
A Real-Time LinuxVictor Yodaiken and Michael BarabanovNew Mexico Institute of Technology 1AbstractThe paper describes the design, implementation, experimental results, and possibleapplications of a real-time version of the Linux operating system. We have used the ideaof virtual machines for running a standard time-sharing OS and a real-time executiveon the same computer. Services provided by the real-time kernel are described. Thecomparison of our solution with other work on real-time UNIXes is also presented.1 IntroductionWe have developed a small, real-time executive that runs the Linux operating system as acompletely preemptable task. The executive schedules and runs real-time tasks at a rela-tively high level of time precision and with low latency and overhead. The Linux task sup-ports network services, GUI, development tools and a standard programming environment.Our system has been designed to require little modi�cation of Linux itself | essentiallychanges are limited to the low level interrupt \wrappers" and the routines to disable andenable interrupts. As a result, we are able to take advantage of the rapid pace of develop-ment of Linux and Linux tools. On the other hand, our system has been designed to allowreal-time programmers to make nearly full use of the available hardware and processingpower, without paying the price normally associated with more sophisticated operating sys-tems. While our immediate interests are in the control of scienti�c instruments, we believethis method to be generalizable to other operating systems and to other real-time problems.We also believe that this method o�ers an alternative avenue to modularity that may be ofinterest in general operating system design.Real-time operating systems should be small, fast, and predictable. Because of thegreat variety of demands on real-time scheduling, a real-time operating system should alsoinclude a exible and reprogrammable task scheduling discipline. These requirements arenot easy to satisfy, but it has been increasingly clear over the last several years that real-time operating systems also need to satisfy user requirements for sophisticated developmenttools, graphical user interfaces, and networking support. We have attacked this problemof apparently contradictory requirements using a simple version of the well known \virtualmachine" technique [12]. Linux interacts with a software emulation of the interrupt controlhardware. The emulation supports the synchronization requirements of the Linux kernelwhile preventing Linux from disabling interrupts. Interrupts that are handled by Linux arepassed through to the emulation software after any needed real-time processing completes.If Linux has requested that interrupts be disabled, the emulation software simply marksthe interrupts as pending. When Linux requests that interrupts be enabled, the emulation1Email address: yodaiken@nmt.edu.The research described here was partially funded under NSF grant CCR-9409454.1

software causes control to switch to the Linux handler for the highest priority pendinginterrupt. Linux is then able to provide sophisticated services to the real-time systemwithout increasing interrupt latency.A virtual machine layer has been advanced as a technique for making UNIX real-time as far back as 1978 [8], but our use of the technique di�ers from previous e�orts inboth scope and purpose. Our virtual machine \layer" emulates only a speci�c hardwarecomponent | interrupt control. Linux is able to otherwise directly control the hardwareboth for run-time e�ciency and in order to minimize the need for modi�cations to theLinux kernel. The real-time executive which acts as the 0-level operating system does notprovide any basic services that can be provided by Linux. Instead the real-time executiveis intended to provide services that Linux cannot provide. Thus, \primitives" for processcreation and switching or memory management are not provided by the real-time executive.Only real-time services are provided.The remainder of this paper is in four parts. Section 2 describes the applicationswe have in mind, the constraints we have, and the experimental results we have obtained.Section 3 details the services provided by the real-time executive. Section 4 describes ourvirtual machine implementation on the x86 architecture. The conclusion compares thisapproach to other work on real-time OS design and points out the directions for futurework.2 Goals, barriers, and measured resultsOur immediate goal was to develop a Linux kernel that would support real-time control ofscienti�c instruments. The limitations of standard time-shared operating system for thispurpose are obvious, but we should mention both unpredictability of execution and highinterrupt latency as critical problems. General purpose time-shared operating systems haveschedulers that are intended to balance response time and throughput. As a result theexecution of any process depends in a complex and unpredictable fashion on system loadand the behavior of other processes. These problems are compounded in Linux and mostother UNIX derivatives, because kernel mode execution is non-preemptable [6] and becausedisabling interrupts is used as the primary means of synchronization.By locking process pages into memory and requiring use of a round-robin scheduleras in the POSIX.1b standard [2] one can gain a certain degree of predictability, but stillnot meet the requirements of even moderately demanding hard real-time systems [14]. Lowinterrupt handling latency is critical for any real-time operating system. But interruptlatency is high in in Linux. On a 120MHz Pentium based PC, we measure up to 400�sec latency in handling of \fast" Linux interrupts. It has been reported that the Linuxconsole driver disables interrupts for as long as several milliseconds when switching virtualconsoles. Clearly, a frame-bu�er that must be emptied every millisecond is then beyond thecapabilities of the system and this timing requirement is one of the least demanding thatwe can expect to see.The fundamental limits for real-time processing are determined by the hardware. Forexample, on our test system we measure a time of approximately 3.2�sec for setting a bit onthe parallel port. Obviously we cannot then support a requirement for a data rate of over2

280 KHZ no matter what we do with the operating system. Similarly, the minimal interruptlatency is bounded by the hardware interrupt processing time. On a Pentium processor,at least 61 cycles is needed to enter and exit the interrupt, and some time is also neededfor the interaction with the interrupt controller. Devices that need more rapid responseor more precise timing call for dedicated, or at least di�erent, hardware. But modern PChardware is capable of handling the real-time requirements of a wide range of devices.The current version of RT-Linux is a modi�cation of Linux 1.3.32. E�orts are cur-rently underway to move to a 2.0 Linux kernel and we hope to port the system to a PowerPCbox in the next month or so. Our test system has a 120MHZ Pentium processor, a 512KBsecondary cache and 32MB of main memory. All I/O devices, other than the video displayand keyboard are DMA devices. Non-DMA controllers for mass storage devices are di�cultto integrate into a real-time control system. TheTo validate the performance of our real-time Linux, we have concentrated on periodictasks such as those needed to control a stepper motor or to sample sensors. The mostdemanding test of real-time scheduling was a task with a 100�sec period that did nothingbut toggle a bit on the parallel port. We attached the output pin to a digital storageoscilloscope to measure timing and latency. Our measurements show a square wave witha maximum variation of 15�sec even during very heavy system load. This 15�sec includesthe time to process an interrupt from the clock, detect that the toggle task needed to run,and start the toggle task.
seconds115 micro-A second experiment used two periodic tasks with 100�sec periods where one set andone cleared the same bit on the parallel port. This experiment also showed a maximumvariation of 15 �sec. Both experiments measured timings under high system demand: arecursive disk copy was running under Linux, a network connection was driving a remoteX-windows display, and the Netscape browser program was both started and used to displaygraphics. The changes in Linux work-load had no e�ect on the timing of the real-time tasks.At periods of signi�cantly less than 50�sec Linux performance became too poor to be ofmuch use. A single real-time task with a scheduled period of 40�sec essentially preventsLinux from progressing. This performance characteristic is the desired one: the non-real-time system gets whatever processing time is not needed by the real-time system. The perilsof measuring timing on a system with a signi�cant cache and complex pipeline are not tobe discounted, but these experiments do indicate that the real-time OS makes it possibleto control devices at quite a precise level of timing.3

3 InterfaceReal-time processes are light-weight threads executing each in its own address space. Thecontext of a real-time process consist only of integer registers. This ensures fast contextswitch, which, together with the overhead of a system call to the RT-kernel takes 224processor cycles2.Currently only periodic real-time tasks are supported. Essentially this this meansthat we dispatch the timer interrupt. Dispatching other interrupts can be added trivially.RT-Linux provides the following system calls for the process control.� int RTload(const char *file) loads a RT-program \FILE", creates a process andreturns its pid. The process is suspended until RTrun is called.� int RTrun(int pid) starts execution of the RT-process at a low priority level; theprocess must be �rst loaded with RTload routine� int RTkill(int pid) kills a RT-process� int RTget_time(RTime *t) returns current time; time is a 64 bit integer (longlong int), containing number of clock ticks passed since system booted The constantRT_TICKS_PER_SEC contains the number of clocks per second.� int RTset_params(RTime * start, RTime * period, int priority) changesthe scheduling parameters of the process� int RTwait_start(RTime * start, RTime * period, int priority)suspends the process until its start time; when start time comes, set the priorityof the process to the requested value.� int RTwait_period() suspends the execution of the process until the beginning ofthe next period.Real-time Linux does not use the hardware context switch mechanism that Intel x86processors provide - it saves too much state and so is not fast enough. Instead we save thecontext on the stack and then switch stacks.A simple priority-based preemptive scheduler is currently used in real-time Linux. Itis implemented as a routine which chooses among the ready process the highest-priority oneand marks it as a next process to execute. Tasks give up the processor voluntarily, or arepreempted by a higher-priority task when its time to execute comes.Typically there is a tradeo� between the clock interrupt rate and the task releasejitter [13]. In most systems tasks are resumed in the periodic clock interrupt handler. Highclock interrupt rate ensures low jitter, but at the same time incurs much overhead. Lowinterrupt rate causes tasks to be resumed either too early or too late. In RT-Linux thistradeo� is resolved by using a one-shot timer instead of periodic clock. Tasks are resumedin the timer interrupt handler precisely when needed.2These were calculated for the Intel 486 Processor; no cache and TLB misses was assumed4

Note that all task resources are statically de�ned. In particular there is no supportfor dynamic memory allocation. Our basic approach here is that any sophisticated servicesthat require dynamic memory allocation should be moved into Linux processes. In keepingwith this approach the Real-time kernel itself is not preemptable.Since the Linux kernel can be preempted by a real-time task at any moment, noLinux routine can safely be called from real-time tasks. However, some communicationmechanism must be present. Simple FIFOs are used in RT-Linux for moving informationbetween Linux processes or the Linux kernel and real-time processes. In a data-collectingapplication, for example, a real-time process would poll a device, and put the data into aFIFO. Linux process can then be used for reading the data from the FIFO and storing it inthe �le, or displaying it on the screen. Currently, interrupts are disabled when a RT-FIFOis accessed. Since data are transmitted in small chunks, this does not compromise a lowresponse time. Other approaches, notably using lock-free data structures [3], [9] are alsopossible and are being considered.The following are the system calls related to RT-FIFOs.� int RTfifo_create(unsigned int fifo, int size) creates a RT-FIFO \FIFO" ofsize \SIZE" bytes. FIFOs' numbers are global; FIFOs are numbered from 0 toRT_MAX_FIFO-1. Applications must agree on the use of the FIFOs available.� int RTfifo_destroy(unsigned int fifo) destroys a FIFO.� int RTfifo_get(unsigned int fifo, char * buf, int count) reads \COUNT"bytes from \FIFO" to \BUF". return -1 if there is not enough data in the FIFO;otherwise return \COUNT".� int RTfifo_put(unsigned int fifo, char * buf, int count) writes \COUNT"bytes from \BUF" to \FIFO"; return -1 if there is not enough space in the FIFO;otherwise return \COUNT".Our next version of RT-Linux will abandon the separate address space for real-timetasks and will place real-time tasks within the Linux Kernel address space. The originaldesign was motivated by a desire to have relatively user-safe real-time facilities. Real-timetasks loaded into their own address space cannot overwrite Linux data structures althoughthey are capable of crashing the system in other ways. Our next system will sacri�ce some ofthis safety for speed and the convenience of using Linux modules to allow dynamic loadingand replacement of real-time tasks and the real-time scheduler.4 The Virtual MachineThe RT-executive has been implemented on the x86/PC architecture [5] [10].4.1 Interrupt handlingModi�cations to the Linux kernel are primarily in three places:5

� The cli routine to disable interrupts is modi�ed to simply clear a global variablecontrolling soft interrupt enable.� The sti routine to enable interrupts is modi�ed to generate emulated interrupts forany pending soft interrupts.� The low-level \wrapper" routines which save and restore state around calls to handlershave been changed to use soft return from interrupt code instead of using the machineinstruction.When an interrupt occurs, control switches to a real-time handler. The handler doeswhatever needs to be done in the real-time executive and then may pass the interrupt on toLinux. If the soft interrupt enable ag is set, then the stack is adjusted to �t the needs ofthe Linux handler and control is passed, via a soft interrupt table, to the appropriate Linux\wrapper". The \wrapper" saves additional state and calls the Linux handler | a programusually written in C. When the handler returns control to the \wrapper" a soft return frominterrupt is executed. Soft return from interrupt restores state and then checks to see if anyother soft interrupts are pending. If not, a hard return from interrupt is executed. If thereare interrupts pending, then the highest priority one is processed.Linux is reasonably easy to modify because, for the most part, the kernel code controlsinterrupt hardware through the routines cli() and sti(). In standard x86 Linux, theseroutines are actually assembly language macros that generate the x86 cli (clear interruptbit) and sti (set interrupt bit) instructions for changing the processor control word. Becauseinterrupts can be disabled and enabled individually in the interrupt controller, and becausesome Linux drivers directly access the interrupt controllers and the hardware timer, we alsohad to modify some driver code. All in all, our changes required under 2000 lines of newcode, and modi�cation of a few hundred lines of the Linux code.Figure 1 shows the code for three macros.Interrupt handlers in the RT-executive perform whatever function is necessary for theRT system and then may pass interrupts on to Linux. Since the real-time system is notinvolved in most I/O, most of the RT device interrupt handlers simply notify Linux. Onthe other hand, the timer interrupt increments timer variables, determines whether a RTtask needs to run, and passes interrupts to Linux only at appropriate intervals.If software interrupts are disabled (SFIF == 0), control simply returns through iret.Otherwise, control is passed to S_IRET. This macro invokes the software handler corre-sponding to the interrupt that has the highest priority among pending and not maskedones. The S_IRET code begins by saving minimal state and making sure that the kerneldata address space is accessible. In the critical section surrounded by the actual cli andsti we apply the software interrupt mask to the variable containing pending interrupts,and then look for the highest-priority pending interrupt. If there are no software interruptsto be processed, we re-enable software interrupts, restore the registers, and return from theinterrupt. If we �nd an interrupt to process, we pass control to its Linux \wrapper".Each Linux \wrapper" has been modi�ed to �x the stack so that it looks as if controlhas been passed directly from the hardware interrupt. This step is essential because Linuxactually looks in the stack to see if the system was in user or kernel mode when the interrupt6

Figure 1: \Soft" cli, sti and iret/* These are macros */S_CLI: movl $0, SFIFS_IRET: push %dspushl %eaxpushl %edxmovl $KERNEL_DS, %edxmov %dx,%dsclimovl SFREQ,%edxandl SFMASK,%edxbsrl %edx,%eaxjz not_foundmovl $0,SFIFstijmp SFIDT (,%eax,4)not_found:movl $1,SFIFstipopl %edxpopl %eaxpop %dsiretS_STI: pushflpushl $KERNEL_CSpushl $done_STIS_IRETdone_STI:occurred. If Linux believes that the interrupt occurred in kernel mode, it will not call itsown scheduler. The body of the wrapper has not been modi�ed, but instead of terminatingwith an iret operation, the modi�ed wrapper invokes S IRET. Thus, wrappers essentiallyinvoke each other until there are no pending interrupts left.On re-enabling software interrupts, all pending ones, of course, should be processed.The code simulates a hardware interrupt. We push the ags and the return address ontothe stack, and use S_IRET (see Figure 1).Individual disabling/enabling of interrupts is handled similarly.7

5 ConclusionOur approach to building a real-time operating system can be contrasted two two morewell-known methods. One method is add real-time support to a general purpose operatingsystem. The Real-Time Unix of [1] is a good example of this approach and illustrates thee�ort needed to make a Unix kernel fully preemptive. Other examples include VAX VMS[?], the POSIX 1.b standard (and the similar work in [15]) and the Maruti real-time OS[7]. The second approach is to design an operating system speci�cally to support real-time.VX-Works[16] is a particularly successful example of such a system. Other examples includethe QNX microkernel [4] and OS9[11].We have chosen a third path. Real-time POSIX standards alone are not \hard"enough for our purposes. To make Linux fully pre-emptable was too time consuming andwould cut us o� from the mainstream of Linux development. We are interested in real-time operating system design and want very much to leave TCP/IP, NFS, GUIs, and otherimportant general purpose operating system components to others. But the special purposeoperating systems have the same problem. Vendors are rapidly adding support for generalpurpose operating system utilities. In fact, several vendors are now advertising "POSIXcompatibility". Grafting POSIX to a real-time operating system seems to us to be no lesscomplicated and time consuming than grafting real-time on to an existing general purposeoperating system. With both approaches, we were concerned that the interaction betweenthe real-time and non-real-time subsystems would cause problems that our approach avoidsthrough its clear separation between real-time and general purpose components.Finally, although we have made an e�ort to modify Linux as little as possible, thereal-time executive approach might be used as a basis for a signi�cant redesign of Linux andsimilar operating systems. For example, device drivers often have real-time constraints. Ifthe real-time requirements of the drivers were made explicit and moved into the RT-kernel,then con�guration programs could attempt to �nd a feasible schedule rather than allowingusers to �nd out by experiment whether device timing constraints are feasible. It mayalso be possible to simpli�y design of the general purpose kernel by giving the emulation acleaner semantics than the actual hardware.References[1] Borko Furht et al. Real-time UNIX systems: design and application guide. KluwerAcademic Publishers Group, Norwell, MA, USA, 1991.[2] Bill O. Gallmeister. POSIX.4 { Programming for the Real World. O'Reilly & Asso-ciates, 1995.[3] P. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-guages and Systems, 13(1), January 1991.[4] Dan Hildebrand. An architectural overview of QNX. In USENIX Workshop on Micro-Kernels and Other Kernel Architectures, pages 113{126, Seattle, WA, April 27-28 1992.USENIX. 8

[5] Intel Corporation. Pentium Processor Family Developer's Manual. Order Number241430-004.[6] Samuel J. Le�er, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman.The Design and Implementation of the 4.3BSD UNIX Operating System. Addison-Wes-ley, Reading, MA, USA, 1989.[7] S.-T. Levi, S. K. Tripathi, S. D. Carson, and A. K. Agrawala. The MARUTI hardreal-time operating system. ACM Operating Systems Review, SIGOPS, 23(3):90{105,July 1989.[8] H. Lycklama and D. L. Bayer. Unix time-sharing system: The MERT operating system.Bell System Technical Journal, 57(6):2049{2086, 1978.[9] Henry Massalin. Synthesis: An E�cient Implementation of Fundamental OperatingSystem Services. PhD thesis, Columbia University, 1992.[10] Muhammad Ali Mazidi and Janice Gillespie Mazidi. Design and Interfacing of theIBM PC, PS, and Compatibles. Prentice Hall, 1995.[11] OS9 Real-Time Operating System. http://www.gespac.com/html/os9 arch diagram.html.[12] L. H. Seawright and Mackinnon R. A. VM/370 | A Study of Multiplicity and Use-fulness. IBM Systems Journal, 18:4{17, 1978.[13] Sang H. Son, editor. Advances In Real-Time Systems, chapter 10, pages 225{248.Prentice Hall, Englewood Cli�s, NJ, 1984.[14] J. A. Stankovic. Misconceptions about real-time computing - A serious problem fornext-generation systems. IEEE Computer, 21(10):10{19, October 1988.[15] Gabriel A. Wainer. Implementing Real-Time services in MINIX. Operating SystemsReview, 29(3):75{84, July 1995.[16] Wind River Systems, Inc., 1010 Atlantic Avenue, Alameda, CA 94501-1147, USA.VxWorks Programmer's Guide 5.1, December 1993.
9

