
System V Inter Process Communication

krishna balasubramanian,

Copyright c© 1992 krishna balasubramanian
Permission is granted to use this material and the accompanying programs within the terms
of the GNU GPL.

Chapter 1: System V IPC. 1

1 System V IPC.

These facilities are provided to maintain compatibility with programs developed on sys-
tem V unix systems and others that rely on these system V mechanisms to accomplish inter
process communication (IPC).

The specifics described here are applicable to the Linux implementation. Other imple-
mentations may do things slightly differently.

1.1 Overview

System V IPC consists of three mechanisms:
• Messages : exchange messages with any process or server.
• Semaphores : allow unrelated processes to synchronize execution.
• Shared memory : allow unrelated processes to share memory.

Access to all resources is permitted on the basis of permissions set up when the resource
was created.

A resource here consists of message queue, a semaphore set (array) or a shared memory
segment.

A resource must first be allocated by a creator before it is used. The creator can assign
a different owner. After use the resource must be explicitly destroyed by the creator or
owner.

A resource is identified by a numeric id. Typically a creator defines a key that may be
used to access the resource. The user process may then use this key in the get system call
to obtain the id for the corresponding resource. This id is then used for all further access.
A library call ftok is provided to translate pathnames or strings to numeric keys.

There are system and implementation defined limits on the number and sizes of resources
of any given type. Some of these are imposed by the implementation and others by the
system administrator when configuring the kernel (See 〈undefined〉 [msglimits], page 〈unde-
fined〉, See 〈undefined〉 [semlimits], page 〈undefined〉, See 〈undefined〉 [shmlimits], page 〈un-
defined〉).

There is an msqid_ds, semid_ds or shmid_ds struct associated with each message queue,
semaphore array or shared segment. Each ipc resource has an associated ipc_perm struct
which defines the creator, owner, access perms ..etc.., for the resource. These structures are
detailed in the following sections.

1.2 example

Here is a code fragment with pointers on how to use shared memory. The same methods
are applicable to other resources.

In a typical access sequence the creator allocates a new instance of the resource with the
get system call using the IPC CREAT flag.
creator process:

2 Inter Process Communication.

#include <sys/shm.h>
int id;
key_t key;
char proc_id = ’C’;
int size = 0x5000; /* 20 K */
int flags = 0664 | IPC_CREAT; /* read-only for others */

key = ftok ("~creator/ipckey", proc_id);
id = shmget (key, size, flags);
exit (0); /* quit leaving resource allocated */

Users then gain access to the resource using the same key.
Client process:

#include <sys/shm.h>
char *shmaddr;
int id;
key_t key;
char proc_id = ’C’;

key = ftok ("~creator/ipckey", proc_id);

id = shmget (key, 0, 004); /* default size */
if (id == -1)

perror ("shmget ...");

shmaddr = shmat (id, 0, SHM_RDONLY); /* attach segment for reading */
if (shmaddr == (char *) -1)

perror ("shmat ...");

local_var = *(shmaddr + 3); /* read segment etc. */

shmdt (shmaddr); /* detach segment */

When the resource is no longer needed the creator should remove it.
Creator/owner process 2:

key = ftok ("~creator/ipckey", proc_id)
id = shmget (key, 0, 0);
shmctl (id, IPC_RMID, NULL);

1.3 Permissions

Each resource has an associated ipc_perm struct which defines the creator, owner and
access perms for the resource.

struct ipc_perm
key_t key; /* set by creator */
ushort uid; /* owner euid and egid */
ushort gid;
ushort cuid; /* creator euid and egid */
ushort cgid;

Chapter 1: System V IPC. 3

ushort mode; /* access modes in lower 9 bits */
ushort seq; /* sequence number */

The creating process is the default owner. The owner can be reassigned by the creator
and has creator perms. Only the owner, creator or super-user can delete the resource.

The lowest nine bits of the flags parameter supplied by the user to the system call are
compared with the values stored in ipc_perms.mode to determine if the requested access
is allowed. In the case that the system call creates the resource, these bits are initialized
from the user supplied value.

As for files, access permissions are specified as read, write and exec for user, group or
other (though the exec perms are unused). For example 0624 grants read-write to owner,
write-only to group and read-only access to others.

For shared memory, note that read-write access for segments is determined by a separate
flag which is not stored in the mode field. Shared memory segments attached with write
access can be read.

The cuid, cgid, key and seq fields cannot be changed by the user.

1.4 IPC system calls

This section provides an overview of the IPC system calls. See the specific sections on
each type of resource for details.

Each type of mechanism provides a get, ctl and one or more op system calls that allow
the user to create or procure the resource (get), define its behaviour or destroy it (ctl) and
manipulate the resources (op).

1.4.1 The get system calls

The get call typically takes a key and returns a numeric id that is used for further
access. The id is an index into the resource table. A sequence number is maintained and
incremented when a resource is destroyed so that acceses using an obselete id is likely to
fail.

The user also specifies the permissions and other behaviour charecteristics for the current
access. The flags are or-ed with the permissions when invoking system calls as in:

msgflg = IPC_CREAT | IPC_EXCL | 0666;
id = msgget (key, msgflg);

• key : IPC PRIVATE => new instance of resource is initialized.
• flags :

IPC CREAT : resource created for key if it does not exist.
IPC CREAT | IPC EXCL : fail if resource exists for key.

• returns : an identifier used for all further access to the resource.

Note that IPC PRIVATE is not a flag but a special key that ensures (when the call is
successful) that a new resource is created.

Use of IPC PRIVATE does not make the resource inaccessible to other users. For this
you must set the access permissions appropriately.

4 Inter Process Communication.

There is currently no way for a process to ensure exclusive access to a resource.
IPC CREAT | IPC EXCL only ensures (on success) that a new resource was initialized. It
does not imply exclusive access.

See Also : See 〈undefined〉 [msgget], page 〈undefined〉, See 〈undefined〉 [semget], page 〈un-
defined〉, See 〈undefined〉 [shmget], page 〈undefined〉.

1.4.2 The ctl system calls

Provides or alters the information stored in the structure that describes the resource
indexed by id.

#include <sys/msg.h>
struct msqid_ds buf;
err = msgctl (id, IPC_STAT, &buf);
if (err)

!$#%*
else

printf ("creator uid = %d\n", buf.msg_perm.cuid);
....

Commands supported by all ctl calls:

• IPC STAT : read info on resource specified by id into user allocated buffer. The user
must have read access to the resource.

• IPC SET : write info from buffer into resource data structure. The user must be owner
creator or super-user.

• IPC RMID : remove resource. The user must be the owner, creator or super-user.

The IPC RMID command results in immediate removal of a message queue or semaphore
array. Shared memory segments however, are only destroyed upon the last detach after
IPC RMID is executed.

The semctl call provides a number of command options that allow the user to determine
or set the values of the semaphores in an array.

See Also: See 〈undefined〉 [msgctl], page 〈undefined〉, See 〈undefined〉 [semctl], page 〈unde-
fined〉, See 〈undefined〉 [shmctl], page 〈undefined〉.

1.4.3 The op system calls

Used to send or receive messages, read or alter semaphore values, attach or detach
shared memory segments. The IPC NOWAIT flag will cause the operation to fail with
error EAGAIN if the process has to wait on the call.

flags : IPC NOWAIT => return with error if a wait is required.

See Also: See 〈undefined〉 [msgsnd], page 〈undefined〉,See 〈undefined〉 [msgrcv], page 〈unde-
fined〉,See 〈undefined〉 [semop], page 〈undefined〉,See 〈undefined〉 [shmat], page 〈undefined〉,
See 〈undefined〉 [shmdt], page 〈undefined〉.

Chapter 1: System V IPC. 5

1.5 Messages

A message resource is described by a struct msqid_ds which is allocated and initialized
when the resource is created. Some fields in msqid_ds can then be altered (if desired) by
invoking msgctl. The memory used by the resource is released when it is destroyed by a
msgctl call.

struct msqid_ds
struct ipc_perm msg_perm;
struct msg *msg_first; /* first message on queue (internal) */
struct msg *msg_last; /* last message in queue (internal) */
time_t msg_stime; /* last msgsnd time */
time_t msg_rtime; /* last msgrcv time */
time_t msg_ctime; /* last change time */
struct wait_queue *wwait; /* writers waiting (internal) */
struct wait_queue *rwait; /* readers waiting (internal) */
ushort msg_cbytes; /* number of bytes used on queue */
ushort msg_qnum; /* number of messages in queue */
ushort msg_qbytes; /* max number of bytes on queue */
ushort msg_lspid; /* pid of last msgsnd */
ushort msg_lrpid; /* pid of last msgrcv */

To send or receive a message the user allocates a structure that looks like a msgbuf but
with an array mtext of the required size. Messages have a type (positive integer) associated
with them so that (for example) a listener can choose to receive only messages of a given
type.

struct msgbuf
long mtype; type of message (See 〈undefined〉 [msgrcv], page 〈un

defined〉).
char mtext[1]; message text .. why is this not a ptr?

The user must have write permissions to send and read permissions to receive messages
on a queue.

When msgsnd is invoked, the user’s message is copied into an internal struct msg and
added to the queue. A msgrcv will then read this message and free the associated struct
msg.

1.5.1 msgget

A message queue is allocated by a msgget system call :
msqid = msgget (key_t key, int msgflg);

• key: an integer usually got from ftok() or IPC PRIVATE.
• msgflg:

IPC CREAT : used to create a new resource if it does not already exist.
IPC EXCL | IPC CREAT : used to ensure failure of the call if the resource already
exists.
rwxrwxrwx : access permissions.

• returns: msqid (an integer used for all further access) on success. -1 on failure.

6 Inter Process Communication.

A message queue is allocated if there is no resource corresponding to the given key.
The access permissions specified are then copied into the msg_perm struct and the fields in
msqid_ds initialized. The user must use the IPC CREAT flag or key = IPC PRIVATE,
if a new instance is to be allocated. If a resource corresponding to key already exists, the
access permissions are verified.
Errors:
EACCES : (procure) Do not have permission for requested access.
EEXIST : (allocate) IPC CREAT | IPC EXCL specified and resource exists.
EIDRM : (procure) The resource was removed.
ENOSPC : All id’s are taken (max of MSGMNI id’s system-wide).
ENOENT : Resource does not exist and IPC CREAT not specified.
ENOMEM : A new msqid_ds was to be created but ... nomem.

1.5.2 msgsnd

int msgsnd (int msqid, struct msgbuf *msgp, int msgsz, int msgflg);

• msqid : id obtained by a call to msgget.
• msgsz : size of msg text (mtext) in bytes.
• msgp : message to be sent. (msgp->mtype must be positive).
• msgflg : IPC NOWAIT.
• returns : msgsz on success. -1 on error.

The message text and type are stored in the internal msg structure. msg_cbytes, msg_
qnum, msg_lspid, and msg_stime fields are updated. Readers waiting on the queue are
awakened.
Errors:
EACCES : Do not have write permission on queue.
EAGAIN : IPC NOWAIT specified and queue is full.
EFAULT : msgp not accessible.
EIDRM : The message queue was removed.
EINTR : Full queue ... would have slept but ... was interrupted.
EINVAL : mtype < 1, msgsz > MSGMAX, msgsz < 0, msqid < 0 or unused.
ENOMEM : Could not allocate space for header and text.

1.5.3 msgrcv

int msgrcv (int msqid, struct msgbuf *msgp, int msgsz, long msgtyp,
int msgflg);

• msqid : id obtained by a call to msgget.
• msgsz : maximum size of message to receive.
• msgp : allocated by user to store the message in.
• msgtyp :

0 => get first message on queue.
> 0 => get first message of matching type.

Chapter 1: System V IPC. 7

< 0 => get message with least type which is <= abs(msgtyp).

• msgflg :

IPC NOWAIT : Return immediately if message not found.

MSG NOERROR : The message is truncated if it is larger than msgsz.

MSG EXCEPT : Used with msgtyp > 0 to receive any msg except of specified type.

• returns : size of message if found. -1 on error.

The first message that meets the msgtyp specification is identified. For msgtyp < 0, the
entire queue is searched for the message with the smallest type.

If its length is smaller than msgsz or if the user specified the MSG NOERROR flag, its
text and type are copied to msgp->mtext and msgp->mtype, and it is taken off the queue.

The msg_cbytes, msg_qnum, msg_lrpid, and msg_rtime fields are updated. Writers
waiting on the queue are awakened.

Errors:
E2BIG : msg bigger than msgsz and MSG NOERROR not specified.
EACCES : Do not have permission for reading the queue.
EFAULT : msgp not accessible.
EIDRM : msg queue was removed.
EINTR : msg not found ... would have slept but ... was interrupted.
EINVAL : msgsz > msgmax or msgsz < 0, msqid < 0 or unused.
ENOMSG : msg of requested type not found and IPC NOWAIT specified.

1.5.4 msgctl

int msgctl (int msqid, int cmd, struct msqid_ds *buf);

• msqid : id obtained by a call to msgget.

• buf : allocated by user for reading/writing info.

• cmd : IPC STAT, IPC SET, IPC RMID (See 〈undefined〉 [syscalls], page 〈undefined〉).

IPC STAT results in the copy of the queue data structure into the user supplied buffer.

In the case of IPC SET, the queue size (msg_qbytes) and the uid, gid, mode (low 9 bits)
fields of the msg_perm struct are set from the user supplied values. msg_ctime is updated.

Note that only the super user may increase the limit on the size of a message queue
beyond MSGMNB.

When the queue is destroyed (IPC RMID), the sequence number is incremented and all
waiting readers and writers are awakened. These processes will then return with errno set
to EIDRM.

Errors: EPERM : Insufficient privilege to increase the size of the queue (IPC SET) or
remove it (IPC RMID).
EACCES : Do not have permission for reading the queue (IPC STAT).
EFAULT : buf not accessible (IPC STAT, IPC SET).
EIDRM : msg queue was removed.
EINVAL : invalid cmd, msqid < 0 or unused.

8 Inter Process Communication.

1.5.5 Limis on Message Resources

Sizeof various structures:
msqid ds 52 /* 1 per message queue .. dynamic */
msg 16 /* 1 for each message in system .. dynamic */
msgbuf 8 /* allocated by user */

Limits
• MSGMNI : number of message queue identifiers ... policy.
• MSGMAX : max size of message. Header and message space allocated on one page.

MSGMAX = (PAGE SIZE - sizeof(struct msg)). Implementation maximum MSGMAX
= 4080.

• MSGMNB : default max size of a message queue ... policy. The super-user can increase
the size of a queue beyond MSGMNB by a msgctl call.

Unused or unimplemented:
MSGTQL max number of message headers system-wide.
MSGPOOL total size in bytes of msg pool.

1.6 Semaphores

Each semaphore has a value >= 0. An id provides access to an array of nsems semaphores.
Operations such as read, increment or decrement semaphores in a set are performed by the
semop call which processes nsops operations at a time. Each operation is specified in a
struct sembuf described below. The operations are applied only if all of them succeed.

If you do not have a need for such arrays, you are probably better off using the test_bit,
set_bit and clear_bit bit-operations defined in <asm/bitops.h>.

Semaphore operations may also be qualified by a SEM UNDO flag which results in the
operation being undone when the process exits.

If a decrement cannot go through, a process will be put to sleep on a queue waiting
for the semval to increase unless it specifies IPC NOWAIT. A read operation can similarly
result in a sleep on a queue waiting for semval to become 0. (Actually there are two queues
per semaphore array).
A semaphore array is described by:

struct semid_ds
struct ipc_perm sem_perm;
time_t sem_otime; /* last semop time */
time_t sem_ctime; /* last change time */
struct wait_queue *eventn; /* wait for a semval to increase */
struct wait_queue *eventz; /* wait for a semval to become 0 */
struct sem_undo *undo; /* undo entries */
ushort sem_nsems; /* no. of semaphores in array */

Each semaphore is described internally by :
struct sem
short sempid; /* pid of last semop() */

Chapter 1: System V IPC. 9

ushort semval; /* current value */
ushort semncnt; /* num procs awaiting increase in semval */
ushort semzcnt; /* num procs awaiting semval = 0 */

1.6.1 semget

A semaphore array is allocated by a semget system call:
semid = semget (key_t key, int nsems, int semflg);

• key : an integer usually got from ftok or IPC PRIVATE

• nsems :

of semaphores in array (0 <= nsems <= SEMMSL <= SEMMNS)

0 => dont care can be used when not creating the resource. If successful you
always get access to the entire array anyway.

• semflg :

IPC CREAT used to create a new resource

IPC EXCL used with IPC CREAT to ensure failure if the resource exists.

rwxrwxrwx access permissions.

• returns : semid on success. -1 on failure.

An array of nsems semaphores is allocated if there is no resource corresponding to the
given key. The access permissions specified are then copied into the sem_perm struct for
the array along with the user-id etc. The user must use the IPC CREAT flag or key =
IPC PRIVATE if a new resource is to be created.

Errors:
EINVAL : nsems not in above range (allocate).
nsems greater than number in array (procure).
EEXIST : (allocate) IPC CREAT | IPC EXCL specified and resource exists.
EIDRM : (procure) The resource was removed.
ENOMEM : could not allocate space for semaphore array.
ENOSPC : No arrays available (SEMMNI), too few semaphores available (SEMMNS).
ENOENT : Resource does not exist and IPC CREAT not specified.
EACCES : (procure) do not have permission for specified access.

1.6.2 semop

Operations on semaphore arrays are performed by calling semop :
int semop (int semid, struct sembuf *sops, unsigned nsops);

• semid : id obtained by a call to semget.

• sops : array of semaphore operations.

• nsops : number of operations in array (0 < nsops < SEMOPM).

• returns : semval for last operation. -1 on failure.

Operations are described by a structure sembuf:

10 Inter Process Communication.

struct sembuf
ushort sem_num; /* semaphore index in array */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

The value sem_op is to be added (signed) to the current value semval of the semaphore
with index sem num (0 .. nsems -1) in the set. Flags recognized in sem flg are IPC NOWAIT
and SEM UNDO.
Two kinds of operations can result in wait:
1. If sem op is 0 (read operation) and semval is non-zero, the process sleeps on a queue

waiting for semval to become zero or returns with error EAGAIN if (IPC NOWAIT |
sem flg) is true.

2. If (sem op < 0) and (semval + sem op < 0), the process either sleeps on a queue waiting
for semval to increase or returns with error EAGAIN if (sem flg & IPC NOWAIT) is
true.

The array sops is first read in and preliminary checks performed on the arguments. The
operations are parsed to determine if any of them needs write permissions or requests an
undo operation.

The operations are then tried and the process sleeps if any operation that does not
specify IPC NOWAIT cannot go through. If a process sleeps it repeats these checks on
waking up. If any operation that requests IPC NOWAIT, cannot go through at any stage,
the call returns with errno set to EAGAIN.

Finally, operations are committed when all go through without an intervening sleep.
Processes waiting on the zero queue or increment queue are awakened if any of the semval’s
becomes zero or is incremented respectively.
Errors:
E2BIG : nsops > SEMOPM.
EACCES : Do not have permission for requested (read/alter) access.
EAGAIN : An operation with IPC NOWAIT specified could not go through.
EFAULT : The array sops is not accessible.
EFBIG : An operation had semnum >= nsems.
EIDRM : The resource was removed.
EINTR : The process was interrupted on its way to a wait queue.
EINVAL : nsops is 0, semid < 0 or unused.
ENOMEM : SEM UNDO requested. Could not allocate space for undo structure.
ERANGE : sem op + semval > SEMVMX for some operation.

1.6.3 semctl

int semctl (int semid, int semnum, int cmd, union semun arg);

• semid : id obtained by a call to semget.
• cmd :

GETPID return pid for the process that executed the last semop.
GETVAL return semval of semaphore with index semnum.
GETNCNT return number of processes waiting for semval to increase.

Chapter 1: System V IPC. 11

GETZCNT return number of processes waiting for semval to become 0

SETVAL set semval = arg.val.

GETALL read all semval’s into arg.array.

SETALL set all semval’s with values given in arg.array.

• returns : 0 on success or as given above. -1 on failure.

The first 4 operate on the semaphore with index semnum in the set. The last two operate
on all semaphores in the set.

arg is a union :
union semun

int val; value for SETVAL.
struct semid_ds *buf; buffer for IPC_STAT and IPC_SET.
ushort *array; array for GETALL and SETALL

• IPC SET, SETVAL, SETALL : sem ctime is updated.

• SETVAL, SETALL : Undo entries are cleared for altered semaphores in all processes.
Processes sleeping on the wait queues are awakened if a semval becomes 0 or increases.

• IPC SET : sem perm.uid, sem perm.gid, sem perm.mode are updated from user sup-
plied values.

Errors: EACCES : do not have permission for specified access.
EFAULT : arg is not accessible.
EIDRM : The resource was removed.
EINVAL : semid < 0 or semnum < 0 or semnum >= nsems.
EPERM : IPC RMID, IPC SET ... not creator, owner or super-user.
ERANGE : arg.array[i].semval > SEMVMX or < 0 for some i.

1.6.4 Limits on Semaphore Resources

Sizeof various structures:
semid_ds 44 /* 1 per semaphore array .. dynamic */
sem 8 /* 1 for each semaphore in system .. dynamic */
sembuf 6 /* allocated by user */
sem_undo 20 /* 1 for each undo request .. dynamic */

Limits :

• SEMVMX 32767 semaphore maximum value (short).

• SEMMNI number of semaphore identifiers (or arrays) system wide...policy.

• SEMMSL maximum number of semaphores per id. 1 semid ds per array, 1 struct
sem per semaphore => SEMMSL = (PAGE SIZE - sizeof(semid ds)) / sizeof(sem).
Implementation maximum SEMMSL = 500.

• SEMMNS maximum number of semaphores system wide ... policy. Setting SEMMNS
>= SEMMSL*SEMMNI makes it irrelevent.

• SEMOPM Maximum number of operations in one semop call...policy.

12 Inter Process Communication.

Unused or unimplemented:
SEMAEM adjust on exit max value.
SEMMNU number of undo structures system-wide.
SEMUME maximum number of undo entries per process.

1.7 Shared Memory

Shared memory is distinct from the sharing of read-only code pages or the sharing of
unaltered data pages that is available due to the copy-on-write mechanism. The essential
difference is that the shared pages are dirty (in the case of Shared memory) and can be
made to appear at a convenient location in the process’ address space.
A shared segment is described by :

struct shmid_ds
struct ipc_perm shm_perm;
int shm_segsz; /* size of segment (bytes) */
time_t shm_atime; /* last attach time */
time_t shm_dtime; /* last detach time */
time_t shm_ctime; /* last change time */
ulong *shm_pages; /* internal page table */
ushort shm_cpid; /* pid, creator */
ushort shm_lpid; /* pid, last operation */
short shm_nattch; /* no. of current attaches */

A shmget allocates a shmid ds and an internal page table. A shmat maps the segment
into the process’ address space with pointers into the internal page table and the actual
pages are faulted in as needed. The memory associated with the segment must be explicitly
destroyed by calling shmctl with IPC RMID.

1.7.1 shmget

A shared memory segment is allocated by a shmget system call:
int shmget(key_t key, int size, int shmflg);

• key : an integer usually got from ftok or IPC PRIVATE
• size : size of the segment in bytes (SHMMIN <= size <= SHMMAX).
• shmflg :

IPC CREAT used to create a new resource
IPC EXCL used with IPC CREAT to ensure failure if the resource exists.
rwxrwxrwx access permissions.

• returns : shmid on success. -1 on failure.

A descriptor for a shared memory segment is allocated if there isn’t one corresponding
to the given key. The access permissions specified are then copied into the shm_perm struct
for the segment along with the user-id etc. The user must use the IPC CREAT flag or key
= IPC PRIVATE to allocate a new segment.

If the segment already exists, the access permissions are verified, and a check is made to
see that it is not marked for destruction.

Chapter 1: System V IPC. 13

size is effectively rounded up to a multiple of PAGE SIZE as shared memory is allocated
in pages.
Errors:
EINVAL : (allocate) Size not in range specified above.
(procure) Size greater than size of segment.
EEXIST : (allocate) IPC CREAT | IPC EXCL specified and resource exists.
EIDRM : (procure) The resource is marked destroyed or was removed.
ENOSPC : (allocate) All id’s are taken (max of SHMMNI id’s system-wide). Allocating a
segment of the requested size would exceed the system wide limit on total shared memory
(SHMALL).
ENOENT : (procure) Resource does not exist and IPC CREAT not specified.
EACCES : (procure) Do not have permission for specified access.
ENOMEM : (allocate) Could not allocate memory for shmid ds or pg table.

1.7.2 shmat

Maps a shared segment into the process’ address space.
char *virt_addr;
virt_addr = shmat (int shmid, char *shmaddr, int shmflg);

• shmid : id got from call to shmget.
• shmaddr : requested attach address.

If shmaddr is 0 the system finds an unmapped region.
If a non-zero value is indicated the value must be page aligned or the user must specify
the SHM RND flag.

• shmflg :
SHM RDONLY : request read-only attach.
SHM RND : attach address is rounded DOWN to a multiple of SHMLBA.

• returns: virtual address of attached segment. -1 on failure.

When shmaddr is 0, the attach address is determined by finding an unmapped region in
the address range 1G to 1.5G, starting at 1.5G and coming down from there. The algorithm
is very simple so you are encouraged to avoid non-specific attaches.
Algorithm:

Determine attach address as described above.
Check region (shmaddr, shmaddr + size) is not mapped and allocate

page tables (undocumented SHM REMAP flag!).
Map the region by setting up pointers into the internal page table.
Add a descriptor for the attach to the task struct for the process.
shm_nattch, shm_lpid, shm_atime are updated.

Notes:
The brk value is not altered. The segment is automatically detached when the process
exits. The same segment may be attached as read-only or read-write and more than once
in the process’ address space. A shmat can succeed on a segment marked for destruction.
The request for a particular type of attach is made using the SHM RDONLY flag. There is
no notion of a write-only attach. The requested attach permissions must fall within those
allowed by shm_perm.mode.

14 Inter Process Communication.

Errors:
EACCES : Do not have permission for requested access.
EINVAL : shmid < 0 or unused, shmaddr not aligned, attach at brk failed.
EIDRM : resource was removed.
ENOMEM : Could not allocate memory for descriptor or page tables.

1.7.3 shmdt

int shmdt (char *shmaddr);

• shmaddr : attach address of segment (returned by shmat).
• returns : 0 on success. -1 on failure.

An attached segment is detached and shm_nattch decremented. The occupied region
in user space is unmapped. The segment is destroyed if it is marked for destruction and
shm_nattch is 0. shm_lpid and shm_dtime are updated.
Errors:
EINVAL : No shared memory segment attached at shmaddr.

1.7.4 shmctl

Destroys allocated segments. Reads/Writes the control structures.
int shmctl (int shmid, int cmd, struct shmid_ds *buf);

• shmid : id got from call to shmget.
• cmd : IPC STAT, IPC SET, IPC RMID (See 〈undefined〉 [syscalls], page 〈undefined〉).

IPC SET : Used to set the owner uid, gid, and shm perms.mode field.
IPC RMID : The segment is marked destroyed. It is only destroyed on the last
detach.
IPC STAT : The shmid ds structure is copied into the user allocated buffer.

• buf : used to read (IPC STAT) or write (IPC SET) information.
• returns : 0 on success, -1 on failure.

The user must execute an IPC RMID shmctl call to free the memory allocated by the
shared segment. Otherwise all the pages faulted in will continue to live in memory or swap.
Errors:
EACCES : Do not have permission for requested access.
EFAULT : buf is not accessible.
EINVAL : shmid < 0 or unused.
EIDRM : identifier destroyed.
EPERM : not creator, owner or super-user (IPC SET, IPC RMID).

1.7.5 Limits on Shared Memory Resources

Limits:
• SHMMNI max num of shared segments system wide ... 4096.
• SHMMAX max shared memory segment size (bytes) ... 4M

Chapter 1: System V IPC. 15

• SHMMIN min shared memory segment size (bytes). 1 byte (though PAGE SIZE is the
effective minimum size).

• SHMALL max shared mem system wide (in pages) ... policy.
• SHMLBA segment low boundary address multiple. Must be page aligned. SHMLBA

= PAGE SIZE.

Unused or unimplemented:
SHMSEG : maximum number of shared segments per process.

1.8 Miscellaneous Notes

The system calls are mapped into one – sys_ipc. This should be transparent to the
user.

1.8.1 Semaphore undo requests

There is one sem undo structure associated with a process for each semaphore which was
altered (with an undo request) by the process. sem_undo structures are freed only when
the process exits.

One major cause for unhappiness with the undo mechanism is that it does not fit in
with the notion of having an atomic set of operations on an array. The undo requests for
an array and each semaphore therein may have been accumulated over many semop calls.
Thus use the undo mechanism with private semaphores only.

Should the process sleep in exit or should all undo operations be applied with the
IPC NOWAIT flag in effect? Currently those undo operations which go through immedi-
ately are applied and those that require a wait are ignored silently.

1.8.2 Shared memory, malloc and the brk.

Note that since this section was written the implementation was changed so that non-
specific attaches are done in the region 1G - 1.5G. However much of the following is still
worth thinking about so I left it in.

On many systems, the shared memory is allocated in a special region of the address
space ... way up somewhere. As mentioned earlier, this implementation attaches shared
segments at the lowest possible address. Thus if you plan to use malloc, it is wise to malloc
a large space and then proceed to attach the shared segments. This way malloc sets the
brk sufficiently above the region it will use.

Alternatively you can use sbrk to adjust the brk value as you make shared memory
attaches. The implementation is not very smart about selecting attach addresses. Using
the system default addresses will result in fragmentation if detaches do not occur in the
reverse sequence as attaches.

Taking control of the matter is probably best. The rule applied is that attaches are
allowed in unmapped regions other than in the text space (see <a.out.h>). Also remember
that attach addresses and segment sizes are multiples of PAGE SIZE.

One more trap (I quote Bruno on this). If you use malloc() to get space for your shared
memory (ie. to fix the brk), you must ensure you get an unmapped address range. This

16 Inter Process Communication.

means you must mallocate more memory than you had ever allocated before. Memory
returned by malloc(), used, then freed by free() and then again returned by malloc is no
good. Neither is calloced memory.

Note that a shared memory region remains a shared memory region until you unmap it.
Attaching a segment at the brk and calling malloc after that will result in an overlap of
what malloc thinks is its space with what is really a shared memory region. For example
in the case of a read-only attach, you will not be able to write to the overlapped portion.

1.8.3 Fork, exec and exit

On a fork, the child inherits attached shared memory segments but not the semaphore
undo information.

In the case of an exec, the attached shared segments are detached. The sem undo
information however remains intact.

Upon exit, all attached shared memory segments are detached. The adjust values in
the undo structures are added to the relevant semvals if the operations are permitted.
Disallowed operations are ignored.

1.8.4 Other Features

These features of the current implementation are likely to be modified in the future.
The SHM LOCK and SHM UNLOCK flag are available (super-user) for use with the

shmctl call to prevent swapping of a shared segment. The user must fault in any pages
that are required to be present after locking is enabled.

The IPC INFO, MSG STAT, MSG INFO, SHM STAT, SHM INFO, SEM STAT, SEM-
INFO ctl calls are used by the ipcs program to provide information on allocated resources.
These can be modified as needed or moved to a proc file system interface.

Thanks to Ove Ewerlid, Bruno Haible, Ulrich Pegelow and Linus Torvalds for ideas,
tutorials, bug reports and fixes, and merriment. And more thanks to Bruno.

i

Table of Contents

1 System V IPC. 1
1.1 Overview . 1
1.2 example . 1
1.3 Permissions . 2
1.4 IPC system calls . 3

1.4.1 The get system calls . 3
1.4.2 The ctl system calls . 4
1.4.3 The op system calls . 4

1.5 Messages . 5
1.5.1 msgget . 5
1.5.2 msgsnd . 6
1.5.3 msgrcv . 6
1.5.4 msgctl . 7
1.5.5 Limis on Message Resources . 8

1.6 Semaphores . 8
1.6.1 semget . 9
1.6.2 semop . 9
1.6.3 semctl . 10
1.6.4 Limits on Semaphore Resources 11

1.7 Shared Memory . 12
1.7.1 shmget . 12
1.7.2 shmat . 13
1.7.3 shmdt . 14
1.7.4 shmctl . 14
1.7.5 Limits on Shared Memory Resources 14

1.8 Miscellaneous Notes . 15
1.8.1 Semaphore undo requests . 15
1.8.2 Shared memory, malloc and the brk. 15
1.8.3 Fork, exec and exit . 16
1.8.4 Other Features . 16

ii Inter Process Communication.

