
Cheap operating systemsresearch andteaching withLinuxVictor YodaikenDepartment of Computer ScienceNew Mexico TechAbstractThe advent of freely distributed operating sys-tems, compilers, and cross-compilers in combina-tion with the radically lowered costs of hardwarehas made it possible to carry out quite ambi-tious research in operating systems with modestresources. These same factors make it possibleto teach operating systems in a hands-on fash-ion that o�ers students more than a \conceptual"understanding of operating systems. This paperbriey describes two research projects in operat-ing system design and a collection course changes,all making use of the Linux operating system. The�rst research project is aimed at developing a hardreal-time executive to run over Linux. The secondproject is aimed at design of scienti�c workstationoperating systems and is currently focused on IOand �le systems.1 IntroductionLow-cost personal computers and no-cost full-scale operating systems permit academic researchand teaching in operating systems to be mademore interesting and useful. In this paper, Iwill discuss how the Linux operating system andother freely distributable software has been incor-porated into two research projects and into thesystems curriculum at New Mexico Tech. Theresearch projects include the development of areal-time operating system | aimed primarily atinstrument control | and a long range projectaimed at developing operating systems for scien-ti�c workstations. The curriculum changes ef-fect both a semi-traditional introductory operat-

ing systems class and ongoing project classes thatcover more advanced material. These classes in-clude an e�ort to port Linux to the PowerPCarchitecture and projects on real-time operatingsystems. All these e�orts are still in experimentalstages. They illustrate, however, the liberating ef-fects of the freely distributable operating systemsand compilers combined with the rapid decline incosts of computing power. OS research that pre-viously would have only been practical in a fewwell funded and sta�ed centers and \hands-on"operating systems education that would have beenenormously expensive are now within the reach ofeven modestly funded academic institutions.Credits. The real-time operating system de-scribed in section 2.1 has been taken from conceptto a working system by Michael Barabanov and,in particular, the design of the soft iret is dueto him. The data on �le system operation in sec-tion 2.2 was collected as part of a Masters projectby Wang Jun[Jun95]. The scienti�c workstationproject is a collaborative e�ort with Professor Je�Putnum of NewMexico Tech and with members ofthe scienti�c sta� at the National Radio Astron-omy Observatory in Socorro, New Mexico. Thenew version of the software for this project is be-ing implemented by CraigWu. Both projects havebeen partially funded by a grant from Sandia Labscontract AM4413, and my work on this project ispartially funded by NSF Grant CCR-9409454.2 Research2.1 Real-time LinuxResearch in real-time operating systems has beenhandicapped by the paucity of data | actualproblems that have been addressed and solved.Nearby scienti�c laboratories give us access toa collection of interesting and manageable prob-lems in the control of scienti�c instruments androbotics systems. These problems range fromlightning detectors to rocket control to wafer pro-cessing stations. We'd like to use these applica-tions to test some design methodologies, schedul-ing algorithms, and real-time system validation1

techniques. Proprietary real-time operating sys-tems are too expensive and too rigid to serve thispurpose. On the other hand, a from-scratch oper-ating system will lack the graphical displays, net-work interfaces, and development tools needed forany but the smallest project.One of the problems we are investigating isa controller for an instrument that measures elec-trical discharges in thunderstorms. We would liketo be able to read data from the instrument pe-riodically, bu�er and then write the data to disk,generate a graphical display of the data either lo-cally or over the network, and possibly accept datafrom other instruments over the network. Onlythe �rst of these tasks requires hard real-time,the remainder are standard programming tasksfor which Linux is well suited. Another prob-lem concerns the control of a liquid fueled rocketmounted on a test platform. Here we need tosample and display data on numerous channels,update a remote real-time display, accept emer-gency shutdown commands, and perform routinecontrol operations. Again, most of the require-ments are for vanilla operating systems services,but there are hard real-time components that needreasonably precise scheduling. For example, theshutdown sequence must be precisely timed andcannot be delayed by lower priority tasks withoutspectacular and unwelcome results.At �rst glance, and at second and thirdglance too, Linux seems a very unlikely answerto the hard real time requirements[SR88]. Thesystem is large and slow, and it su�ers from thestandard inability to preempt kernel mode pro-cesses. Redesign of the scheduling algorithm willnot help because there are unpredicatable delayscaused by the kernel preemption problem, the vir-tual memory paging system, and the demandsof interrupt driven devices. One solution then,would be a complete internal redesign, but thiswould defeat the purpose. The correct solutionis to make Linux run as a task under a real-timeexecutive. Linux itself will not be rewritten. In-stead a real-time executive will run Linux as itslowest priority task, preempting it when neededregardless of whether Linux is running in kernelor user mode. Of course, this does not completelysolve the problem. As Koopman has illustrated

[Koo93], the cache heavy design of modern com-puter systems can cause unpredicatable behavioron the hardware level. But problems with cacheand similar problems with pipelines can be con-tained with careful programming and relativelylax deadlines. Unpredictable behavior by the OSis a more signi�cant problem.Linux interrupt handling is strongly inu-enced by the x86 architecture. Kernel code dis-ables all interrupts by executing a cli macrowhich executes a x86 cli instruction to clear theenable interrupt ag in the processor control word.Interrupts are enabled by a sti macro which setsthe enable bit. Real-Time Linux interposes theexecutive between these commands and the hard-ware. Instead of changing a bit in the processorcontrol word, Linux sti and cli commands setand clear a soft control bit in a memory variable.Instead of directly managing the hardware inter-rupt table, Linux manages a soft interrupt table.Hardware interrupts then are caught by the real-time executive which can pass them on to Linuxor simply set a bit in an interrupt variable to indi-cate a pending interrupt. In particular, the clockcannot be disabled by Linux. When no real-timetasks are ready to run and the soft interrupt en-able bit is set, the real-time executive will passpending interrupts to Linux. Linux simply runsusing whatever time is not needed by the real-time system.A simpli�ed version of the code implement-ing soft sti on the x86 architecture is reproducedin �gure 1. The code essentially emulates thehardware interrupt controller. As soft interruptsare enabled, the highest priority pending interrupttakes control. When a Linux kernel process exe-cutes the sti macro it executes a soft sti. Thesoft sti �rst pushes data on the stack to emulatea trap so that a return from interrupt instructionwill reach the label Done past the macro. The softiretmacro then acts to clear at least one pendinginterrupt as shown in �gure 2.The macro S IRET begins by saving a few scratchregisters. Then the interrupt bit is cleared in thehardware to hard disable interrupts. Now in thecritical section the bit map of requested interruptsis ored with the bit map of enabled soft interruptsand the index of the highest order set bit is moved2

stipushflpushl $KERNEL_CSpushl $DoneS_STIfS_IRETDoneS_STI: Figure 1: Soft STISAVE_LEASTclimovl (SFREQ),%edxandl (SFMASK),%edxbsrl %edx,%eaxjz EndfS_CLIstijmp SFIDT(,%eax,4)End: movl $1,SFIFstiRESTORE_LEASTiretFigure 2: Soft iretinto the a register. If no pending interrupts werefound, we simply unload the saved registers andexecute an iret instruction, in this case, to re-turn to DoneS STI. Otherwise, we jump to the in-terrupt handler. In either case hard interrupts areenabled. The interrupt handler will terminate byexecuting S IRET.This code is not particularly e�cient rightnow, but we still at an early stage and optimiza-tions can come later. Both the redesign of lowlevel Linux code that is currently taking placeand our plans to port this design to the Alphaand PowerPC architectures make it inadvisable tospend too much time shaving microseconds fromthe execution of the non-real-time code.Special lock-free data structures [Her91][MP89][MP91] may beused to allow real-time tasks to exchange datawith Linux processes. Thus, a display programusing X-Windows can run as a Linux process and

display data gathered by a real-time task runningunder the real-time executive. In preliminary ex-periments on a Pentium/120, we have found thatreal time processes can be run on a 50 microsecondperiod while Linux is heavily loaded with networkand disk transactions. An alternative test ran asingle real-time task with a compute time of ap-proximately 40ms and a scheduling period of 55mswhile Linux was running a disk copy program andsupporting a terminal display over the network.In this test, Linux continued to operate, althoughwith vastly decreased response times | keyboardresponse on the remote window was about 1 sec-ond. But this is exactly the behavior we want.The non-real-time OS and applications take whatcompute time remains when the real time tasksare not busy.Of course if a system contains time sensi-tive IO devices that run under Linux, it may failif any real-time task is too long. But in that case,the control of that device should migrate into thereal-time executive. One project here would be tomove low level time-sensitive control code out ofthe Linux drivers entirely and centralize them inthe RT executive. Currently, the timing interac-tions of low-level device code are discovered onlywhen a system begins to fail. That is, standardoperating systems contain a real-time componentthat is not designed as a real-time component.The system is now at a stage where we ex-pect to carry out alpha tests on the lightning in-strument control and possibly on another similarproject. An exec system call for real time taskshas just been completed and the �fos for data ex-change are being made more sophisticated. Oncethe basic system is operational, we will turn to aloadable scheduler so that di�erent scheduling al-gorithms may be tested. For many systems, a pro-cess that computes the rate-monotonic schedul-ing algorithm and loads this schedule before thereal-time tasks are started could be quite useful.We hope to release a beta version of this systemby March. Volunteers for beta site testing areneeded.3

2.2 System instrumentationThe second research project involves the de-sign operating systems for scienti�c workstations.We are looking at a fairly typical application,the Astronomical Information Processing System(AIPS) developed by the National Radio Astron-omy Observatory (NRAO). AIPS is an enormouscollection of FORTRAN programs that are usedto analyze and display radio telescope data. Thesize of the data sets is large and increasing | rawdata from the NRAO Very Large Baseline Arraytelescope is measured in terabits and the partiallyprocessed data �les are several gigabytes. It wouldnot be surprising if IO turned out to be a limitingfactor in performance. For obvious reasons, theNRAO is also very interested in central storage.So, the question of the practicality of networkedIO over low bandwidth wires is also interesting.There is almost no published research mea-suring the performance of �le caching or otheroptimizations or even characterizing the load im-posed on an operating system under scienti�cworkstation computing. Much of the small lit-erature on general �le system loads is collectedby programs similar to the the UNIX tracecommand which collect data at the user level.Ruemmler and Wilkes [RW93] o�er one of therare exceptions in their paper on data collected byinstrumenting the HP-UX operating system (thispaper also contains a good summary of the lit-erature). Our �rst step, therefore, has been toinstrument Linux so as to to �nd out what AIPSand other programs need from the operating sys-tem. Once we have collected su�cient data, wewill be able to evaluate design options.One interesting component of the problemis that AIPS is being rewritten in C++. We ex-pect that this will radically change the IO de-mands of the system by putting more pressure onthe virtual memory system and by making less useof temporary �les. Again, we have found no pub-lished research on the e�ects of such transitionson the IO characteristics of scienti�c software.To start, we have instrumented a version ofLinux to trace all I/O system calls and the oper-ation of the bu�er cache. Every �le operation |read, write, seek, etc. | and every bu�er cache

access is logged. For �le operations, we currentlylog the start and end times in units of 100 mi-croseconds, the inode, �le position, and device.We also log the hit rate per a selectable numberof bu�er cache accesses.It is our intention to make the trace systeman easily installed patch to Linux so that it canbe used to gather data from a wider set of ap-plications. We hope to be able to use the net tocollect a truly representative sampling. The �rstversion of this project had a �xed log �le that waswritten to by the kernel whenever internal bu�ers�lled. The data �le was placed on a second diskso that writing log information would minimallyskew our data. A new version is currently beingimplemented which relies on a daemon program toperiodically empty kernel log bu�ers. The rewritewas designed to minimize the amount of kernelcode needed for logging and to permit remote col-lection of log data. The newer version also takesadvantage of the internal timer on the Pentiumfor more precise measurement of time intervals.Early work has been encouraging althoughit has not revealed any major surprises. Figure 4shows the pattern of reads seen on a make of theLinux kernel. Figure 3 shows the pattern of readsseen on a run of the AIPS DDT benchmark whichexercises several features in AIPS and is designedto provide some measure of how well a systemruns AIPS. The DDT exercise used moderate size�les in the several megabyte range and runs forabout 20 minutes on a P90 with 24 megabytesof memory. The results shown in the two �gureswere typical of several hundred runs taken to elim-inate artifacts. The preponderance of sequential�le accesses in AIPS and the contrast with the ker-nel make is quite clear. One would expect fromthis data that aggressive read-ahead would be agood strategy, but much closer analysis is needed.One possible problem with aggressive read-aheadis that it might displace the code of frequentlyexecuted processes from the bu�er cache.A di�erent perspective on the same twoloads can be seen from �gures 6 and 5 showingthe hit rate on the bu�er cache. As one mightexpect, the sequential accesses in AIPS results inuneven performance. LRU policies do not workwell in this situation although they work very well4

for the kernel make. What is surprising about theAIPS results are the signi�cant periods in whichthe cache satis�es all requests. These counteractthe lows to produce a deceptively high cumulativehit rate of close to 90%.More measurements will be ready soon andwill be put on the web page. The kernel patch andanalysis programs will be also made available overthe web page when they are reliable and properlypackaged.3 Concrete Operating Sys-temsThe mathematics textbook of Graham, Knuth,and Patashnik [GKP89] begins with a quotationfrom J. Hammersley that bears requoting.... what we should ask of educatedmathematicians is not what they canspeechify about, nor even what they knowabout the existing corpus of mathemati-cal knowledge, but rather what they nowdo with their learning and whether theycan actually solve mathematical prob-lems. In short we look for deeds notwords. [Ham68]The same standard should be applied to com-puter scientists. But the traditional operatingsystems class does little to prepare students to\solve problems". Instead emphasis is placed ongeneral concepts and on a high-level perspectivethat ignores the critical implementation details.The reason for this emphasis is that teaching stu-dents how a particular operating system works isless important than teaching them the fundamen-tal principles behind all operating systems. It canbe argued that most students will never need toprogram operating systems internals and thus arebetter served by a high level course. This seems tome to be a philosophy suited to producing man-agers and coders, not computer scientists capableof creative work. Just as one would not attemptto teach the principles of the di�erential calcu-lus without solving problems, one should not tryto teach operating systems without solving prob-

lems. The details are needed in order to animatethe principles.Students who have taken an introductionto operating systems class often have only themost idealized view of synchronization and arecompletely unable to construct a semaphore froma test-and-set primitive or to analyze the pos-sible deadlocks in a realistic sleep/wakeup sys-tem. Time-sharing and virtual memory, in par-ticular, remain mysteries until the students gettheir hands dirty actually working with code andbare machines. This problem is worse for ad-vanced courses where, for example, understandingdistributed shared memory depends on a detailedunderstanding of the mechanisms of memory man-agement, network device drivers, and disk IO.To give students \hands on" experience, wehave incorporated Linux into the junior level oper-ating systems course and several advanced classes.We are now considering how to move some of thesimpler OS projects, such as writing system calls,into lower level classes as well.3.1 You are expected to understandthisThe primary equipment for the current versionof our junior level operating systems class con-sists of a collection of 486/Pentium workstationsrunning both Linux and Novell Netware. Be-cause we have to share these workstations withother undergraduate classes and even other de-partments it is impossible to allow students to ex-periment with the operating system code or togain access to the raw �le system structures orto the raw device interfaces. Since this is exactlywhat we would like students to do for their OSprojects, we have equipped the workstations withrack mounted drives. The drives can be unlockedand swapped out in a few seconds by any of theuser consultants employed by the computer cen-ter. Students in the OS class are divided intosmall development teams of between 2 and 4 mem-bers. Each team is given a bootable Linux diskfor the semester. Copies of the disk are kepton the network so that when project teams de-stroy their own �le systems or otherwise renderthe disk unbootable they can get a fresh start.5

0
2

4
6

8
10

x 10
6

0

50

100

150

200
0

1

2

3

4

5

6

x 10
5

file positionfile number

tim
e

Running AIPS read−1

Figure 3: Reads for AIPS
6

0
2

4
6

8
10

x 10
5

0

200

400

600

800
0

2

4

6

8

10

x 10
4

file positionfile number

tim
e

Making kernel read−1

Figure 4: Reads for kernel make
7

0 20 40 60 80 100 120 140 160 180
0.7

0.75

0.8

0.85

0.9

0.95

1

references (unit:K)

hi
t r

at
e

Making kernel buffer cache per thousand references hit rate

Figure 5: Bu�er hit rate for kernel make
8

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

references (unit:K)

hi
t r

at
e

Running AIPS buffer cache per thousand references hit rate

Figure 6: Bu�er hit rate for AIPS
9

The issue of security is dealt via the usual tech-nical means and by warnings that anyone foundexploiting the security holes will �nd themselvesin serious academic and legal di�culties. As moreand more students have Linux capable machinesof their own (70% of our freshman class this yeararrived with computers) we expect to be able toreduce the number of disks reserved for the class.The OS course provides students with a se-ries of projects of increasing di�culty. We be-gin with some warm up exercises, making surethat students know how to recompile the kerneland add simple system calls. Later projects rangefrom copying data between kernel and user space(reimplementing Linux utilities) to controlling de-vices and switching tasks. An example of a latecourse project is to implement system calls thatcan read and write the oppy disk | without us-ing any of the Linux components that do this inthe ordinary course of events. One of the projectsscheduled for this year's course is to reimplementthe core process switch code without using thex86 task switch instructions. In addition to theprojects, Linux is brought directly into the courselectures to illustrate such concepts as semaphoresand virtual memory management.Linux is not the most elegantly designed orcoded operating system. In fact, the code qual-ity is uneven and the design shows the stressesof rapid growth. For our purposes, this is not adisadvantage. First, students see the operatingsystem internals as something written partiallyby other students and not as a mysterious ob-ject produced whole by higher powers. Second,the results of prior design decisions, the e�ects ofpeculiar hardware, and changes in the design arevisible in the code. During the course, we discusshow the system design could be improved, whysome parts of the code are so complex, and therelationship between OS design and computer ar-chitecture. Finally, the very opaqueness of someof the code requires deeper reading. One cannotsimply look at the surface structure and gain asuper�cial understanding. Students are requiredto really study the code and think about what itshould be doing. And this is the purpose of thecourse.

3.2 Advanced courses.Advanced operating systems courses here aretaught as seminars. The goal here is to give stu-dents some experience in research and develop-ment in place of lecture. Students read currentpapers and books and take part in projects. Thesimpler projects that are appropriate for the intro-ductory course are not appropriate for higher levelcourses. Currently our primary project is a portof Linux to the PowerPC architecture. We arealso setting up projects involving alpha testing ofthe real-time OS. Within the port project we havebeen able to provide students with mini-projectstailored to their interests. Several of the studentshave worked on low level kernel design and debug-ging, a small team has worked on a redesign of thememory management system, and other studentshave worked on developing and porting tools. Thechallenge here is to keep the project small enoughso that individual students can take responsibilityfor complex pieces and, not coincidentally, so thatmanagement requirements are minimized.References[GKP89] Ronald L. Graham, Donald E. Knuth,and Oren Patashnik. Concrete Mathe-matics. Addison-Wesley, 1989.[Ham68] J. M. Hammersley. On the enfeeble-ment of mathematical skills by `modernmathematics' and by similar soft intel-lectual trash. Bulletin of the Institutefor Mathematics and its Applications,4(4):68{65, October 1968.[Her91] M. P. Herlihy. Wait-free synchroniza-tion. ACM Transactions on Program-ming Languages, 13:124{149, 1991.[Jun95] Wang Jun. A linux �le system �lei/o system calls and bu�er cache tracepackage. Technical report, New MexicoTech, july 1995.[Koo93] P. Koopman. Perils of the pc cache. Em-bedded Systems Programming, 6(5), may1993.10

[MP89] H. Massalin and C. Pu. Threads andinput/output in the synthesis kernel. InProc. Twelfth ACM Symp. on OperatingSys., Operating Systems Review, page191, December 1989. Published as Proc.Twelfth ACM Symp. on Operating Sys.,Operating Systems Review, volume 23,number 5.[MP91] Henry Massalin and Calton Pu. A lock-free multiprocessor OS kernel. Tech-nical Report CUCS-005-91, ColumbiaUniversity, 1991.[RW93] Chris Ruemmler and John Wilkes.UNIX disk access patterns. InUSENIX Technical Conference Proceed-ings, pages 405{420, San Diego, CA,Winter 1993. USENIX.[SR88] John A. Stankovic and Krithi Ramam-ritham. Hard Real-Time Systems, vol-ume 819 of IEEE Tutorials. IEEE, 1988.About the authorVictor Yodaiken is an assistant professor ofComputer Science at the New Mexico Instituteof Mining and Technology (New Mexico Tech).Mail: Department of Computer Science. Speare4. NewMexico Tech. Socorro, NewMexico 87801.Email: yodaiken@nmt.eduURL:http://www.cs.nmt.edu/~yodaikenURL for Real-time projects:http://www.nmt.edu/~realtimeURL for Scienti�c OS project:http://www.cs..nmt.edu/~yodaiken/os/os.html

11

