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ADAPTATION OF THE SYSTEM V/386 FILESYSTEM FOR LINUXAbstract by Paul B. Monday, M.S.Washington State UniversityOctober 1993Chair: K.C. WangCompatibility between operating systems and �lesystems is an essential item when creating arobust operating system. The Linux operating system is taking the �lesystem compatibilityissue to a new level with its modular integration of �lesystems into the Linux kernel. Theproject which accompanies this paper exploits the robust Linux �lesystem to integrate Sys-tem V/386 �lesystem compatibility into Linux kernel. This paper will discuss issues relativeto the integration of the System V/386 �lesystem support.
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1 IntroductionOperating systems which are in the marketplace and highly commercial usually include 1 or2 �lesystems to choose from to store and retrieve data. Creating e�cient �lesystems andmaking the structure proprietary is often a selling point for one operating system, while theaction sties coexistance with other operating systems. The Linux �lesystem attempts toremedy this through simple, but highly successful, coding tricks which turns the �lesysteminto a modular block of code. Filesystems are treated as a set of high level and low levelfunctions. Functions can be added and removed whenever the kernel is rebuilt. Creating newmodules (�lesystems) is simpli�ed also if the programmer can understand a simple conceptof containment which the Linux �lesystem capitalizes on. A case study of how the SystemV/386 �lesystem is built, followed by how it is integrated into the Linux kernel is examinedhere.2 System V/386 Release 4.0 FilesystemThe key to adding a �lesystem to Linux is di�erentiating between low level data handling, andthe high level function which is duplicated in other �lesystems. The System V/386 �lesystemis much like other Unix-like �lesystem, so there were many case studies already coded intoLinux. A ground up approach was taken when adding the System V/386 �lesystem.First, the data was examined to determine the layout of a System V/386 �lesystem. Thisconsisted of a high-level overview of a diskette after a mkfs is completed. Next, �ner grainedexamination of the data structures used on a �lesystem is completed. Once both of these5



tasks are done, algorithms can be vari�ed on System V/386, then an examination of how tointegrate the new algorithms into Linux must be completed.I will document the most general cases of a System V/386 �lesystem, as I have not inten-tionally set out to make special cases of mkfs work when coding the accompanying project(a user of System V/386 can radically change the structure of a �lesystem with options onthe mkfs command).Throughout the coding of the SystemV/386 �lesystem I used a reverse engineering approach.The implementation of the �lesystem will be described in this way also. First a high leveloverview will be presented, and I will then work my way into the speci�c block data structuresand organizations.2.1 General InformationTo understand how the �lesystem algorithms manipulate the System V/386 �lesystem, onemust �rst understand how a disk is organized by System V/386. Below, I have listed theimportant aspects of a System V/386 �lesystem. First, the Superblock is o�set into thediskette by 512 bytes. This o�set allows room for a bootblock and initialization. The inodesfollow several blocks after the superblock. This gap allows for System V/386 to keep a listof bad blocks. I have not implemented this feature in the �lesystem support.The low-level design of System V/386 di�ers from many other avors of Unix, particularlyMinix, due to the fact that there are no bit maps or zone maps. Rather than keeping a bitaside for each data block and inode to indicate whether or not it is free, System V/386 keepsa linked list of free blocks and zeroes out the unused inodes. DOS is similiar to Minix in the6



way the FAT (File Allocation Table) is organized, see the Appendix for details of the Minixand DOS �lesystem layouts.The order of the �lesystem is bootblock, superblock, bad block mapping, inodes, and datablocks. The layout is as follows (a sector is 512k, or 0.5 * block size).� Sector 1: Bootblock� Sector 2: Superblock� Sector 3: Bad block mapping� Sector 4 to x: Bad block mapping continued� Sector x + 1 (1k aligned): Inodes� Sector y: Continuation of inodes� Sector y + 1 (1k aligned): Data Blocks� Sector z: All sectors to end of disk are data blocks2.2 SuperblockThe System V/386 superblock is a 512 byte sector which holds information which is con-stantly changing. This di�ers from other operating systems in that the superblock must berepeatedly written to disk as blocks and inodes are allocated and deallocated.The primary structure of the superblock is layed out in the list below, the o�set is in termsof bytes (8 bits). Some structures which exist in the System V/386 superblock will not be7



used in the Linux implementation. These will not have corresponding �eld names. For theones that I do use, �eld names will immediately follow the o�set and will be in parenthesis.This makes it easier to reference the code which is included in an Appendix. An (*) indicatesthat the �eld is later abstracted out to the Linux Superblock.� o�set 0(isize): Number of blocks in inode list� o�set 2(fsize): Number of blocks in the volume� o�set 6(nfree): Number of addresses in free cache� o�set 8(free): Free block cache� o�set 208(ninode): Number of inodes in inode cache� o�set 210(inode ): Free inode cache� o�set 410: Lock bit (set during block cache manipulation) (*)� o�set 411: Lock bit (set during inode cache manipulation) (*)� o�set 412: Super block modi�ed ag (set when dirty) (*)� o�set 413: Read only ag (*)� o�set 414(time): Time of last super block modi�cation (*)� o�set 418: Mounted device information (*)� o�set 426(tfree): Total free blocks on volume8



� o�set 430(tinode): Total free inodes on volume� o�set 432: File system name� o�set 438: File system pack name� o�set 444: Adjust this to make the size of �lesystem� o�set 492: State the �lesystem is in (*)� o�set 496: Filesystems magic number (0xfd187e20)� o�set 500: Type of new �lesystemThe reason many �elds are not used is simply because of duplication in the Linux operat-ing system. The lock �elds and modi�cation �elds are also contained in the main Linuxsuperblock. Since the Linux superblock then contains a pointer to the System V/386 su-perblock (this will be described later), the System V/386 �elds go unused.Total free blocks and total free inodes must be tediously kept track of. The �lesystemupdates these �elds in memory with each allocation of a block or an inode. The changes tothe caches are not written to disk immediately, as this would put an unnecessary burden onresources and misuse one of the features of many unix-like �lesystems, disk caching. Thechanges are written to disk upon a umount or when either the block or the inode cache isre�lled or ushed. The block and inode caches in the �lesystem drive much of the logicbehind the algorithms used to maintain the superblock.9



2.2.1 Free Block CacheThe free block cache is documented very well in [Ba86]. When the �lesystem is made,the free blocks are organized into a linked structure. The System V/386 �lesystem stores 50addresses in the block cache. The last address read when blocks are being allocated is a blocknumber which contains the next 50 addresses which are to be loaded into the cache. Withthis implemenatation, to reload the cache, the operating system loads the block pointed toin the cache, then transfers the addresses which are stored there into the superblock's cache.Although the initial overhead to build a �lesystem around this idea may be slightly higherthan a bit mapped method, the cache system is a very straightforward method of organizingthe data. The algorithm for allocating blocks in the System V/386 �lesystem follows, assumethat a block is requested from the �lesystem for an unknown reason.� If tfree=0 then return FAIL� If nfree=1 and tfree<>1 THEN{ address=free[0]{ Read block at address{ free[0] to free[49] = block[0] to block[49]� ELSE{ address = free[nfree]{ nfree = nfree - 1� return address 10



The algorithm for freeing blocks in the System V/386 �lesystem follows. Assume that theblock to be freed resides at address.� if nfree=50 THEN{ read block at address{ write 50 addresses in free to block{ nfree = 1{ free[0] = address� ELSE{ free[nfree] = address{ nfree = nfree + 1� tfree = tfree + 1� returnThere is one problem with this method which can slow down disk access. I have chosento regularly write the superblock between allocations. A worst case scenario would as thescenario which is written below. This is a case where a few blocks get allocated which forcethe cache to be reloaded, then a few blocks get freed which forces the cache to be ushed.A scenario is as follows.1. Initial Con�guration of Scenario� Block Cache (free) contains 1 block (address 24)11



� nfree = 12. A block is requested by a user� nfree = 1 so cache must be reloaded� Reload cache then return block 24 for user to use3. A block is returned by a user (address = 100) and nfree is still equal to 50� Superblock cache is full, write 50 addresses to block 100� Store the address 100 in the superblock cache and change nfree to 14. Go to step 2The scenario above, although not dangerous, requires repeated disk writing for minimalerquests. I have implemented this algorithm merely for the sake of safety and to avoidproblems which may occur if the cache is not functioning correctly in the prerelease kernel.12.2.2 Free Inode ListThe free inode list is very similiar to the free block list with a couple of major exceptions.The designers of the System V/386 �lesystem assumed that the inodes would not see as1Note: After examining several books on the System V/386 �lesystem after completing the codingportion of the project, di�erences in the implementation of writing the superblock to disk were noted. I nowbelieve that it was unwise to repeatedly write the superblock to disk. The slowdown this causes can be quitesubstantial, plus, inode updates may not stay in sync with superblock updates. It would be better to throwout all changes in the case of a critical error, than keeping a list of where data should have been placed.12



much activity as the data blocks. This assumption freed the designers to create a slightlymore time consuming allocation method. The free inodes are not linked together as the datablocks are. When the time comes to reload the inode cache (100 inode addresses are kept inthe superblock for a typical �lesystem), a linear search is conducted until the cache is full orall inodes are exhausted. 2The current implementation and the true implementation di�er in two ways. The �rst is inthe use of the nlink �eld in the inode. My code sets all bits contained in an inode to zero.The System V/386 implementation sets the nlink �eld to zero, this indicates the inode isready to be used again. The second di�erence is in the algorithm to free an inode. Thedi�erences are displayed in the free inode algorithm below.� returnInode.nlink = 0 //This is currently a memset(returnInode,0,sizeof(returnInode))� return //This return does not occur in the true implememtation� if ninode = 100 then return� superblock.ninode ++� superblock.inode[superblock.ninode]=number of returnInode� return2Note: The implementation of the inode cache in the project versus the true implementation in theSystem V/386 �lesystem di�er somewhat, as I discovered just recently, see [Sh87].13



2.3 InodesThe internal inode representation, as with any Unix system, is the key to the organization ofthe �lesytem. The System V/386 �lesystem follows virtually the same format as any otherUnix system, though with some important distinctions. The di�erences will be pointed outlater in the document in the �lesystem comparisons section.Many of the �elds in the inode structure which resides in the System V/386 �lesystemare similiar or the same as Linux. Most importantly, the Unix �lesystems appear to becompatible as far as the mode values go. This takes a level of abstraction away when tryingto think in terms of one �lesystem or another. For example, if the mode �eld contains anunsigned short value of 0x4000, this indicates a directory, all of the Unix systems I have runacross so far use the same value. Again, an (*) indicates that the �eld is later abstractedout to the Linux inode.� o�set 0(mode): Mode and type of �le (*)� o�set 2(nlink): Number of links to the �le (*)� o�set 4(uid): File owner's userid (*)� o�set 6(gid): File's group id (*)� o�set 8(size): Size, in bytes, of the �le (*)� o�set 12(addr): Disk block addresses� o�set 51(gen): File's generation number (*)� o�set 52(atime): Last time �le accessed (*)14



� o�set 56(mtime): Last time �le modi�ed (*)� o�set 60(ctime): File creation time (*)One of the most important topics to be addressed when talking about inodes is how theinode keeps track of �le contents. The System V/386 �lesystem uses a list of 10 directblocks, followed by an indirect block, a double indirect block, and a triple indirect block.This allows for a maximum �lesize of 33,834 blocks, or 34,646,016 bytes. .This creates aninteresting problem when placing disk addresses into the inode and All direct addresses arestored as 3 byte values. Throughout the rest of the System V/386 �lesystem, and mostother �lesystems, addresses are stored as long integers, giving four bytes of storage for adisk address. This peculiarity allows more addresses to be stored in the inode, thus a larger�lesize. At the same time, the 3 byte addresses could easily be switched to 4 byte addresses,allowing for a smaller �le, but a larger disk. As it stands, the largest drive that can beaccessed by the inode is 16,777,216 blocks.2.3.1 Direct BlocksFigure 1 shows graphically how the block addressing from within the inode works. Directblocks are controlled by grabbing the addresses from 0-9 (bytes 0-26 in the addr �eld) andreading the contents of the blocks referenced by each address.
15
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pointing to double indirect blocksFigure 1: Inode and Data Blocks2.3.2 Indirect (Single, Double and Triple) BlocksFigure 1 also displays how the di�erent levels of addressing link to blocks. All the indirectblocks really do is give us an extra 32 blocks to use for �le space. The double blocks expandthe �lesize by 1024 blocks and the triple indirect blocks expand the �lesize again by 32,76816



blocks. One of the curious things about the System V/386 �lesystem is that the addressesare stored as long integers in the indirect blocks. Here several addresses per block are lost towasted space, since the direct inodes cannot use the 4th byte in each address. It is my beliefthat this was left to ease the algorithms which access addresses through indirect blocks, plusallow an easier way to expand the maximum �le size, since the inodes could be changedrelatively easily to allow for 4 byte addresses.The algorithms follow for reading the various types of blocks.2.4 Directory BlocksDirectory blocks are similiar to many other Unix systems. The data blocks pointed to bythe direct and indirect blocks are �lled with records which consist of a inode number and a�lename. The record is a reference to an inode, this implies that the inode can consist of anytype of Linux �le (directory, data, symlink, etc....) Filenames are restricted to 14 characters.Figure 1 also displays how a directory block works with an inode. Note that it is exactly thesame as the case that data is stored in the inode, the major di�erence is in the mode �eld,a di�erent value is stored here.2.5 System V/386 Filesystem ConclusionThe System V/386 �lesystem is quite popular for schools to use due to the availability ofthe code in it's early life, and the volumes of literature which are written on the system asa whole. For this reason, the �rst half of the project was quite a bit of research, with somehands on experience. Once the theories were derived from books, it was a simple matter to17



write test programs to examine diskettes at various points as �les are copied to and fromthe diskettes.Once the System V/386 portions were understood, the second phase of the project wasstarted. This was a matter of determining how the Linux �lesystem used other �lesystems,and how the System V/386 �lesystem would �t into the Linux system.3 LinuxMultiple levels of indirection, and robust/dynamic data structures in Linux creates a modularenvironment to code new �lesystems into. At the same time, the initial con�guration of Linuxis allowed to leave out support that is not necessary for a particular user's needs. Currently,Linux contains support for the Microsoft DOS FAT �lesystem, Minix, and several variationsof Minix which are called extended �lesystems. The structures which make this modularand robust system possible will be discussed here.The Linux �lesystem would take a considerable amount of time to describe in full detail. Forthe purpose of �lesystem integration, only those parts which relate speci�cally to integratingnew �lesystem types will be described. Many other items, like how the Linux cache handlesthe �lesystem, are left out since these are irrelevant to handling new �lesystems.3.1 General InformationThe main Linux �lesystem revolves around data bu�ers which remain in memory as longas a device is mounted. The structures which are kept in memory contain both the Linuxversion of a structure, and the original structure read in from the non-Linux �lesystem.18



The resulting Linux-System V/386 �lesystem is really a hybrid version of the System V/386�lesystem, customized to work alongside Linux' bu�er implementations. It is best to lookat Linux' speci�c structures to see exactly how this customization works.I will start with the assumption that the user has typed in the correct mount command andLinux is passing control to the System V/386 speci�c routines. Only minor changes to theLinux kernel go into doing this, they will be glossed over in the section "Con�guration ofLinux to Include/Exclude Filesystems".3.2 Superblock HandlingThe function containing the setup of the Linux superblock is called sysv read super. Each�lesystem will have a corresponding function. The purpose is to grab the superblock o� thephysical disk, and set up the Linux superblock which will reside in memory. The following listcontains the �elds in the Linux �lesystem's superblock which are important to the project.1. o�set 0(dev): Device superblock is located on2. o�set 2(blocksize): Blocksize of blocks on device3. o�set 6(lock): Lock bit set when superblock in use4. o�set 7(rdonly): Read only bit set for read only �lesystem5. o�set 8(dirt): Dirty bit set when superblock changed6. o�set 9(superop): Pointer to structure containing valid operations for the mounted�lesystem 19



7. o�set 13(ags): Various ags set at mount time (non-fs dependent) such as read-only,no-dev, no-suid, etc...8. o�set 17(magic): Magic number for �lesystem9. o�set 23(time): Time �lesystem was mounted10. o�set 27(covered): Pointer to inode of �lesystem which was written over11. o�set 31(mounted): Pointer to root directory inode12. o�set 35(wait): Pointer to wait queue for superblock operations13. o�set 39(u): Union containing structures for subsets of superblocks of any other mount-able �lesystemsAs can be seen from the superblock structure, it is essentially a container for other superblockstructures and inodes. Locking mechanisms and various �lesystem independant structuresare added, but pointers to the superblock operations and �lesystem dependant structuresare left to be �lled in at the time that the �lesystem is mounted.The union for the System V/386 speci�c portion contains most of the original superblockinformation. Unlike the inode (as seen later), it is necessary to retain a virtual copy of allsuperblock information for later reference.3.2.1 Reading the SuperblockThe superblock to be used is passed as a pointer to the read super routine. First, a lockis put on the superblock so that the cache can be manipulated freely. I have been lax on20



locking up inodes and superblocks throughout the rest of the code. If race conditions occur,the modules should be examined to determine where to place further locks on the �les andbu�ers.1. The read super does a direct read to the disk, grabs the zero block and places it intoa bu�er for manipulation.2. Set a pointer to the System V/386 superblock to the correct location in the bu�er(since the superblock starts at o�set 512)3. Check the magic number to make sure that the user did not err in calling the disk aSystem V/386 disk.4. Read the root inode from the disk and verify that it really does exist. The root inodeis then stored in mounted, in the superblock.5. Copy the general System V/386 superblock info into the Linux superblock (time, uids,etc...)6. Copy the free caches over into the Linux version of the System V/386 superblock.Upon return from the read super routine, the Linux superblock contains the following:� All �elds speci�c to the Linux portion of the superblock were updated correctly. The�elds include blocksize, magic number for the fs, and pointers to the �lesystem speci�coperations (System V/386 function calls).� The root inode for the system v �lesystem is loaded into the mounted �eld in thesuperblock. 21



� The System V/386 speci�c portion of the Linux superblock was �lled in with all nec-essary information taken from the superblock which resides on disk.One major problem I cannot solve or �nd a reason for is where the initial location of thesuperblock is. All literature and code indicates that the superblock is always contained inblock 0, o�set 512 of a system v/386 �lesystem. In practice I �nd it there only when using5 1/4" diskettes formatted at 1.2 Meg. I have updated the code to search for the superblockbefore using it.
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Reading the Linux Superblock

1. Mount command sends control to sysv_read_super via the filesystems.c code

2. sysv_read_super attempts to a) load block from disk  b) verify the magic number

4. Read the root inode and set the pointer to it in the superblock

specific implementation

3. Load the pointer to the valid System V/386 operations structure into the Linux superblock

5. Move miscellaneous information out of structure residing on disk, into the

    Linux superblock (the u structure (System V/386 specific copy))

6. Move the free cache’s (blocks and inodes) into the union in the Linux structure

7. Return a pointer to the new Linux superblock to the caller

static struct super_operations sysv_sops = {

  sysv_read_inode,

  NULL,

  sysv_put_inode,

  sysv_put_super,

  sysv_write_sb,

  sysv_statfs

};
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Figure 2: Reading the Superblock3.2.2 Writing the SuperblockUnlike many varieties of Unix �lesystems, the System V/386 �lesystem needs to write thesuperblock periodically to disk. This operations is achieved by the sysv write sb routine.It is virtually the reverse of reading the superblock, though not as many veri�cations aredone. The important part of this operation is that the variable data gets placed back onto23



the disk, primarily the cache speci�c �elds of the superblock. The write sb routine followsthe following order.1. Read the zero block of the superblock's device (pointed to by dev in the Linux su-perblock) into a bu�er.2. Find o�set 5123. Copy the time into the bu�er4. Update the cache �elds in the bu�er (free, inode, nfree, ninode)5. Update the total free inodes and total free blocks �elds6. Mark the bu�er as dirty7. Release the bu�er (this should implicitly write the bu�er back onto the disk)8. Change the superblock's dirty bit back to 0 to indicate it was written.Primarily, the Linux implementation of the System V/386 �lesystem completes the aboveoperations when major cache �lls are done, and when a �lesystem is unmounted.3.3 Inode HandlingInode handling is very similiar to the superblock handling routines. This section will describehow a System V/386 inode is read into memory, then a bit about where and how subsequentchanges are handled. The list below displays many of the �elds in a Linux inode. Most of the�elds are not listed though. A large number of �elds only used for handling in memory. The24



bulk of the space allocated for a Linux inode contains �elds and pointers for caching inodes.The list below does contain �elds relevant to the �lesystem. Again, like the superblock, theinode acts as a container for �lesystem speci�c behavior, with the 'meta-inode' containinginformation which will be common to all inodes.1. (dev): Device inode is mounted on2. (ino): Number of inode on device3. (mode): Mode of inode loaded4. (link): Number of links to the inode5. (uid): User ID of inode6. (gid): Group ID of inode7. (rdev): Device if inode refers to another inode on another device8. (atime): Time inode was last accessed9. (mtime): Time inode was last modi�ed10. (ctime): Time inode was created11. (op): Pointer to valid operations for this particular inode12. (lock): Bit set indicates inode locked13. (mount): Bit set indicates inode mounted25



14. (u): Union containing various possible inode structures which are dependent on the�lesystem type the inode is associated with.The union for the System V/386 �lesystem contains the direct/indirect block mappings.All other information is contained in the Linux speci�c portion of the inode. The SystemV/386 direct/indirect block mappings is further altered when stored in the Linux inode. Theaddresses are converted from their native 3 byte addresses to an easier to handle four byteequivalent.3.3.1 Reading an InodeAn inode is read in the sysv read inode routine. The routine receives a copy of the Linuxinode when it is called, the number of the inode to be read is stored in the ino �eld of theinode structure. The following is done to grab the inode o� the disk and return successfully.1. Store the inode number2. Zero out pointers to inode functions in the op �eld3. Set the mode to 04. Check if reading the root inode, if so, set the op �eld to the operations which can bedone on a root inode. Also set the mode to 777 and return to the caller.5. Figure out the block that the inode is in if it's not the root inode6. Read in the block, return if block can't be read7. Move the inode structure into the correct portion of the bu�er returned by the read26



8. Set easy �elds in the Linux inode such as time, mode, uid, etc....9. Check what type of inode we have retrieved and set the inode op �eld appropriately(could have a directory, link, �fo, block char device, etc...)10. Convert the block pointer addresses to 4 byte addresses and store in the Linux inode.11. Return to the caller.
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Reading the Linux Inode

1. Determine if root inode (special root directory operations are loaded to i_op)

2. Determine what block inode resides in on disk

3. Read the block from disk and locate pointer to the correct location

4. Copy info from disk inode directly to Linux inode (not the u. structure)

    (info includes mode, uid, gid, nlink, etc...)

5. Copy addresses for d0-d9, i0, dbl0, t0 into the u. portion of the inode

    (convert addresses from 3 byte to 4 byte)

6. Load correct operations into i_op

System V/386 specific implementation.

union {

various fs

specific inodes

+

struct sysv_

inode_info}

u

struct inode_

operations *

i_op

structure contains an implementation of the System V/386 inode data block

addressing scheme converted from 3 byte to 4 byte addresses

see page 131 for Linux implementation of structure, pages 47, 49, 54, 111 for

Figure 3: Reading an Inode3.3.2 Writing an InodeThe primary purpose of the write inode routine for System V/386 �lesystem is to update thedata block pointers if they have changed. The routine is simply a reverse of the read systemvroutine. 28



3.4 Coding for Filesystem Speci�c Routines3.4.1 High Level ProceduresMost of the high level routine (mkdir, rename, etc...) were copied from other �lesystems withslight modi�cations to allow for System V/386 versions of structures. The most complex ofthe high level routines to complete was the truncate functions. These are used to ensurethat �les are allocated to the data pointers within an inode correctly.3.4.2 Low Level Disk i/o CodingThe low-level disk i/o is the only portion of the �lesystem which must be built from scratch.It was best to maintain the same named functions for consistency with the rest of the�lesystem, though much of the internals are changed. Direct manipulation of a SystemV/386 superblock occurs in the lowlev.c module. This module is where new inodes areallocated, new blocks are allocated, and inodes and blocks are freed. It is critical in theallocate/deallocate routines to keep the superblock which exists out on disk up to date. Thealgorithms follow directly from the description of the System V/386 �lesystem in the �rsthalf of the paper.While coding the lowlevel routines, the major thing to keep in mind is that the parameterspassed in are Linux structures. The code uses a combination of both the Linux and theSystem V/386 structures to obtain the required results in low level disk i/o.29



3.5 Con�guration of Linux to Include/Exclude FilesystemsChanges to the Linux kernel are minimal to get a new �lesystem up and running. Changesmust be done to the following �les, corresponding changes are documented with the list.� /linux/fs/�lesystems.c - The primary structure (�le systems) is contained in the fs.h�le. This structure is used to send control upon a mount to the correct read superroutine. If a �lesystem is not listed here, it will not be able to be mounted.� /linux/include/linux/fs.h - Changes must be made here to include pointers to systemv/386 data structures from the superblock and the inodes. These structures are main-tained in memory and are accessed from most of the system v/386 �lesystem routines.� /linux/fs/Make�le - This must be changed to include the fs/sysv directory so that thecode will be compiled.� /linux/con�g.h - This is the script to con�gure the Linux system before compiling thekernel. It should be adjusted to allow the inclusion/exclusion of the system v/386�lesystem.3.6 Conclusion (Linux System V/386 Implementation)The superblock and inode in the Linux operating system are the key to the robust Linux�lesystem. Abstraction of common data structures in �lesystems, and subsequent contain-ment of �lesystem type dependent data structures allow for customization of Linux to usesimiliar, but not duplicate, �lesystems. 30



There are bene�ts and drawbacks to this design. The major bene�t of the design is easyinclusion/exclusion of �lesystems in the kernel. A major drawback to the design is that eachmodular �lesystem requeires unique code for all data access/handling routines, even if thefunctions are exact duplicates of each other.Coding new �lesystems for Linux is a relatively simple task. The largest part of coding is�rst understaninding how the new �lesystem works. Once this is done, the Linux �lesystemmodi�cations are simple, primarily due to the abstraction Linux does. The native structuresin the new �lesystem are left intact so there is only a small learning curve to �t a �lesysteminto Linux.It is also clear that this process is not for a simple user to appreciate. Adding and removing�lesystems from a user's perspective would be extremely di�cult. The option would beto include all of the �lesystems which, in turn, creates a larger runtime kernel. From thisperspective, Linux poses a problem if it were to ever enter a commercial market. Fromthe perspective of a programmer and/or student, Linux makes a great case study to use todemonstrate �lesystem implementations.4 Appendix A - The DOS �lesystem1. Logical Sector 0 - Breakdown follows� 00h - 8086 Jump Instruction� 03h - OEM name & version� 0Bh - Bytes per sector 31



� 0Dh - Sectors per allocation unit� 0Eh - Reserved sectors� 10h - Number of FATs� 11h - Number of root-directory entries� 13h - Total sectors in logical volume� 15h - Media descriptor byte� 16h - Number of sectors per FAT� 18h - Sectors per track� 1Ah - Number of heads� 1Ch - Number of hidden sectors� 1Eh - Bootstrap routine2. File Allocation Table (FAT) #13. Possible additional copies of FAT4. Root disk directory5. Files area (to the end of the disk)The disk organization is built from the above structures, �le accesses revolve around the FAT.Before the overview of the FAT, one must understand how MSDOS allocates space. Ratherthan going by blocks and sectors, MSDOS uses an allocation unit, also called a cluster. Howmany sectors per cluster on a disk is determined by the drive type. Sectors per cluster aredetermined in terms of powers of 2. 32



� Single Sided oppy 1 sector/cluster� Double Sided oppy 2 sectors/cluster� PC/AT type �xed disk 4 sectors/cluster� PC/XT type �xed disk 8 sectors/clusterNotice that serious fragmentations problems can occur on some types of �xed disks, in factup to (512*8-1) bytes can be lost per �le which is created. Contrast this with 1023 byteslost for a typical Unix �lesystem, assuming it was formatted with default values. The FATkeeps track of clusters and is simply a set of 12 bit or 16 bit hex numbers. Twelve bits arekept if there are under 4087 clusters, 16 bits are kept for over 4087 clusters. Each FAT tableappears as follows.� Byte 1 - Media Descriptor Byte� Bytes 2-4 - (0)0FFh� Bytes 4-end of FAT{ (0)000h indicates the cluster is available{ (F)FF0h - (F)FF6h indicates the cluster is reserved{ (F)FF7h indicates the cluster is bad{ (F)FF8h - (F)FFFh indicates the last cluster in a �le{ (x)xxxh indicates the next cluster in a series33



The appearance of the FAT is similiar to many avors of Unix, but whereas the bitmapswhich will be described in the Minix system simply decide if a block is free or not, the FATcontains much information about how a �le is assembled, plus bad block criteria.The FAT makes �le corruption checking very simple. Multiple copies of the FAT can be keptup to date. Occasionally, the copies of the FAT can be checked against each other to verifythat a copy of the FAT has not been corrupted. Of course this is not in any way perfect asmany other problems can occur, but it does keep the central data structure relatively intact.In addition to the FAT, each volume in MSDOS contains a root directory structure. Thisis somewhat similiar to the idea behind the root inode, except that the root directory isnot handled in the same manner as other subdirectories. Subdirectories other than theroot appear as �les with special attribute bytes, similiar to inodes. Only the root directorywarrants special handling in DOS. This may be an o�shoot of Versions 1 and 2 of DOSwhere only one directory was allowed, thus storage space was allotted at the beginning. Alldirectory structures, root or subdirectories, have the same datastructure controlling it. Thisdata structure does not allow for enough information to be kept for modern PC users, buthas su�ced for a long time.� 00h - 07h: Filename� 08h - 0Ah: Extension� 0Bh : Attribute{ 0 = Read-only{ 1 = Hidden 34



{ 2 = System{ 3 = Volume label{ 4 = Subdirectory{ 5 = Archive bit{ 6 = Reserved{ 7 = Reserved� 0Ch - 15h: Reserved� 16h - 17h: Time created or last updated� 18h - 10h: Date created or last updated� 1Ah - 1Bh: Starting cluster� 1Ch - 1Fh: File sizeIt is important to notice many of the problems that a directory entry such as this leaves out.There is no place to record an owner, or di�erent security levels other than read only andhidden. In fact, there is NO way to maintain any type of security for a multi-user system.This is one of the major drawbacks of the MSDOS system. Any network �le security mustbe implemented at a high level by application software.In addition to security problems, the limited number of attributes limits what types of �lesare possible. It is not possible to symbolically link �les or do many types of operationswhich Unix users take for granted. Also, even though subdirectories appear similiar to �les,35



there are only three primitive functions which can be performed on an MSDOS subdirectory,CREATE, DELETE, and SELECT.5 Appendix B - MinixThe minix operating system solves many problems which the System V/386 �lesystem has,but produces problems and ine�ciencies of its own. The Linux operating system is looselybased upon this, but will be described in better detail in the Linux section.When looking at the layout of the Minix disk, there are 6 major parts that need to beunderstood.� 0h - 1023h: Boot block� 1024h - 2047h: Super block� 2048h - ?????: I-node bitmaps� end of inode bitmaps - ????: Zone bit maps� end of zone bitmaps - end of disk: Data blocksThe inode and zone bitmap areas are simply bits with a 1-1 correspodence to inodes or datablocks. If the bit is a zero, the inode or block is not allocated, otherwise it is. This makessearches for free zones fairly simplistic and only a small amount of data must be searchedto �nd free space. In the best case this is a linear search through the bits. The number ofblocks which are dedicated to inode and zone bitmaps is variable, since the number of inodeswhich can be allocated is variable. 36



The super block is much larger than the System V/386 super block, but contains slightlymore info, due to the need for pointers to where the bitmaps start and end. One can easilydetermine an algorithm for allocating free blocks to a �le. The inodes reside in the �rst partof the data blocks. A typical inode is very similiar to the System V/386 inode, with slightlyless information being kept as to update times.A typical inode for Minix allows a 14 character �lename. It must be kept in mind that thereare extensions and variations of the Minix �lesystem which allow for longer �lenames, andvarious other changes.
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