
A Unix Interface for Shared Memory and
Memory Mapped Files Under Mach

Avadis Tevanian, Jr., Richard F. Rashid, Michael W. Young,
David B. Golub, Mary R. Thompson, William Bolosky and Richard Sanzi

Department of Computer Science
Carnegie-Mellon University

Pittsburgh, PA 15213

Abstract

This paper describes an approach to Unix shared memory and memory mapped files currently in
use at CMU under the Mach Operating System. It describes the rationale for Mach’s memory
sharing and file mapping primitives as well as their impact on other system components and on
overall performance.

1. Introduction
The 4.2 BSD mapped file interface (mmap) was designed to address two shortcomings of

previous Unix systems: a lack of shared memory between processes and the need to simplify

processing of file data. Early Unix systems had provided no shared memory access and a stylized

way of accessing sequential file data through read and write system calls. Applications that

desired random access to data would use Unix’s seek operation or buffer their data themselves,

often incurring unwanted system overhead. A mapped file facility could allow a user to treat file

data as normal memory without regard to buffering or concerns about sequential versus random

access. It would also provide an obvious mechanism for sharing memory by allowing more than

one process to map a file read/write simultaneously.

The BSD file mapping facility was proposed as early as 1982. Since then, similar mapped file

interfaces have been implemented by several vendors, both as part of 4.2 BSD Unix (e.g.,

Sequent Dynix [Dynix]) and as part of a System V modified to contain 4.2 BSD enhancements

(e.g., IBM’s AIX). A shared memory facility not based on mapped files is available in AT&T’s

System V and has also been adapted to a variety of 4.2 BSD based systems such as DEC’s Ultrix.

There is currently a lively debate going on within the Unix community about the appropriate

Unix interface to virtual memory and the relationship between mapped files, memory sharing and

other virtual memory concerns such as copy-on-write memory mapping.

This paper describes the somewhat atypical approach to shared memory and file mapping

currently in use at CMU under the Mach Operating System. It describes the rationale for Mach’s

memory sharing and file mapping primitives, their impact on other system components and on

overall performance and the experiences of the Mach group in implementing and using them.

2. The Problems of a Mapped File Interface
Despite its obvious convenience, the notion that all memory sharing should be channeled

through a mapped file interface presents a number of problems:
1. A Unix file is (in principle) a permanent on-disk data structure which must be

maintained consistent against crashes. The use of disk files to exchange temporary
data can put an unnecessary I/O load on the system and impact performance.

2. A mapped file facility must take into account the sharing of remote (network) files.
In order to handle remote file systems (e.g. SUN NFS), the operating system must
be intimately involved in maintaining network data consistency. This can increase
its complexity considerably by introducing within the OS kernel many of the same
concerns that complicate transaction processing systems.

3. Sharing semantics are limited to those supplied by the kernel. In particular, an
application program cannot use domain specific knowledge to allow less then full
consistency in sharing access to file data. This can result in inefficiency in the
handling of data sharing across node boundaries.

These problems typically have led to compromises in the actual mapped file semantics provided.

Most have either assumed that modifications to read/write mapped files are not guaranteed to be

consistent in the face of multiple writers, or they guarantee consistency only for those processes

which share files on a single network node.

3. The Uses of Shared Memory
Many of the potential uses of shared memory do not require a file mapping interface. In fact,

such an interface may present problems. Memory sharing is often suggested as a way of

overcoming traditional Unix deficiencies by providing for:

• fine granularity multiprocessing,

• ultra-fast IPC,

• database management support and/or

• reduced overhead file management.

But of these potential uses of shared memory, only two require some kind of mapped file facility

and of these only one fits the traditional mmap model of file access and shared data consistency.

3.1. Fine grain multiprocessing
The need to support fine grain multiprocessing has forced several multiprocessor manufacturers

to adopt some form of memory sharing in their multiprocessor versions of Unix, e.g. in Sequent’s

Dynix [Dynix] and Encore’s UMax [Umax]. This kind of shared memory often takes the form of

an mmap-like primitive which acts on a special device or file. Fine grain multiprocessing is

accomplished by creating as many processes as there are available processors which then mmap

the shared memory object and synchronize through it. The only reason such a facility would

want a mapped file interface is the benefit provided by using Unix’s filesystem name space for

referring to shared data. There is no need for the shared data to be disk resident or permanent.

1

3.2. Fast IPC
Shared memory can be used as a kind of ultra-fast IPC facility, especially where large data

structures are built in shared memory by one process and then managed or manipulated by

another. An example of a potential use of this kind can be found in the relationship between

multiphase program components such as the typical C language preprocessor and compiler.

Already such programs use files or pipes to accomplish their goals. The advantages of such a fast

IPC facility are actually diminished by tying it to a similar shared file construct which would

require some form of file system creation/destruction cost as well as disk I/O.

3.3. Database management
Designers of database management systems have argued against Unix at least partly because of

its inability to share data between potential database client programs and transaction managers,

data managers and recovery logs. Systems of this sort need both sharing between processes and

sharing of data pages in files to accomplish their ends. Unfortunately, an mmap-like construct

does not, by itself, resolve the problems posed by database systems. For example, it may be

important for a database system to know when data is going to be moved from volatile storage to

disk so that a database recovery manager can update crucial portions of the recovery log in

advance [TABSSOSP] (i.e., write-ahead logging). In addition, the consistency of shared memory

must either be absolute, or the consistency model must be well understood and manageable by the

database transaction manager -- a fact often remarked by database builders on other systems with

shared file constructs such as Apollo’s Aegis [Leach83].

3.4. Efficient file access
By far the most compelling general argument for linking shared memory with memory mapped

files is the need in Unix for reducing the overhead of file management. Partly because Unix was

originally designed at a time when primary memory was a scarce commodity, traditional Unix

programs are I/O intensive. Even the Unix pipe facility was once implemented as file I/O to

conserve memory. As the relationship between the costs of memory and secondary storage have

changed, large memory Unix systems are limited more by their I/O capacity than by memory. A

mapped file facility could reduce the cost of I/O operations by eliminating a copy operation from

the Unix buffer cache to process memory and also provide for better memory utilization by

allowing more than one process to share the same physical memory when accessing the same file.

4. Mach Memory Primitives
Rather than support sharing only through an mmap model of shared memory through shared

files, Mach provides a number of non-file based mechanisms for sharing data among

computational entities:

• Unrestricted, fine grain sharing between processors in a tightly coupled
multiprocessor can be achieved by using the Mach notion of thread. A thread can be

2

thought of as a lightweight process which shares an address space with other
lightweight processes. The Unix notion of process has been split into task and
thread. A task defines an address space and resource domain in which a number of
program control flows (threads) may coexist. Using this multiple thread per task
mechanism, an application may easily share a single address space among separate
executing entities.

• In addition to unrestricted sharing using threads, Mach allows tasks to read/write
share protected ranges of virtual addresses through inheritance. A Mach task can
specify any portion of its address space to be shared read/write with its children as
the result of a task_create operation. The fact that memory is shared only through
inheritance guarantees that the shared memory is always located within a single host
(or cluster within a host). This allows the kernel to guarantee cache consistency for
such memory. Another advantage of this method of data sharing is that it ensures
that shared memory is always located at the same virtual address in each inheriting
task. This avoids the often difficult programming problems caused by pointer
address aliasing in shared data structures.

• Physical memory can be shared copy-on-write by taking advantage of Mach’s
integration of IPC and virtual memory management. Applications not requiring
read/write memory sharing can use this feature to transfer large amounts of data
between tasks without actually copying data. In effect, a multiphase application can
effectively forward between components the actual physical memory containing
important data. The sender in such an exchange is always protected because data is
logically sent by value. The kernel uses memory management tricks to make sure
that the same physical page is available to both sender and receiver unless or until a
write operation occurs.

• Finally, applications may define their own sharing semantics within a distributed
system of Mach hosts using the Mach external pager facility. This external pager
mechanism allows an application to control many aspects of virtual memory
management for regions of virtual memory. An external pager may implement fully
coherent network shared memory, or a shared memory paradigm that requires clients
to maintain their own cache consistency (if consistency is even desired). It allows a
database recovery manager to be advised of the kernel’s need to flush data to disk in
advance and thus permit efficient write-ahead logging.

4.1. Mach virtual memory operations
Table VMOPS lists the set of operations that can be performed on the virtual address space of a

task. Mach calls are specified to act on object handles called ports which are simplex

communication channels on which messages are sent. A more complete description of Mach

ports and calling conventions can be found in [USENIX86].

A task address space consists of an ordered collection of mappings to memory objects; all

threads within a task share access to that address space. A Mach memory object (also called a

paging object) is a data repository, provided and managed by a server. The size of an address

space is limited only by the addressing restrictions of the underlying hardware. For example, an

IBM RT PC task can address a full 4 gigabytes of memory under Mach, while the VAX

architecture allows at most 2 gigabytes of user address space.

The basic memory operations permit both copy-on-write and read/write sharing of memory

3

Virtual Memory Operations

vm_allocate (task, address, size, anywhere) Allocate and fill with zeros new
virtual memory either anywhere or
at a specified address on demand.

vm_copy (task, src_addr, count, dst_addr) Virtually copy a range of memory
from one address to another.

vm_deallocate (task, address, size) Deallocate a range of addresses,
i.e. make them no longer valid.

vm_inherit (task, address, size, inheritance) Set the inheritance attribute
of an address range.

vm_protect (task, address, size, set_max, protection) Set the protection attribute
of an address range.

vm_read (task, address, size, data, data_count) Read the contents of a region
of a task’s address space.

vm_regions (task, address, size, elements, elements_count) Return description of specified
region of task’s address space.

vm_statistics (task, vm_stats) Return statistics about the use
of memory by task.

vm_write (task, address, count, data, data_count) Write the contents of a region
of a task’s address space.

Table 4-1:

All VM operations apply to a task (represented by a port) and all
but vm_statistics specify an address and size in bytes.

anywhere is a boolean which indicates whether or not a vm_allocate
allocates memory anywhere or at a location specified by address.

regions between tasks. Copy-on-write sharing between unrelated tasks is usually the result of

large message transfers. An entire address space may be sent in a single message with no actual

data copy operations performed. Read/write shared memory within a task creation tree can be

created by allocating a memory region and setting its inheritance attribute. Subsequently created

child tasks share the memory of their parent according to its inheritance value. The only

restriction imposed by Mach on the nature of the regions that may be specified for virtual

memory operations is that they must be aligned on system page boundaries. The system page

size is a boot time parameter and can be any power of two that is a multiple of the hardware page

size.

4.2. Managing external pagers
The basic task virtual memory operations allow memory sharing through inheritance between

tasks in the same task creation subtree. Read/write shared memory between unrelated tasks can

be implemented through the use of external pagers -- tasks which allocate and manage secondary

storage objects.

The Mach interface for external pagers can best be thought of as a message protocol used by a

pager and the kernel to communicate with each other about the contents of a memory object. The

external pager interface to the kernel can be described in terms of operations requested by the

4

kernel (messages sent to a paging_object port) and calls made by the external pager on the kernel

(messages sent to the kernel’s pager_request_port associated with a memory object). Tables

EXPOPS and POPS describe these two interfaces.

Kernel to External Pager Interface

pager_init (paging_object, Initialize a memory object.
pager_request_port, pager_name)

pager_data_request (paging_object, Requests data from an external pager.
pager_request_port, offset,
length, desired_access)

pager_data_write (paging_object, offset Writes data back to a memory object.
data, data_count)

pager_data_unlock (paging_object, Requests that data be unlocked.
pager_request_port, offset,
length, desired_access)

pager_create (old_paging_object, Accept ownership of a memory object.
new_paging_object, new_request_port,
new_name)

Table 4-2:

Calls made by Mach kernel to a task providing external paging service for a memory object.

A memory object may be mapped into the address space of a task by exercising the

vm_allocate_with_pager primitive, specifying a paging object port. This port will then be used

by the kernel to refer to that object. A single memory object may be mapped more than once

(possibly in different tasks). The Mach kernel provides consistent shared memory access to all

mappings of the same memory object on the same uniprocessor or multiprocessor. The role of

the kernel in paging is primarily that of a physical page cache manager for objects.

When asked to map a memory object for the first time, the kernel responds by making a

pager_init call on the paging object port. Included in this message are:

• a pager request port, which the pager may use to make cache management requests
of the Mach kernel,

• a pager name port, which the kernel will use to identify this memory object to other
1tasks in vm_regions calls.

The Mach kernel holds send rights to the paging object port, and send, receive, and ownership

rights on the paging request and paging name ports.

In order to fulfill a cache miss (i.e. page fault), the kernel issues a pager_data_request call

specifying the range (usually a single page) desired. The pager is expected to supply the

requested data using the pager_data_provided call on the specified paging request port. To flush

modified cached data, the kernel performs a pager_data_write call, including the data to be

1The paging object and request ports cannot be used for this purpose, as access to those ports allows complete access
to the data and management functions.

5

written and its location in the memory object. When the pager no longer needs the data (e.g. it

has been successfully written to secondary storage), it is expected to use the vm_deallocate call to

release the cache resources.

Since the pager may have external constraints on the consistency of its memory object, the Mach

interface provides some functions to control caching; these calls are made using the pager request

port provided at initialization time.

External Pager to Kernel Interface

vm_allocate_with_pager (task, address, Allocate a region of memory at specified
size, anywhere, paging_object, offset) address backed by a memory object.

pager_data_provided (paging_object_request, Supplies the kernel with the data contents
offset, data, data_count, lock_value) of a region of a memory object.

pager_data_lock (paging_object_request, Prevents further access to the specified
offset, length, lock_value) data until an unlock.

pager_flush_request (paging_object_request, Forces physically cached data
offset, length) to be destroyed.

pager_clean_request (paging_object_request, Forces modified physically cached data
offset, length) to be written back to a memory object.

pager_cache (paging_object_request, Notifies the kernel that it should retain
should_cache_object) knowledge about the memory object even

after all references to it have been removed.

pager_data_unavailable
(paging_object_request, Notifies kernel that no data is
offset, size) available for that region of a memory object.

Table 4-3:

Calls made by a task on the kernel to allocate and and manage a memory object.

A pager_flush_request call causes the kernel to invalidate its cached copy of the data in

question, writing back modifications if necessary. A pager_clean_request call asks the kernel to

write back modifications, but allows the kernel to continue to use the cached data. A pager may

restrict the use of cached data by issuing a pager_data_lock request, specifying the types of

access (of read, write, execute) which may be permitted. For example, a pager may wish to

temporarily allow read-only access to cached data. The locking on a page may later be changed

as deemed necessary by the pager.

When a user task requires greater access to cached data (e.g. a write fault on a read-only page)

than the pager has permitted, the kernel issues a pager_data_unlock call. The pager is expected

to respond by changing the locking on that data when it is able to do so.

When no references to a memory object remain, and all modifications have been written back to

the paging object port, the kernel deallocates its rights to the three ports associated with that

memory object. The pager receives notification of the death of the request and name ports, at

which time it can perform appropriate shutdown.

6

In order to attain better cache performance, a pager may permit the data for a memory object to

be cached even after all address map references are gone by calling pager_cache. Permitting

such caching is in no way binding; the kernel may choose to relinquish its access to the memory

object ports as it deems necessary for its cache management.

The Mach kernel may itself need to create memory objects, either to provide backing storage for

zero-filled memory (vm_allocate), or to implement virtual copy operations. These memory

objects are managed by a default pager task, which is known to the kernel at system initialization

time. When the kernel creates such a memory object, it performs a pager_create call (on the

default pager port); this call is similar in form to pager_init. Since these kernel-created objects

have no initial memory, the default pager may not have data to provide in response to a request.

In this case, it should perform a pager_data_unavailable call.

Since interaction with pagers is conducted only through ports, it is possible to map the same

memory object into tasks on different hosts in a distributed system. While each kernel keeps its

own uses of the cached data consistent, the pager is responsible for any further coordination.

Since each Mach kernel will perform a pager_init call upon its first use of a memory object,

including its own request and name ports, a pager can easily distinguish the various uses of its

data.

5. A Unix Interface for File Mapping
Shared memory can be obtained in Mach either through the use of memory inheritance or

external pagers. Given these mechanisms for sharing data, there is no need to overload the Unix

filesystem in order to provide shared memory. Nevertheless, the potential performance

advantages of mapped files make them desirable for Unix emulation under Mach. In addition, the

ease of programming associated with mapped files is attractive in both the Unix and Mach

environments.

At present, Mach provides a single new Unix domain system call for file mapping:
map_fd(fd, offset, addr, find_space, numbytes)

int fd;
vm_offset_t offset;
vm_offset_t *addr;
boolean_t find_space;
vm_size_t numbytes;

Map_fd is called with an open Unix file descriptor (fd) and if successful results in a virtual copy

of the file mapped into the address space of the calling Unix process. Offset is the byte offset

within the file at which mapping is to begin. The offset may be any byte offset in the file, page

alignment is not required. Addr is a pointer to the address in the address space of the calling

process at which the mapped file should start. This address, unlike the offset, must be paged

aligned. If find_space is TRUE, the kernel will select an unused address range and return it in

*addr. The number of bytes to be mapped is specified by numbytes.

7

The implementation of map_fd was a straightforward application of internal Mach primitives for

virtual copying regions of memory and external pagers [MACH-ASPLOS, MACH-SOSP].

When a request is made for a file to be mapped into a user address space, the kernel creates a

temporary internal address space into which the file is mapped. This mapping is accomplished

with the vm_allocate_with_pager primitive. The kernel specifies that new memory is to be

allocated and that the new memory will be backed by the internal kernel inode pager. Then the

file data is moved to the process address space by a call to vm_copy. Once this is done, the kernel

can deallocate the temporary map.

6. Uses of Mapped Files in Mach
Files mapped using map_fd can be used in a variety of ways. Mach itself uses file mapping

internally to implement program loading. File mapping can also be used as a replacement for

buffer management in the standard I/O library.

6.1. File Mapping and Shared Libraries
Mach uses the mapped file interface to implement both program loading and a general form of

shared libraries. In the current Mach system, there are two types of program loaders. The first

program loader executes in the kernel and implements the Unix exec system call. This loader

handles both a.out and COFF format binary files for binary compatibility with existing systems.

The second loader executes in a user task and handles MACH-O format binary files. Both loaders

use mapped files.

The MACH-O format was devised to be flexible enough to be used as a single file format for

fully resolved binaries, unresolved object files, shared libraries and "core" files. It provides

enough backward compatibility with older formats (e.g., a.out) to salvage most existing code for

debuggers and related applications.

The MACH-O format can roughly be though of as a sequence of commands to be executed by a

program loader. The layout of a MACH-O file is summarized as:
start

header
command_id, command_info
command_id, command_info

.

.

.
command_id, command_info

ENDMARKER

Each command consists of a command identifier followed by a command-dependent number of

arguments. Some of the commands supported are:

READ_ONLY Map in data read-only (e.g. a text segment).

WRITEABLE Map in data read/write (e.g. a data segment).

8

ZEROFILL Allocate zero-fill memory (e.g. a bss segment).

REGISTER Create a thread in the task and set its register state.

LOADFILE Map in data from another file (e.g. a shared library).

RELOCATE Relocate a specified address.

END_LOAD Loading complete.

The header contains a magic number indicating MACH-O format. It also contains other useful

information such as version information, and a machine-type specifier. Finally, the header

specifies the type of file represented, e.g. executable, object file or shared library.

The MACH-O program loader operates by scanning a load file and executing commands as

necessary. In the typical case, it uses the map_fd call to map portions of files into its address

space. It then places the data in the image to be executed using the vm_write operation. Since

copy-on-write is used at the base of the virtual memory primitives it is possible to share both code

and writable data. Each task that writes data within a shared library will get a new copy as each

page is written for the first time. Pages that are not written will be physically shared by all tasks.

6.2. File Mapping and Standard I/O
The Mach mapped file mechanism has been used to build a new version of the C library

buffered I/O package. When a file is fopened it is mapped in its entirety into the caller’s address

space. The semantics of the buffered i/o package are not changed. The existing stdio buffer has,

in effect, been enlarged to the size of the file. When a write takes place only the data buffer is

changed. The file is not guaranteed to change on disk until a fflush or fclose takes place. As with

normal buffered I/O, if two processes have the same file open for reading and writing, there is no

guarantee how the reads and writes will intermix. A read may get new information off the disk

copy of the file, or it may use information that was already buffered.

The primary rationale for this change is improved performance. Table STDIOPERF shows the

time for simple buffered I/O operations both with and without the change. In addition to

improved performance, the use of file mapping also has the effect of reducing the memory load

on the system. In a traditional Unix implementation fopen would allocate new memory to the

calling process and copy the data from the Unix buffer cache into that new memory at the time of

a read. Using this new package and Mach file mapping, each new call to fopen will reuse any

physical memory containing file data pages, reducing the number of I/O operations. (See table

STDIOPERF2.)

In addition to traditional buffered I/O calls, the mapped file version of buffered I/O has had

added to it a new call which allows an application program to directly access the mapped file data

and thus further improve performance by eliminating the copying of data by fread and fwrite.

The new routine is called fmap and is a buffered I/O compatible version of map_fd.

To read map a file with fmap the user calls:

9

Unmapped vs. Mapped Buffered I/O Performance

Test program First time Second time
user system elapsed user system elapsed

old_read 6.1u 0.62s 0:08 6.1u 0.62s 0:08

new_read 6.0u 0.71s 0:08 6.0u 0.21s 0:06

map_read 2.8u 0.76s 0:04 2.7u 0.17s 0:03

Table 6-1:

Time to read a 492544 byte file using standard I/O.
(Mach, 4K file system, MicroVAX II)

old_read performs fopen followed by a loop of getc calls.
new_read is identical to old_read with new mapped file package.
map_read uses fmap and reads data by array reference, not getc.

Multiple Access File I/O Performance

Test program user system elapsed I/O

old_read[1] 25.4u 1.8s 1:23 217io
old_read[2] 25.3u 2.0s 1:26 326io
old_read[3] 25.1u 2.2s 1:26 439io

new_read[1] 24.0u 1.6s 1:17 89io
new_read[2] 24.0u 1.8s 1:18 194io
new_read[3] 24.2u 1.6s 1:18 197io

Table 6-2:

Time to read a 1970176 byte file using standard I/O.
(Mach, 4K file system, MicroVAX II)

Each program is run 3 times in parallel and times are listed.
Instance numbers for each invocation are in brackets.
Each program accesses the same file simultaneously.

old_read performs fopen followed by a loop of getc calls.
new_read is identical to old_read with new mapped file package.

stream = fopen("filename", "r"); /* existing call */
data = fmap(stream, size); /* new call */

where data is a pointer to a region of virtual memory where the file contents are buffered, and

size is the suggested size for the data buffer; if that size is zero, then the implementation will

choose a suitable size. As before,
bufsize = fbufsize(stream)

returns the actual size of the buffer. Once fmap is called, the user can reference file data by using

the data pointer and any offset less than bufsize. The user may also mix fseek, and fread calls

with direct data references. Once the user is finished with the file the call
fclose(stream); /* existing call */

should be used to deallocate the virtual address space used by the mapped file.

To write map a file the user would:

10

stream = fopen("filename", "w");/* existing call */
data = fmap(stream, size); /* new call */

where size is used as an initial buffer size; if that size is zero, the implementation will choose a

suitable size. Initially, the buffer will be zero-filled. Once fmap is called, the user may write into

any part of the file with an offset less than bufsize. An fwrite or fseek call with an offset greater

than bufsize will cause an error. To expand the buffer size, the user may call fmap again with a

larger size parameter. The calls
fflush(stream); /* existing call */
fclose(stream); /* existing call */

continue to work as before. Similarly, files opened for append and read/write may be fmaped.

Table STDIOPERF3 shows the time advantage which can be gained by using fmap rather than

conventional I/O.

Unmapped vs. Mapped Buffered I/O Performance

Test program First time Second time
user system elapsed I/O user system elapsed I/O

old_read 11.5u 3.1s 0:21 481io 11.5u 3.0s 0:21 482io

map_read 11.2u 2.9s 0:15 480io 11.0u 0.9s 0:12 0io

Table 6-3:

Time to read a 1970176 byte file.
(Mach, 4K file system, MicroVAX II)

old_read performs open, mallocs buffer, calls read for whole
file and then reads data by array reference.

map_read uses fopen and fmap and reads data by array reference.

7. The Effect of Mach Memory Mapping on Performance
2File mapping is hardly free . Even when a page is already in physical memory, a page fault must

be taken on the first process access to validate the corresponding hardware map entries.

Currently such a fault takes approximately 1.0-1.4 milliseconds on a MicroVAX II with a 4K

page size. There are also several ways in which mapped files can adversely affect performance:

• If the file to be mapped is smaller than a single page, file mapping will always result
in a full page being allocated in physical memory with excess data filled with zeroes.

• Mapped files compete with program text and data for physical memory. In a
traditional Unix system, user programs maintain a fixed-size buffer, so the buffer
cache limits the amount of memory which can be consumed in accessing a file.

Nevertheless, as the performance of the new standard I/O library points out, useful performance

gains can be achieved using Mach memory mapping. In fact, because the Mach kernel uses

2Unless the output is going to /dev/null!

11

mapped files internally to implement exec, overall performance of vanilla 4.3 BSD programs is

often improved when run on Mach. Particularly dramatic performance gains are seen on machines

where the processor speed is high, memory is plentiful and disk is a bottleneck. For example,

performance gains of over 20% have been achieved on a VAX 8650. Improvement can be found,

however, even on small memory systems with moderately heavy loads. The multiuser

benchmark load used to study the performance of the CMU ITC VICE/VIRTUE file

system [SATYA85] ran 10-15% faster under Mach than a comparable BSD derived kernel on an

IBM RT PC with 4 megabytes of memory.

These performance improvements are especially surprising because many basic operating

system overheads are actually larger in Mach than in 4.3 BSD. The use of special purpose

scheduling instructions has, for example, been eliminated in the VAX version of Mach. The

Mach equivalent of the Unix u-area is not at a fixed address so as to allow multiple threads of

control. This increases the cost of task and thread data structure references

significantly [MACH-THREADS]. In addition, VAX Mach is run as a multiprocessor system

even on uniprocessors at CMU, so virtually all kernel operations have had their costs increased by

locking concerns.

8. Conclusion
Mach’s basic memory primitives provide applications with several mechanisms for sharing

memory. As such, a mapped file interface under Mach is not required for shared memory. Mach

does provide a non-shared interface for mapped files. This interface is not only appropriate for

implementing various applications (e.g. shared libraries and program loading), but has increased

both the performance and functionality of the system.

The internal implementation of Mach VM does not preclude shared read/write file mapping.

Mach does, in fact, support the 4.2 mmap call for the purposes of mapping special device memory

(typically used for frame buffers). The mmap call will also work on normal files but will not map

files shared between processes. This restriction was not based on technical issues, but was an

intentional modification of the mmap semantics. The Mach designers felt it was important to

discourage programmers from writing programs which depended on sharing data which might or

might not be consistently maintained in a loosely coupled environment.

9. Acknowledgements
The Mach VM implementation was done primarily by Avie Tevanian, Michael Young and

David Golub. The implementation has been ported five different machine types and has yet to

need modification to accommodate new architectures.

The authors would also like to acknowledge others who have contributed to the Mach kernel

including Mike Accetta, Robert Baron, David Black, Jonathan Chew, Eric Cooper, Dan Julin,

12

Glenn Marcy and Robert Sansom. Bob Beck (of Sequent) and Charlie Hill (of North American

Philips) helped with the port to the Balance 21000. Fred Olivera and Jim Van Sciver (both

formerly of Encore) helped with the port to the MultiMax.

13

References

[1] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid, Avadis
Tevanian, Michael Young.
Mach: A New Kernel Foundation for UNIX Development.
In Proceedings of Summer Usenix. July, 1986.

[2] Sequent Computer Systems, Inc.
Dynix Programmer’s Manual
Sequent Computer Systems, Inc., 1986.

[3] Encore Computer Corporation.
UMAX 4.2 Programmer’s Reference Manual
Encore Computer Corporation, 1986.

[4] Leach, P.L., P.H. Levine, B.P. Douros, J.A. Hamilton, D.L. Nelson and B.L. Stumpf.
The Architecture of an Integrated Local Network.
IEEE Journal on Selected Areas in Communications SAC-1(5):842-857, November, 1983.

[5] Rashid, R., Tevanian, A., Young, M., Golub, D., Baron, R., Black, D., Bolosksy, W. and
Chew, J.
Machine-Independent Virtual Memory Management for Paged Uniprocessor and

Multiprocessor Architectures.
Technical Report , Carnegie-Mellon University, February, 1987.

[6] Satyanarayanan, M., et.al.
The ITC Distributed File System: Principles and Design.
In Proc. 10th Symposium on Operating Systems Principles, pages 35-50. ACM,

December, 1985.

[7] Alfred Z. Spector, Dean S. Daniels, Daniel J. Duchamp, Jeffrey L. Eppinger, Randy
Pausch.
Distributed Transactions for Reliable Systems.
In Proceedings of the Tenth Symposium on Operating System Principles, pages 127-146.

ACM, December, 1985.
Also available in Concurrency Control and Reliability in Distributed Systems, Van

Nostrand Reinhold Company, New York, and as Technical Report CMU-CS-85-117,
Carnegie-Mellon University, September 1985.

[8] Young, M., Tevanian, A., Rashid, R., Golub, D., Eppinger, J., Chew, J., Bolosky, W.,
Black, D. and Baron, R.
The Duality of Memory and Communication in the Implementation of a Multiprocessor

Operating System.
Technical Report , Carnegie-Mellon University, February, 1987.

[9] Tevanian, A., Rashid, R., Golub, D., Black, D., Cooper, E., and Young, M.
Mach Threads and the UNIX kernel: The Battle for Control.
Technical Report , Carnegie-Mellon University, April, 1987.

14

Table of Contents
1. Introduction 0
2. The Problems of a Mapped File Interface 1
3. The Uses of Shared Memory 1

3.1. Fine grain multiprocessing 1
3.2. Fast IPC 2
3.3. Database management 2
3.4. Efficient file access 2

4. Mach Memory Primitives 2
4.1. Mach virtual memory operations 3
4.2. Managing external pagers 4

5. A Unix Interface for File Mapping 7
6. Uses of Mapped Files in Mach 8

6.1. File Mapping and Shared Libraries 8
6.2. File Mapping and Standard I/O 9

7. The Effect of Mach Memory Mapping on Performance 11
8. Conclusion 12
9. Acknowledgements 12

i

List of Tables
Table 4-1: 4
Table 4-2: 5
Table 4-3: 6
Table 6-1: 10
Table 6-2: 10
Table 6-3: 11

ii

