
CVSClient/ServerThis document describes the client/server protocol used by CVS. It does not describe how touse or administer client/server CVS; see the regular CVS manual for that. This is version 1.8.1of the protocol speci�cation|See Chapter 1 [Introduction], page 2 for more on what this versionnumber means.

1 IntroductionCVS is a version control system (with some additional con�guration management functionality).It maintains a central repository which stores �les (often source code), including past versions,information about who modi�ed them and when, and so on. People who wish to look at or modifythose �les, known as developers, use CVS to check out a working directory from the repository, tocheck in new versions of �les to the repository, and other operations such as viewing the modi�cationhistory of a �le. If developers are connected to the repository by a network, particularly a slow or
aky one, the most e�cient way to use the network is with the CVS-speci�c protocol described inthis document.Developers, using the machine on which they store their working directory, run the CVS clientprogram. To perform operations which cannot be done locally, it connects to the CVS serverprogram, which maintains the repository. For more information on how to connect see Chapter 5[Connection and Authentication], page 6.This document describes the CVS protocol. Unfortunately, it does not yet completely documentone aspect of the protocol|the detailed operation of each CVS command and option|and onemust look at the CVS user documentation, `cvs.texinfo', for that information. The protocolis non-proprietary (anyone who wants to is encouraged to implement it) and an implementation,known as CVS, is available under the GNU Public License. The CVS distribution, containing thisimplementation, `cvs.texinfo', and a copy (possibly more or less up to date than what you arereading now) of this document, `cvsclient.texi', can be found at the usual GNU FTP sites, witha �lename such as `cvs-version.tar.gz'.This is version 1.8.1 of the protocol speci�cation. This version number is intended only to aidin distinguishing di�erent versions of this speci�cation. Although the speci�cation is currentlymaintained in conjunction with the CVS implementation, and carries the same version number, italso intends to document what is involved with interoperating with other implementations (such asother versions of CVS); see See Section 6.7 [Requirements], page 17. This version number should notbe used by clients or servers to determine what variant of the protocol to speak; they should insteaduse the valid-requests and Valid-responses mechanism (see Chapter 6 [Protocol], page 7),which is more
exible.

2 Goals� Do not assume any access to the repository other than via this protocol. It does not dependon NFS, rdist, etc.� Providing a reliable transport is outside this protocol. It is expected that it runs over TCP,UUCP, etc.� Security and authentication are handled outside this protocol (but see below about `cvskserver').� This might be a �rst step towards adding transactions to CVS (i.e. a set of operations is eitherexecuted atomically or none of them is executed), improving the locking, or other features.The current server implementation is a long way from being able to do any of these things.The protocol, however, is not known to contain any defects which would preclude them.� The server never has to have any CVS locks in place while it is waiting for communicationwith the client. This makes things robust in the face of
aky networks.� Data is transferred in large chunks, which is necessary for good performance. In fact, currentlythe client uploads all the data (without waiting for server responses), and then waits for oneserver response (which consists of a massive download of all the data). There may be cases inwhich it is better to have a richer interraction, but the need for the server to release all lockswhenever it waits for the client makes it complicated.

3 Notes on the Current ImplementationThe client is built in to the normal cvs program, triggered by a CVSROOT variable containing acolon, for example cygnus.com:/rel/cvsfiles.The client stores what is stored in checked-out directories (including `CVS'). The way theseare stored is totally compatible with standard CVS. The server requires no storage other than therepository, which also is totally compatible with standard CVS.The server is started by cvs server. There is no particularly compelling reason for this ratherthan making it a separate program which shares a lot of sources with cvs.The server can also be started by cvs kserver, in which case it does an initial Kerberos authen-tication on stdin. If the authentication succeeds, it subsequently runs identically to cvs server.The current server implementation can use up huge amounts of memory when transmitting alot of data over a slow link (i.e. the network is slower than the server can generate the data). Thereis some experimental code (see SERVER_FLOWCONTROL in options.h) which should help signi�cantly.

4 Notes on the ProtocolA number of enhancements are possible:� The Modified request could be speeded up by sending di�s rather than entire �les. The clientwould need some way to keep the version of the �le which was originally checked out, whichwould double client disk space requirements or require coordination with editors (e.g. maybeit could use emacs numbered backups). This would also allow local operation of cvs diffwithout arguments.� Have the client keep a copy of some part of the repository. This allows all of cvs diff andlarge parts of cvs update and cvs ci to be local. The local copy could be made consistentwith the master copy at night (but if the master copy has been updated since the latest nightlyre-sync, then it would read what it needs to from the master).� Provide encryption using kerberos.� The current procedure for cvs update is highly sub-optimal if there are many modi�ed �les.One possible alternative would be to have the client send a �rst request without the contentsof every modi�ed �le, then have the server tell it what �les it needs. Note the server needsto do the what-needs-to-be-updated check twice (or more, if changes in the repository meanit has to ask the client for more �les), because it can't keep locks open while waiting for thenetwork. Perhaps this whole thing is irrelevant if client-side repositories are implemented, andthe rcsmerge is done by the client.

5 How to Connect to andAuthenticateOneself to theCVS serverConnection and authentication occurs before the CVS protocol itself is started. There are severalways to connect.rsh If the client has a way to execute commands on the server, and provide input to thecommands and output from them, then it can connect that way. This could be theusual rsh (port 514) protocol, Kerberos rsh, SSH, or any similar mechanism. The clientmay allow the user to specify the name of the server program; the default is cvs. It isinvoked with one argument, server. Once it invokes the server, the client proceeds tostart the cvs protocol.kserver The kerberized server listens on a port (in the current implementation, by havinginetd call "cvs kserver") which defaults to 1999. The client connects, sends the usualkerberos authentication information, and then starts the cvs protocol. Note: port 1999is o�cially registered for another use, and in any event one cannot register more thanone port for CVS, so the kerberized client and server should be changed to use port 2401(see below), and send a di�erent string in place of `BEGIN AUTH REQUEST' to identify theauthentication method in use. However, noone has yet gotten around to implementingthis.pserver The password authenticated server listens on a port (in the current implementation, byhaving inetd call "cvs pserver") which defaults to 2401 (this port is o�cially registered).The client connects, sends the string `BEGIN AUTH REQUEST', a linefeed, the cvs root,a linefeed, the username, a linefeed, the password trivially encoded (see scramble.c inthe cvs sources), a linefeed, the string `END AUTH REQUEST', and a linefeed. The serverresponds with `I LOVE YOU' and a linefeed if the authentication is successful or `I HATEYOU' and a linefeed if the authentication fails. After receiving `I LOVE YOU', the clientproceeds with the cvs protocol. If the client wishes to merely authenticate withoutstarting the cvs protocol, the procedure is the same, except `BEGIN AUTH REQUEST'is replaced with `BEGIN VERIFICATION REQUEST', `END AUTH REQUEST' is replaced with`END VERIFICATION REQUEST', and upon receipt of `I LOVE YOU' the connection is closedrather than continuing.

6 The CVS client/server protocolIn the following, `\n' refers to a linefeed and `\t' refers to a horizontal tab.6.1 Entries LinesEntries lines are transmitted as:/ name / version / con
ict / options / tag or datetag or date is either `T' tag or `D' date or empty. If it is followed by a slash, anything after theslash shall be silently ignored.version can be empty, or start with `0' or `-', for no user �le, new user �le, or user �le to beremoved, respectively.con
ict, if it starts with `+', indicates that the �le had con
icts in it. The rest of con
ict is `=' ifthe timestamp matches the �le, or anything else if it doesn't. If con
ict does not start with a `+',it is silently ignored.6.2 ModesA mode is any number of repetitions ofmode-type = dataseparated by `,'.mode-type is an identi�er composed of alphanumeric characters. Currently speci�ed: `u' foruser, `g' for group, `o' for other (see below for discussion of whether these have their POSIXmeaning or are more loose). Unrecognized values of mode-type are silently ignored.data consists of any data not containing `,', `\0' or `\n'. For `u', `g', and `o' mode types, dataconsists of alphanumeric characters, where `r' means read, `w' means write, `x' means execute, andunrecognized letters are silently ignored.

The twomost obvious ways in which the mode matters are: (1) is it writeable? This is used by thedeveloper communication features, and is implemented even on OS/2 (and could be implementedon DOS), whose notion of mode is limited to a readonly bit. (2) is it executable? Unix CVS usersneed CVS to store this setting (for shell scripts and the like). The current CVS implementationon unix does a little bit more than just maintain these two settings, but it doesn't really have anice general facility to store or version control the mode, even on unix, much less across operatingsystems with diverse protection features. So all the ins and outs of what the mode means acrossoperating systems haven't really been worked out (e.g. should the VMS port use ACLs to getPOSIX semantics for groups?).6.3 Conventions regarding transmission of �le namesIn most contexts, `/' is used to separate directory and �le names in �lenames, and any use ofother conventions (for example, that the user might type on the command line) is converted to thatform. The only exceptions might be a few cases in which the server provides a magic cookie whichthe client then repeats verbatim, but as the server has not yet been ported beyond unix, the tworules provide the same answer (and what to do if future server ports are operating on a repositorylike e:/foo or CVS ROOT:[FOO.BAR] has not been carefully thought out).6.4 RequestsFile contents (noted below as �le transmission) can be sent in one of two forms. The simplerform is a number of bytes, followed by a newline, followed by the speci�ed number of bytes of �lecontents. These are the entire contents of the speci�ed �le. Second, if both client and server support`gzip-file-contents', a `z' may precede the length, and the `�le contents' sent are actuallycompressed with `gzip'. The length speci�ed is that of the compressed version of the �le.In neither case are the �le content followed by any additional data. The transmission of a �lewill end with a newline i� that �le (or its compressed form) ends with a newline.Root pathname \nResponse expected: no. Tell the server which CVSROOT to use. pathname must alreadyexist; if creating a new root, use the init request, not Root. pathname does notinclude the hostname of the server, how to access the server, etc.; by the time the CVSprotocol is in use, connection, authentication, etc., are already taken care of.

Valid-responses request-list \nResponse expected: no. Tell the server what responses the client will accept. request-list is a space separated list of tokens.valid-requests \nResponse expected: yes. Ask the server to send back a Valid-requests response.Repository repository \nResponse expected: no. Tell the server what repository to use. This should be adirectory name from a previous server response. Note that this both gives a defaultfor Entry and Modified and also for ci and the other commands; normal usage is tosend a Repository for each directory in which there will be an Entry or Modified ,and then a �nal Repository for the original directory, then the command.Directory local-directory \nAdditional data: repository \n. This is like Repository, but the local name of thedirectory may di�er from the repository name. If the client uses this request, it a�ectsthe way the server returns pathnames; see Section 6.5 [Responses], page 13. local-directory is relative to the top level at which the command is occurring (i.e. the lastDirectory or Repository which is sent before the command).Max-dotdot level \nTell the server that level levels of directories above the directory which Directoryrequests are relative to will be needed. For example, if the client is planning to use aDirectory request for `../../foo', it must send a Max-dotdot request with a level ofat least 2. Max-dotdot must be sent before the �rst Directory request.Static-directory \nResponse expected: no. Tell the server that the directory most recently speci�ed withRepository or Directory should not have additional �les checked out unless explicitlyrequested. The client sends this if the Entries.Static
ag is set, which is controlledby the Set-static-directory and Clear-static-directory responses.Sticky tagspec \nResponse expected: no. Tell the server that the directory most recently speci�ed withRepository has a sticky tag or date tagspec. The �rst character of tagspec is `T' for atag, or `D' for a date. The remainder of tagspec contains the actual tag or date.Checkin-prog program \nResponse expected: no. Tell the server that the directory most recently speci�edwith Directory has a checkin program program. Such a program would have beenpreviously set with the Set-checkin-prog response.

Update-prog program \nResponse expected: no. Tell the server that the directory most recently speci�edwith Directory has an update program program. Such a program would have beenpreviously set with the Set-update-prog response.Entry entry-line \nResponse expected: no. Tell the server what version of a �le is on the local machine.The name in entry-line is a name relative to the directory most recently speci�ed withRepository. If the user is operating on only some �les in a directory, Entry requestsfor only those �les need be included. If an Entry request is sent without Modified,Unchanged, or Lost for that �le the meaning depends on whether UseUnchanged hasbeen sent; if it has been it means the �le is lost, if not it means the �le is unchanged.Modified �lename \nResponse expected: no. Additional data: mode, \n, �le transmission. Send the servera copy of one locally modi�ed �le. �lename is relative to the most recent repositorysent with Repository. If the user is operating on only some �les in a directory, onlythose �les need to be included. This can also be sent without Entry, if there is noentry for the �le.Lost �lename \nResponse expected: no. Tell the server that �lename no longer exists. The name isrelative to the most recent repository sent with Repository. This is used for any casein which Entry is being sent but the �le no longer exists. If the client has issued theUseUnchanged request, then this request is not used.Unchanged �lename \nResponse expected: no. Tell the server that �lename has not been modi�ed in thechecked out directory. The name is relative to the most recent repository sent withRepository. This request can only be issued if UseUnchanged has been sent.UseUnchanged \nResponse expected: no. Tell the server that the client will be indicating unmodi�ed�les with Unchanged, and that �les for which no information is sent are nonexistenton the client side, not unchanged. This is necessary for correct behavior since only theserver knows what possible �les may exist, and thus what �les are nonexistent.Notify �lename \nTell the server that a edit or unedit command has taken place. The server needs tosend a Notified response, but such response is deferred until the next time that theserver is sending responses. Response expected: no. Additional data:noti�cation-type \t time \t clienthost \tworking-dir \t watches \nwhere noti�cation-type is `E' for edit or `U' for unedit, time is the time at which theedit or unedit took place, clienthost is the name of the host on which the edit or unedit

took place, and working-dir is the pathname of the working directory where the editor unedit took place. watches are the temporary watches to set; if it is followed by \tthen the tab and the rest of the line are ignored.Questionable �lename \nResponse expected: no. Additional data: no. Tell the server to check whether �lenameshould be ignored, and if not, next time the server sends responses, send (in a Mresponse) `?' followed by the directory and �lename.Case \n Tell the server that �lenames should be matched against ignore patterns in a case-insensitive fashion. Note that this does not apply to other comparisons|for examplethe �lenames given in Entry and Modified requests for the same �le must match incase regardless of whether the Case request is sent.Argument text \nResponse expected: no. Save argument for use in a subsequent command. Argu-ments accumulate until an argument-using command is given, at which point they areforgotten.Argumentx text \nResponse expected: no. Append \n followed by text to the current argument beingsaved.Global_option option \nTransmit one of the global options `-q', `-Q', `-l', `-t', `-r', or `-n'. option must be oneof those strings, no variations (such as combining of options) are allowed. For gracefulhandling of valid-requests, it is probably better to make new global options separaterequests, rather than trying to add them to this request.Set variable=value \nSet a user variable variable to value.expand-modules \nResponse expected: yes. Expand the modules which are speci�ed in the arguments.Returns the data in Module-expansion responses. Note that the server can assumethat this is checkout or export, not rtag or rdi�; the latter do not access the workingdirectory and thus have no need to expand modules on the client side.co \nci \ndiff \ntag \nstatus \nlog \nadd \nremove \n

rdiff \nrtag \nadmin \nexport \nhistory \nwatchers \neditors \nannotate \nResponse expected: yes. Actually do a cvs command. This uses any previous Argument,Repository, Entry, Modified, or Lost requests, if they have been sent. The lastRepository sent speci�es the working directory at the time of the operation. Noprovision is made for any input from the user. This means that ci must use a -margument if it wants to specify a log message.init root-name \nResponse expected: yes. If it doesn't already exist, create a cvs repository root-name.The Root request need not have been previously sent.update \n Response expected: yes. Actually do a cvs update command. This uses any previousArgument, Repository, Entry, Modified, or Lost requests, if they have been sent.The last Repository sent speci�es the working directory at the time of the operation.The -I option is not used{�les which the client can decide whether to ignore are notmentioned and the client sends the Questionable request for others.import \n Response expected: yes. Actually do a cvs import command. This uses any previousArgument, Repository, Entry, Modified, or Lost requests, if they have been sent.The last Repository sent speci�es the working directory at the time of the operation.The �les to be imported are sent in Modified requests (�les which the client knowsshould be ignored are not sent; the server must still process the CVSROOT/cvsignore�le unless -I ! is sent). A log message must have been speci�ed with a -m argument.watch-on \nwatch-off \nwatch-add \nwatch-remove \nResponse expected: yes. Actually do the cvs watch on, cvs watch off, cvs watchadd, and cvs watch remove commands, respectively. This uses any previous Argument,Repository, Entry, Modified, or Lost requests, if they have been sent. The lastRepository sent speci�es the working directory at the time of the operation.release \n Response expected: yes. Note that a cvs release command has taken place andupdate the history �le accordingly.

noop \n Response expected: yes. This request is a null command in the sense that it doesn'tdo anything, but merely (as with any other requests expecting a response) sends backany responses pertaining to pending errors, pending Notified responses, etc.update-patches \nThis request does not actually do anything. It is used as a signal that the server isable to generate patches when given an update request. The client must issue the -uargument to update in order to receive patches.gzip-file-contents level \nThis request asks the server to �lter �les it sends to the client through the `gzip'program, using the speci�ed level of compression. If this request is not made, theserver must not do any compression.This is only a hint to the server. It may still decide (for example, in the case of verysmall �les, or �les that already appear to be compressed) not to do the compression.Compression is indicated by a `z' preceding the �le length.Availability of this request in the server indicates to the client that it may compress�les sent to the server, regardless of whether the client actually uses this request.other-request text \nResponse expected: yes. Any unrecognized request expects a response, and does notcontain any additional data. The response will normally be something like `errorunrecognized request', but it could be a di�erent error if a previous command whichdoesn't expect a response produced an error.When the client is done, it drops the connection.6.5 ResponsesAfter a command which expects a response, the server sends however many of the followingresponses are appropriate. Pathnames are of the actual �les operated on (i.e. they do not contain`,v' endings), and are suitable for use in a subsequent Repository request. However, if the clienthas used the Directory request, then it is instead a local directory name relative to the directoryin which the command was given (i.e. the last Directory before the command). Then a newlineand a repository name (the pathname which is sent if Directory is not used). Then the slash andthe �lename. For example, for a �le `i386.mh' which is in the local directory `gas.clean/config'and for which the repository is `/rel/cvsfiles/devo/gas/config':gas.clean/config//rel/cvsfiles/devo/gas/config/i386.mh

Any response always ends with `error' or `ok'. This indicates that the response is over.Valid-requests request-list \nIndicate what requests the server will accept. request-list is a space separated list oftokens. If the server supports sending patches, it will include `update-patches' in thislist. The `update-patches' request does not actually do anything.Checked-in pathname \nAdditional data: New Entries line, \n. This means a �le pathname has been success-fully operated on (checked in, added, etc.). name in the Entries line is the same as thelast component of pathname.New-entry pathname \nAdditional data: New Entries line, \n. Like Checked-in, but the �le is not up to date.Updated pathname \nAdditional data: New Entries line, \n, mode, \n, �le transmission. A new copy of the�le is enclosed. This is used for a new revision of an existing �le, or for a new �le, orfor any other case in which the local (client-side) copy of the �le needs to be updated,and after being updated it will be up to date. If any directory in pathname does notexist, create it.Merged pathname \nThis is just like Updated and takes the same additional data, with the one di�erencethat after the new copy of the �le is enclosed, it will still not be up to date. Used forthe results of a merge, with or without con
icts.Patched pathname \nThis is just like Updated and takes the same additional data, with the one di�erencethat instead of sending a new copy of the �le, the server sends a patch produced by`diff -u'. This client must apply this patch, using the `patch' program, to the existing�le. This will only be used when the client has an exact copy of an earlier revision ofa �le. This response is only used if the update command is given the `-u' argument.Mode mode \nThis mode applies to the next �le mentioned in Checked-in. It does not apply toany request which follows a Checked-in, New-entry, Updated, Merged, or Patchedresponse.Checksum checksum\nThe checksum applies to the next �le sent over via Updated, Merged, or Patched. Inthe case of Patched, the checksum applies to the �le after being patched, not to thepatch itself. The client should compute the checksum itself, after receiving the �le orpatch, and signal an error if the checksums do not match. The checksum is the 128

bit MD5 checksum represented as 32 hex digits. This response is optional, and is onlyused if the client supports it (as judged by the Valid-responses request).Copy-file pathname \nAdditional data: newname \n. Copy �le pathname to newname in the same directorywhere it already is. This does not a�ect CVS/Entries.Removed pathname \nThe �le has been removed from the repository (this is the case where cvs prints `filefoobar.c is no longer pertinent').Remove-entry pathname \nThe �le needs its entry removed from CVS/Entries, but the �le itself is already gone(this happens in response to a ci request which involves committing the removal of a�le).Set-static-directory pathname \nThis instructs the client to set the Entries.Static
ag, which it should then sendback to the server in a Static-directory request whenever the directory is operatedon. pathname ends in a slash; its purpose is to specify a directory, not a �le within adirectory.Clear-static-directory pathname \nLike Set-static-directory, but clear, not set, the
ag.Set-sticky pathname \nAdditional data: tagspec \n. Tell the client to set a sticky tag or date, which shouldbe supplied with the Sticky request for future operations. pathname ends in a slash;its purpose is to specify a directory, not a �le within a directory. The �rst character oftagspec is `T' for a tag, or `D' for a date. The remainder of tagspec contains the actualtag or date.Clear-sticky pathname \nClear any sticky tag or date set by Set-sticky.Template pathname \nAdditional data: �le transmission (note: compressed �le transmissions are not sup-ported). pathname ends in a slash; its purpose is to specify a directory, not a �lewithin a directory. Tell the client to store the �le transmission as the template logmessage, and then use that template in the future when prompting the user for a logmessage.Set-checkin-prog dir \nAdditional data: prog \n. Tell the client to set a checkin program, which should besupplied with the Checkin-prog request for future operations.

Set-update-prog dir \nAdditional data: prog \n. Tell the client to set an update program, which should besupplied with the Update-prog request for future operations.Notified pathname \nIndicate to the client that the noti�cation for pathname has been done. There shouldbe one such response for every Notify request; if there are several Notify requestsfor a single �le, the requests should be processed in order; the �rst Notified responsepertains to the �rst Notify request, etc.Module-expansion pathname \n Return a file or directorywhich is included in a particular module. pathname is relative to cvsroot, unlike mostpathnames in responses. pathname should be used to look and see whether some orall of the module exists on the client side; it is not necessarily suitable for passing asan argument to a co request (for example, if the modules �le contains the `-d' option,it will be the directory speci�ed with `-d', not the name of the module).M text \n A one-line message for the user.E text \n Same as M but send to stderr not stdout.error errno-code ` ' text \nThe command completed with an error. errno-code is a symbolic error code (e.g.ENOENT); if the server doesn't support this feature, or if it's not appropriate for thisparticular message, it just omits the errno-code (in that case there are two spaces after`error'). Text is an error message such as that provided by strerror(), or any othermessage the server wants to use.ok \n The command completed successfully.6.6 ExampleLines beginning with `c>' are sent by the client; lines beginning with `s>' are sent by the server;lines beginning with `#' are not part of the actual exchange.c> Root /rel/cvsfiles# In actual practice the lists of valid responses and requests would# be longerc> Valid-responses Updated Checked-in M ok errorc> valid-requestss> Valid-requests Root co Modified Entry Repository ci Argument Argumentxs> ok# cvs co devo/fooc> Argument devo/foo

c> cos> Updated /rel/cvsfiles/devo/foo/foo.cs> /foo.c/1.4/Mon Apr 19 15:36:47 1993 Mon Apr 19 15:36:47 1993//s> 26s> int mein () { abort (); }s> Updated /rel/cvsfiles/devo/foo/Makefiles> /Makefile/1.2/Mon Apr 19 15:36:47 1993 Mon Apr 19 15:36:47 1993//s> 28s> foo: foo.cs> $(CC) -o foo $<s> ok# In actual practice the next part would be a separate connection.# Here it is shown as part of the same one.c> Repository /rel/cvsfiles/devo/foo# foo.c relative to devo/foo just set as Repository.c> Entry /foo.c/1.4/Mon Apr 19 15:36:47 1993 Mon Apr 19 15:36:47 1993//c> Entry /Makefile/1.2/Mon Apr 19 15:36:47 1993 Mon Apr 19 15:36:47 1993//c> Modified foo.cc> 26c> int main () { abort (); }# cvs ci -m <log message> foo.cc> Argument -mc> Argument Well, you see, it took me hours and hours to find this typo and Ic> Argumentx searched and searched and eventually had to ask John for help.c> Argument foo.cc> cis> Checked-in /rel/cvsfiles/devo/foo/foo.cs> /foo.c/1.5/ Mon Apr 19 15:54:22 CDT 1993//s> M Checking in foo.c;s> M /cygint/rel/cvsfiles/devo/foo/foo.c,v <-- foo.cs> M new revision: 1.5; previous revision: 1.4s> M dones> ok6.7 Required versus optional parts of the protocolThe following are part of every known implementation of the CVS protocol and it is consideredreasonable behavior to completely fail to work if you are connected with an implementation whichattempts to not support them. Requests: Root, Valid-responses, valid-requests, Repository, Entry,Modi�ed, Argument, Argumentx, ci, co, update. Responses: ok, error, Valid-requests, Checked-in,Updated, Merged, Removed, M, E.Failure to support the Directory, UseUnchanged, and Unchanged requests is deprecated. CVS1.5 and later have supported these requests and in the future it will be considered reasonable

behavior to completely fail to work with an implementation which attempts to not support them.Support for the Repository and Lost requests is deprecated; CVS clients 1.5 and later will not usethem if communicating with a server which supports Directory and UseUnchanged.

