
RO
BE

RT
 B

UR
GE

R

Open Sources
by Cameron Laird

SW Expert  ■ September 2001 41

Balancing Act for SCM
II

n upcoming columns I look at several
domains–network management, geo-
graphic information systems (GIS),

which make and annotate maps of the
real world, and so on–where proprietary
systems dominated during the ‘90s. Has
open source made a difference in these
areas? Does proprietary software continue
to lead the markets, or are new devel-
opment models such as open source
“shaking up” the products available to
end-users? Think about software configu-
ration management (SCM) products, for
example; is the top SCM software open
source or closed?

Maybe neither. That’s the reality Larry
McVoy, founder of BitMover (http://
www.bitmover.com ) is out to create.
Not only does he aim for his company’s
BitKeeper (BK) product to be the best-
engineered SCM, he also wants to create
a new business model for software. Bit-
Mover boasts a high ratio of interesting
industry stories to employees. Although
it has only a handful of engineers, their
aggregate experience is deep. The second

half of this column profiles the BK soft-
ware they support and enhance. Before
turning to that, though, it’s important to
understand BM’s business model, and a
little bit of the history that brought them
this far.

McVoy thinks software has the poten-
tial to benefit three constituencies:

• Producers
• Consumers who are willing to pay

(“paying customers”)
• Consumers who are not willing to

pay (“free customers”)
Plenty of businesses and individuals

are happy to pay for software. The bene-
fit the software gives them–attractively
printed reports from existing information
stores, for example–exceeds the license
fee and all other costs involved in use of
the software. These are the people who
funded the “shrink-wrap” explosion of
the ‘80s and ‘90s.

Buyers and sellers traditionally have a
stake in a product. Software is special in
that people neither giving nor receiving
money can still be important to the health

of the market. Free customers contribute
not money, but vital engineering informa-
tion back to the producers. Closed-source
development of proprietary products
puts money in the treasuries of producers,
and delivers value to paying customers. It
does nothing for free customers. McVoy
argues, moreover, that closed source
“leaves money on the table”–it thwarts
potential contributions from volunteers,
for example. While conventional wisdom
has it that open-source volunteers engi-
neer patches and enhancements, McVoy
claims their greatest contribution is in
testing. “No testing department can ever
hope to match the testing that happens
as a result of one post to freshmeat.net,”
says McVoy. It is not unheard of to have
100,000 downloads in a matter of days
after such a post.

Open source is also sub-optimal.
McVoy says no organization which
derives its revenue solely from open
source has ever invented anything truly
new. By his analysis, “For every good
idea that comes out, there are hundreds

http://www.bitmover.com


Open Sources

or thousands that end up in the trash can. Someone has to pay
for the bad ideas and open source simply doesn’t have the mar-
gins to do so.” McVoy recognizes his point of view is unpopular
with open-source zealots. He insists, though, that open source
simply can’t capture enough revenue to
fund the labor involved in conceiving,
developing, and polishing a product
the way paying customers expect it to.
Although open source creates tremen-
dous value for free customers, non-
developers don’t receive the packages
they want and understand. 

McVoy has meditated at length 
on these different models. He has 
an analysis of open vs. closed source
that’s beyond the scope of this column.
In fact, one way to think about BitMover is as a realization of
his ideas on development models. 

In particular, one of BitMover’s aims is to explore a part of
“business-model” space that McVoy considers more promising.
He’s out to combine the engineering excellence of open source
with the consumer values and business sustainability of pro-
prietary products. McVoy calls his hybrid “business source.” 

Profits with the BKL
The BitKeeper License (BKL) and associated technical

mechanisms are his vehicle for reaching that happy marriage.

Source code for his company’s products is available; engineers
can comment on and correct it. He also provides for modifi-
cation and redistribution of source code, just as with such
open-source licenses as the GNU Public License (GPL) and

Perl’s Artistic License. The BKL
“hooks” customers, though, by
requiring changes either to pass
specific regression tests, or to be
logged publicly. Customers who
don’t want to do their business in
the open pay for a more tradition-
al license. Their fees finance the
maintenance of this “mixed use
business model.”

It’s an interesting construc-
tion. McVoy has applied lessons

he’s learned at such high-profile employers as Lachman, SCO,
Sun, SGI, Cobalt, and Google to launch what he intends as a
fresh way to produce software. He claims a certain level of
success already; through careful control of BM’s growth, it’s
been a profitable company since 1999. Read the details of the
BKL at http://www.bitkeeper.com/4.4.2.html.

Zero-price software still appears to be the asymptote our
industry is approaching. Software copy protection, dongles,
and even the fanciest micropayment schemes cooked up by
IBM and other industry heavyweights seem like feeble jokes,
or, at best, specialty items. Will BM reverse this trend? I don’t
know. It appears to be sustainable in its own business, though,
and that constitutes newsworthy and healthy competition for
both open- and closed-source companies. 

Put aside for a moment BitMover, the business model. Is
BitKeeper useful as a software product?

It’s an engineer’s dream.

Deluxe Source Control
SCM is a bit like trash disposal. Although there’s no glamour

to it, it’s valuable–valuable enough to inspire plenty of hollering
when it doesn’t work right. BK does a lot that’s right. That
reflects, in part, the background of its engineers, mostly “ex-
kernel hackers,” in McVoy’s characterization. SCM companies
rarely attract or retain that kind of talent, because most pro-
grammers don’t find the domain “sexy” enough. 

The main SCM products pertinent to Server/Workstation
Expert readers are a few old-line no-charge UNIX-oriented
products, including SCCS, RCS, and CVS, and pricey alterna-
tives from companies such as Continuus, Perforce, Rational, and
so on. The latter all present graphical user interface (GUI) views
for ease of use. 

Good SCM is a hard problem. Manipulation of source
code is what developers do for eight or more hours daily, and
any faults in SCM are sure to cause pain in at least some work-
ing situations. BK seems to bring more pleasure than pain. 

Commercial SCM is notorious for its high “activation
energy.” Vendors generally recommend training and often
dedication of one full-time administrator. Real-life installations
often take a week of preparation before users see their code
moving into and out of the system correctly. Quite apart from

42 SW Expert  ■ September 2001

Figure 1. revtool

revtool browses the history of a project or file. This
screenshot captures part of the history of BK itself. Button
clicks give immediate access to such functionality as diff
comparisons between selected revisions, and display of
check-in comments. 

SCM is like trash
disposal. Although
there’s no glamour to it,
it’s valuable–valuable
enough to inspire plenty
of hollering when it
doesn’t work right.

http://www.bitkeeper.com/4.4.2.html


SW Expert  ■ September 2001 43

Open Sources

licensing fees, it can take thousands of dollars of invested time
to understand a specific SCM well enough to judge its fitness
for a particular organization.

BK avoids that hazard. One BK Web page explicitly mentions
“the five-minute test” of whether a product can do something
useful in the first fraction of an hour after installation. BK can.
It’s easy to do the sensible things engineers generally want to do
with SCM. While BK is compatible with traditional UNIX-
style SCM commands like SCCS and RCS in its syntax, it builds
in such modern conveniences as an extensive help system (avail-
able at http://www.bitkeeper.com/5.1.html) and
responsive GUI screens (see Figures 1, 2, and 3).

Scalable and Comprehensive
BK pays off even bigger after the first five minutes. The

unit of BK transactions is the “changeset.” This has enor-
mous advantages over the file-oriented CVS model. Suppose,
for example, that you change the signature of one C-coded
function, defined in one source file, and invoked in another.
With CVS and comparable managers, you check in changes to
two different files, and there’s no way to enforce synchrony
between the changes. The inevitable result is that someone has
to write “by hand” that “any f1.c after version 1.53 needs f2.c of
version 2.18 or later.” By contrast, BK “checks in” changesets.
BK manages transactions so that it’s natural to “roll back”
change 710, which simultaneously reverts both f1.c and f2.c.

Moreover, BK keeps complete information about its
changesets, and doesn’t discard “merged data.” This means
with BK it’s easy to start with a baseline of, say, change 700,
“roll in” changes 710, 711, and 714, and roll out 694. The
effect is to create a set of source files with specific, properly
synchronized corrections and enhancements. While that’s the
promise of all SCM products, most of them stumble when
they encounter complex changes involving different develop-
ers working on multiple, overlapping files. BK gives correct
results for all such operations. (For more of the technical
underpinnings, see “Tree Tagging,” Page 44.) 

Not only does BK give correct results, it gives them quickly.
McVoy and his staff have gone to the trouble of testing specific
operations other products also do. While all the comparisons
he related to me were favorable to BK, I agree with him that
they’re appropriate and meaningful. As another BM Web page
correctly says, “The problem with most configuration manage-
ment systems is they don’t scale. They all work great for 1-5
developers, but they tend to fall apart when you have 1,000
developers. BitKeeper’s architecture is inherently scalable, so
what works for five developers works equally well for 1,000
or 10,000.” Complex merges that take several minutes with
other products take BK seconds, in my own tests. 

There’s more to BK’s scalability. The uniformity of BK’s
changeset model makes it practical to define subteams of
developers, give them their own subrepositories, and manage
their checkins separately from a main line of development. One
of the benefits of the tutorial is its instruction in such novel
processes. Along with these complex project hierarchies that are
beyond the grasp of other SCM products, the tutorial even
describes effective peer-to-peer (P2P) development models.

Transport Neutrality
BK’s communication and security features support yet

another aspect of scalability. A typical project in the year 2001
might have three engineers in an office in California, another
one or two on the U.S. East Coast, and several others scattered
over Europe, some with sporadic network connections. BK
makes it easy to maintain local repositories, synchronized by
any of such transports as ssh, SMTP, and HTTP. Among
other things, this makes BK practical in heavily and heteroge-
neously firewalled situations. Developers concentrate on the
source code, as they should, and BK takes care of the details 
of managing all the interactions. This is why I call BK an
engineer’s dream–it does all the things I knew 20 years ago 
I wanted SCM to do for me. 

So, should you be using BK? I’m still not sure. CVS has 
an enormous “penetration” in the open-source world, and 
it is hard overcoming such a leader. The other commercial
products also boast plenty of features, and I have enough
experience with several of them to know how many problems
they solve. Also, BK has one serious conceptual problem, a
consequence of what I call “semantic ignorance.” BK’s cur-
rent changeset model preserves time sequences. If change B
happened after change A, all rollbacks and rollforwards with 
B necessarily have A. The result is the creation of “false
dependencies” in large projects with many unrelated files.
Think, for example, of the entire FreeBSD CVS repository,
which includes source for thousands of different applications.
An engineer might want to work only with device-driver
enhancements; because these are interleaved in time with
corrections to the authentication source, though, BK labors 
to “linearize” changes. This forces people who want the

Figure 2. csettool

csettool browses changesets.

http://www.bitkeeper.com/5.1.html


Open Sources

authentication changes to also take the device-driver enhance-
ments. Although there’s no reason to believe BK introduces
any errors in this situation, it’s not as convenient and responsive
as one might imagine.

McVoy says his engineering team already has designed a 
correction for this situation of large, weakly-coupled repositories.
He expects to implement the fix no later than release 3.0 of BK.
I modularize my work in a way to avoid this blemish. If BK con-
tinues to hold up in my tests, it’s what I’ll choose. Its high-per-
formance, correct “changeset” semantics, and transport flexibility
solve the problems that plague competing SCM products. Future
installments of “Open Sources” may return for a more detailed
look at BK. I suspect its scriptable “triggers” and their use in
policy automation will make a particularly apt follow-up subject. 

Reference and Acknowledgments
For more info about SCM, start with “Dave Eaton’s Software

Configuration Management Index” at http://www.dave
eaton.com/scm/. If you are active in open-source develop-
ment, you’ll want to make a modest investment in the CVS Poc-
ket Reference : http://www.oreilly.com/catalog/cvspr/.

Thanks to Aaron Kushner of BitMover for his help with BK.
Also, special thanks this month go to Leam Hall and Bryan
Oakley. Bryan, famous for the high-quality GUI widgets he’s
given away to the Tcl/Tk programming community, first rec-
ommended BitMover as an interesting story. After months of
quiet productivity, Phaseit somehow had hardware faults in five
(!) different hosts in a two-week interval. Leam rushed a replace-
ment desktop allowing this column to make publication.   ✒

Cameron Laird is vice president of Phaseit Inc. (http://www.
phaseit.net). Like McVoy, he had a string of successive develop-
ment jobs which all involved a necessary detour through setting up
a “homegrown” configuration management system. Unlike McVoy,
he did not set up a company to productize the lessons he learned. 

44 SW Expert  ■ September 2001

Tree Tagging

One way to look at BitKeeper is as a triumph of wise
data structures. Its performance on some of the
complex operations working developers typically

want is flabbergasting. How does it do so well?
One of BK’s secrets, in McVoy’s words, “is that each

change represents not only what changed but the context
in which it changed. Another way to say that is that each
changeset is a snapshot of the whole tree.” The state of a
project at changeset 3.700 includes not only all changes
in 3.700, but also all files not changed in 3.700. 

SCM vernacular recognizes this reality in talk of “tag-
ging the tree.” Most SCM products can roll backwards
only to points that have been distinguished by a separate
operation of “tagging the tree,” which identifies a well-
defined state. What happens in practice is that trees aren’t
tagged. Doing so is cumbersome and unrewarding.
Because it isn’t done, rollbacks are fragile and approximate.
This slashes the power of SCM down to the rather feeble
“version control” that most organizations actually practice. 

BK’s trees are always tagged–automatically. And it hap-
pens nearly for free, because the structures that capture
state are so apt. BK tags in msecs, even for large trees.
Other systems can take minutes, as they tag by walking
through the file system. BK keeps even tag or context infor-
mation in its own repository, so it can be blindingly fast. 

I’ve worked with SCM products that make ingenious
shortcuts. When I first heard about BK, I assumed it was
vulnerable to the data corruption I experienced with com-
peting products. For an ancient analogue of the “Windows
vs. Linux” battles, ask RCS and SCCS users about the
advantages of forward vs. reverse differences. Earlier, less
reliable hard-disk drives inflamed engineers’ passions about
such algorithmic differences, if only because they’d experi-
enced the misery of restoring corrupted revision histories. 

BK, though, apparently isn’t so delicate. In fact, BK’s
design deliberately incorporates redundancy that protects it
from file system corruptions to the point that it detects and
resists errors in the network file system (NFS). 

Figure 3. repotool

repotool is like a master project integrated development
environment (IDE) browser. It ties together all the other
tools. This view displays the state of different source files:
locked, modified, and so on. A right button-click opens a
source file within an editor of your own choice. 

http://www.daveeaton.com/scm/
http://www.oreilly.com/catalog/cvspr/

	Balancing Act for SCM
	Profits with the BKL
	Deluxe Source Control
	Figure 1. revtool
	Figure 2. csettool
	Figure 3. repotool

	Scalable and Comprehensive
	Transport Neutrality
	Reference and Acknowledgments
	Tree Tagging



