for Linux. Though prioritylevel shedulers have been implemented for Linux[5℄ and have shown improvements over the vanillasheduler, we show here that the redution in lokhold time by suh methods only improves salabilitywith an inreased number of tasks. However, it isnot suÆient to improve salability with inreasingCPU ounts. In partiular, though our PLS alsodoes better than the urrent sheduler at moderateto high task ounts, MQ outperforms the urrentsheduler and PLS over a wide range of workloads.More importantly, these improvements are obtainedwhile maintaining funtional equivalene with theurrent sheduler, leaving room for further improve-ments.The rest of the paper is organized as follows. Se-tion 2 presents a desription of the implementationof the urrent sheduler. The parts whih de�ne thefuntionality (and need to be retained) are identi�edalong with the bottleneks. Setion 3 presents thepriority queue sheduler implementation. The mainontribution of this paper, the multiqueue shed-uler, is desribed in Setion 4. Results using mi-robenhmarks and a deision support workload areshown in Setion 5. Setion 6 onludes with dire-tions for future work.2 Default SMP Sheduler (DSS)The default SMP sheduler (DSS) in Linux 2.4.xtreats proesses and threads the same way, referringto them as tasks. Eah task has a orrespondingdata struture whih maintains state related to ad-dress spae, memory management, signal manage-ment, open �les and privileges. Traditional thread-ing models and light-weight proesses are supportedthrough the lone system all.For the purpose of sheduling, time is mea-sured in arhiteture-dependent units alled tiks.On x86 systems, timer tiks are generated at a10ms resolution. Eah task maintains a ounter(tsk->ounter) whih expresses the time quantumfor whih it an exeute before it an be preempted.

By derementing this ounter on timer tik inter-rupts, DSS implements a priority-deay mehanismfor non-realtime tasks. The priority of a task is de-termined by a goodness() value that depends on itsremaining time quantum, nie value and the aÆn-ity towards the last CPU on whih it ran. DSSsupports preemption of tasks only when they runin user mode. The responsiveness of lengthy kernelode an be inreased by heking for shedulingrequirements at appropriate loations. Priority pre-emption an our any time the sheduler runs.The kernel sheduler onsists of two primary fun-tions :1. shedule(void) : This funtion is alled syn-hronously by a proessor to selet the nexttask to run e.g. at the end of sleep(),wait for IO() or shedule timeout(). It isalso alled preemptively on the return pathfrom an interrupt e.g. a reshedule-IPI (in-terproessor interrupt) from another proes-sor, I/O ompletion or system all. In suhases, the shedule() funtion is alled if theneed reshed �eld of the urrent task is set.2. reshedule idle(task strut *tsk) :This funtion is alled in wake up proess()to �nd a suitable proessor on whihthe parameter task an be dispathed.wake up proess() is alled when a task is�rst reated or when it has to be re-enteredinto the runqueue after an I/O or sleep oper-ation. reshedule idle() tries to �nd eitheran idle proessor or one whih is running atask with a lower goodness value. If suessful,it sends an IPI to the target CPU, foring it toinvoke shedule() and preempt its urrentlyrunning task.Internally, the sheduler maintains a single run-queue proteted by a spinlok. The queue is un-ordered, whih allows tasks to be inserted anddeleted eÆiently. However, in order to selet anew task to run, the sheduler has to lok and tra-verse the entire runqueue, omparing the goodnessvalue of eah shedulable task. A task is onsideredshedulable if it is not already running and it is en-abled for dispath on the target CPU. The goodnessvalue, determined by the goodness() funtion, dis-tinguishes between three types of tasks : realtimetasks (values 1000+), regular tasks (values between0 and 1000) and tasks whih have yielded the proes-sor (value -1). For regular tasks, the goodness value



onsists of a stati or non-aÆnity part and a dy-nami or aÆnity part. The non-aÆnity goodness de-pends on the task's ounter and nie values. TheaÆnity part aounts for the antiipated overheadsof ahe misses and page table swithes inurred asa result of migrating tasks aross CPUs. If the in-voking CPU is the same as the one the task last ranon, the goodness value is boosted by an arhiteturedependent value alled PROC CHANGE PENALTY. If thememory management objet (tsk->mm) is the same,goodness values are boosted by 1. The ounter val-ues of all tasks are realulated when all shedula-ble tasks on the runqueue have expired their timequanta. Due to spae limitations, we refer thereader to detailed desriptions of DSS in [5, 1℄.3 Priority Level Sheduler (PLS)The priority level sheduler (PLS) seeks to reduethe number of tasks examined during a shedulingdeision. It reorganizes the single runqueue of thedefault SMP sheduler (DSS) into an array of listsindexed by the non-aÆnity goodness of tasks. Theindies of the urrently running task, and the high-est shedulable task together with an aÆnity boost,determine the range of lists to be searhed for thenext andidate. The priority lists are still protetedby a single runqueue lok as they oneptually pro-vide a single runqueue.In our implementation, we oalese all realtimetasks into a single list at the highest index. Thismethod of enqueueing tasks results in 61 lists forthe x86 platform and up to 335 lists for other arhi-tetures. A task's goodness value an hange dur-ing its exeution, e.g. during fork, timer, exit,and realulate, requiring it to be reassigned toa di�erent priority list. To avoid frequent requeue-ing, yielding tasks are enqueued aording to theirnon-yield goodness values and handled appropri-ately while walking the lists. The implementationensures that yielding tasks do not exeute beforeany other runnable task.At shedule() time, the urrently running taskis the default andidate to run next, and if it isnot yielding, also establishes the lowest list to besanned (as no task on a lower list an reeivean aÆnity boost whih results in a priority higherthan that of the urrently running task.) If thetask stopped exeuting, e.g. due to I/O wait, the

idle-task beomes the default andidate and alllists need to be searhed by default. Tasks with ex-pired ounters fall into the lowest list and are neverinspeted.The determined range of lists is now sanned intop-down priority order for non-yielding shedula-ble tasks and if one is found and its goodness valueis better then the default andidates, it beomes thedefault andidate. Further searh an be limited tolists whose priority lie within PROC CHANGE PENALTYof the default andidate's list, as no list below thatan have a higher goodness value even after get-ting an aÆnity boost. Even within this range, thesearh an be terminated as soon as a task is foundthat last ran on the invoking CPU. As a furtheroptimization, we maintain a bitmap of non-emptylist indies that allows us to eÆiently skip emptylists, using the find first zero() funtion. Wedisregard the tsk->mm boost, whih essentially pro-vides a tie-breaker between two task of equal prior-ity, as it would require a omplete san of the lastreahed list and the one below it. We have also im-plemented versions of priority level shedulers thataount for the tsk->mm boost but only observedinfrequent di�erenes in sheduling behavior om-pared to DSS, while su�ering from degraded per-formane. We hose to present the best performingPLS implementation to highlight the need for re-duing lok ontention as done in MQ. We have alsoimplemented versions that limit the number of lists,by utilizing a di�erent hash funtion, but did not ob-serve performane improvements. Sine PLS keepsrunning tasks on the runqueue (i.e. in their list) andtherefore inspets these tasks during sheduling, wean expet that for low task ounts (� #CPUs),PLS will introdue additional overhead omparedto DSS. However, with the inrease in the numberof tasks, the probability of �nding a task that ranlast on the invoking CPU inreases as does the ben-e�t of limiting the number of tasks that need to betraversed. Together, we expet an redued averagelok hold time.4 Multi-Queue Sheduler (MQ)The multi-queue sheduler (MQ) is designed to ad-dress salability by reduing lok ontention andlok hold times while maintaining funtional equiv-alene with DSS. It breaks up the global run-queueand global run-queue lok into orresponding per-



CPU strutures. Lok hold times are redued bylimiting the examination of tasks to those on therunqueue of the invoking CPU along with an in-telligent examination of data orresponding to thenon-loal runqueues. Moreover, the absene of aglobal lok allows multiple instanes of the shed-uler to be run in parallel, reduing lok wait timerelated to lok ontention. Together these reduethe sheduler related lok ontention seen by thesystem.MQ de�nes per-CPU runqueues whih are similar tothe global runqueue of the DSS sheduler. Relatedinformation suh as the number of runnable taskson this runqueue is maintained and proteted by aper-CPU runqueue lok.The shedule() routine of MQ operates in two dis-tint phases. In the �rst phase, it examines the loalrunqueue of the invoking CPU and �nds the bestloal task to run next. Shedulers inorporatingonly this phase exist [4℄, but an lead to problemsof priority inversion and load imbalanes amongstthe runqueues. The load imbalane problem is il-lustrated in Fig 1 whih shows the deviations fromthe mean runqueue length over time for 4-way SMPexeuting a kernel build and using suh a restritedmulti-queue sheduler. MQ diretly addresses pri-ority inversion in the seond phase by omparingthe loal andidate with the top andidates fromremote runqueues before making the �nal seletion.This also has a load balaning e�et.
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Figure 1: Deviation from mean of runqueue lengthsfor a 4-way SMP during a kernel build and runninga sheduler whih only looks at the loal runqueueIn more detail, the shedule() routine of MQ a-quires the runqueue lok of the invoking CPU's run-queue and sans the latter looking for the shedu-lable task with the highest goodness value. To fa-ilitate the global deision in the seond phase, italso reords the seond highest non-aÆnity good-

ness value in the max na goodness �eld of the lo-al runqueue. The non-aÆnity goodness (hene-forth alled na goodness) is the goodness value of atask without any onsideration for CPU or memorymap aÆnity. The best loal andidate's goodnessvalue (whih inludes appropriate aÆnity boosts)is ompared with the max na goodness of all otherrunqueues to determine the best global andidate.If the global andidate is on a remote runqueue,shedule() tries to aquire the orresponding lokand move the andidate task over to its loal run-queue. If it fails to aquire the lok or the remotetask is no longer a andidate (its na goodness valuehas hanged), shedule() skips the orrespondingrunqueue and tries again with the next best globalandidate. In these situations, MQ's deisions devi-ate slightly from those made by DSS e.g. the thirdbest task of the skipped runqueue ould also havebeen a andidate but is not onsidered as one byMQ.The reshedule idle() funtion attempts to �nda CPU for a task whih beomes runnable. It re-ates a list of andidate CPUs and the na goodnessvalues of tasks urrently running on those CPUs. Ithooses a target CPU in muh the same way as theshedule() routine, trying to aquire a runqueuelok and verifying that the na goodness value is stillvalid. One a target CPU is determined, it movesthe task denoted by its argument onto the targetCPU's runqueue and sends an IPI to the target CPUto fore a shedule(). reshedule idle() main-tains funtional equivalene with DSS in other waystoo. If a tasks' previous CPU is idle, it is hosenas the target. Amongst other idle CPUs, the onewhih has been idle the longest is hosen �rst.MQ's treatment of realtime tasks takes into aountthe oniting requirements of eÆient dispathand the need to support Round Robin and FIFOsheduling poliies. Like DSS, it keeps runnable re-altime tasks on a separate global runqueue and pro-esses them the same way.An important aspet of MQ's implementation is theare taken to avoid unneessary ahe misses andfalse sharing. Runqueue data is alloated in per-CPU ahe-aligned data strutures.



#CPUs #invoations Run queue lengthof shedule Mean Maximum2-way 241817 4.93 184-way 308396 7.25 238-way 816135 8.21 35Table 1: Runqueue lengths for TPC-H on DSS5 Performane EvaluationTo assess the salability of the various shedulerspresented, we show the performane impat ofinreasing the number of CPUs and number ofrunnable tasks. We �rst show the sope of the prob-lem through statistis olleted using the industrystandard TPC-H benhmark. Then we use two mi-robenhmarks to ontrol an inrease in load andevaluate the performane of the three sheduler de-signs.All benhmarks were run on an 8-way IBM Net�nity8500R with 700MHZ PIII proessors, 2MB ahesand 2.5GB of main memory. We varied the CPUnumbers via the maxpus boot parameter and in-reased the o�ered load through benhmark param-eters. All tests were run using the 2.4.3 distributionof the Linux kernel.5.1 TPC-HTPC-H is an industry standard deision supportbenhmark onsisting of ad-ho database queries.For a detailed desription of TPC-H please seehttp://www.tp.org. We hose this benhmark torepresent a real world workload often servied bylarge SMP systems. Due to the intriaies of pub-lishing atual TPC-H results, we foussed our atten-tion on the lok ontention analysis rather than thenormally reported metris. Hene, we spent verylittle time tuning either the system or the databasefor optimal performane. The intent here is to mo-tivate our work by showing the extent of the lokontention problem in a realisti workload. Thebenhmark is run with a suÆiently small databaseto minimize disk I/O.Table 1 shows the length of the runqueue and thealls to the shedule() funtion for DSS, as thenumber of CPUs is inreased from 2 to 8. The sizeof the database is kept onstant but its degree ofparallelism is inreased in proportion to the number

of CPUs. As Table 1 shows, the system is fullyloaded with the average number of runnable tasksexeeding the number of CPUs.2-Way 4-Way 8-WayDSSContention 2.4% 9.6% 47.2%Mean Hold Time 1.5us 2.2us 3.9usMean Wait Time 2.8us 3.9us 10usPLSContention 2.0% 13.6% 53.7%Mean Hold Time 1.7us 2.6us 4.4usMean Wait Time 3.1us 4.2us 11usMQNF Contention 1.9% 8.1% 11.4%Contention 3.3% 9.6% 14.2%Mean Hold Time 1.7us 2.0us 2.8usMean Wait Time 2.0us 3.2us 3.0usTable 2: Lok statistis for TPC-HTable 2 shows statistis for the lok ontention forthe runqueue lok. The results were olleted byrunning kernels instrumented with Lokmeter [3℄.We learly see that lok ontention is a signi�antproblem as the number of CPUs inreases, with theresulting lok wait times rising from 2.8us on a 2-way to 10us on the 8-way for DSS and and simi-lar inreases for PLS. PLS does exhibit higher lokontention and lok hold times then DSS. This re-ets that PLS's overhead at the low mean run-queue length outweighs the expeted gains at thehigh thread ount. MQ does muh better at on-trolling the lok ontention. On an 8-way system,the lok ontention is only 11.4% as ompared tothe 47.2% in DSS and 53.7% in PLS. The lok waittimes show a orresponding derease with MQ doing31% better than DSS on an 8-way.For MQ we report another lok ontention mea-sure alled NF(Non-failure) Contention. By default,failed spin trylok attempts ontribute to the to-tal ontention for a lok as reported by the lokstattool. However, suh failed attempts are relativelyinexpensive and do not result in wasted CPU y-les aused by spinning. The MQ sheduler makesuse of spin trylok in attempting to modify dataon non-loal runqueues. In ontrast, the DSS andPLS shedulers never make use of spin trylok.The measurement NF Contention is lok ontentionomputed without inluding alls to spin trylok.For the 2-way and 4-way systems, we observe thesame overall performane amongst the three shed-



ulers. However, on the 8-way system MQ does 6%better than the other two whih agrees with themarked di�erene in lok ontention numbers re-ported here.5.2 ChatThe Chat benhmark, whih an be found athttp://lbs.soureforge.net/, simulates hat-rooms with multiple users exhanging messages us-ing TCP sokets. The benhmark is based on theVolano Java benhmark, whih was used in some ofthe �rst reports of salability limitations with thedefault SMP sheduler (DSS) of Linux. [2℄.Eah hatroom onsists of 20 users with eah userbroadasting a variable number of 100 byte mes-sages to every other user in the room. A user is rep-resented by two pairs of threads (one eah for sendand reeive) on the lient and server side, result-ing in 4 threads per user and 80 threads per room.Eah message is sent from the lient send to itsserver reeive whih then broadasts it to all otherlient reeive threads in the room. 100 messagessent by eah user translate to 20*100*19=38,000messages being sent and reeived per room. Eahreeive is a bloking read and the interleaving of nu-merous reads and writes auses the sheduler odeto be invoked frequently.The harateristi parameters of the Chat benh-mark are the number of rooms and the number ofmessages per user. From a sheduler perspetive,the former ontrols the number of threads reatedand the latter ontrols the number of times threadssleep and awaken via bloking reads. At the end of abenhmark run, the lient side reports the through-put in number of messages per seond. A higherthroughput indiates a more eÆient kernel shed-uler.The Chat benhmark was run for three di�erenton�gurations ranging from 10 rooms, 100 messagesper user to 30 rooms, 300 messages. For brevity,these on�gurations are labelled (10,100), (20,200)and (30,300) where the �rst number refers to num-ber of rooms and the seond one refers to the num-ber of messages. To better understand the load seenby the sheduler in these on�gurations, Fig 5 showsa histogram of the number of tasks on the runqueueduring every invoation of shedule() on an 8-waysystem exeuting the DSS sheduler. The mean and
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Figure 2: Chat (10,100)
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Figure 3: Chat (20,200)
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Figure 4: Chat (30,300)maximum values of the runqueue length for nineon�gurations and all three shedulers are shown inTable 4. Per-CPU values of the runqueue lengthare shown for MQ and are muh lower than thosefor DSS and PLS as expeted. For DSS and MQ,the lok hold times are proportional to the runqueuelengths shown. The data also on�rms the ability ofthe Chat benhmark parameters to manipulate theload.Fig. 2 ompares DSS, MQ and PLS for the (10,100)on�guration. For 2 and 3 CPUs, all three performomparably. The highest throughput ahieved byMQ is 13% higher than that of DSS, while PLS does



#CPUsDSS 2 3 4 5 6 7 8Contention 18.3% 31.2% 42.6% 54.4% 66.6% 77.5% 86.6%Hold Mean(Max) 15 (118) 13 (164) 14 (187) 19 (253) 22 (258) 21 (287) 22 (302)Wait Mean(Max) 26 (105) 24 (1045) 34 (1270) 58 (1633) 78 (2886) 87 (3753) 105 (4197)PLS 2 3 4 5 6 7 8Contention 3.7% 10.7% 15.6% 22.2% 29.6% 43.4% 50.7%Hold Mean(Max) 2.3 (28) 2.9 (101) 2.9 (56) 3.8 (114) 4.2 (97) 6.7 (212) 7.3 (170)Wait Mean(Max) 2.7 (23) 4.0 ( 79) 3.4 ( 43) 6.0 ( 125) 6.1 ( 180) 16 ( 379) 19 ( 498)MQ 2 3 4 5 6 7 8Contention 5.0% 5.2% 3.5% 5.8% 6.0% 6.7% 6.3%Hold Mean(Max) 3.2 (8.6) 2.9 (33) 2.3 (290) 2.5 (26) 2.5 (35) 2.7 (34) 2.9 (37)Wait Mean(Max) 4.3 (30) 3.6 (25) 2.8 (20) 2.9 (22) 3.1 (22) 3.1 (26) 3.4 (18)Table 3: Lok statistis for Chat (20,200)
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Figure 5: Distribution of runqueue lengths for Chatrunning on an 8-way using the DSS13% worse. More importantly, MQ sales betterthan DSS and PLS as seen by the gradual dereasefrom the point at whih maximum throughput isreahed. Table 5 summarizes the speedup ahievedby the shedulers. The ideal speedup values are re-ported using a 2-way system as the base as it is theminimum SMP on�guration.In Figs 2, 3 and 4, results for 1-way are shown onlyfor ompleteness. The numbers were obtained byrunning an SMP-enabled kernel with 1 CPU. Typi-ally, the uniproessor kernel would be used instead.Moving on to the (20,200) on�guration, we see thatthe di�erenes amongst the shedulers start showingup immediately after 2 CPUs. The peak through-puts of MQ and PLS are 68% and 34% above thoseof DSS. MQ's performane does not show any degra-dation for CPU ounts saling up to 8-way as seenin Fig. 3 and in Table 5.Inreasing the load still further, we �nd the DSSsheduler unable to sale in the (30,300) on�gura-

Con�g. Run queue length mean(max)DSS PLS MQ(10,100) 84(165) 82(234) 6(23)(10,200) 135(276) 130(299) 14(52)(10,300) 160(306) 167(353) 18(47)(20,100) 82(169) 122(364) 7(26)(20,200) 218(484) 198(503) 24(70)(20,300) 217(571) 307(564) 31(95)(30,100) 113(232) 176(423) 6(28)(30,200) 276(763) 270(827) 36(94)(30,300) 279(899) 443(816) 47(113)Table 4: Runqueue length statistis for Chat(20,200) on DSStion. In fat its maximum throughput, ahieved ona 4-way, is only 11% higher than the 2-way perfor-mane and rapidly delines thereafter. Both PLSand MQ sale well and do not show any perfor-mane degradation at higher CPU ounts. The peakthroughputs of MQ and PLS are 124% and 57%higher than those of DSS respetively.While DSS sales up to 5 CPUs in the (10,100) on-�guration, it starts breaking down rapidly at higherCPU ounts or inreased loads. Our hypothesis, asmentioned earlier, is that the inreased lok on-tention is the basi problem exaerbated by the in-reased lok hold time due to the linear searh. Toverify this, in Table 3, we show statistis on the run-queue lok for the (20,200) on�guration. With in-reasing CPU ounts, the DSS sheduler auses lokontention to inrease substantially from 18.3% onthe 2-way to 86.6% on the 8-way. This auses aninrease in lok wait time, with the maximum waittime inreasing from 105 miroseonds on the 2-wayto 4197 miroseonds on the 8-way. As expeted,



Maximum On 8-wayAhieved at Value ValueCPU# (Ideal) (Ideal)(10,100)DSS 5 1.88(2.5) 1.45(4.0)PLS 5 1.72(2.5) 1.43(4.0)MQ 6 2.31(3.0) 2.21(4.0)(20,200)DSS 4 1.27(2.0) 0.54(4.0)PLS 5 1.32(2.5) 1.43(4.0)MQ 8 2.29(4.0) 2.29(4.0)(30,300)DSS 4 1.11(2.0) 0.42(4.0)PLS 8 1.63(4.0) 1.63(4.0)MQ 8 2.22(4.0) 2.22(4.0)Table 5: Speedup for Chatthe lok hold times do not inrease in the same pro-portion sine they primarily depend on runqueuelength. Comparing PLS to DSS, we see a signi�-ant derease in lok ontention. This is primarilydue to the derease in lok hold time. Redued lokontention and lok hold times together result insubstantially redued lok wait times. For MQ, wereport the lok statistis averaged over the per-CPUrunqueue loks. We see that lok ontention is vir-tually eliminated, ranging between 5.0% and 6.7%.The low lok hold times also reet the distributionof tasks amongst the runqueues. Due to the lowlok ontention, lok wait times are muh signi�-antly lower than those for the other shedulers.5.3 ReexReex is a mirobenhmark designed to exerise theshedule() and reshedule idle() funtions ina ontrolled way. The program reates a numberof threads whih are grouped into sets alled a-tive sets. All threads in one ative set pass a tokenaround using bloking reads and writes on messagepipes. After reeiving the token, a thread performsseveral rounds, eah onsisting of some omputationfollowed by an expliit yield of the proessor. In thelast round, instead of yielding, it passes the tokenonto its neighbor in the ative set and bloks on aread for the same token. The expliit yields result inthe invoation of shedule() (through the systemall sys shed yield()) whereas the bloking readson the message pipe result in reshedule idle()being alled.

Reex reports the average time spent per round (ob-tained by dividing the benhmark run time by thetotal number of rounds performed by all threads).The round time onsists of the average omputa-tion time and the sheduling time. The omputa-tion time per round is a parameter of the benh-mark. For the results shown here, we hoose it tobe zero so that the sheduler overhead is overex-posed and the di�erenes between the three shed-ulers an be learly seen. Another important pa-rameter is the number of times a thread yieldsbefore passing the token. It is determined by aprobability parameter whih an e�etively ontrolthe relative frequeny of invoation of shedule()and reshedule idle(). The results below are ob-tained by keeping these frequenies almost equal.The number of runnable threads in the system isdetermined by parameters whih ontrols the num-ber of tokens (or ative sets) and the number ofthreads reated.
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Figure 6: Reex benhmark on 2-way SMP
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Figure 7: Reex benhmark on 8-way SMPFig 6 ompares the three shedulers on a 2-way sys-tem as we inrease the number of ative sets whihis the same as the number of ative threads on anaverage. The y-axis is shown on a log sale. Atlow thread ounts (up to 32 runnable threads), PLSand DSS are almost equivalent while MQ does bet-ter. At higher thread ounts, MQ and PLS out-



#CPUs2 4 6 8DSSContention 27.3% 88.4% 92.6% 93.0%Hold Mean(Max) 2.0 (7.8) 2.8 (11) 3.7 (14) 4.6 (21)Wait Mean(Max) 2.6 (9.2) 8.0(131) 22 (631) 40 (777)PLSContention 32.7% 87.8% 92.1% 92.8%Hold Mean(Max) 2.1 (10.0) 2.9 (15) 3.8 (24) 4.7 (25)Wait Mean(Max) 2.7 (12) 8.0(130) 22 (654) 40 (953)MQContention 2.3% 5.7% 6.4% 11.3%Hold Mean (Max) 1.0 (7.2) 1.3 (9.4) 1.9 (22) 3.0 (52)Wait Mean (Max) 2.0 (5.4) 2.1 (21) 2.7 (35) 3.3 (48)Table 6: Lok statistis for Reex with 16 runnable threadsperform DSS signi�antly. Beyond 256 runnablethreads, MQ performane is a�eted by sanninglong runqueues and hene it does worse than PLSwhih is able to arrive at a sheduling deision inalmost onstant time.Fig 7 ompares sheduler performane on an 8-waySMP. While PLS and DSS demonstrate the sameharateristis as in the 2-way graph, MQ does bet-ter than both of them at all thread ounts and showsbetter saling.Table 6 shows the lok statistis for Reex with 16runnable threads. We see the same trends as ob-served in the Chat benhmark, with DSS and PLSausing lok ontention up to 93% on an 8-way sys-tem. In ontrast, even though the lok hold timesare omparable in all three shedulers, MQ showssigni�antly lower lok ontention.6 Conlusion and Future WorkThe Linux 2.4 kernel provides a onise SMP shed-uler that does well for small SMPs running moderateloads. However, we have shown that, as the numberof CPUs or the load inreases, the salability limi-tations of the sheduler start showing up. Pro�lingdata for a range of workloads show that the problemis due to high lok ontention and large lok holdtimes.Reduing the lok hold times, as is done in the PLSsheduler presented here, does alleviate the prob-lem somewhat with a orresponding improvementin salability. However, this is not suÆient to ad-

dress the overall salability as the number of CPUsinreases. Also, at low loads, the overheads of PLSmake it perform worse than DSS. The MQ shed-uler diretly addresses lok ontention by breakingup the single runqueue and its assoiated loks intoper-CPU equivalents. This brings a signi�ant im-provement in lok ontention, salability and overallperformane of the sheduler.We are urrently working on more extensive evalua-tions of the ideas presented in this paper. We wantto use more realisti workloads suh as those seenon ompute and database servers. Further extend-ing the MQ design, we are looking at shedulerswhih use CPU pooling. CPU pooling divides theCPUs of a system into a set of pools. Eah poolonsists of one or more CPUs. Sheduling deisionsare loalized to the individual CPU pools, and loadbalaning algorithms are put in plae to balane theload among the pools. CPU Pooling provides a on-tinuum between omplete runqueue separation, asprovided in [4℄, and MQ with its global shedulingdeisions.It is our belief that CPU pooling will be bene�ial onlarge SMP mahines where making global shedul-ing deisions will beome more expensive. In addi-tion, CPU pooling may be a good hoie for NUMAarhitetures where CPUs on individual omputenodes an be mapped to CPU pools.7 AknowledgmentsWe would like to thank the many people onthe lse-teh�lists.soureforge.netmailing list



who provided us with valuable omments and sug-gestions during the development of these alterna-tive sheduler implementations. In partiular, wewould like to reognize John Hawkes, for runningour implementations on some large systems at SGI,and Bill Hartner for related disussions and helpwith the experiments. This work was developed aspart of the Linux Salability E�ort on SoureForge(lse.soureforge.net). Here you an �nd moredetailed desriptions of our sheduler implementa-tions as well as the latest soure ode.Referenes[1℄ Daniel P. Bovet and Maro Cesati. Understand-ing the Linux Kernel. O�Reilly Assoiates.[2℄ R. Bryant and B. Hartner. Java Tehnology,Threads, and Sheduling in Linux. Java Teh-nology Update, 4(1), Jan 2000.[3℄ R. Bryant and J. Hawkes. Lokmeter: Highly-Informative Instrumentation for Spin Loks inthe Linux Kernel. In Pro. Fourth Annual LinuxShowase and Conferene, Atlanta, Ot 2000.[4℄ Hewlett Pakard In. Proess resoure man-agers for Linux : Linux plug-in shedulers.http://resouremanagement.unixsolutions.hp.om/WaRM/shedpoliy.html.[5℄ S. Molloy and P. Honeyman. Salable LinuxSheduling. In Usenix Annual Tehnial Con-ferene (Freenix Trak), June 2001. To appear.


