
Changes in the Kernel in 4.1bsd

May 10, 1981
Revised: September 1, 1981

Bill Joy

Computer Systems Research Group
University of California, Berkeley

This document summarizes the changes in the kernel between the November 1980 4.0bsd release and
the and April 1981 4.1bsd distribution. Theinformation is presented in both overall terms (e.g. organiza-
tional changes), and as specific comments about individual changed files.See the source code itself for
more details.

The major changes fall in five categories:

1) Changesin the VAX 11/780 specific portions of the code, so that VAX 11/750’s are supported also.

2) Changesin the organization of the code, so that more than one configuration of the system may be
built from a single set of sources. Each system is described by a single file which includes parame-
ters such as system size, devices on the machine, etc. All ‘‘magic numbers’’ such as device register
addresses are collected in this single file.

3) Extensive changes in the device subsystem to allow multiple UNIBUS and MASSBUS adapters to be
used, multiple instances of device controllers to exist without duplicating driver code, and to provide
the capability of system configuration at boot time.The configuration capability is used to produce a
generic system which runs on all supported hardware, and is used for distributions. Pattern matching
in the configuration capability also allows hardware redundancy to be used to good effect.

4) Diagnosticsof the system have been reworked to be in a standard and readable format; file system
diagnostic refer to the file systems by name rather than device number. Device diagnostics refer to
the devices by name, and print error messages including device registers decoded symbolically rather
than simply in octal or hexadecimal. DECstandard bad sector forwarding has been added to the
drivers for DEC disks.

5) Performanceimprovements, noticeably in the paging subsystem.

A number of enhancements and bug fixes have also been made.

Carrying over l ocal software

The majority of local changes should carry over to the new system quite easily. It it necessary to cre-
ate a configuration file for each machine from which a system will be built, but this is quite easy, and such
files are designed to be usable without change in future releases of the system.

Locally written UNIBUS device drivers will need to be converted to work in the new system. The
new functions needed of the device drivers are:

1) Forcing a device interrupt at bootstrap time, given a proposed device register address.This is used by
the configuration program to decide if the device really exists.

2) If buffered data paths are to be used, the driver must use routines in the UNIBUS adapter subsystem
which arranges for i/o requests to be queued when there are no resources available.

3) Drivers must not assume that only one instance of a device exists in the system, but must rather be
parameterized and use the information provided by the bootstrap procedure to drive all available
devices.

-2-

Of course, it is not necessary to make a driver ‘‘fully supported’’ f or it to be used. It suffices to han-
dle 1) by pretending that the interrupt occurred, returning the (for a single system) known UNIBUS vector
information, and assuming that the device exists on specific UNIBUS adapters.Drivers which use
UNIBUS resources only statically or not all all need not be concerned with 2), and drivers can assume that
there is only one instance of the supported device on the system, and just not work if more than one such
device is really present.

In any case, more information about device driver changes is given in the last section of this docu-
ment; also seeautoconf(4) for information about the messages printed out by the configuration code at
bootstrap time. Looking at the provided standard supported drivers for examples of code is also a good
idea.

There is also a new interface for MASSBUS devices. Sinceall MASSBUS devices are already sup-
ported, there is no external documentation for writing new MASSBUS drivers at the present. If you have
questions or intend to write a driver for a home-brew interface, you should read the MASSBUS and MASS-
BUS device driver code, which is amply commented.In any case, the MASSBUS interface is more styl-
ized than the UNIBUS interface, and you may have to extend the functionality of the MASSBUS driver to
handle radically different devices.

Organizational changes

On RK07 systems the source for the system lives in the root directory, since there is so little space.
The system otherwise lives where it used to: the subdirectories of /usr/src/sys, with copies of the header
files for the installed system in /usr/include/sys.

The system compilation procedure has been changes so that more than one set of binaries may be
kept conveniently with a single copy of the source code. The system sources are kept in the directories
sys/sysandsys/devwith the header files insys/h. Source files which were previously kept insys/confare
now in sys/dev, and no binaries are kept in any of these directories.

The directorysys/confcontains a number of files related to system configuration.For each machine
to be configured, a single file is created in thesys/confdirectory; thus filesERNIE andBERT might exist
there. Eachsuch file describes all the parameters of the machine to be used: the devices which are to be
configured into the system, optional parts of the system to be included, as well as the timezone in which the
machine lives and the maximum number of simultaneous active users; the last is used to scale system
tables. Theformat of the configuration files is described inconfig(8).

Corresponding to each system to be configured there is a directory ofsys, thus sys/BERT and
sys/ERNIE. These directories are made withmkdir and then the/etc/config command is run, from the
sys/confdirectory, specifying BERT or ERNIE as argument. Theconfiguration program processes the
information in the configuration files, and produces, in the directory../BERT or ../ERNIE respectively:

1) A set of header files, e.g.dz.h, which contain the number of devices and controllers to be available in
the target system. These definitions force conditional compilation of drivers resulting in the inclusion
or exclusion of driver code and the sizing of driver tables. Thistechnique, based on compilation, is
more powerful than a loader-based technique, since small sections of code may be easily conditional-
ized. Similarly, dynamic loading of device drivers is not needed, as only drivers which are needed
are included in the resulting system.

2) A small assembly language vector interface, which turns the hardware generated UNIBUS interrupt
sequences into C calls on the driver interrupt routines.This ubglue.sfile glues the hardware interrupt
sequence into the UNIX interface.

3) A table fileioconf.c which initializes tables to be used at bootstrap time by the system configuration
routines. Theconfiguration routines interpret the contents of the table and determine which devices
are available on the system.They determine the vector addresses of UNIBUS devices by forcing the
devices to interrupt.Pattern matching in the tables may be used to take advantage of hardware redun-
dancy: the specifications need not completely constrain device placement, so the system can be built
to bootstrap in several different configurations, locating the same devices on different interconnects
by the fact that their unit numbers have not changes (for example). Thustwo RP06 disks could be
specified as:

-3-

disk hp0 at mba? drive 0
disk hp1 at mba? drive 1

and then the disks could be cabled to any available MASSBUS adapter; the pattern matching in the
configuration procedure would locate the drives. Similarly, a tape formatter on the same system
could be specified:

master ht0 at mba? drive ?

and then placed anywhere on any MBA. Contrast this flexible specification with

disk hp0 at mba0 drive 0
disk hp1 at mba0 drive 1
master ht0 at mba1 drive 0

which is not reconfigurable. This latter specification corresponds to the previous UNIX capabilities,
which did not allow tapes and disks on the same MASSBUS adapter.

4) Finally theconfigprogram constructs amakefilefor the system which builds the drivers needed in the
specified configuration, and includes system loading sequences for the different root and swap device
configurations desired.

It is now easy to include ‘‘subsystems’’ optionally. This is done through the same mechanisms which
causes conditional inclusion of device drivers. Thefile conf/filescontains a palate of files which builds the
system. Eachline is either of the form:

filename standard

or

filename optionalxx

wherexx is the name of a device which requires the file, or apseudo-device. To define a subsystem to be
added to the kernel it suffices to add specifications to theconf/files file for the newly optional files and to
then place a specification

pseudo-device xx

in the system configuration file.A l ine

options XX

may also be added to the configuration to have the symbol XX defined during compilation, for use in condi-
tional compilations in the standard part of the system.Such conditional compilation is typically used to
provide hooks in the standard part of the kernel to switch out to subsystem functions.

This completes the general description of organizational changes.We now describe the changes in
the system, file by file.

Header files: sys/h and /usr/include/sys

General changes: device drivers now hav eheader files in these directories, thus the ‘‘up’’ driver has a
header file ‘‘upreg.h’’. This so the standalone code and the mainline UNIX code can share the common
definitions.

The ‘‘.m’’ fi les of the previous distribution have been eliminated (with the sole exception ofpcb.m);
the magic numbers which were manually entered in these files are instead generated by a program from the
definitions in the corresponding.h files; a number of header files thus no longer warn about correspon-
dences that must be maintained.

The system tables are now described by pointers to their beginning and end and a count, rather than
compiled in constants. This allows table sizes to be chosen at boot time (although the system currently
does this only for the file system buffer cache), and makes programs such asps andw not compile in these
constants. Note,especially, that the symbols such asproc andinodeare now memory locations containing
the addresses of these structures rather than the base of the structures themselves. Programswhich access

-4-

these structures have been changed and use the variablesnproc and ninode in core rather than the (now
defunct) constants NPROC and NINODE.

buf.h Now declares three headers on which the in-core buffers are placed.Buffers which are
locked in the buffer cache are placed on the first queue.Currently, only file system super
blocks are locked in core, and to good effect: it is now possible to rebuild the super-block
of the root file system with the system quiescent (without rebooting) if the block device is
used. Itis no longer necessary to take a buffer for the super-block of a file system and
also make a copy of it at each sync; the same buffer can be reused and simply released:
since it is locked it will remain in the buffer cache.

The other two queues implement the lru cache and the list of blocks which have been dis-
carded. Byhaving queues for both of these rather than using the end of a single queue,
we achieve true fifo behavior for blocks which we consider ‘‘discarded’’; previously
rather strange behavior resulted from pushing these blocks backwards on the front of the
single queue. (In particular pipes would behave badly on idle systems under some cir-
cumstances.)

The number of pages paged is counted at pageout completion, as well as the pageout
ev ent count. A bug in thephysio routine which caused physical transfers of more than
60000 bytes to sometimes fail to return an error indication has been fixed.

A flag has been added that marks a buffer as consisting only of a header and also one
which marks a buffer being used for bad-sector processing.

callo.h Is now calledcallout.h, and the name of the structure is similarly changed to make it con-
sistent with the other structures in the kernel. Thestructures are now linked together in
linked lists, to prevent arcane situations previously possible where only half of the struc-
tures would be used, but the table space would be exhausted.

clock.h A botch in handling of leap years has been fixed. Amacro is defined here to queue a soft-
ware interrupt for handling most of the clock processing at an IPL lower than the clock
IPL.

cmap.h This file, like a number of others, no longer warns that the size of the structure is known
elsewhere; such dependencies are the concern of a C program and automated through
makefile dependencies.

conf.h A d_dumpentry has been added to the block device table, and is used as the system now
normally does automatic dumps of core memory to disk after a crash. The fieldd_tab is
now called d_flagsand set to B_TAPE for tapes.For reasons not worth explaining here,
there are no ‘‘tab’’ structures to sensibly use in initializing this field now, and in any case
the only use of it was to tell which block devices were tapes.

dkbad.h Is a new file which defines the format of the bad sector forwarding information according
to DEC standard 144.

dmap.h The constant DMMIN has been increased to 32 to allow upto 16k bytes to be paged to the
paging devices in a clustered pageout.

filsys.h The two fields s_fnameand s_fpackwhich were not implemented before were merged
together (into a single 12 character field) which is calleds_fsmnt. The system puts the
ASCII path name where a file system is mounted (e.g. /usr) in this field and uses it in
printing error messages on the console; (e.g. ‘‘/usr: file system full’’ rather than ‘‘no space
on dev 0/6’’).

inline.h In order to reduce the number of conditional flags defined when compiling the system, the
conditional flag FASTVAX, which was always defined, has been deleted.A conditional
flag UNFAST, which is never defined, has been added to take its converse’s place.

inode.h The constant NINDEX has been reduced from 15 to 6. This limits the number of files
which may be join()’ed into a multiplexor (mpx(2)) tree. You may have to increase this if
you use the multiplexor extensively, but it saves a large amount of space in the kernel if
you can use the smaller value, since NINDEX of 15 causes 40 bytes of extra unused space

-5-

to be allocated to every inode.

map.h Themalloc.c routines have been rewritten to check for table overflow and renamed map.c.

mba.h Is now split into mbareg.h andmbavar.h, the former contains the definitions of device
register and is usable, e.g., in the standalone version of the system. The latter contains
system variable related to the MASSBUS adapters.

mem.h Is a new file which contains information on the memory controller registers in the form of
macros which make the several VAX processors seem very similar to the UNIX code.
Note also that the system now uses interrupts from the memory system to force error log-
ging since the previous technique (polling) works only on the 11/780.

mscp.h A new file which defines the DECMass Storage Control Protocol used by the UDA50
disk controller.

mtpr.h The register numbers are now giv en in hex, as in the DEC manuals; registers for all VAX
processors are included.

msgbuf.h Defines the structure of the error message buffer, which is now kept in the last 1024 bytes
of memory. This allows it to be preserved across system crashes and lets messages such
as machine check reports be written conveniently into the error log.

nexus.h A new header file which defines the registers and constants related to the interconnect
architecture of VAXen.

param.h No longer defines the large number of constants related to system sizing; a smaller num-
ber of rarely changed constants are given here. Inparticular, constants which were typi-
cally changed to affect the maximum number of supportable users are now controlled by
the value given themaxuserskeyword in the machine specification (as described incon-
fig (8)). Theconfig program turns this specification into parameters to theparam.c file
which uses formulae to compute the values for the size of the process table, inode table,
etc.

This file now includes the standard file <sys/types.h> to get system types rather than repli-
cating the definitions from that file. It also defines a DELAY(n) macro which is used in
device drivers to provide rougly n microseconds of delay. Finally the definition of
UPAGES, the number of system control pages per-process has been increased from 6 to 8.
This is partially due to the fact that there is now a red-zone page between the kernel stack
and the kernel critical data in theu. area, but also because the kernel stack was precari-
ously close to being too small before.

pcb.h Now includes definitions related to the use of AST’s to implement user program profiling
and rescheduling. Because AST’s are now used, it is no longer necessary to take clock
interrupts on the kernel stack; they now run on the interrupt stack where they belong.
Also rescheduling processing is much cleaner, since the reschedule interrupts only go off
when returning to user mode, not in the kernel where they hav eto be ignored (because
UNIX cannot reschedule when running normally in the kernel.)

proc.h Now defines SOWEUPC, a new flag used to indicate that a profiling count should be gen-
erated when the (already posted) AST for this process goes off. Anothernew flag SSEQL
indicates that the process has declared sequential paging behavior for its data space.
Finally the fieldp_maxrsshas been added, specifying the declared ‘‘memoryuse’’ l imit in
pages.

psl.h Has a bug fixed in the definitions of PSL_USERCLR.Now also declares PSL_USERSET
and PSL_MBZ (must-be-zero).

system.h Defines the variableshz, timezoneand dstflagreplacing the old compile-time constants.
No longer declaresmsgbufas a variable (seemsgbuf.h). Definesthe dumpdevand
dumplovariables which specify where dumps are to take place. Nolonger defines the
debugging variablesprintswandcoreswwhich have been removed in favor of more local
debugging variables. Nolonger defines the fieldsy_nrargfor the system call entry struc-
tures, since system calls never take register arguments on the VAX.

-6-

A variablewantin has been added which is set each time a process is woken up which
wants to be swapped in.This is used so that the code inswapoutin vmsched.cdoes not
run with elevated priority.

trap.h Rearranges some codes previously used only internally so they would be contigous
numerically. These are the finer machine traps which result in SIGILL and are made
available to a signal handling process and defined in <signal.h>. Defines ASTFLT rather
than RESCHED, since the VMS software interrupt which is used for VMS rescheduling
never was appropriate for UNIX and is no longer used.

uba.h Has been split intoubareg.h andubavar.h; see the description of device driver changes
below.

user.h Contains definitions related to the new #! exec facility. The field u.u_cfcodehas been
renamedu.u_codesince it is now used for purposes other than compatibility mode (pre-
senting the more precise hardware reason for SIGILL and SIGFPE signals.)

vlimit.h Now defined LIM_MAXRSS for the ‘‘limit memoryuse’’ f eature.

vm.h Thevm*.h headers have been compressed into a more sensible set of files; the macros are
all in vmmac.h (absorbingvmclust.h andvmklust.h), metering stuff is all in vmmeter.h
(absorbingvmmon.h andvmtotal.h) and the parameters are all invmparam.h (absorb-
ing vmtune.h, most of the parameters of which are now adjusted at boot time insetup-
clock in vmsched.c.)

vmmeter.h The structurevmmeter now computes the number of pages paged inv_pgpginand pages
paged outv_pgpgout, as well as the number of pages freed because of the behavior of pro-
grams which have told the system they are sequentialv_seqfree.

vmparam.h The values of MAXDSIZ and MAXSSIZ have increased due to the increase to DMMIN
in dmap.h. The klustering constants have been changed: in-clustering is now in 4 page
(4k byte) chunks, and out-clustering is up to 16k bytes. Sequential programs kluster in 8k
bytes, and text segments kluster in 2k bytes. The gap for the window into sequential pro-
grams is currently (primitively) defined as a constant kere in KLSDIST.

vmsystm.h Defines a new variableavefree30, which computes the average memory like avefree, but
av eraged over a longer period of time. This is used to put more hysteresis into swapping,
and keep the system from swapping immediately when memory drops low.

System files: sys/sys

A number of files in the system have had minor changes made to them to reduce the length of time
the system runs with the interrupt priority level raised; in particular, the times when the IPL is high enough
to block the clock have been severely limited, in hopes of providing better real-time response (eventually)
and possibly being able to drive the 11/750 console cassette (soon) which has severe interrupt latency con-
straints due to poor hardware interface design.

acct.c The code was tightened by using a register variable. Thesysphysroutine was moved to
sys4.csince it had no business being here.

alloc.c Prints error messages relating to file system problems using the name of the file system
rather than the major/minor device number of the device. Somecode which attempted to
prevent ‘‘dups in free’’ after a reboot, but could not prevent this completely, has just been
removed; the condition is not harmful in any case, as it is normal and fixed byfsck(8).
The system now prints directly on a user’s terminal if that user causes a file system to run
out of free space. The routines here also know how to deal with the fact that the super-
blocks are now kept locked in the buffer cache.

asm.sed No longer definesspl1which is now defunct;spl7 is now VAX IPL 0x1f rather than 0x18,
blocking most processor aborts device interrupts from the console storage device, and a
number of other processor dependent interrupts.Deals with a strange feature of the opti-
mizer which converts ‘‘$0’’ i nto a register which contains 0. Implements theffs routine of
sig.c in a much more efficient way (in just a couple of VAX instructions.)Beware,

-7-

however: UNIX’ s notion of ffs returns 1 for the low bit of a word, while the hardwareffs
would return 0.

clock.c Now runs only that code which is absolutely necessary when the processor priority is very
high, queueing a software interrupt at which priority the rest of the clock processing is
done. Theconditional (old and long unused) code which profiled the kernel in a static
buffer has been removed. Theoption of fishing characters out of thedzanddh silo’s less
often than every clock tick (1/hz) has been removed. Insteadthe silos are processed every
clock tick if the system includes the berknet (bk) line discipline, or not at all (i.e. we take
input interrupts) if ‘‘bk’’ is not included in the system.

The processing and watching of hung UNIBUS adapters has been moved from here to the
UNIBUS routines. Automatic niceing of long-running (more than 10 minutes of user-
state time) processes is now the default here, rather than being based on ‘‘#if ERNIE’’. A
bug in the check for timeout table overflow which would cause the table to overrun with-
out overflow being detected has been fixed. Thetimeout table is now implemented as a
linked list, so that the entries can be conveniently discarded before calling the timeout
routines. Thisprevents the anomalous case where only half the entries are used but the ta-
ble fills up.

fio.c Has been changed to do the correct thing when special files or mounted file systems are
closed: a flush is done at the last close and all blocks are invalidated. Thestandard ‘‘table
full’ ’ routines are called when the file related tables fill up. These routines no longer pass
struct chan * pointers down to called routines, passing, instead, the more universalstruct
file * pointers from which thechanpointers are easily derived.

iget.c Now uses the standardtablefull routine.

ioctl.c The last argument tod_ioctl routines when called is now always 0.

locore.s Has been extensively changed to accomodate the new configurable system, and to handle
multiple UNIBUS and MASSBUS adapters. The code is now written using macros and
the C preprocessor, improving readability. Complicated logic (such as the code to handle
UNIBUS adapter errors) has been migrated to C code.

MASSBUS and UNIBUS adapters are no longer initialized or mapped here; this is the job
of the configuration code in the system. The locore code distinguishes, in handling
UNIBUS interrupts, from the machine beingcold and not; when cold UNIBUS interrupts
are handled so as to be suitable for determined device vectoring via probing.Device
interrupts on the UNIBUS are now vectored through the code in a fileubglue.sproduced
by the configuration program.To mask as much as possible the differences between the
different VAX processors, the 11/780 uses the sameubglue.s as the other processors
which directly vector UNIBUS interrupts.

Many more of the exceptional conditions in the machine are caught now; only ‘‘SBI
alert’’ and ‘‘SBI fault’’ remain uncaught by UNIX. The system control block is now
defined in a filescb.sso that some symbols derived from C language header files by a pro-
gram (and printed into a format suitable for inclusion in an assembly) may be stuck in
after the system control block and before the mainlinelocore.s.

The primitive routinescopysegandclearsegare no longer run with the IPL raised very
high. Furtherminor bugs have been fixed in the primitives, notablyaddupc(a bug which
caused 1/8 of the profiling ticks to be lost), andkernacc (a bug which allowed a strange
command to a certain program to crash the system).

machdep.c
Now sets up the error message buffer (in the last 1024 bytes of core) and the system data
structures (such as the file and process table) at boot time.Currently only the file system
buffer cache is sized at boot time, but all data structures are easily sized here.The startup
routine also calls the routineconfigureto configure the system for the current hardware,
locating available devices.

-8-

Thesendsigroutine passes a code back when a SIGFPE or SIGILL arrives, letting the sig-
nal handler determine which of the several conditions mapped to these two signals actu-
ally occurred. It uses the <frame.h> header file rather than redefining it.

The routines which monitor memory errors are now driven by interrupts (since the previ-
ous polling technique works only on 11/780).Extensive use of macros is made to make
the various VAXen look similar. Instead of printing the raw contents of the memory con-
troller registers, a array address and a syndrome is printed. Multiple memory controllers
are supported.

The routines related to UNIBUS monitoring have been put with the rest of the UNIBUS
routines in../dev/uba.c. The reboot interface has been improved, adding an automatic
crash dump to a dump device (normally a disk aimed at the back end of a paging area).
The system no longer ‘‘halts’’ when you ask it to (since this can cause a reboot to occur);
rather it raises the IPL as high as it can and goes into a tight loop.Routines have been
added to handle machine checks and print out the stack frame in a format which is read-
able by one who grok’s what the fields mean.

main.c Now establishes a red zone between the stack andu. area in process 0; further processes
also have red zones, protecting theu. from too-large stacks. The main routines also setup
the super-blocks which are locked into the file system buffer cache, and copy the name of
the root file system (/) into its super-block so that the name will be available if, e.g., the
root file system becomes full.

malloc.c Has been renamedrmap.c.

nami.c Now respects the notion of.. in a directory which is a virtual root directory after a
chroot (2) call.

prf.c No longer implements the ascii in-core event tracing facility, which proved to be too slow
to be useful; a binary facility replaces it, and is also conditionalized on TRACE, but
implemented invmmon.c. Implements the output of numbers non-recursively, since the
recursive method occasionally caused the kernel stacks to overflow. Implements a new
kernel routineuprintf which prints directly on a user’s terminal for informing him/her of
situations such as file systems which are full (because his/her program wrote to the file
system when it was full.)Implements a new format ‘‘%b’’ which takes two arguments, a
number and a second pattern.The pattern specifies a base to print the number in, and then
a set of short strings separated by bit numbers (origin 1, escaped in octal into the string in
the C compiler).The format prints the symbolic names for the bits which are in the string
and set in the number within <>’s and separated by commas.This is extensively used to
produce readable system error diagnostic messages on the console, decoding the bits of
device registers symbolically.

The routinesprdev and deverr, which printed diagnostics which were difficult to inter-
preter, are deleted. There are two new routines:tablefull which balks that a table is full,
andharderrwhich begins a message about a hard (unrecoverable) error on a device.

prim.c Now maintains a count of freeclist space. Thecode here now runs atspl5 rather than
spl6since there is no longer any need to block the clock.

rdwri.c Sees the change FASTVAX to not UNFAST. Also always clears the set-user-id bit when a
file with the bit set is written on; previously this was done only ‘‘#if UCB’’. If you
‘‘ #define INSECURITY’’ you get the code the old way.

scb.s Is a new file defining the system control block (as described above).

sig.c Has a bug fixed which caused processes to occasionally stop when the shell thought they
were running. Processes are now giv en signals immediately when they are sent if the
process is running.

slp.c A clumsiness which forced the swapout code to run with the IPL raised has been fixed by
adding a variable wantin with which wakeupcan communicate to the swapper that a
swapped out process now wants to return to memory. The routinesetpri has been

-9-

modified so that processes which are over their declared (soft) memory size limitation are
assigned lower CPU priority when the system is very tight on memory.

sys.c No longer allows detached jobs to access /dev/tty; this was a security glitch.

sys1.c Implements the ‘‘#!’ ’ executable shell script scheme.No longer lets executable files be
read by users usingptraceunless the user has read access.Operatesexecmuch more effi-
ciently by avoiding copying argument lists unless theexec is going to succeed.

sys2.c Theopeniroutine passes both the FREAD and FWRITE flags to its callees; this is needed
by the magnetic tape open routines.The maknoderoutine sticks the whole argument
value in the ‘‘rdev’’ fi eld of the inode. This is used by thebadblock(8) program to store
block numbers corresponding to bad sectors on the disk in otherwise apparently empty
files.

sys3.c Themountandumountcalls have been changed to deal correctly with buffer flushing and
with simulateous access by other programs to the file system block devices. Themount
call also copies into the super-block of the file system the name of the device on which the
file system is mounted (e.g. /usr).

sys4.c The syslockroutine has been moved here fromacct.c. The mechanisms for sending sig-
nals to all processes, which is used in shutting down the system, has been changed so that
the process which is broadcasting the signal does not receive it itself. Thisallows thehalt
andshutdownprograms to be written in a straightforward way.

trap.c Prints out thepc when an unexpected trap occurs. Handles AST’s to implement profiling
ticks and for rescheduling rather than the (older style) use of reschedule interrupts.
Allows process reschedules after page faults.

vmmon.c Contains the internal routinetrace1 which implements kernel event tracing in a circular
buffer.

vmpage.c Tracing code, which is normally not compiled in, has been added.A extra case was added
to an if statement to allow implementation of the vlimit(LIM_MAXRSS) feature of the
system, for limiting processes which consume more than a process specific amount of
physical memory. A botch was fixed in the virtual memory pre-paging which put pre-
paged pages in the clock loop rather than at the end of the free list.Code has been added
to implement a additonal replacement algorithm for processes which are declared sequen-
tial: when a hard page fault occurs, the pages sequentially preceding the faulted page are
returned to the free list.

vmproc.c Contains a number of small changes related to AST processing.

vmpt.c Also contains changes for handling AST’s as well as the initialization of the red-zone sep-
arating the stack andu. area of newly created processes.A bug in translation buffer flush-
ing which caused rare and mysterious kernel crashes with the kernel stack not valid has
been fixed.

vmsched.c Code has been added here which initializes the parameters of the clock page replacement
algorithm based on the size of the machine.The swapoutroutine has been changed so
that it no longer runs entirely at a high interrupt priority level (seeslp.cabove). Thealgo-
rithm for the choice of processes to swap in and out and the hysteresis in the swap algo-
rithm has been adjusted to work reasonably in extreme conditions when there are very
large and or very few processes active in the system.

vmsubr.c Contains thesetredzoneroutine definition.

vmsys.c Contains the user interface to the kernel tracing routines. Code has been added tovadvise
to setup VA_SEQL.

Device support: sys/dev

The major change to the device subsystem is the support of multiple MASSBUS and UNIBUS
adapters, the support for multiple instances of each particular controller, and the support of system

-10-

configuration at bootstrap time, investigating the interconnects, devices, and controllers available on the
machine. Thesechanges will be discussed in detail in the next section, which describes how to change
existing drivers to work in the new system and gives pointers on style for writing new drivers.

Other changes in the device drivers affecting more than one driver:

* The input silos for DH-11’s and DZ-11’s are no longer serviced at clock IPL. Rather the clock inter-
rupt queues a software interrupt during to service the silos. This means that the device interrupt rou-
tines are called from IPL 0x15, the IPL at which they normally interrupt. Thus it is no longer neces-
sary to definespl5 to be spl6 (blocking the clock) in routines which handle asynchronous line
input/output.

* The internal interface to the line discipline routines has been changed slightly by reordering parame-
ters to make the arguments to the variousioctl interfaces more similar; in particularttioctl routine call
has been changed.If you have locally written line disciplines or asynchronous device drivers you
should check the interfaces.

* The tty interface now provides full 8-bit output when the terminal is in LLITOUT mode; this requires
support from thexxparam routines in the device drivers (e.g. fromdhparamanddzparam.)

* The UNIBUS adapter support routines have changed substantially, to allow for queueing of requests
when resources are short and for support of multiple UNIBUS adapters.The interface now also
allows devices which cannot function when other DMA is active on the UNIBUS to obtain exclusive
transient use of UNIBUS resources; this is needed to successfully run RK07 disk controllers in the
presence of other buffered data path DMA. In addition, it is used by 6250bpi tape drives supported
on the UNIBUS. Seethe section on configuration and UNIBUS device drivers below for more infor-
mation.

* DEC standard bad sector forwarding is provided for all standard DEC devices using the DEC format-
ters; the code which implements this is easily ported to the storage module drivers in the system, and
this is planned soon.*

bio.c The hashing of buffers has been changed to use the existing device chain two way links.
This means that unhashing is much easier, sav es space, and uses the pointers which were
otherwise little used. The buffers are now kept on one of three lists when not busy: a list
of super-blocks which are locked in core, a list of good data blocks, which is kept fifo and
used to implement the LRU buffer cache, and a list of data blocks for which further usage
is not anticipated; this is also kept fifo.

Calls to some new tracing routines are conditionally included inbio.c; we are using them
to do some performance measurement.Thed_tab field of the block device table has been
changed to ad_flagsfield, and that change is known here, where old field was checked
before (to see if it was non-zero). Better messages are printed now when swap space is
exhausted, and a user is told on his/her terminal that a process was killed before it started
because there was no space.A subroutine has been added to purge the blocks from a spe-
cific device from the cache; this is used to fix some long standing buffer cache flushing
problems which prevented removable media from being used reliably.

bk.c The definition ofspl5 asspl6 has been removed from here. The line discipline is included
only if the specification

pseudo-device bk

is included in the system configuration. The input silos ondh anddz devices are used
only when this line discipline is included in the system. The comment about future imple-
mentation of 8-bit paths with this discipline has been deleted, since there is no longer any
intention of doing this.

conf.c Has been moved to this directory from the directory../conf. This file should be changed
only if you are adding support for a device not included on the standard distribution

* The hard thing in providing bad sector handling for non-DEC drives is providing a formatter which produces
the bad block information and flags the bad sectors appropriately.

-11-

tape.

ct.c Is a new driver, for a C/A/T phototypesetter interface.

dh.c No longer has to definespl5 to bespl6. Incorporates the DM-11 driver standardly. A
method is provided for specifying that lines are to be operated even though the hardware
does not indicate that they are ready (using the flags word in the configuration specifica-
tion, seedh(4)). A reasonable messages is printed when adh silo overflows, replacing
the old style of just printing a sequence of lettero’s on the console.

dhfdm.c Has been incorporated intodh.c.

dn.c A driver for the DEC DN-11 autodialer interface.

dsort.c Has been rewritten to correct a bug which caused the elevators to be sorted incorrectly.

dz.c No longer has to definespl5 to bespl5. Has been changed to allow lines to be specified
as not properly wired and brought up without the ready signals showing in the interface;
seedz(4) for details. Prints reasonable diagnostics when the input silo overflows.

flp.c Knows that there is no floppy on an 11/750.

hp.c Is now a sub-driver to mba.c, which probes nexus space for the MASSBUS adaptors and
device space on the MASSBUS’s for disks, setting up the driver for each device which is
in the configuration.A number of minor bugs and enhancements have been made to the
driver: The driver handles the new RM80 drive and its SSE (skip-sector-error) facility for
bad sector handling, as well as the DEC standard bad block forwarding. Dueto the bad
block forwarding, the last three tracks of each disk are normally reserved to the system
and available only through the use of a special file system partition.A further bug has
been fixed in the initialization of the tables for RM05 sectoring. The driver no longer
(baroquely) turns on and off interrupts on the MASSBUS adapter. Basic dual-port drive
handling code has been added to the driver.

The remaining remarks apply to all three supported disk drivers: thehp driver for MASS-
BUS disks, theup driver for UNIBUS storage modules, and thehk driver for RK07’s:
The drivers do not SEARCH or SEEK if there is only one drive on the MASSBUS. Ona
UNIBUS no SEARCHing or SEEKing is done if one drive is on the controller. The offset
positions and recalibration of error recovery is now done with interrupts rather than by
waiting for the operations to complete. This prevents the system from being tied up dur-
ing the many recoveries of a disk operation, and is necessary in any case in at least one of
the disk drivers (RK07). The iostat numbers for each MASSBUS and UNIBUS drive are
calculated by the auto-configurator at boot time, not compiled into the drivers. Much
cleaner handling of errors is done: the drivers realize which errors are not even potentially
recoverable, handle drives spinning up and down with readable diagnostics, and print rea-
sonable, legible error messages when hard errors and soft ecc’s occur. Each driver
includes a low-level non-interrupt driver used to take crash dumps at the end of a paging
area on the device. Thedrivers include a raw i/o buffer per drive so that raw operations on
separate devices can be overlapped (both seeks and transfers); previously only one raw
device operation could be pending per device type.

ht.c The tape drive is now a sub-drive of the MASSBUS driver. The following remarks apply
to all supported tape drivers: ht andmt for MASSBUS tapes,ts for the UNIBUS ts-11,
andtm for the UNIBUS TM-11 emulations.

Each driver implements a set of tape ioctl operations on raw tapes providing access to the
functionality of the hardware such as skipping forward and backward records and files
and writing end-of-file marks on the tape.Better error diagnostics are also given on tape
errors. Multipletape controllers and transports are supported.A dump routine is pro-
vided with each driver for taking a post-mortem crash dump on tape, although dumps are
normally made to the paging area on the disk.

With the exception of thets driver, the drivers detect and reject attempts to switch tape
density while writing a tape.

-12-

lp.c Is a fully supported driver for one or more line printer interfaces. Ithas been improved
from the previous drivers (which were not supported) to take asmall fraction of the num-
ber of interrupts that the previous drivers took. The user-level code driving the printers
has been arranged to work on 1200 baud DECWRITER III terminals or true printers.

mba.c Has been rewritten. Now allows mixing of disks and tapes on the same and across multi-
ple mba’s, with the devices being driven from the routines here calling routines defined in
the individual device drivers.

mem.c Has been fixed to not allow any access to nexus space, even by the super-users, since such
access inevitably results in a machine check and a system crash.

mt.c A driver for the DEC TU78 tape drive.

mx?.c A bug has been fixed which, caused by a missing call tochdrain caused multiplexor files
to become clogged under certain circumstances.

rk.c Is a new driver for RK07 disks. It uses the same logic as the storage module drive driver
up.c whenever possible. Italso makes use of the interlocking facilities of the UNIBUS
device support because therk controller cannot tolerate concurrent UNIBUS dma when it
is operating due to a design flaw.

swap.c Now places only half of the first piece of theswapmapin theargmap.

swap??*.c Are the files for different swap configurations.Thusswaphp.cdefines the root and swap
devices for a UNIX based on ahp disk. Thefiles such asswaphphp.care for interleaved
paging configurations, placing the swapping and paging activity on two disk arms. You
can make additional such files and include them in your configuration files.

tdump.c Has been deleted, replaced by the dump routines in individual drivers.

tm.c Is a driver for UNIBUS tape drives on controllers such as the EMULEX TC-11. It has the
same functionality asht (seeht.c above.)

ts.c Is a driver for the UNIBUS TS-11 tape drive. It has full functionality except the transport
itself only supports 1600 bpi.

tty.c No longer raises its IPL tospl6 internally to block the clock. Has its internal interface to
ioctl entries changed slightly to be globally consistent (see, e.g.ttioctl). TheDIOC* ioctl
entries have been deleted since they are not used in any standard UNIX line disciplines.

ttynew.c A bug is fixed which prevented echoing from occurring in raw mode. Thedec-compatible
method of ˆS/ˆQ processing needed to support VT-100s in smooth scroll mode is imple-
mented when the local mode ‘‘decctlq’’ is specified.

ttyold.c Implements ‘‘decctlq’’ mode.

tu.c A driver for the 11/750 TU58 console cassette interface. Note: this driver pro vides reli-
able service only on a quiescent system.

uba.c Has a much more structured interface. All the basic routines for dealing with the
UNIBUS specify a UNIBUS adapter number to use, since there are potentially several on
a machine. Whenrequesting allocation of UNIBUS map entries, the caller specifies
whether he is willing to block in the allocation routines waiting for resources to come
available. If he is not, and there are no resources available, a value of 0 is returned, and
the caller must deal with this. The routine which frees UNIBUS resources now takes the
address of the variable describing the resources to be freed rather than the value of this
variable to eliminate a race condition (where the routine is called, a UNIBUS interrupt
occurs causing a UNIBUS reset, and the resources are freed twice, causing apanic).

The normal interface for DMA operation is now to pass a pointer to a UNIBUS related
structure to a routineubago, which allocates UNIBUS resources. If resources are not
available, the structure is queued on a request queue, and processed when resources are
available. Whenthe requested resources are allocated, a driver specific xxgo routine is
called, and can stuff the device registers with the address into which the operation is
mapped and start the operation. The use of this interface is described in the next section.

-13-

Finally, we note that the error handling code which was written in assembly language is
now written in C.

uda.c A driver for the UDA50 disk controller with RA80 Winchester storage modules.

up.c The UNIBUS storage module disk driver has been fixed up in the same way that thehp
driver was, giving better error diagnostics and using interrupts during error recovery, etc.
Seehp.c above for details.The driver uses a feature of the EMULEX SC-21 to determine
the size of the disks in use, so that it can adapt to both 300M storage modules and the
Fujitsu 160M drives which are popular. Other drive sizes can be added easily.

va.c The varian printer-plotter driver has been modified so that it can support more than one
device, probes the devices so they can be placed on differrent UNIBUS’es, and prints an
error diagnostic when device errors are detected.

vaxcpu.c Is a new file which contains initializations of various CPU-type dependent structures.

vp.c Has been modified to handle multiple devices, and adapted to the auto-configuration code.

Configuration and UNIBUS device drivers

Someday this section will be a separate document. This section explains how to interface an existing
UNIX device driver to the VAX system, especially to the UNIBUS routines and the autoconfiguration code.

A PDP-11, UNIX/32V or 3BSD or 4.0BSD driver on the VAX UNIBUS will need to be modified to
run under 4.1BSD. There are three reasons why such a driver will need to be changed:

1) 4.1bsdsupports multiple UNIBUS adapters.

2) 4.1bsdsupports system configuration at boot time.

3) 4.1bsdmanages the UNIBUS resources and does not crash when resources are not available; the
resource allocation protocol must be honored.In addition, devices such as the RK07 which require
ev eryone else to get off the UNIBUS when they are running need cooperation from other DMA
devices if they are to work.

Each UNIBUS on a VAX has a set of resources:

* 496 map registers which are used to convert from the 18 bit UNIBUS addresses into the much larger
VAX address space.

* Some number of buffered data paths (3 on an 11/750, 15 on an 11/780) which are used by high speed
devices to transfer data using fewer bus cycles.

There is a structure of typestruct uba_hd in the system per UNIBUS adapter used to manage these
resources. Thisstructure also contains a linked list where devices waiting for resources to complete DMA
UNIBUS activity have requests waiting.

There are three central structures in the writing of drivers for UNIBUS controllers; devices which do
not do DMA i/o can often use only two of these structures. The structures arestruct uba_ctlr, the
UNIBUS controller structure,struct uba_device the UNIBUS device structure, andstruct uba_driver , the
UNIBUS driver structure. Theuba_ctlr anduba_devicestructures are in one-to-one correspondence with
the definitions of controllers and devices in the system configuration. Each driver has astruct uba_driver
structure specifying an internal interface to the rest of the system.

Thus a specification

controller sc0 at uba0 csr 0176700 vector upintr

would cause astruct uba_ctlr to be declared and initialized in the fileioconf.c for the system configured
from this description. Similarly specifying

disk up0 at sc0 drive 0

would declare a relateduba_devicein the same file.Theup.c driver which implements this driver specifies
in its declarations:

-14-

int upprobe(),upslave(), upattach(), updgo(), upintr();
struct uba_ctlr*upminfo[NSC];
struct uba_device *updinfo[NUP];
u_short upstd[] = { 0776700, 0774400, 0776300, 0 };
struct uba_driver scdriver =

{ upprobe, upslave, upattach, updgo, upstd, "up", updinfo, "sc", upminfo };

initializing theuba_driver structure. Thedriver will support some number of controllers namedsc0, sc1,
etc, and some number of drives namedup0, up1, etc. where the drives may be on any of the controllers
(that is there is a single linear name space for devices, separate from the controllers.)

We now explain the fields in the various structures. It may help to look at a copy of h/ubareg.h,
h/ubavar.h and drivers such asup.c anddz.cwhile reading the descriptions of the various structure fields.

uba_driver structure

One of these structures exists per driver. It is initialized in the driver and contains functions used by
the configuration program and by the UNIBUS resource routines. The fields of the structure are:

ud_probe A routine which is given acaddr_t address as argument and should cause an interrupt on
the device whose control-status register is at that address in virtual memory. It may be the
case that the device does not exist, so the probe routine should use delays (via the
DELAY(n) macro which delays forn microseconds) rather than waiting for specific
ev ents to occur. The routine mustnot declare its argument as aregister parameter, but
must declare

register int br, cvec;

as local variables. Atboot time the system takes special measures that these variables are
‘‘ value-result’’ parameters. Thebr is the IPL of the device when it interrupts, and the
cvec is the interrupt vector address on the UNIBUS. Theseregisters are actually filled in
in the interrupt handler when an interrupt occurs.

As an example, here is theup.c probe routine:

upprobe(reg)
caddr_t reg;

{
register int br, cvec;

#ifdef lint
br = 0; cvec = br; br = cvec;

#endif
((struct updevice *)reg)->upcs1 = UP_IE|UP_RDY;
DELAY(10);
((struct updevice *)reg)->upcs1 = 0;
return (1);

}

The definitions forlint serve to indicate to it that thebr and cvec variables are value-
result. Thestatements here interrupt enable the device and write the ready bit UP_RDY.
The 10 microsecond delay insures that the interrupt enable will not be cancelled before
the interrupt can be posted. The return of ‘‘1’ ’ here indicates that the probe routine is sat-
isfied that the device is present.A probe routine may use the function ‘‘badaddr’’ to see if
certain other addresses are accessible on the UNIBUS (without generating a machine
check), or look at the contents of locations where certain registers should be. If the regis-
ters contents are not acceptable or the addresses don’t respond, the probe routine can
return 0 and the device will not be considered to be there.

-15-

One other thing to note is that the action of different VAXen when illegal addresses are
accessed on the UNIBUS may differ. Some of the machines may generate machine
checks and some may cause UNIBUS errors.Such considerations are handled by the con-
figuration program and the driver writer need not be concerned with them.

It is also possible to write a very simple probe routine for a one-of-a-kind device if prob-
ing is difficult or impossible. Such a routine would include statements of the form:

br = 0x15;
cvec = 0200;

for instance, to declare that the device ran at UNIBUS br5 and interrupted through vector
0200 on the UNIBUS. Thecurrent TS-11 driver does something similar to this because
the device is so difficult to force an interrupt on that it hardly seems worthwhile.
(Besides, TS-11’s are usually present on small 11/750’s which have only one UNIBUS,
and TS-11’s can have only exactly one transport per-controller so little probing is needed.)

ud_slave This routine is called with auba_devicestructure (yet to be described) and the address of
the device controller. It should determine whether a particular slave device of a controller
is present, returning 1 if it is and 0 if it is not.As an example here is the slave routine for
up.c.

upslave(ui, reg)
struct uba_device *ui;
caddr_t reg;

{
register struct updevice *upaddr = (struct updevice *)reg;

upaddr->upcs1 = 0; /* conservative */
upaddr->upcs2 = ui->ui_slave;
if (upaddr->upcs2&UPCS2_NED) {

upaddr->upcs1 = UP_DCLR|UP_GO;
return (0);

}
return (1);

}

Here the code fetches the slave (disk unit) number from theui_slave field of the
uba_devicestructure, and sees if the controller responds that that is a non-existant driver
(NED). If the drive a drive clear is issued to clean the state of the controller, and 0 is
returned indicating that the slave is not there. Otherwise a 1 is returned.

ud_attach The attach routine is called after the autoconfigure code and the driver concur that a
peripheral exists attached to a controller. This is the routine where internal driver state
about the peripheral can be initialized. Here is theattachroutine from theup.c driver:

upattach(ui)
register struct uba_device *ui;

{
register struct updevice *upaddr;

if (upwstart == 0) {
timeout(upwatch, (caddr_t)0, hz);
upwstart++;

}
if (ui->ui_dk >= 0)

dk_mspw[ui->ui_dk] = .0000020345;
upip[ui->ui_ctlr][ui->ui_slave] = ui;
up_softc[ui->ui_ctlr].sc_ndrive++;

-16-

upaddr = (struct updevice *)ui->ui_addr;
upaddr->upcs1 = 0;
upaddr->upcs2 = ui->ui_slave;
upaddr->uphr = UPHR_MAXTRAK;
if (upaddr->uphr == 9)

ui->ui_type = 1; /* fujitsu hack */
upaddr->upcs2 = UPCS2_CLR;

}

The attach routine here performs a number of functions.The first time any drive is
attached to the controller it starts the timeout routine which watches the disk drives to
make sure that interrupts aren’t lost. It also initializes, for devices which have been
assignediostatnumbers (when ui->ui_dk >= 0), the transfer rate of the device in the array
dk_mspw, the fraction of a second it takes to transfer 16 bit word. It then initializes an
inverting pointer in the arrayupip which will be used later to determine, for a particular
up controller and slave number, the correspondinguba_device. It increments the count
of the number of devices on this controller, so that search commands can later be avoided
if the count is exactly 1. It then uses a hardware feature of the EMULEX SC-21 to ask if
the number of tracks on the device is 9. If it is, then the driver assumes that the type is
‘‘ 1’’, which corresponds to a FUJITSU 160M drive. The alternative is the only other cur-
rently supported device, a 300 Megabyte CDC or AMPEX drive, which hasui_type 0.
Note that if the controller is not an SC-21 then attempting to find out the maximum track
in the device will yield an error, and a 300 Megabyte device will be assumed. In any case,
any errors resulting from the attempt to type the drive are cleared by a controller clear
before the routine returns.

ud_dgo Is the routine which is called by the UNIBUS resource management routines when an
operation is ready to be started (because the required resources have been allocated).The
routine inup.c is:

updgo(um)
struct uba_ctlr *um;

{
register struct updevice *upaddr = (struct updevice *)um->um_addr;

upaddr->upba = um->um_ubinfo;
upaddr->upcs1 = um->um_cmd|((um->um_ubinfo>>8)&0x300);

}

This routine uses the fieldum_ubinfo of the uba_ctlr structure which is where the
UNIBUS routines store the UNIBUS map allocation information. In particluar, the low
18 bits of this word give the UNIBUS address assigned to the transfer. The assignment to
upbain the go routine places the low 16 bits of the UNIBUS address in the disk UNIBUS
address register. The next assignment places the disk operation command and the
extended (high 2) address bits in the device control-status register, starting the i/o opera-
tion. Thefield um_cmd was initialized with the command to be stuffed here in the driver
code itself before the call to theubago routine which eventually resulted in the call to
updgo.

ud_addr Are the conventional addresses for the device control registers in UNIBUS space.This
information is not used by the system in this release, but may be used in future releases to
look for instances of the device supported by the driver. In the current system, the config-
uration file specifies the control-status register addresses of all configured devices.

ud_dname Is the name of adevicesupported by this controller; thus the disks on a SC-21 controller
are calledup0, up1, etc. Thatis because this field containsup.

ud_dinfo Is an array of back pointers to theuba_devicestructures for each device attached to the
controller. Each driver defines a set of controllers and a set of devices. Thedevice

-17-

address space is always one-dimensional, so that the presence of extra controllers may be
masked away (e.g. by pattern matching) to take advantage of hardware redundancy. This
field is filled in by the configuration program, and used by the driver.

ud_mname The name of a controller, e.g.scfor theup.c driver. The first SC-21 is calledsc0, etc.

ud_minfo The backpointer array to the structures for the controllers.

ud_xclu If non-zero specifies that the controller requires exclusive use of the UNIBUS when it is
running. Thisis non-zero currently only for the RK611 controller for the RK07 disks to
map around a hardware problem. It could also be used if 6250bpi tape drives are to be
used on the UNIBUS to insure that they get the bandwidth that they need (basically the
whole bus).

uba_ctlr structure

One of these structures exists per-controller. The fields link the controller to its UNIBUS adaptor and
contain the state information about the devices on the controller. The fields are:

um_driver A pointer to thestruct uba_devicefor this driver, which has fields as defined above.

um_ctlr The controller number for this controller, e.g. the 0 insc0.

um_alive Set to 1 if the controller is considered alive; currently, always set for any structure encoun-
tered during normal operation.That is, the driver will have a handle on auba_ctlr struc-
ture only if the configuration routines set this field to a 1 and entered it into the driver
tables.

um_intr The interrupt vector routines for this device. Theseare generated by theconfig(8) pro-
gram and this field is initialized in theioconf.cfile.

um_hd A back-pointer to the UNIBUS adapter to which this controller is attached.

um_cmd A place for the driver to store the command which is to be given to the device before call-
ing the routineubagowith the devices uba_devicestructure. Thisinformation is then
retrieved when the device go routine is called and stuffed in the device control status reg-
ister to start the i/o operation.

um_ubinfo Information about the UNIBUS resources allocated to the device. Thisis normally only
used in device driver go routine (asupdgo above) and occasionally in exceptional condi-
tion handling such as ECC correction.

um_tab This buffer structure is a place where the driver hangs the device structures which are
ready to transfer. Each driver allocates a buf structure for each device (e.g.updtab in the
up.c driver) for this purpose.You can think of this structure as a device-control-block,
and the buf structures linked to it as the unit-control-blocks.The code for dealing with
this structure is stylized; see therk.c or up.c driver for the details. If theubagoroutine is
to be used, the structure attached to thisbuf structure must be:

* A chain ofbuf structures for each waiting device on this controller.

* On each waiting buf structure anotherbuf structure which is the one containing the
parameters of the i/o operation.

uba_device structure

One of these structure exists for each device attached to a UNIBUS controller. Devices which are not
attached to controllers or which perform no buffered data path DMA i/o may have only a device structure.
Thusdz anddh devices have only uba_devicestructures. Thefields are:

ui_dri ver A pointer to thestruct uba_driver structure for this device type.

ui_unit The unit number of this device, e.g. 0 inup0, or 1 in dh1.

ui_ctlr The number of the controller on which this device is attached, or −1 if this device is not
on a controller.

-18-

ui_ubanum The number of the UNIBUS on which this device is attached.

ui_slave The slave number of this device on the controller which it is attached to, or −1 if the
device is not a slave. Thus a disk which was unit 2 on a SC-21 would have ui_slave 2; it
might or might not beup2, that depends on the system configuration specification.

ui_intr The interrupt vector entries for this device, copied into the UNIBUS interrupt vector at
boot time. The values of these fields are filled in by theconfig(8) program to small code
segments which it generates in the fileubglue.s.

ui_addr The control-status register address of this device.

ui_dk The iostat number assigned to this device. Numbersare assigned to disks only, and are
small positive integers which index the variousdk_* arrays in <sys/dk.h>.

ui_flags The optional ‘‘flags xxx’’ parameter from the configuration specification was copied to
this field, to be interpreted by the driver. If flags was not specified, then this field will
contain a 0.

ui_alive The device is really there. Presently set to 1 when a device is determined to be alive, and
left 1.

ui_type The device type, to be used by the driver internally. Thus theup.c driver uses aui_type
of 0 to mean a 300 Megabyte drive and a type of 1 to mean a 160 Megabyte FUJITSU
drive.

ui_physaddr The physical memory address of the device control-status register. This is used in the
device dump routines typically.

ui_mi A struct uba_ctlr pointer to the controller (if any) on which this device resides.

ui_hd A struct uba_hd pointer to the UNIBUS on which this device resides.

Changing drivers

If you driver does not do buffered data path DMA, conversion to the new system should be straight-
forward; if it uses buffered data paths more work will be required, but the task is really mostly cosmetic.

In any case, first add a line to the fileconf/filesof the form

dev/zz.c optionalzz device-driver

so that your driver will be included when you specify it in a configuration. Change thedev/conf.cfile to
include a block or character device entry for your device. Notethat the block device entries now include a
d_dump entry; if you are a block device but don’t hav ea dump entry point, just make one in your driver
that returns the value ENODEV.

Then build a system configuration including your driver so that you have a compilation environment
for your driver. You will have to add astruct uba_driver declaration for your driver, and change its calls
to UNIBUS routines to correspond to these routines in the new system. Trouble spots will show up here.
In particular, notice that you must specify flags touballoc if you call it:

NEEDBDP if you need a buffered data path

CANTWAIT if you are calling (potentially) from interrupt level

You may discover that your driver ‘‘cantwait’’ but that you are calling from interrupt level. This botch
existed in most previous VAX UNIX drivers, since there were no mechanisms for dealing with this.We
will describe some options shortly.

First, suppose your driver doesn’t do buffered data path dma.What else is there for you to do?Very
little really. You should change your driver to print messages on the console in the format now used by all
device drivers; see section 4 of the revised programmers manual for details.To make more certain that
your driver is ready for the new system environment, look at some of the simple existing drivers and mimic
the style to create the portions of the driver which are needed to interface with the configuration part of the
system. Usefuldrivers to look at may be:

-19-

ct.c Very simple drive which does programmed i/o to C/A/T phototypesetter.

dh.c Communications line driver which uses non-buffered UNIBUS dma for output.

dz.c Communications line driver which does programmed i/o.

Basically all you have to do is write aud_probe and aud_attach routine for the controller. It suf-
fices to have aud_probe routine which just initializesbr andcvec, and aud_attach routine which does
nothing. Makingthe device fully configurable requires, of course, more work, but is worth it if you expect
the device to be in common usage and want to share it with others.

If you managed to create all the needed hooks, then make sure you include the necessary header files;
the ones included byct.c are nearly minimal. Order is important here, don’t be suprised at undefined struc-
ture complaints if you order the includes wrongly. Finally if you get the device configured in, you can try
bootstrapping and see if configuration messages print out about your device. It is a good idea to have some
messages in the probe routine so that you can see that you are getting called and what is going on.If you
do not get called, then you probably have the control-status register address wrong in your system configu-
ration. Theautoconfigure code notices that the device doesn’t exist in this case and you will never get
called.

Assuming that your probe routine works and you manage to generate an interrupt, then you are basi-
cally back to where you would have been under older versions of UNIX.Just be sure to use theui_ctlr
field of theuba_devicestructures to address the device; compiling in funny constants will make your driver
only work on the CPU type you have (780 or 750).

Other bad things that might happen while you are setting up the configuration stuff:

* You get ‘‘nexus zero vector’’ errors from the system. This will happen if you cause a device to inter-
rupt, but take away the interrupt enable so fast that the UNIBUS adapter cancels the interrupt and
confuses the processor. The best thing to do it to put a modest delay in the probe code between the
instructions which should cause and interrupt and the clearing of the interrupt enable.(You should
clear interrupt enable before you leave the probe routine so the device doesn’t interrupt more and
confuse the system while it is configuring other devices.)

* The device refuses to interrupt or interrupts with a ‘‘zero vector’’. This typically indicates a problem
with the hardware or, for devices which emulate other devices, that the emulation is incomplete.
Devices may fail to present interrupt vectors because they hav econfiguration switches set wrong, or
because they are being accessed in inappropriate ways. Incompleteemulation can cause ‘‘mainte-
nance mode’’ f eatures to not work properly, and these features are often needed to force device inter-
rupts.

Adapting devices which do buffered data path dma

These devices fall into two categories: those which are controllers to which devices are attached, and
those which are just single devices. Theinterface for the former is very stylized and we recommend that
you simply mimic one of the existing tape or disk drivers in adapting to the system.You will find that the
existing tape and disk drivers are allvery similar; this is deliberate so that it isn’t necessary to rewrite the
whole driver for each device, since the available devices are typically very similar.

Other devices which do buffered data path DMA can be adapted to the new system in one of two
ways:

* They can do their own data path allocation, calling the UNIBUS allocation routines from the ‘‘top-
half ’’ (non-interrupt) code, sleeping in the UNIBUS code when resources are not available. Seefor
an example the code in thevp.c driver.

* They can set up a two-level structure like the tape and disk drivers do, and call theubagoroutine and
use theud_dgo interface to start DMA operations. See for an example the code in theup.c driver.

Either way works acceptably well; the second (ubago) interface is preferable because it does not
force a context switch per i/o operation (to the routine driving the i/o from the ‘‘top-half ’’).

If you have questions about converting drivers, feel free to call us and ask or to send us mail.We
hope (eventually) to write a more complete paper for driver writers, but don’t hav ethe manpower to do this

-20-

just now.

