
Mach: A Foundation for Open Systems

A Position Paper

Richard Rashid, Robert Baron, Alessandro Forin, David Golub,
Michael Jones, Daniel Julin, Douglas Orr, Richard Sanzi

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

for proprietary systems -- each at considerable expense. Bal-1. Introduction
looning software development costs translate into increasedOperating systems have become one of the most hotly con-
cost for the user and delays in the introduction of new featurestested battlegrounds for "open system standards". Various
and new applications.national, international and industry groups are attempting to

define, implement and ultimately convince users to buy new
"open" computing environments. Most of these efforts have 2. An Alternative Approach to OS

1centered around versions of the UNIX [9] operating system, Organization
but there is no consensus among industrial groups as to which An alternative approach to building an entire operating sys-
"version" of UNIX is ultimately the correct basis for a open tem is to separate those parts of the operating system which
system standard. Already two major industrial organizations, control the basic hardware resources -- often called the
the Open Software Foundation and UNIX International, have operating system "kernel" -- from those parts of the operating
endorsed two rather different UNIX implementations: IBM’s system which determine the unique characteristics of an
AIX and AT&T’s System V.4. Non-UNIX systems such as operating system environment, for example a particular file
the Macintosh OS, MS-DOS and OS/2 are also seen as system interface. The advantage of this scheme is that it can
"standards" by various hardware and software developers. allow more than one operating system environment to be

This divergence of systems and standards raises fundamental implemented on the same hardware/software base so that
issues about the strategy which should be employed in the machine dependent software need be written only once for
development of open operating systems. It has become in- each new architecture.
creasingly important to provide support within a single com- The Carnegie Mellon University Mach kernel [1] is an ex-
puting environment for "multiple standards", i.e. multiple ample of this layered approach to operating system design.
operating system environments which may be tailored to dif- Mach is a multiprocessor kernel that incorporates in one sys-
ferent vendor or user needs. Moreover, manufacturers fre- tem a number of key facilities that allow the efficient im-
quently need to provide customers with continuing access to plementation of those functions necessary to support binary
proprietary operating systems developed during the 1960’s compatibility with existing operating system environments.
and 1970’s (e.g. VMS, MVS and MS-DOS). These mechanisms are intended not simply as extensions to

Traditional systems such as UNIX or VMS are implemented normal operating system facilities but as a foundation upon
"all in one piece" with knowledge about the basic system which UNIX and other operating system facilities can be
structure spread throughout. They are poorly suited to the built.
compatible support of multiple operating system environ- We believe that such a design is very well suited to the
ments. As a result, large computer manufacturers are com- implementation of modern systems, and that it can yield sig-
monly forced to support several completely distinct operating nificant improvements in terms of structure, without sacrific-
system groups: one for OS/2, one for UNIX and one or more ing performance. Furthermore, it also allows, at least poten-

tially, for more than one operating system environment to be
supported in "native mode" simultaneously on the same1UNIX is a trademark of AT&T Bell Laboratories
hardware. To demonstrate the practical applicability of this
concept, and to evaluate its strengths and weaknesses, we are
currently working on three separate approaches to implement-This research was sponsored by the Defense Advanced Research Projects

Agency (DOD), ARPA Order No. 4864, monitored by the Space and Naval ing a 4.3 BSD [3] environment within the Mach framework.
Warfare Systems Command under contract N00039-85-C-1034.

3. Mach Features Supporting OS Emulation
Mach provides an unusually flexible execution environment

for both system and user applications. It exposes the manage-
ment of CPU, communication, virtual memory and secondary

storage resources in a way that allows system applications processes using Mach’s flexible virtual memory management
such as database management facilities to use those resources facilities. The parent process that established this shared
efficiently. library can then tell the Mach kernel to redirect system call

traps from the child into the shared library in the addressThe key features of Mach in its role as a system software
space of that child. This allows any embedded system callkernel are:
traps in a program binary to be interpreted outside the kernel• support for multiple threads of control within a
and either handled directly or converted into a message to besingle address space,
sent to a system server. There is an override facility that

• an extensible and secure interprocess com- allows the transparent library code to redirect a call to the
munication facility (IPC) [10], kernel if necessary, to simplify development and debugging

of the transparent library itself. This facility can be used for a• architecture independent virtual memory manage-
variety of purposes, such as:ment (VM) [7],

• binary compatibility with non-Mach OS environ-
• integrated IPC/VM support, including: copy-on- ments,

write message passing, copy-on-reference net-
• support for multiple OS environments (e.g. UNIXwork communication and extensible memory ob-

4.3 BSD, UNIX V.4),jects,

• debugging and monitoring and• hooks for transparent shared libraries, to provide
binary compatibility with existing operating sys- • network redirection of OS traps.
tem environments.

The Mach kernel provides software equivalents of the key 4. In-kernel OS Emulation
elements of uniprocessor and multiprocessor architectures.

In the first implementation of a 4.3 BSD emulation on top of
The Mach thread mechanism, for example, is a kind of

Mach, the Mach kernel is used as the lower layer of a two-tier
software processor. By allowing multiple threads to run

operating system implementation. In such a scheme the Mach
within the same program, Mach permits a system or applica-

kernel provides support for key functions such as virtual
tion programmer to directly manage multiple CPUs in a mul-

memory, scheduling, interprocess communication and device
tiprocessor. Mach’s interprocess communication facility

access. The target operating system can then be implemented
(IPC) provides the kind of I/O channel between threads that

using these functions. In this approach the entire system,
may exist in a multiprocessor with a message-passing bus or

kernel and OS environment, is packaged as a unit and run in a
between workstations on a network.

privileged state just as in a traditional OS design. In many
Interprocess communication and memory management in respects it continues to resemble the more traditional operat-

Mach are tightly integrated. Memory management techniques ing systems it replaces. One advantage to this approach,
(such as the use of memory re-mapping to avoid data however, is that more than one OS environment can be im-
copying) are employed whenever large amounts of data are plemented using the same kernel interface -- reducing the
sent in a message from one program to another. This allows software effort required to bring a new architecture to market
the transmission of megabytes of data at very low cost. with several supported operating systems. Another advantage

One of the most unusual and important facilities Mach is that the basic kernel could be made freely available to all
provides is the notion of a memory object which an applica- without compromising the proprietary added value of the par-
tion program may create and manage. The memory object is ticular operating system environment layered above it. This
like a file or data container which can be mapped into the approach would allow companies to share the costs of porting
address space of a program. Unlike traditional systems in the kernel to a new architecture.
which the operating system has complete control of "paging" Commercial versions of Mach available today are, in fact,
data to and from such a data object, Mach allows the applica- examples of 4.3 BSD UNIX layered above Mach kernel
tion which creates the memory object to act as though it were primitives and packaged together with the Mach code. Al-
the disk storage or "pager" for that object. Mach virtual though one might assume that this layered approach to UNIX
memory objects are represented as communication channels. implementation would be a performance disadvantage,
On a page fault, the kernel sends a message to the backing measurements of Mach versus traditional UNIX implemen-
storage communication channel of a memory object to get the tations indicate otherwise. Simple compilation benchmarks
data contained in the faulted page. This provides the on SUN 3/60 workstations, for example, run nearly 40%
flexibility necessary to implement efficiently such system ap- faster under Mach than they do under Sun Microsystems own
plications as file systems, databases, dynamic encryption or SunOS 4.0 version of UNIX. Times for UNIX "fork" and
compression of data on access or even network shared "exec" operations are also nearly a factor of two faster under
memory. Mach than SunOS.

Finally, the Mach transparent library facility allows a code
library to be loaded into the address space of a program
without its knowledge, which can intercept system calls made
by that program. Transparent shared libraries are loaded by a
parent process and transparently inherited by its child

could allow vendors with proprietary OS environ-5. Out-of-kernel OS Emulation: Two
ments to more quickly take advantage of Mach asApproaches
a basis for their systems.A second approach to building a layered operating system

environment has even greater potential for open system In practice, this single task Unix server works well and
development. The kernel can be packaged by itself as a "pure" demonstrates the feasibility of such an approach. Its im-
kernel with no operating system environment. In this ap- plementation was completed in less than sixth months, and
proach, only the kernel runs in privileged state. The rest of the can already be used for self-development. It currently runs on
operating system environment runs, in effect, as one or more VAX and Sun 3 platforms and is functionally interchangeable
programs (or, more precisely, one or more server processes) with existing versions of 4.3 BSD/Mach on those machines.
on top of the kernel. User applications run as before, but We expect to extend this implementation to the other
instead of making direct calls on the operating system via hardware platforms which run Mach and to put this version
system calls traps, the kernel’s communication and memory into production use within CMU over the next few months.
management facilities are employed to communicate infor- Initial performance measurements are encouraging. A com-
mation between the application and operating system pilation benchmark which takes takes 29 seconds to complete
processes. The reason this implementation strategy is so at- on a Sun 3/60 running in-kernel 4.3BSD/Mach takes 34
tractive for open systems, is that it can allow more than one seconds with out-of-kernel BSD support and 49 seconds run-
operating system environment to be supported on the same ning under SunOS 4.0.
machine, on the same kernel, at the same time. Systems such
as UNIX or OS/2 could potentially co-exist in their native 7. Multiserver UNIX
form. The kernel becomes a kind of universal "socket" into This system divides responsibility for UNIX support among
which more than one operating system environment can be a collection of libraries and servers responsible for particular
plugged, insulating that software from the hardware itself and OS functions such as naming, authentication and file data
greatly simplifying its design and maintenance. access. Wherever possible, the interfaces between the various

This approach is currently being put to the test at Carnegie system components, and those components themselves, are
Mellon in the development of two rather different user-state designed to be independent of the target environment. This
implementations of Berkeley UNIX 4.3 BSD: the approach presents two major advantages:
Multithreaded System and the Multiserver System. Both im- • access to various system resources can be shared
plementations run unmodified 4.3 BSD binaries. by multiple independent operating system en-

vironments, communicating over a network or
6. The Multithreaded UNIX Server concurrently executing on the same machine.

This system consists of transparent library support aug-
• individual components can easily be reused formented by a multithreaded UNIX server. This server, con-

the implementation of different operating systemtained in a single task, is typically invoked via a Mach mes-
environments.sage exchange for each system call issued by application

On the negative side, this approach requires sophisticatedprocesses. In addition to managing system call emulation for
synchronization between servers to achieve precise UNIXUnix processes, the Unix server acts as an external pager for
semantics, and very careful design of the standardized inter-Unix inodes. It is implemented using Mach’s C-Threads
faces. The major interfaces defined for that system organiza-package with each incoming request handled by a cthread
tion are:allocated from a pool of waiting threads.

• a standard access protocol defining the authen-A single task operating system emulation of this kind is
tication, access control and naming proceduresattractive for several reasons:
used for access to all system objects such as files,• The server is solely responsible for performing
devices, processes, etc.the emulation of all OS environment semantics.

The structure of the server is, in fact, similar to • a standard I/O protocol for the transfer of data
that of an in-kernel implementation; it has global between the producers and consumers of that
knowledge of all the information needed for the data.
emulation. Internal context switching between

• a standard exception protocol to handle excep-threads can be extremely fast.
tions happening during client-server interactions,

• The OS server is completely pageable and can in and to report asynchronous events to clients.
fact make more efficient use of memory (by shar- The following sections describe the major components of
ing data structures and stack space) than can a this system.
multiple server implementation.

7.1. Mach Object Programming Facility
• It can be relatively straightforward to transform The development of the multiserver UNIX system is aided

an existing in-kernel OS implementation into by a C-based object-oriented programming package called
such a server, because most of the code can be MachObjects, which has been integrated with the Mach inter-
simply carried over. This can make it easy to process communication facility. This package allows:
preserve both existing code and semantics. This

protocols used for network access (TCP/IP, OSI,• dynamic class/method specification,
etc),

• class/superclass hierarchy,
• the UNIX File Server, which manages UNIX file

• multiple inheritance through delegation, systems on permanent storage, but uses the stan-
dard naming and I/O protocols, so that it is acces-• automatic remote delegation (through IPC),
sible from all environments,

• user-specifiable method lookup to implement
• the NFS Server, which translates requests fromother forms of inheritance,

the standard access and I/O interface into the
• automatic dispatching of method invocations to NFS protocol, allowing access to remote NFS file

multiple threads of control, systems,

• reference count garbage collection of objects and • the UNIX TTY Server, a front-end for access to
terminal lines and pseudo terminals, implement-• automatic object locking.
ing the line disciplines andTo simplify the organization of the various components,

libraries of standard MachObjects classes are used, that im- • the UNIX Pipe Server, implementing traditional
plement the standard system interfaces. In many cases, a UNIX pipes, using FIFO buffers in shared
special MachObject mechanism is used to allow a server to memory.
dynamically select the class of an object to be instantiated in
its client’s address space. When this approach is used, only 8. Related Work
the client-side object must implement the standard interfaces. Several other research groups are also investigating the
Each server may use a different, specialized protocol to com- issues involved with OS emulation, particularly with respect
municate with the client-side objects that it returns. to the UNIX environment. CMU’s Accent operating

system [6] was used as the base for a System III Unix emula-7.2. Transparent Library
tion called QNIX. The Amoeba system [8] uses portThe transparent library is responsible for translating the
capabilities in a manner very similar to that of Mach toUNIX 4.3 BSD system calls from an application process into
implement a fast server-based system. The CHORUS systeminvocations on the appropriate system servers, via the cor-
[2] has adopted an object-oriented approach to build a com-responding MachObjects elements.
plete UNIX emulation; its use of memory protection isAn important aspect of the system organization is that many
however rather different from that adopted for the Mach OSemulated system calls, for example read and write, can be
emulators. The Taos system [4] provides an emulation ofimplemented within the transparent library with no messages
Ultrix in the Topaz environment. Several of the concepts usedexchanged with servers. This is possible because many data
for the Mach OS emulators are inspired from ideas presentedobjects can be represented as Mach memory objects and
with the Sprite and V systems [5] [11].mapped into the address space of the transparent library after

a open call is made. The read and write calls thus translate
into simple memory references into this mapped area. 9. Mach availability

The portability of Mach has been demonstrated by the range
7.3. System Servers of uniprocessor and multiprocessor systems on which it is

The various system servers cooperate to implement the func- available. Mach has been ported to the VAX architecture
tions needed for the emulation. As indicated, many of these uniprocessors and multiprocessors, the SUN 3 family, the
servers are in fact independent of the specific UNIX environ- IBM RT PC family, the DecStation 3100, the 64-processor
ment, and only the fact that they are invoked from the 4.3 IBM RP3, the 8-processor IBM ACE multiprocessor worksta-
BSD transparent library produces 4.3 BSD semantics from the tion, the Sequent Balance, the Macintosh II, the IBM 370, the
point of view of the application processes. The major servers SUN 4, the Intel 386 and the Intel i860. Implementations for
are or will be: other MIPS R2000 and R3000 machines are nearing comple-

• the Name Server, implementing a hierarchical tion and several implementations for the Motorola 88000 are
name space with only directories, symbolic links underway. Commercial versions of Mach are available from
and mount points, which can be used to tie BBN Advanced Computers, Evans and Sutherland Computer
together several other name spaces and represent Division, Encore Computers and NeXT. In addition to these
the "root" of the UNIX name space, vendor releases of Mach, Mt Xinu, Inc. has announced that it

will develop commercial end-user releases of Mach for a• the Task Manager, responsible for keeping track
variety of machine architectures. Finally, Prime, Intel,of all the application processes participating in an
Olivetti, Convergent and AT&T have recently announced aoperating system environment,
joint research project to build a multiprocessor version of

• the Authentication Server, used to verify the System V.4 using the Mach kernel.
credentials of processes performing operations on All software implemented by the Mach project is licensed
behalf of the authorized users of the system, and distributed to universities, research laboratories and cor-

porations at no cost by Carnegie Mellon.• the Network Server, implementing the transport

References

1. Accetta, M.J., Baron, R.V., Bolosky, W., Golub, D.B., Rashid,
R.F., Tevanian, A., and Young, M.W. Mach: A New Kernel Foun-
dation for UNIX Development. Proceedings of Summer Usenix,
July, 1986.

2. Francois Armand and Michel Gien and Marc Guillemont and
Pierre Leonard. Towards a Distributed UNIX System - The
CHORUS Approach. Proceedings of the European UNIX Systems
User Group Conference, September, 1986.

3. Joy, W., et. al. 4.2BSD System Manual. Technical report ,
Computer Systems Research Group, Computer Science Division,
University of California, Berkeley, July, 1983.

4. Paul R. McJones and Garret F. Swart. Evolving the UNIX System
Interface to Support Multithreaded Programs. Research Report 21,
DEC Systems Research Center, September, 1987.

5. John K. Ousterhout and Andrew R. Cherenson and Frederick
Douglis and Michael N. Nelson and Brent B. Welch. "The Sprite
Network Operating System". IEEE Computer 21, 2 (February 1988),
23-36.

6. Rashid, R. F. and Robertson, G. Accent: A Communication
Oriented Network Operating System Kernel. Proc. 8th Symposium
on Operating Systems Principles, December, 1981, pp. 64-75.

7. Rashid, R.F., Tevanian, A., Young, M.W., Golub, D.B., Baron,
R.V., Black, D.L., Bolosky, W., and Chew, J.J. Machine-
Independent Virtual Memory Management for Paged Uniprocessor
and Multiprocessor Architectures. Proceedings of the 2nd Sym-
posium on Architectural Support for Programming Languages and
Operating Systems, ACM, October, 1987.

8. Robbert van Renesse and Hans van Staveren and Andrew
S. Tanenbaum. "Performance of the World’s Fastest Distributed
Operating System". ACM Operating Systems Review 22, 4 (October
1988), 23-34.

9. D.M. Ritchie and K. Thompson. "The UNIX time-sharing
system". Bell System Technical Journal (July 1978).

10. Sansom, R.D., Julin, D.P. and Rashid R.F. Extending a
Capability Based System into a Network Environment. Proceedings
of the ACM SIGCOMM 86 Symposium on Communications Ar-
chitectures and Protocols, August, 86, pp. 265-274. Also available as
Technical Report CMU-CS-86-115.

11. Willy Zwaenepoel. "Implementation and Performance of Pipes
in the V-System". IEEE Trans. on Comput. C-34, 12 (December
1985), 99-106.

Table of Contents
1. Introduction 0
2. An Alternative Approach to OS Organization 0
3. Mach Features Supporting OS Emulation 0
4. In-kernel OS Emulation 1
5. Out-of-kernel OS Emulation: Two Approaches 2
6. The Multithreaded UNIX Server 2
7. Multiserver UNIX 2

7.1. Mach Object Programming Facility 2
7.2. Transparent Library 3
7.3. System Servers 3

8. Related Work 3
9. Mach availability 3

